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ABSTRACT 
It  is possible to enhance our understanding of what has hap- 
pened on a computer system by using forensic techniques 
that  do not require prediction of the nature of the attack, the 
skill of the attacker, or the details of the system resources or 
objects affected. These techniques address five fundamental 
principles of computer forensics. These principles include 
recording data  about the entire operating system, particu- 
larly user space events and environments, and interpreting 
events at different layers of abstraction, aided by the context 
in which they occurred. They also deal with modeling the 
recorded data as a multi-resolution, finite state machine so 
that  results can be established to a high degree of certainty 
rather than merely inferred. 

Categories and Subject Descriptors 
D.4.6 [ O p e r a t i n g  Sys tems] :  Security and Protec t ion-- In-  
vasive software (e.g., viruses, worms, Trojan horses); K.6.5 
[Management of  C o m p u t i n g  and Information Sys-  
terns]: Security and Protection--Invasive software (e.g., 
viruses, worms, Trojan horses), Unauthorized access (e.g., 
hacking, phreaking) 
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. INTRODUCTION 
"It is a capital mistake to theorize before o n e  

has data. Insensibly one begins to twist facts to 
suit theories, instead of theories to suit facts." 

-Sherlock Holmes, A Scandal in Bohemia, 
Sir Arthur Conan Doyle (1891) 

Forensic analysis is the process of understanding, re-creating, 
and analyzing events that  have previously occurred. Logging 
is the recording of data  that  will be useful in the future for 
understanding past events. Auditing involves gathering, ex- 
amining, and analyzing the logged data  to understand the 
events that  occurred during the incident in question [2]. The 
data  gathered may also involve decompiling binaries or re- 
covering other remaining evidence, such as saved memory 
images. 

Successful forensic analysis requires the ability to re-create 
any event regardless of the intent of the user, the nature of 
the previous events, and whether the cause of the events was 
an illegitimate intruder or an authorized insider. The ability 
to do this has progressed very little since the first research 
on the subject in 1980 [1]. Examples of events that  current 
tools cannot accurately identify include anything that  a pro- 
gram is reading or writing to memory. This covers a huge 
number of possible events and exploits, such as changes to 
the user environment, covert channels, buffer overflows, and 
race conditions. 

Current techniques to resolve these problems result in gener- 
ation of too much information, leading to impractical perfor- 
mance slowdowns and high storage requirements. They also 
suffer from a disparity between the goals of system design- 
ers, administrators, and forensic analysts. Five principles 
address current failures. We believe that  any tool that  does 
not follow all of these principles will fail to record actions or 
results in enough detail to understand their meaning. Cur- 
rent tools use techniques that  address some, but not all, 
of these principles. Thus, they fail to recognize and report 
many scenarios, or do so incorrectly. 
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No widely-used operating system records every event, its 
cause, and its result. Hence we need other ways to generate 
this information. Three key bases for computer forensics 
will help us interpret events correctly: 

The entire system must be considered. 

The effects of an action can be significantly different 
than what we expected them to be. 

Runtime data is the only authoritative record of what 
happened. While pre-intrusion static vulnerability scans, 
and post-intrusion analyses of system state can often 
be of enormous help, a complete set of runtime data 
is the only authoritative set of data that can be relied 
upon for forensic analysis in all circumstances. 

For modern operating systems, these ideas suggest the fol- 
lowing principles. In these, we use context as a broad term 
that  includes any system detail surrounding an event. En- 
vironments are a subset of context and refer generally to 
user-definable shell and program settings. 

Principle 1: Consider the entire system. This includes the 
user space as well as the entire kernel space, filesystem, 
network stack, and other related subsystems. 

Principle 2: Assumptions about expected failures, attacks, and 
attackers should not control what is logged. Trust no 
user and trust no policy, as we may not know what we 
want in advance. 

Principle 3: Consider the effects of events, not just  the ac- 
tions that caused them, and how those effects may be 
altered by context and environment. 

Principle 4: Context assists in interpreting and understand- 
ing the meaning of an event. 

Principle 5: Every action and every result must be processed 
and presented in a way that can be analyzed and un- 
derstood by a human forensic analyst. 

Several of these principles parallel principles from classic 
operating system concepts, such as having fall-safe defaults. 
For instance, principle 2 says that rather than recording X, 
we should record everything except X, after having deter- 
mined from principles 1, 3, and 4 that X is not valuable. 

Examples of problems that  current tools do not address, 
and the principles that  would need to be followed to address 
them, include: 

1. changes in the user enviroment (such as the UNIX 
shell or applications) (principles 1, 3, and 4) 

2. changes in the global system enviroment (such as file 
permissions) that  affects system operation at a later 
t ime (principles 1, 3, and 4) 

3. abstraction shortcuts bypassing standard mechanisms, 
such as bypassing the filesystem to the raw disk (prin- 
ciples 1 and 4) 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

buffer and numeric overflows and reading memory lo- 
cations larger than the allocated buffer (principles 1 
and 4) 

race conditions (principles 1, 2, and 4) 

programmer backdoors [7] exploited (principles 1, 2, 
and 4) 

code injected into the program instruction stream (prin- 
ciples 1, 2, and 4) 

code written to the heap at runtime and executed dy- 
namically (principles 1, 2, 3, and 4) 

self-modifying code whose behavior varies based on en- 
vironmental conditions (principles 1, 2, 3, and 4) 

illicit channels [12], with high-volume data  rates, such 
as data  exposed from one user space to another with a 
memory write or data  read from or writ ten to raw disk 
at points with unallocated inodes (principles i and 4) 

11. interception of user input (principles 1 and 2) 

Throughout  this paper, we will refer to a real system com- 
promise as an example. A Mandrake Linux system was run- 
ning a wide variety of security software, including syslog, 
TCPWrappers, the network IDS snort, 1 the host-level fire- 
wall iptables, and Tripwire. 2 All current security patches 
had been applied. Despite these typical precautions, the 
machine was compromised. This was discovered from emaU 
from a system administrator at another site, whose ma- 
chines were being attacked by the compromised system. The 
vulnerability was probably in Linux-PAM (Linux Pluggable 
Authentication Module), though that  suspicion is an infer- 
ence from available and missing data. No hard evidence is 
available. The only evidence unearthed by standard proce- 
dures and tools was a directory containing a tool to perform 
brute-force ssh attempts against other machines, crime evi- 
dence that a number of standard binaries had been replaced 
and possibly "trojaned," and syslog messages showing a 
number of successful ssh logins for every user on the sys- 
tem that did not have a login shell. No proof of how the 
intruder broke in and what the intruder did was found. 

In the next section, we discuss the inadequacy of current 
forensic solutions in terms of our principles. 

2. THE CURRENT PROBLEMS WITH FOREN- 
SICS 

2.1 Principle 1: Consider the Entire System 
Principle l requires an analyst to have access to at least as 
much data  after an intrusion as an intruder had before and 
during. For instance, falling to consider user space leaves the 
analyst with no way to determine whether a buffer overflow 
occurred, as in our intrusion example above. An intruder 
can cause a buffer overflow, but  using current tools, an an- 
alyst cannot prove that  one occurred. 

lhttp ://www. snort, org 
2http://~. tripwire, org 
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Many tools are able to provide forensic information about 
the kernel space by instrumenting the entrances to the ker- 
nel. Many tools a t tempt  containment, or perform static or 
dynamic analyses for race conditions, buffer overflows, and 
other potential security exploits. But  principle 1 demands 
more information, specifically from both the kernel space 
and the user space. Even in highly confined systems, an at- 
tacker can perform actions relevant to an intrusion in user 
space. User space environments can alter the perceived na- 
ture of an event, and the events reported by a tool that  only 
looks at the kernel space may be inaccurate or incomplete 
at best. 

For instance, current tools identify rmap or sbrk memory 
allocation system calls (syscalls), but do not tell us the size 
and content of data transfered to or from memory. Current 
tools identify a running process, but  do not tell us which 
function in the code was exploited via buffer overflow to 
put the program in that  state. Current tools can tell us 
which library was loaded and which file was executed, but 
not the directories in the user's library and execution paths 
that  were searched, which would include information on how 
a user is attempting to explore the machine. Unlike many 
previous forensic tools and techniques [2, 8, 15, 16] or even 
fault tolerant operating systems, today's tools reduce the 
need for pre-determination of "attack" or "failure" methods 
by casting a broad net. But they omit non-kernel space data 
and information about user space that  results in missing 
many forensically-relevant events. 

Computer forensics typically uses a standard set of tools im 
cluding system logs (syslog and TCPWrappers on UNIX, the 
Event Log on Windows), logs from network intrusion detec- 
tion systems, host-level firewall logs, and Tr'ipwire. None of 
these tools, either collectively or independently, are designed 
to consider the entire system. Despite their use, both initial 
knowledge of intrusions and methods of discovery are fre- 
quently based on guesses, as in our example above. In that  
example, we wanted to know, with high certainty, which 
software contained the vulnerability. What  was the nature 
of that vulnerability? What  backdoors were subsequently 
installed? What actions were taken on the system? What  
other systems were attacked from our system? How, and 
were any successful? No current tool is able to answer these 
questions well because no tools consider the entire system. 
Even the most basic forensic procedure of halting a machine 
to make images of the disks has a trade-off between preserv- 
ing the contents of the disks, and wiping out the content of 
memory. Hence, all of these tools are inadequate for forensic 
analysis. 

The tools mentioned above could be augmented to provide a 
more complete system viewpoint. However, those augmen- 
tations suffer from their own incomplete system view. For 
instance, standard UNIX process accounting is trivially by- 
passed by changing the names of the programs that  are run, 
running a process that  does not exit, or using command ar- 
guments, which alter the behavior of the program but are 
not recorded. In our intrusion example, process accounting 
would not have recorded the nature of the exploit because 
the exploit likely hijacked an existing process. Therefore 
this technique does not  address principle 1 either. 

Two tools, B S M  (Basic Security Module) [16] and Back- 
Tracker [9], gather enhanced data that  is useful for forensic 
analysis, and both must be installed and running on a sys- 
tem before the events to be analyzed occur. The perspective 
gained from pre-instailation is what gives them an advan- 
tage over other tools, though they are usually not used until 
it is too late, as was the case on the machine in our exam- 
ple intrusion. Despite their improvements over the standard 
tools, they still do not address the requirements for complete 
forensic logging: BSM's audit trails are too coarse and fo- 
cused on the kernel space to capture understand events such 
as buffer overflow attempts,  because BSM does not look at 
function calls and memory events. BackTracker helps an- 
swer the questions, "how did this get here?" and, "what 
effect did this have?" respectively. It can link processes, 
sockets, files, and filenames using syscalls and process ex- 
ecutions, and output  a visual, connected graph showing a 
chain of objects and events. However, these tools do not 
consider user space at all, and therefore will not uncover 
what caused not only our intrusion example, but the also 
the exploits we outlined in section 1. 

One recent technique classifies forensic data necessary to 
design audit sources that  have lower performance costs but  
continue to meet modern forensic needs [11]. However, this 
technique only looks at BSM data and data gathered from 
system library interposition. It ignores memory and user 
space. It does not address analysis (violating principle 5). 
It ignores a user bypassing dynamic system libraries by using 
their own static libraries (violating principle 2). 

While UNIX syslog is at one extreme of the available logging 
solutions, ReVirt  [4] is at the other. It provides an exact, 
replayable record of all non-deterministic events. This is, in 
some sense, the "ultimate" logging system. It records the 
least amount of information needed to re-create everything. 
But the recording of non-deterministic events is merely the 
first part of forensics, and is not analysis or auditing. ReVirt 
follows principle 1 by considering the whole system, but does 
not present events in a way that  can be analyzed easily. 

The only tool aimed at forensics that  takes a broader view 
of the entire system is Plato [10], which uses virtual machine 
introspection. Hooks in Plato can monitor raw device I /O,  
CPU exceptions, kernel backdoors, syscall race conditions, 
file system race conditions, and virtual registers, RAM, and 
hard disks. At this time, Plato does not record memory 
events, and program-specific events and environment infor- 
mation, but could be expanded to do so. However, Plato 
does not record memory events, and program-specific events 
and environment information. Fortunately, an exact, com- 
plete re-creation of the operating system is not required to 
obtain a complete forensic view of the system. There are 
many events that occur on an operating system that are ir- 
relevant to forensics, and these events are easier to define 
and ignore than the events that are relevant to forensics. 
Starting with this assumption would give us a more fail-safe 
method for having necessary information. 

The hypervisor approach has several limitations. First, and 
most importantly, recording events by introspection upon re- 
play may not give a precise replay of the original events. In- 
trospection suffers from causing a "Heisenberg Uncertainty 
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Principle-like effect" of changing the  da t a  upon observing 
it. Precise t imings are par t icular ly  vulnerable  to  interfer- 
ence. Also, hardware errors, even including bad sectors on a 
disk, which are common, could easily cause a different result 
upon replay. Second, v i r tua l  machines wi th  "deterministic" 
replay are not  always capable  of replaying events exactly. 
Plato,  ReVirt, and other  hypervisor-style vi r tual  machines 
with deterministic replay capabil i t ies fail on multiprocessor 
machines, because nei ther  the  hypervisors nor the  operat-  
ing systems know the  ordering of s imultaneous reads and 
writes, by two or more threads  runn ing  on different proces- 
sors, to  the same location in shared memory. The  order of 
memory reads and writes is critical for determinist ic  replay. 
Thus,  deterministic replay techniques are crippled on mul- 
tiprocessor machines. The  l imi ta t ion of hypervisors wi th  
determinist ic replay to uniprocessors is part icularly critical 
given the prevalence of mult iprocessor  machines and the  im- 
pending emergence of mult iple processors on the  same die 
sharing memory. It is critical to  remember  the  precept t h a t  
the  original runt ime provides the  only author i ta t ive  record 
of what  happened. Also impor tan t ,  using a vir tual  machine 
does not  give access to  the  names  of forensically valuable 
variables and functions wi th in  runn ing  programs. Finally, 
in many cases, there is l imited pract ical i ty  in running  and 
maintaining vir tual  systems. 

2.2 Principle 2: Assumptions Should Not Con- 
trol What Is Logged 

Depending on assumptions abou t  an  opponent ' s  abilities can 
cause an analyst  to  pay a t t en t ion  to wha t  an  at tacker  wants  
the  analyst  to  see (a b l a t an t  componen t  to  an at tack),  and 
not  the  damage an a t tacker  is actual ly doing (more sub- 
t le and concealed by the  b l a t an t  component) .  It is diffi- 
cult  enough to gather  proof  of the  results  of a non-malicious 
user 's  actions, let alone the  in tent ions  of a skilled intruder.  

For example, ignoring insiders ~ to  focus on outsiders places 
too  much a t tent ion on access control  mechanisms ra ther  
t h a n  recording system events. A ny  user can be a threat. 
One of our key desired outcomes is the  abili ty to  detect  and 
prove when this  occurs. In our  intrusion example, all of 
the  secure and encrypted access controls were not  enough 
to  stop or even log a remote  exploit.  

The  less da ta  recorded the  easier i t  is for an in t ruder  to  
dis tract  an analyst.  For example, reliance on tools t ha t  only 
look at the  filesystem may draw an  analyst ' s  a t t en t ion  to 
b la tan t  file accesses. In fact, wi th  root  access, t he  in t ruder  
can covertly write those files to  ano the r  user 's  memory, and  
t h a t  other  user may be  the  one who  actual ly t ranspor t s  the  
stolen da ta  off the  system. 

All of the  tools in the  previous sect ion fail to  record the  en- 
t i re  system for one of two basic reasons. Ei ther  their  design- 
ers felt it would be impractical ,  or the i r  designers assumed 
i t  was not  necessary. In relying on the  s t andard  suite of 
tools, system adminis t ra tors  assume t h a t  impor t an t  events 
will be logged. In relying on process accounting, admin-  

3 "The insider is a user who may take act ion t ha t  would vio- 
late some set of rules in the  security policy were the  user not  
t rusted.  The  insider is t rus ted  to  take the  action only when 
appropriate,  as determined by the  insider 's  discretion." [3] 

is trators assume t h a t  binaries are what  they appear  to be 
and t ha t  a rguments  to  those binaries are irrelevant. In rely- 
ing on Tripwire, adminis t ra tors  assume t h a t  files will show 
evidence of change if an  intrusion has occurred. We have 
argued in the  previous section t ha t  these assumptions made 
by forensic tool designers and  adminis t ra tors  are fallacious. 
These tools would not  have helped in our intrusion example. 

In the  previous section, we mentioned t h a t  BSM's  audit  
trails are too  coarse to  capture  and  enable reconstruction of 
many events, because BSM makes assumptions about  what  
is relevant to  security. A huge number  of events, particularly 
in user space, are not  considered "security-related" events, 
and  therefore BSM does not  record them.  In our example 
above, BSM might  have provided addit ional  evidence t ha t  
could help one infer a cause of the  intrusion. Bu t  it would 
not  have provided proof  of a buffer overflow exploit, because 
BSM does not  look at  user space. Even BackTracker relies 
on the assumpt ion  t h a t  an  analys t  will have evidence in the  
form of a process ID, file, or  inode from which to begin an 
investigation of an  init ial  exploit,  which is frequently not  
true.  In our  own int rus ion example, there was evidence of 
changed files bu t  there  was no  conclusive evidence t h a t  these 
were par t  of the  init ial  exploit.  

2.3 Principle 3: Consider the Effects, Not Just 
the Actions 

Failing to  consider context  can lead an  analyst  to  draw incor- 
rect conclusions from in terpre t ing  inputs.  In terpre ta t ion of 
the  input  can be incongruent  wi th  the  in terpre ta t ion of the 
result, due to the  way t h a t  changes in the  user environment  
can affect t rans la t ion  of inputs .  For example, considering 
only the pre- intrusion vulnerabi l i t ies  and the  post- intrusion 
system s ta te  canno t  reliably give conclusive evidence about  
the  astronomical  n u m b e r  of ways in which the  t ransi t ion 
between the  two may  have occurred. Of the  available tools, 
only ReVir t  follows th is  principle, because it obviates the  
need to de termine  any relat ive impor tance  of system events 
and objects ahead of t ime. By re-creating everything, the  
analyst  can decide af ter  the  fact wha t  is impor tan t  enough 
to investigate and  analyze in more detail. 

S tandard  UNIX process account ing does not  show how the  
context ( the a rgument )  affects the  behavior of the  program, 
and  it  tells an analys t  no th ing  abou t  the  results of run- 
ning t h a t  program. This  violates principle 3. Keystroke log- 
ging th rough the  UNIX kernel 's  sy s .xead  syscall shows user 
inputs,  bu t  not  necessarily the  results of those keystrokes, 
also violating principle 3. This  example in forensics demon- 
strates t h a t  the result is at least as important  as the action, 
because if the  user env i ronment  had  been modified to change 
the  effect of a keystroke, the  act ion or input  may be differ- 
ent  than  the  result  of t h a t  input .  There are many other  
variations on this  kind of behavior.  In our intrusion exam- 
ple, if the  intrusion resulted from a remote exploit, these 
forensic mechanisms would have revealed noth ing  about  the  
exploit, because no  new processes were s tar ted,  nor were 
any keystrokes input .  Similarly, BackTracker does not  con- 
sider context  and envi ronments  along with the  events t h a t  
i t  records. Therefore,  the re  is no easy way to  determine the 
effect on the  system of files opened, processes started, or 
network sockets connected.  
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Though BackTracker can show a series of kernel-level ob- 
jects and events leading to the creation of a particular file, 
it is merely showing a part of what happened, and not what 
could have happened at a particular stage, nor what vul- 
nerabilities existed there. In our intrusion example, Back- 
Tracker may have shown that a shell was obtained follow- 
ing a Linux-PAM exploit, but what other actions could have 
been taken? Though BackTracker may help a forensic scien- 
tist decide where to look for a particular action or exploit, it 
does not necessarily help the analyst understand the nature 
of the action itself. For instance, process accounting may 
show evidence of a startup script running, and BackTracker 
may show a chain like sockot->httpd->sh. This indicates 
that a shell was obtained from httpd, but does not help 
an analyst understand the nature of the vulnerability that 
allowed the shell to start. One way to analyze this is to 
ask the  question at  each stage: "Wha t  could happen  here?" 
This approach allows an analyst  to  consider not  only what  
is shown but  also what  else could have been done. Much 
like playing chess against a computer  system and being able 
to see the computer ' s  legal moves, this  presentat ion should 
include a list of the  intruder 's  actions, the  results of those 
actions, and a tree showing other  possible actions at  each 
stage. Such a technique could assist not  only with forensic 
analysis, but  also vulnerability analysis. We want  to know 
not only the  events tha t  transpired,  but  also the  context 
and conditions set up by those events, and the  capabilities 
achieved by the  user in each condit ion [17]. In our intrusion 
example, we want to  know not  only the  exploited program, 
but  also the na ture  of t ha t  exploit and  what  else might  have 
been vulnerable. 

2.4 Principle 4: Context Assists in Understand- 
ing Meaning 

Knowing the  context helps an analyst  unders tand  when the 
result of an event may be incongruent  wi th  the  expected 
result. Context also gives meaning to otherwise obscure ac- 
tions. For example, knowing the  user ownership of memory 
regions helps us unders tand  if a user is a t t empt ing  to share 
data  with another  user through a memory write. Knowing 
t ha t  a file is already opened by one program when another  
program a t tempts  to  write to it, tells us about  a possible 
a t t empt  at  a race-condition exploit. We can record a user 
typing se t env  or chmod, bu t  current  tools do not  record the  
state of the targets  of those commands,  such as execution 
paths or file permissions, which could help an analyst  un- 
derstand the result. 

We define an abstraction shortcut to  be an  event t ha t  by- 
passes or subverts a layer of abs t rac t ion  on a system to per- 
form actions at  a lower level. Doing th is  makes events harder  
to understand.  It is a common tactic,  and  many existing 
tools are confused by such tactics because they  do not  cap- 
ture the  different layers of context.  For instance,  a l though 
BackTracker does a good job of avoiding the  potent ia l  prob- 
lems arising as a result of tracking only filenames and not  
inodes, or processes and not  process IDs, i t  does not  com- 
pare UNIX group names and  group IDs, UNIX nsernames 
and user IDs, and da ta  read or wr i t ten  to disk by reading or 
writing directly to  the  raw devices in /dev.  This  bypasses 
the  UNIX file system. Finally, even where existing tools tell 
us tha t  some da t a  has been wri t ten  to  a raw socket or to  
the  virtual  memory residing in swap space on disk, they do 

not  tell us what  t ha t  d a t a  was, where in higher layers of ab- 
s t ract ion it was wri t ten  to, or wha t  the  results of the  actions 
were. Context  is a key element here. W h e n  an address is 
given, is it physical or vir tual ,  and is t h a t  space in memory 
or in swap space on disk? The  abili ty to  t ranslate  raw disk 
read and write actions to  something  human-readable,  such 
as its equivalent file on the  filesystem, is essential. Neither  
BackTracker nor BSM consider context.  The  principle of 
using context to help unders tand  meaning says t ha t  we can 
derive meaning from da t a  if we know how it is being used 
and  manipulated.  

2.5 Principle 5: Every Action and Result Must 
Be Processed and Presented in an Under- 
standable Way 

In general, forensic tools are not  designed to do analysis. 
None of the  s tandard  tools installed on the  machine in our 
intrusion example do any analysis. Even the "enhanced" 
tools, which require being installed ahead of t ime and are 
supposed to aid a human  to do analysis, do so poorly or in 
passing. Most tools collect or display information so t h a t  hu- 
mans  can a t t empt  to  perform analysis. But  the  tools do lit- 
tle to analyze it themselves. The  best  tools only display col- 
lected information, and do not  analyze, l imiting thei r  ability 
to  present information in a coherent  way. For instance, we 
can record keystrokes bu t  we do not  necessarily know the  
result of the i r  entry [18]. We can record and view a chain of 
processes, bu t  we do not  know wha t  took place within them 
a t  the level of memory accesses, and  we do not know the  
results of o ther  operat ions t h a t  depend on the  current  s ta te  
of the  user space environment .  We need to analyze and cor- 
relate recorded events using enhanced logging techniques ,  
abou t  bo th  kernel and user space events and  environments,  
enabling an analyst  to  dis t inguish meaningful results from 
the  actions t ha t  caused them and  the  conditions which per- 
mi t  them. 

Of the  existing tools, only BackTracker a t t empts  to  post- 
process information to display it  in a way t ha t  is more 
human-unders tandable .  However, BackTracker requires a 
specific UNIX process or inode number  from which to "back- 
track" to an  at tack entry  point .  This  l imitat ion is severe 
when forensically analyzing an  insider case in which there 
is no suspicious evidence or non-author ized activity to s tar t  
with.  Instead,  it would be  desirable instead to be able to  an- 
alyze a range of times. In our intrusion example, an  int ruder  
may have already been in the  system for a considerable pe- 
riod of t ime before being detected.  So if one part icular  sus- 
picious object  is found, the  in t ruder  may have.already in- 
stalled and used multiple backdoors after the  initial exploit. 
BackTracker does not make it easy to discover these. 

Only ReVirt  follows the  first two principles by enabling the  
re-creation of all events. However, the  non-determinist ic 
events tha t  ReVirt  records are analyzable only wi th  great 
difficulty. ReVir t  enables more analyzable information to be 
logged after intrusion during replay. Bu t  even ReVirt  is not  
a complete solution to forensically analyze a system because 
it does not  address principle 5. Bet te r  information, and 
automated  presentat ion and analysis tools must  be gathered 
and  developed. 
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In Plato, each scenario (such as syscall race conditions) is 
approached as a service that  must be implemented and run 
separately. But our forensic principles say that  all the infor- 
mation should be already processed, synthesized, and read- 
ily available for query and analysis for any scenario. How- 
ever, even if Plato recorded every assembly code "store" 
instruction, the generated data  would be worthless without 
careful post-processing that  considered context (principles 
3 and 4), such as the size of the memory allocation at the 
location being written to. From this point of view, Plato 
does not have the proper goals for complete forensic analy- 
sis, as it does not follow principle 5. As Plato runs below 
the guest operating system, in our intrusion example, Plato 
would have observed the entire intrusion, from original en- 
try to subsequent entries and activities. However, because 
it does not monitor memory events, or support detailed cor- 
relation, translation, and automated analysis, it would not 
have been as effective as we desire. 

In our intrusion example, the standard tools did not present 
evidence of the intrusion in a coherent way. The  evidence 
was scattered throughout syslogs and the filesystem in an 
unorganized and uncorrelated manner. 

The standard tools for forensics fail to address all five funda- 
mental principles of complete forensics. They do not address 
the entire operating system, they assume that  user actions 
will generate system log events, keystroke evidence, or kernel 
event evidence; and they all completely fail to understand 
results as opposed to merely actions. In the next  section, 
we suggest possible solutions. 

3. NEW APPROACHES FOR A SOLUTION 
The primary gaps identified in the previous section are the 
lack of current tools that  consider and synthesize data  from 
user space, context, and results, as well as the lack of auto- 
mated analysis. In this section, we will present techniques 
that  can be used to implement a possible solution. 

3.1 Principles-Based Logging 
This section discusses techniques that  follow from the princi- 
pies defined in the introduction, which address the problems 
with forensic analysis. For instance, principle 1 states that  
everything needs to be recorded, but  principle 5 cautions 
us to do so in a way that  first permits computer  analysis, 
ultimately enabling more intelligent analysis by a human. 

We will begin outlining principles-based tools by using se- 
lected techniques from existing tools. Principles-based tools 
must record the nature and timing of interrupts and traps 
to the kernel (including syscalls and their parameters) as 
well as output from the kernel and information about asyn- 
chronons syscalls that  have been interrupted by an inter- 
rupt and restarted. Tools must record memory allocations 
in both the stack and the heap, including their origins and 
timings. They must also record events involving other stan- 
dard interfaces, such as the filesystem and network stack, 
including opening and closing of file handles, disk reads and 
writes, packets sent, DNS queries, and their precise tim- 
ings. But this covers only a subset of all possible events. 
We must address the forensic principles, especially and ulti- 
mately principle 5. 

To satisfy principle 1, tools must record events in user space. 
These events include memory reads and writes (and their 
origins, contents, sizes, and timings), and also the  names and 
types of function calls and parameters. The former would 
have helped to confirm the suspected remote buffer overflow 
exploit in our intrusion example. The latter would have told 
us significantly more than existing tools. A principles-based 
tool may be able to predict behavior based upon analysis of 
the program and certain memory events. For example, cer- 
tain memory events performed inside frequently-called, t ight 
program loops may not need to be recorded, or recorded 
completely, since the same data could be gathered with lower 
overhead using other methods. 

To satisfy principles 3 and 4, principles-based tools must 
also record context of both the kernel and user space, build- 
ing a finite state machine in the process. In user space, 
context information is program-specific, including the shell, 
common applications, memory, and general user environ- 
ment. While it is impractical to instrument every program 
on the system, some programs can be instrumented to save 
only memory events, and a very small subset of commonly 
used programs can be modified to save additional informa- 
tion. This can significantly clarify the results of actions by 
common programs. In our intrusion example, the intruder 
may have made extensive use of the login shells, editors, or 
other common programs. The following i san  example of the 
contextual information that  should be captured: 

operating system: users, groups, ownership, permis- 
sions 

login shell-specific: application execution paths, library 
paths, user limits, current working directory, keystroke 
mappings, and command aliases 

all programs: names of functions called, parameters, 
and names of variables read from and written to 

specific programs: application environmental informa- 
tion, including working directory, command macros, 
and other  actions (e.g. from ~m,  emacs, or the X 
Windows environment) 

From an implementation perspective, several methods can 
capture information about  events that  occur in user space, 
and choice of one is primarily important insofar as it satisfies 
auditing demands 2. One is introspection or monitoring of a 
virtual machine. This technique has been used successfully 
[6, 10] with security and allows the host operating system to 
monitor everything that  occurs in the virtual operating sys- 
tem. A key benefit over other solutions may be a relatively 
low performance overhead. Unfortunately, introspection of 
a running virtual machine for the types of events that  are of 
forensic interest is likely to increase performance overhead 
significantly. Likewise, as mentioned earlier, introspection 
upon replay suffers from the problem of interfering with the 
events being replayed, or replaying imprecisely if hardware 
conditions changed. 

Other solutions for capturing user space information do not 
use a virtual machine. Programs are built by compilers 
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that  can capture additional information, both at compile- 
t ime and run-time, about the programs. Binary rewriters 
can instrument binaries to record and save run-time logging 
data. Programs run with an instrumented compiler or bi- 
nary rewriter-like tool can tell us, for instance, the nature 
of dynamic code written by a user program onto the heap 
and executed at runtime, as the instrumented programs can 
record what is written to memory and executed. 

NetBSD 2.0 contains a feature called verif ied exec 4 that  can 
be used to impose restrictions on running only cryptographically- 
signed ("fingerprinted") binaries. In this way, having foren- 
sically valuable information compiled into binaries could be 
enforced. In the compiler-instrumentation approach, user 
space information can be recorded by instrumenting the sys- 
tem's C / C + +  compiler and mandating that  any binary run 
on the system, including the kernel, be compiled with the 
special compiler. This approach also has the benefit of sav- 
ing more user-understandable information than virtual ma- 
chines or binary rewriters because it can force all binaries to 
have debugging and profiling information compiled in. With 
binary rewriting, a binary can be instrumented to gather 
information similar to that  which a compiler can give. The 
implementation is simpler, but the presence of the symbol 
table cannot be guaranteed. 

One drawback to these approaches is the amount of infor- 
mation that  would be generated. The approach of instru- 
menting a compiler, as opposed to using a binary rewriter, 
could significantly reduce the amount of data  necessary. For 
instance, to investigate buffer overflows, new tools need to 
capture all sbrk and ~ a p  syscalls, as well as capture sizes 
and timing of memory writes to those allocated variables. 
However, it is likely that  new tools will no t  need to record 
all memory writes. Assembly code store instructions gener- 
ated by the compiler for manipulating intermediate variables 
could represent a massive portion of the  code. These  do not 
need to be recorded. Unfortunately, a binary rewriter does 
not know how to deal with any higher-level constructs. On 
the other hand, after recording the syscalls above, a compiler 
could insert code not after every assembly store instruction 
(unless there is assembly inline with the C / C + +  code) but 
after every C / C + +  assignment operation, as represented in 
the compiler's abstract symbol tree (AST) or other interme- 
diate language. While there are also a very large number of 
assignment operations in typical C / C + +  code, the number 
may be an order of magnitude less than the number of as- 
sembly code store instructions. Therefore, though using a 
binary rewriter is undoubtedly less cumbersome than instru- 
menting a compiler, the  improvement of the resulting infor- 
mation given by both the symbol table and the ability to 
audit events and constructs at a higher level than assembly 
code, is likely to improve forensic analyzability. The timing, 
size, and nature of memory writes is merely one example of 
this. 

Using compilers and binary rewriters raises the following 
problem: capturing information about the entire system re- 
quires that even the operating system be recompiled. If im- 
posed on the kernel and drivers, this restriction could cause 
problems for code dependent on specific timing responses 

4http://www. netbsd, org/Releases/formal- 2. O/ 
NetBSD-2. O.html 

from the hardware. While not  all systems have such depen- 
dencies, we would like our techniques to be generic. Fortu- 
nately, the parts of the code that  rely on timing information 
interact with the hardware and need not be instrumented 
at the same level as all the  other system and user code. 
Because we know the inputs to the kernel (syscalls, traps, 
interrupts), and the kernel is deterministic, we can deter- 
mine its results via replay. Similarly, by using forensic data  
gathered from other programs and by drawing upon col- 
lected user space information (for instance, a hash of the 
memory image of the kernel [6]), we can determine how a 
kernel has changed and how that  change has affected the 
system, without instrumenting the kernel itself. 

To date, we have made a conscious decision to concentrate 
on completeness and efficacy rather than efficiency and per- 
formance. We are well aware that  there are significant per- 
formance considerations with the techniques that  we sug- 
gest, however. Obvious approaches include information com- 
pression, co-processor-assisted logging [14], and dedicated 
hardware [19] for logging non-deterministic events. 

In the next section, we discuss principles-based auditing, 
particularly principle 5, and  specifically how to audit the 
information obtained using the techniques described in this 
section and present it to an analyst. 

3.2 Principles-Based Auditing 
Though only represented by a single principle, the most dif- 
ficult part  of forensic analysis is auditing the data. A solu- 
tion requires a method of presenting kernel and user space 
context and events together to the analyst. New tools need 
not exhaustively analyz ing the data  themselves, since this 
would require foreknowledge about the nature of the event, 
which is an assertion that  we avoid (principle 2). Rather, a 
principles-based tool should exhaustively log data, and, in 
presenting it, enable the human analyst to perform analysis 
more easily and completely. A presentation should include 
the raw events themselves, and enable the ability to easily 
view events and environments at arbitrary points in time. 
It should also allow correlation of those events arbitrarily 
with others at similar points in time or operating on similar 
points in memory or on disk. An analyst should be able 
to easily speculate about global questions involving foren- 
sic data  ("were there any potential memory race conditions 
recorded in this day-long t ime period, and where?") and 
also to look in more detail [8] into the macro-views of pro- 
cess and file information provided by existing tools to find 
a n s w e r s .  

Storing and representing data  in a coherent way is critical 
to the forensic process. A first-order step for auditing is 
correlating and associating all recorded objects and events 
into a multi-resolution, finite state machine. To analyze this 
information, new tools can use techniques similar to those 
used in debugging, which allow a programmer to "step" into 
functions or walk through higher-level function calls. We de- 
fine this display of detailed information along with coarser- 
grained data  to be a mul t i - reso lu t ion  view of forensic data. 
This would allow an analyst to zoom in on specific processes 
and memory events, and anything that those events are re- 
lated to, to see more detail. In keeping with this goal, tools 
must store data  in a way that  enables this. One way is by 
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viewing a computer system as a relat ional  database.  An ap- 
plication launch can be viewed as a record in a table,  having 
a large number  of i tems associated wi th  it. At  the  least, this  
includes: a process ID, user ID, group ID, time, checksum, 
path,  current working directory, size of initial stack memory 
allocation, set of heap allocations, set  of functions, set of 
variables, and a set of filehandles associated wi th  the  pro- 
cess. Each field within this  process record is also a record 
itself. For example, a user ID needs to  be  associated wi th  
a user name, and also wi th  processes, file handles,  heap al- 
locations, memory writes, and so on. Using symbol table  
information, each memory al locat ion is associated with a 
variable, function, program, user, and  time. A critical par t  
of the  automated analysis is t r ans la t ing  abs t rac t  addresses  
into unders tandable  objects and  events  (principle 4). 

Principles-based tools can perform context-assisted transla-  
t ion not  only for memory but  also for abs t rac t ion  shortcuts .  
For example, a write to  an  a rb i t ra ry  disk location th rough  
a raw device may have a file associated wi th  it (and if i t  
does not,  this can be an  indicat ion of covert information 
sharing). Then,  the same correlat ions t h a t  were done wi th  
memory can also be done wi th  files and  network events: a 
file or socket is owned by a user and  has a process ID of 
the  process which accessed it, and  so on. All of this  corre- 
lated information, including how d a t a  is viewed or modified, 
should be in the  multi-resolution view. 

Once translat ions and  correlations are finished, principles- 
based tools can perform au toma ted  analyses to  generate 
warnings for a human  analyst .  As wi th  intrusion detec- 
t ion, automated methods  can be  b o t h  anomaly-based and 
signature-based. Anomaly detect ion is always an available 
tool, bu t  is useless when the  "a t tack"  in question is "nor- 
mal," common, or innocuous enough not  to  appear  as an  
invariant [5]. However, if modeled correctly, even those can 
be discovered through s ignature  detect ion.  Usefulness of 
anomaly detection and s ignature  detec t ion to  forensics may 
be exactly the  inverse as the i r  uses to  intrusion detection,  
because in forensics, we do not  have to  predict  s ignatures in 
advance, and can refine t hem after  the  fact. 

An example of the  result of an  anomaly-based  technique us- 
ing statistical or artificial intelligence techniques might  in- 
volve discovery of an  invariant  t h a t  indicates  t ha t  a user 's  
files were modified by the superuser  when  t h a t  action is rare. 
An example of a s ignature-based technique  is a tool t h a t  can 
compare the sizes of memory writes to  buffer sizes to  look 
for potential  overflows. Rapid accesses on the  same location 
in memory or disk by different p rograms should provide a 
warning about  a possible race condi t ion,  as would rapid ac- 
cesses to  the same network ports .  Additionally,  addresses 
of memory writes by user programs can  be  audi ted to see 
whether  the program ins t ruct ion s t r eam is being tampered  
with, and correlated with user IDs to  de termine  whether  in- 
formation is being shared between user spaces. Those same 
memory writes can also be  analyzed to  determine whether  
they might possibly be covertly recording user inputs.  Pro- 
gram environments  at  the  t ime  of each event can be au- 
dited so t ha t  effects of act ions can be  correctly identified. 
Function names can be analyzed in an  a t t e m p t  to  determine 
whether  remote access may have been granted by program- 
mer  backdoor or by exploit of a software bug. Tools can 

also provide a facility to  keep a record of the  history of the  
values of selected variables in memory, and when different 
programs accessed or changed them.  

Covert channels are difficult to  eliminate,  and  even where 
they are preventable,  often it  is undesirable to  do so. On the  
other  hand,  storage channels and legitimate channels [12], 
are currently as badly  audi ted  in today 's  operat ing systems 
as covert channels.  A principles-based forensic system would 
possess the  necessary da ta ,  since i t  logs all such data .  

A final me thod  of analysis required for principles-driven 
tools, addressing principle 2, is to  perform analysis not  only 
about  wha t  did happen ,  bu t  what  could have happened at  
each step in a sys tem's  execution, bo th  in kernel and user 
space. For example, in a buffer overflow, the  re turn  address 
is typically al tered to  r e tu rn  the  execution point  to an al- 
te rnate  location. In th i s  au tomated  analysis, we also want  
to  know the  o ther  active programs and thei r  functions t h a t  
could have been j u m p e d  to. Or, in a possible race condition 
si tuation,  we want  to  know the  programs and nature  of the  
objects involved. To perform this  analysis, one might  use 
requires/provides techniques [17] as a model to  present ab- 
s t ract  events, and  look not  jus t  a t  t ha t  series of events bu t  
also at  a set of conditions and capabilities acquired given 
the  events and the  context  in which they occur. 

The  techniques we have described in this  section address one 
possible solution to principle 5. They completely t ransform 
typical methods  forensic software uses to  present informa- 
t ion to a user. No cur ren t  tools come anywhere close to 
providing any sort  of useful and  au tomated  analysis with- 
out  sacrificing a significant amount  of accuracy by ignoring 
or filtering out  relevant  data .  Combined with proper  da ta  
acquired by adher ing to  the  first four principles, these tech- 
niques give a possible solut ion to  performing forensic anal- 
ysis in a way t h a t  assists a h u m a n  analyst  to  obtain proof, 
not  inference, in a pract ical  way. 

3.3 Summary of Principles-Based Solutions 
Using ei ther  in t rospect ion of a hypervisor, a binary rewriter, 
or compiler modifications,  principles-driven tools must  gather  
not  only kernel events,  bu t  also information on timings, 
sizes, and locations of memory  allocations, reads, and  writes. 
Tools must  ga ther  in format ion  on events using abst ract ion 
shortcuts,  par t icular ly  those  bypassing the  filesystem or net- 
work. They  mus t  ga the r  information on program, function, 
and variable names.  By correlat ing those names, memory 
events, system context ,  and  program environments,  principles- 
driven tools mus t  t r ans la t e  these objects and events into 
human-unders tandab le  da ta .  Finally, after generating human-  
unders tandable  da ta ,  principles-based tools must  present 
t ha t  da ta  in a multi-resolution fashion t h a t  allows for view- 
ing da ta  at  granular i t ies  ranging from memory writes to  pro- 
gram launches and  user logins. This representat ion should 
provide an oppor tun i ty  for au tomated  vulnerabil i ty analysis 
of not only what  did occur  bu t  what  could have occurred. 

4. CONCLUSIONS 
The principles of compute r  forensics we have described help 
us devise techniques to  significantly improve our ability to  
unders tand wha t  has happened  previously on a computer  
system, when compared  wi th  current  tools. Those techo 
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niques, which we have also outlined, do not require pre- 
determination of the nature of the events or the skill level of 
the attacker, and do not require the analysis to begin with 
knowledge of precise details after the fact about users, times, 
processes, and system objects involved. The techniques also 
have the potential to perform their work in a practical way. 

We believe that looking at the complete system to record in- 
formation not recorded by previous forensic tools (principle 
1), particularly data about user space events and environ- 
ments (principles 3 and 4), and events that have occurred 
using abstraction shortcuts (principle 3), will allow us to 
more precisely analyze events that involve covert memory 
reads, buffer overflows resulting from memory writes, race 
conditions in memory or on disk, reads and writes to raw 
devices, and other similar events. These techniques address 
forensics without making assumptions about the opponent 
(principle 2), and they allow for understanding not just ac- 
tions, but the results of those actions based on context (prin- 
ciples 3 and 4). Auditing tools that allow for analysis of 
the recorded information should also allow for vulnerability 
analysis based on the current context from any point in time, 
translation of abstraction shortcuts to a higher granularity, 
and, most importantly, a multi-resolution view of the data, 
which allows zooming in and out of kernel and user events 
and environments, and the ability to easily analyze at any 
point in time (principle 5). 

The techniques derived from these five forensic principles 
lead to answers more easily proven correct. This greatly re- 
duces inferences and guesswork. These concrete answers are 
exactly what we desired in our intrusion example, and were 
impossible without the changes that that we suggest. The 
techniques go a long way towards making the final analysis 
by a human easier by performing automated analysis first. 
And finally, they go a long way to addressing scenarios that 
were previously unsolvable, such as the insider problem and 
events occurring in user space. 
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