
Principles-Driven Forensic Analysis

Sean Peisert
Dept. of Computer Science and Engineering

San Diego Supercomputer Center
University of California, San Diego

La Jolla, CA 92093-0404
sean@cs.ucsd.edu

Sidney Karin
Dept. of Computer Science and Engineering

San Diego Supercomputer Center
University of California, San Diego

La Jolla, CA 92093-0404
skarin@cs.ucsd.edu

ABSTRACT
It is possible to enhance our understanding of what has hap-
pened on a computer system by using forensic techniques
that do not require prediction of the nature of the attack, the
skill of the attacker, or the details of the system resources or
objects affected. These techniques address five fundamental
principles of computer forensics. These principles include
recording data about the entire operating system, particu-
larly user space events and environments, and interpreting
events at different layers of abstraction, aided by the context
in which they occurred. They also deal with modeling the
recorded data as a multi-resolution, finite state machine so
that results can be established to a high degree of certainty
rather than merely inferred.

Categories and Subject Descriptors
D.4.6 [O p e r a t i n g Sys tems] : Security and Protec t ion-- In-
vasive software (e.g., viruses, worms, Trojan horses); K.6.5
[Management of C o m p u t i n g and Information Sys-
terns]: Security and Protection--Invasive software (e.g.,
viruses, worms, Trojan horses), Unauthorized access (e.g.,
hacking, phreaking)

General Terms
Security, Management, Design

Keywords
Forensics, forensic analysis, forensic principles, logging, au-
diting, covert channels, compilers, vir tual machine intro-
spection, multi-resolution forensics, abstraction shortcuts,
race conditions

NSPW 2005 Lake Arrowhead CA USA
© 2006 ACM 1-59593-317-4/06/02....$5.00
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Matt Bishop
Department of Computer Science

University of California, Davis
Davis, CA 95616-8562

bishop@cs.ucdavis.edu

Keith Marzullo
Dept. of Computer Science and Engineering

University of California, San Diego
La Jolla, CA 92093-0404

marzullo@cs.ucsd.edu

. INTRODUCTION
"It is a capital mistake to theorize before o n e

has data. Insensibly one begins to twist facts to
suit theories, instead of theories to suit facts."

-Sherlock Holmes, A Scandal in Bohemia,
Sir Arthur Conan Doyle (1891)

Forensic analysis is the process of understanding, re-creating,
and analyzing events that have previously occurred. Logging
is the recording of data that will be useful in the future for
understanding past events. Auditing involves gathering, ex-
amining, and analyzing the logged data to understand the
events that occurred during the incident in question [2]. The
data gathered may also involve decompiling binaries or re-
covering other remaining evidence, such as saved memory
images.

Successful forensic analysis requires the ability to re-create
any event regardless of the intent of the user, the nature of
the previous events, and whether the cause of the events was
an illegitimate intruder or an authorized insider. The ability
to do this has progressed very little since the first research
on the subject in 1980 [1]. Examples of events that current
tools cannot accurately identify include anything that a pro-
gram is reading or writing to memory. This covers a huge
number of possible events and exploits, such as changes to
the user environment, covert channels, buffer overflows, and
race conditions.

Current techniques to resolve these problems result in gener-
ation of too much information, leading to impractical perfor-
mance slowdowns and high storage requirements. They also
suffer from a disparity between the goals of system design-
ers, administrators, and forensic analysts. Five principles
address current failures. We believe that any tool that does
not follow all of these principles will fail to record actions or
results in enough detail to understand their meaning. Cur-
rent tools use techniques that address some, but not all,
of these principles. Thus, they fail to recognize and report
many scenarios, or do so incorrectly.

85

No widely-used operating system records every event, its
cause, and its result. Hence we need other ways to generate
this information. Three key bases for computer forensics
will help us interpret events correctly:

The entire system must be considered.

The effects of an action can be significantly different
than what we expected them to be.

Runtime data is the only authoritative record of what
happened. While pre-intrusion static vulnerability scans,
and post-intrusion analyses of system state can often
be of enormous help, a complete set of runtime data
is the only authoritative set of data that can be relied
upon for forensic analysis in all circumstances.

For modern operating systems, these ideas suggest the fol-
lowing principles. In these, we use context as a broad term
that includes any system detail surrounding an event. En-
vironments are a subset of context and refer generally to
user-definable shell and program settings.

Principle 1: Consider the entire system. This includes the
user space as well as the entire kernel space, filesystem,
network stack, and other related subsystems.

Principle 2: Assumptions about expected failures, attacks, and
attackers should not control what is logged. Trust no
user and trust no policy, as we may not know what we
want in advance.

Principle 3: Consider the effects of events, not just the ac-
tions that caused them, and how those effects may be
altered by context and environment.

Principle 4: Context assists in interpreting and understand-
ing the meaning of an event.

Principle 5: Every action and every result must be processed
and presented in a way that can be analyzed and un-
derstood by a human forensic analyst.

Several of these principles parallel principles from classic
operating system concepts, such as having fall-safe defaults.
For instance, principle 2 says that rather than recording X,
we should record everything except X, after having deter-
mined from principles 1, 3, and 4 that X is not valuable.

Examples of problems that current tools do not address,
and the principles that would need to be followed to address
them, include:

1. changes in the user enviroment (such as the UNIX
shell or applications) (principles 1, 3, and 4)

2. changes in the global system enviroment (such as file
permissions) that affects system operation at a later
t ime (principles 1, 3, and 4)

3. abstraction shortcuts bypassing standard mechanisms,
such as bypassing the filesystem to the raw disk (prin-
ciples 1 and 4)

4.

5.

6.

7.

8.

9.

10.

buffer and numeric overflows and reading memory lo-
cations larger than the allocated buffer (principles 1
and 4)

race conditions (principles 1, 2, and 4)

programmer backdoors [7] exploited (principles 1, 2,
and 4)

code injected into the program instruction stream (prin-
ciples 1, 2, and 4)

code written to the heap at runtime and executed dy-
namically (principles 1, 2, 3, and 4)

self-modifying code whose behavior varies based on en-
vironmental conditions (principles 1, 2, 3, and 4)

illicit channels [12], with high-volume data rates, such
as data exposed from one user space to another with a
memory write or data read from or writ ten to raw disk
at points with unallocated inodes (principles i and 4)

11. interception of user input (principles 1 and 2)

Throughout this paper, we will refer to a real system com-
promise as an example. A Mandrake Linux system was run-
ning a wide variety of security software, including syslog,
TCPWrappers, the network IDS snort, 1 the host-level fire-
wall iptables, and Tripwire. 2 All current security patches
had been applied. Despite these typical precautions, the
machine was compromised. This was discovered from emaU
from a system administrator at another site, whose ma-
chines were being attacked by the compromised system. The
vulnerability was probably in Linux-PAM (Linux Pluggable
Authentication Module), though that suspicion is an infer-
ence from available and missing data. No hard evidence is
available. The only evidence unearthed by standard proce-
dures and tools was a directory containing a tool to perform
brute-force ssh attempts against other machines, crime evi-
dence that a number of standard binaries had been replaced
and possibly "trojaned," and syslog messages showing a
number of successful ssh logins for every user on the sys-
tem that did not have a login shell. No proof of how the
intruder broke in and what the intruder did was found.

In the next section, we discuss the inadequacy of current
forensic solutions in terms of our principles.

2. THE CURRENT PROBLEMS WITH FOREN-
SICS

2.1 Principle 1: Consider the Entire System
Principle l requires an analyst to have access to at least as
much data after an intrusion as an intruder had before and
during. For instance, falling to consider user space leaves the
analyst with no way to determine whether a buffer overflow
occurred, as in our intrusion example above. An intruder
can cause a buffer overflow, but using current tools, an an-
alyst cannot prove that one occurred.

lhttp ://www. snort, org
2http://~. tripwire, org

86

Many tools are able to provide forensic information about
the kernel space by instrumenting the entrances to the ker-
nel. Many tools a t tempt containment, or perform static or
dynamic analyses for race conditions, buffer overflows, and
other potential security exploits. But principle 1 demands
more information, specifically from both the kernel space
and the user space. Even in highly confined systems, an at-
tacker can perform actions relevant to an intrusion in user
space. User space environments can alter the perceived na-
ture of an event, and the events reported by a tool that only
looks at the kernel space may be inaccurate or incomplete
at best.

For instance, current tools identify rmap or sbrk memory
allocation system calls (syscalls), but do not tell us the size
and content of data transfered to or from memory. Current
tools identify a running process, but do not tell us which
function in the code was exploited via buffer overflow to
put the program in that state. Current tools can tell us
which library was loaded and which file was executed, but
not the directories in the user's library and execution paths
that were searched, which would include information on how
a user is attempting to explore the machine. Unlike many
previous forensic tools and techniques [2, 8, 15, 16] or even
fault tolerant operating systems, today's tools reduce the
need for pre-determination of "attack" or "failure" methods
by casting a broad net. But they omit non-kernel space data
and information about user space that results in missing
many forensically-relevant events.

Computer forensics typically uses a standard set of tools im
cluding system logs (syslog and TCPWrappers on UNIX, the
Event Log on Windows), logs from network intrusion detec-
tion systems, host-level firewall logs, and Tr'ipwire. None of
these tools, either collectively or independently, are designed
to consider the entire system. Despite their use, both initial
knowledge of intrusions and methods of discovery are fre-
quently based on guesses, as in our example above. In that
example, we wanted to know, with high certainty, which
software contained the vulnerability. What was the nature
of that vulnerability? What backdoors were subsequently
installed? What actions were taken on the system? What
other systems were attacked from our system? How, and
were any successful? No current tool is able to answer these
questions well because no tools consider the entire system.
Even the most basic forensic procedure of halting a machine
to make images of the disks has a trade-off between preserv-
ing the contents of the disks, and wiping out the content of
memory. Hence, all of these tools are inadequate for forensic
analysis.

The tools mentioned above could be augmented to provide a
more complete system viewpoint. However, those augmen-
tations suffer from their own incomplete system view. For
instance, standard UNIX process accounting is trivially by-
passed by changing the names of the programs that are run,
running a process that does not exit, or using command ar-
guments, which alter the behavior of the program but are
not recorded. In our intrusion example, process accounting
would not have recorded the nature of the exploit because
the exploit likely hijacked an existing process. Therefore
this technique does not address principle 1 either.

Two tools, B S M (Basic Security Module) [16] and Back-
Tracker [9], gather enhanced data that is useful for forensic
analysis, and both must be installed and running on a sys-
tem before the events to be analyzed occur. The perspective
gained from pre-instailation is what gives them an advan-
tage over other tools, though they are usually not used until
it is too late, as was the case on the machine in our exam-
ple intrusion. Despite their improvements over the standard
tools, they still do not address the requirements for complete
forensic logging: BSM's audit trails are too coarse and fo-
cused on the kernel space to capture understand events such
as buffer overflow attempts, because BSM does not look at
function calls and memory events. BackTracker helps an-
swer the questions, "how did this get here?" and, "what
effect did this have?" respectively. It can link processes,
sockets, files, and filenames using syscalls and process ex-
ecutions, and output a visual, connected graph showing a
chain of objects and events. However, these tools do not
consider user space at all, and therefore will not uncover
what caused not only our intrusion example, but the also
the exploits we outlined in section 1.

One recent technique classifies forensic data necessary to
design audit sources that have lower performance costs but
continue to meet modern forensic needs [11]. However, this
technique only looks at BSM data and data gathered from
system library interposition. It ignores memory and user
space. It does not address analysis (violating principle 5).
It ignores a user bypassing dynamic system libraries by using
their own static libraries (violating principle 2).

While UNIX syslog is at one extreme of the available logging
solutions, ReVirt [4] is at the other. It provides an exact,
replayable record of all non-deterministic events. This is, in
some sense, the "ultimate" logging system. It records the
least amount of information needed to re-create everything.
But the recording of non-deterministic events is merely the
first part of forensics, and is not analysis or auditing. ReVirt
follows principle 1 by considering the whole system, but does
not present events in a way that can be analyzed easily.

The only tool aimed at forensics that takes a broader view
of the entire system is Plato [10], which uses virtual machine
introspection. Hooks in Plato can monitor raw device I /O,
CPU exceptions, kernel backdoors, syscall race conditions,
file system race conditions, and virtual registers, RAM, and
hard disks. At this time, Plato does not record memory
events, and program-specific events and environment infor-
mation, but could be expanded to do so. However, Plato
does not record memory events, and program-specific events
and environment information. Fortunately, an exact, com-
plete re-creation of the operating system is not required to
obtain a complete forensic view of the system. There are
many events that occur on an operating system that are ir-
relevant to forensics, and these events are easier to define
and ignore than the events that are relevant to forensics.
Starting with this assumption would give us a more fail-safe
method for having necessary information.

The hypervisor approach has several limitations. First, and
most importantly, recording events by introspection upon re-
play may not give a precise replay of the original events. In-
trospection suffers from causing a "Heisenberg Uncertainty

87

Principle-like effect" of changing the da t a upon observing
it. Precise t imings are par t icular ly vulnerable to interfer-
ence. Also, hardware errors, even including bad sectors on a
disk, which are common, could easily cause a different result
upon replay. Second, v i r tua l machines wi th "deterministic"
replay are not always capable of replaying events exactly.
Plato, ReVirt, and other hypervisor-style vi r tual machines
with deterministic replay capabil i t ies fail on multiprocessor
machines, because nei ther the hypervisors nor the operat-
ing systems know the ordering of s imultaneous reads and
writes, by two or more threads runn ing on different proces-
sors, to the same location in shared memory. The order of
memory reads and writes is critical for determinist ic replay.
Thus, deterministic replay techniques are crippled on mul-
tiprocessor machines. The l imi ta t ion of hypervisors wi th
determinist ic replay to uniprocessors is part icularly critical
given the prevalence of mult iprocessor machines and the im-
pending emergence of mult iple processors on the same die
sharing memory. It is critical to remember the precept t h a t
the original runt ime provides the only author i ta t ive record
of what happened. Also impor tan t , using a vir tual machine
does not give access to the names of forensically valuable
variables and functions wi th in runn ing programs. Finally,
in many cases, there is l imited pract ical i ty in running and
maintaining vir tual systems.

2.2 Principle 2: Assumptions Should Not Con-
trol What Is Logged

Depending on assumptions abou t an opponent ' s abilities can
cause an analyst to pay a t t en t ion to wha t an at tacker wants
the analyst to see (a b l a t an t componen t to an at tack), and
not the damage an a t tacker is actual ly doing (more sub-
t le and concealed by the b l a t an t component) . It is diffi-
cult enough to gather proof of the results of a non-malicious
user 's actions, let alone the in tent ions of a skilled intruder.

For example, ignoring insiders ~ to focus on outsiders places
too much a t tent ion on access control mechanisms ra ther
t h a n recording system events. A ny user can be a threat.
One of our key desired outcomes is the abili ty to detect and
prove when this occurs. In our intrusion example, all of
the secure and encrypted access controls were not enough
to stop or even log a remote exploit.

The less da ta recorded the easier i t is for an in t ruder to
dis tract an analyst. For example, reliance on tools t ha t only
look at the filesystem may draw an analyst ' s a t t en t ion to
b la tan t file accesses. In fact, wi th root access, t he in t ruder
can covertly write those files to ano the r user 's memory, and
t h a t other user may be the one who actual ly t ranspor t s the
stolen da ta off the system.

All of the tools in the previous sect ion fail to record the en-
t i re system for one of two basic reasons. Ei ther their design-
ers felt it would be impractical , or the i r designers assumed
i t was not necessary. In relying on the s t andard suite of
tools, system adminis t ra tors assume t h a t impor t an t events
will be logged. In relying on process accounting, admin-

3 "The insider is a user who may take act ion t ha t would vio-
late some set of rules in the security policy were the user not
t rusted. The insider is t rus ted to take the action only when
appropriate, as determined by the insider 's discretion." [3]

is trators assume t h a t binaries are what they appear to be
and t ha t a rguments to those binaries are irrelevant. In rely-
ing on Tripwire, adminis t ra tors assume t h a t files will show
evidence of change if an intrusion has occurred. We have
argued in the previous section t ha t these assumptions made
by forensic tool designers and adminis t ra tors are fallacious.
These tools would not have helped in our intrusion example.

In the previous section, we mentioned t h a t BSM's audit
trails are too coarse to capture and enable reconstruction of
many events, because BSM makes assumptions about what
is relevant to security. A huge number of events, particularly
in user space, are not considered "security-related" events,
and therefore BSM does not record them. In our example
above, BSM might have provided addit ional evidence t ha t
could help one infer a cause of the intrusion. Bu t it would
not have provided proof of a buffer overflow exploit, because
BSM does not look at user space. Even BackTracker relies
on the assumpt ion t h a t an analys t will have evidence in the
form of a process ID, file, or inode from which to begin an
investigation of an init ial exploit, which is frequently not
true. In our own int rus ion example, there was evidence of
changed files bu t there was no conclusive evidence t h a t these
were par t of the init ial exploit.

2.3 Principle 3: Consider the Effects, Not Just
the Actions

Failing to consider context can lead an analyst to draw incor-
rect conclusions from in terpre t ing inputs. In terpre ta t ion of
the input can be incongruent wi th the in terpre ta t ion of the
result, due to the way t h a t changes in the user environment
can affect t rans la t ion of inputs . For example, considering
only the pre- intrusion vulnerabi l i t ies and the post- intrusion
system s ta te canno t reliably give conclusive evidence about
the astronomical n u m b e r of ways in which the t ransi t ion
between the two may have occurred. Of the available tools,
only ReVir t follows th is principle, because it obviates the
need to de termine any relat ive impor tance of system events
and objects ahead of t ime. By re-creating everything, the
analyst can decide af ter the fact wha t is impor tan t enough
to investigate and analyze in more detail.

S tandard UNIX process account ing does not show how the
context (the a rgument) affects the behavior of the program,
and it tells an analys t no th ing abou t the results of run-
ning t h a t program. This violates principle 3. Keystroke log-
ging th rough the UNIX kernel 's sy s .xead syscall shows user
inputs, bu t not necessarily the results of those keystrokes,
also violating principle 3. This example in forensics demon-
strates t h a t the result is at least as important as the action,
because if the user env i ronment had been modified to change
the effect of a keystroke, the act ion or input may be differ-
ent than the result of t h a t input . There are many other
variations on this kind of behavior. In our intrusion exam-
ple, if the intrusion resulted from a remote exploit, these
forensic mechanisms would have revealed noth ing about the
exploit, because no new processes were s tar ted, nor were
any keystrokes input . Similarly, BackTracker does not con-
sider context and envi ronments along with the events t h a t
i t records. Therefore, the re is no easy way to determine the
effect on the system of files opened, processes started, or
network sockets connected.

88

Though BackTracker can show a series of kernel-level ob-
jects and events leading to the creation of a particular file,
it is merely showing a part of what happened, and not what
could have happened at a particular stage, nor what vul-
nerabilities existed there. In our intrusion example, Back-
Tracker may have shown that a shell was obtained follow-
ing a Linux-PAM exploit, but what other actions could have
been taken? Though BackTracker may help a forensic scien-
tist decide where to look for a particular action or exploit, it
does not necessarily help the analyst understand the nature
of the action itself. For instance, process accounting may
show evidence of a startup script running, and BackTracker
may show a chain like sockot->httpd->sh. This indicates
that a shell was obtained from httpd, but does not help
an analyst understand the nature of the vulnerability that
allowed the shell to start. One way to analyze this is to
ask the question at each stage: "Wha t could happen here?"
This approach allows an analyst to consider not only what
is shown but also what else could have been done. Much
like playing chess against a computer system and being able
to see the computer ' s legal moves, this presentat ion should
include a list of the intruder 's actions, the results of those
actions, and a tree showing other possible actions at each
stage. Such a technique could assist not only with forensic
analysis, but also vulnerability analysis. We want to know
not only the events tha t transpired, but also the context
and conditions set up by those events, and the capabilities
achieved by the user in each condit ion [17]. In our intrusion
example, we want to know not only the exploited program,
but also the na ture of t ha t exploit and what else might have
been vulnerable.

2.4 Principle 4: Context Assists in Understand-
ing Meaning

Knowing the context helps an analyst unders tand when the
result of an event may be incongruent wi th the expected
result. Context also gives meaning to otherwise obscure ac-
tions. For example, knowing the user ownership of memory
regions helps us unders tand if a user is a t t empt ing to share
data with another user through a memory write. Knowing
t ha t a file is already opened by one program when another
program a t tempts to write to it, tells us about a possible
a t t empt at a race-condition exploit. We can record a user
typing se t env or chmod, bu t current tools do not record the
state of the targets of those commands, such as execution
paths or file permissions, which could help an analyst un-
derstand the result.

We define an abstraction shortcut to be an event t ha t by-
passes or subverts a layer of abs t rac t ion on a system to per-
form actions at a lower level. Doing th is makes events harder
to understand. It is a common tactic, and many existing
tools are confused by such tactics because they do not cap-
ture the different layers of context. For instance, a l though
BackTracker does a good job of avoiding the potent ia l prob-
lems arising as a result of tracking only filenames and not
inodes, or processes and not process IDs, i t does not com-
pare UNIX group names and group IDs, UNIX nsernames
and user IDs, and da ta read or wr i t ten to disk by reading or
writing directly to the raw devices in /dev. This bypasses
the UNIX file system. Finally, even where existing tools tell
us tha t some da t a has been wri t ten to a raw socket or to
the virtual memory residing in swap space on disk, they do

not tell us what t ha t d a t a was, where in higher layers of ab-
s t ract ion it was wri t ten to, or wha t the results of the actions
were. Context is a key element here. W h e n an address is
given, is it physical or vir tual , and is t h a t space in memory
or in swap space on disk? The abili ty to t ranslate raw disk
read and write actions to something human-readable, such
as its equivalent file on the filesystem, is essential. Neither
BackTracker nor BSM consider context. The principle of
using context to help unders tand meaning says t ha t we can
derive meaning from da t a if we know how it is being used
and manipulated.

2.5 Principle 5: Every Action and Result Must
Be Processed and Presented in an Under-
standable Way

In general, forensic tools are not designed to do analysis.
None of the s tandard tools installed on the machine in our
intrusion example do any analysis. Even the "enhanced"
tools, which require being installed ahead of t ime and are
supposed to aid a human to do analysis, do so poorly or in
passing. Most tools collect or display information so t h a t hu-
mans can a t t empt to perform analysis. But the tools do lit-
tle to analyze it themselves. The best tools only display col-
lected information, and do not analyze, l imiting thei r ability
to present information in a coherent way. For instance, we
can record keystrokes bu t we do not necessarily know the
result of the i r entry [18]. We can record and view a chain of
processes, bu t we do not know wha t took place within them
a t the level of memory accesses, and we do not know the
results of o ther operat ions t h a t depend on the current s ta te
of the user space environment . We need to analyze and cor-
relate recorded events using enhanced logging techniques ,
abou t bo th kernel and user space events and environments,
enabling an analyst to dis t inguish meaningful results from
the actions t ha t caused them and the conditions which per-
mi t them.

Of the existing tools, only BackTracker a t t empts to post-
process information to display it in a way t ha t is more
human-unders tandable . However, BackTracker requires a
specific UNIX process or inode number from which to "back-
track" to an at tack entry point . This l imitat ion is severe
when forensically analyzing an insider case in which there
is no suspicious evidence or non-author ized activity to s tar t
with. Instead, it would be desirable instead to be able to an-
alyze a range of times. In our intrusion example, an int ruder
may have already been in the system for a considerable pe-
riod of t ime before being detected. So if one part icular sus-
picious object is found, the in t ruder may have.already in-
stalled and used multiple backdoors after the initial exploit.
BackTracker does not make it easy to discover these.

Only ReVirt follows the first two principles by enabling the
re-creation of all events. However, the non-determinist ic
events tha t ReVirt records are analyzable only wi th great
difficulty. ReVir t enables more analyzable information to be
logged after intrusion during replay. Bu t even ReVirt is not
a complete solution to forensically analyze a system because
it does not address principle 5. Bet te r information, and
automated presentat ion and analysis tools must be gathered
and developed.

89

In Plato, each scenario (such as syscall race conditions) is
approached as a service that must be implemented and run
separately. But our forensic principles say that all the infor-
mation should be already processed, synthesized, and read-
ily available for query and analysis for any scenario. How-
ever, even if Plato recorded every assembly code "store"
instruction, the generated data would be worthless without
careful post-processing that considered context (principles
3 and 4), such as the size of the memory allocation at the
location being written to. From this point of view, Plato
does not have the proper goals for complete forensic analy-
sis, as it does not follow principle 5. As Plato runs below
the guest operating system, in our intrusion example, Plato
would have observed the entire intrusion, from original en-
try to subsequent entries and activities. However, because
it does not monitor memory events, or support detailed cor-
relation, translation, and automated analysis, it would not
have been as effective as we desire.

In our intrusion example, the standard tools did not present
evidence of the intrusion in a coherent way. The evidence
was scattered throughout syslogs and the filesystem in an
unorganized and uncorrelated manner.

The standard tools for forensics fail to address all five funda-
mental principles of complete forensics. They do not address
the entire operating system, they assume that user actions
will generate system log events, keystroke evidence, or kernel
event evidence; and they all completely fail to understand
results as opposed to merely actions. In the next section,
we suggest possible solutions.

3. NEW APPROACHES FOR A SOLUTION
The primary gaps identified in the previous section are the
lack of current tools that consider and synthesize data from
user space, context, and results, as well as the lack of auto-
mated analysis. In this section, we will present techniques
that can be used to implement a possible solution.

3.1 Principles-Based Logging
This section discusses techniques that follow from the princi-
pies defined in the introduction, which address the problems
with forensic analysis. For instance, principle 1 states that
everything needs to be recorded, but principle 5 cautions
us to do so in a way that first permits computer analysis,
ultimately enabling more intelligent analysis by a human.

We will begin outlining principles-based tools by using se-
lected techniques from existing tools. Principles-based tools
must record the nature and timing of interrupts and traps
to the kernel (including syscalls and their parameters) as
well as output from the kernel and information about asyn-
chronons syscalls that have been interrupted by an inter-
rupt and restarted. Tools must record memory allocations
in both the stack and the heap, including their origins and
timings. They must also record events involving other stan-
dard interfaces, such as the filesystem and network stack,
including opening and closing of file handles, disk reads and
writes, packets sent, DNS queries, and their precise tim-
ings. But this covers only a subset of all possible events.
We must address the forensic principles, especially and ulti-
mately principle 5.

To satisfy principle 1, tools must record events in user space.
These events include memory reads and writes (and their
origins, contents, sizes, and timings), and also the names and
types of function calls and parameters. The former would
have helped to confirm the suspected remote buffer overflow
exploit in our intrusion example. The latter would have told
us significantly more than existing tools. A principles-based
tool may be able to predict behavior based upon analysis of
the program and certain memory events. For example, cer-
tain memory events performed inside frequently-called, t ight
program loops may not need to be recorded, or recorded
completely, since the same data could be gathered with lower
overhead using other methods.

To satisfy principles 3 and 4, principles-based tools must
also record context of both the kernel and user space, build-
ing a finite state machine in the process. In user space,
context information is program-specific, including the shell,
common applications, memory, and general user environ-
ment. While it is impractical to instrument every program
on the system, some programs can be instrumented to save
only memory events, and a very small subset of commonly
used programs can be modified to save additional informa-
tion. This can significantly clarify the results of actions by
common programs. In our intrusion example, the intruder
may have made extensive use of the login shells, editors, or
other common programs. The following i san example of the
contextual information that should be captured:

operating system: users, groups, ownership, permis-
sions

login shell-specific: application execution paths, library
paths, user limits, current working directory, keystroke
mappings, and command aliases

all programs: names of functions called, parameters,
and names of variables read from and written to

specific programs: application environmental informa-
tion, including working directory, command macros,
and other actions (e.g. from ~m, emacs, or the X
Windows environment)

From an implementation perspective, several methods can
capture information about events that occur in user space,
and choice of one is primarily important insofar as it satisfies
auditing demands 2. One is introspection or monitoring of a
virtual machine. This technique has been used successfully
[6, 10] with security and allows the host operating system to
monitor everything that occurs in the virtual operating sys-
tem. A key benefit over other solutions may be a relatively
low performance overhead. Unfortunately, introspection of
a running virtual machine for the types of events that are of
forensic interest is likely to increase performance overhead
significantly. Likewise, as mentioned earlier, introspection
upon replay suffers from the problem of interfering with the
events being replayed, or replaying imprecisely if hardware
conditions changed.

Other solutions for capturing user space information do not
use a virtual machine. Programs are built by compilers

90

that can capture additional information, both at compile-
t ime and run-time, about the programs. Binary rewriters
can instrument binaries to record and save run-time logging
data. Programs run with an instrumented compiler or bi-
nary rewriter-like tool can tell us, for instance, the nature
of dynamic code written by a user program onto the heap
and executed at runtime, as the instrumented programs can
record what is written to memory and executed.

NetBSD 2.0 contains a feature called verif ied exec 4 that can
be used to impose restrictions on running only cryptographically-
signed ("fingerprinted") binaries. In this way, having foren-
sically valuable information compiled into binaries could be
enforced. In the compiler-instrumentation approach, user
space information can be recorded by instrumenting the sys-
tem's C / C + + compiler and mandating that any binary run
on the system, including the kernel, be compiled with the
special compiler. This approach also has the benefit of sav-
ing more user-understandable information than virtual ma-
chines or binary rewriters because it can force all binaries to
have debugging and profiling information compiled in. With
binary rewriting, a binary can be instrumented to gather
information similar to that which a compiler can give. The
implementation is simpler, but the presence of the symbol
table cannot be guaranteed.

One drawback to these approaches is the amount of infor-
mation that would be generated. The approach of instru-
menting a compiler, as opposed to using a binary rewriter,
could significantly reduce the amount of data necessary. For
instance, to investigate buffer overflows, new tools need to
capture all sbrk and ~ a p syscalls, as well as capture sizes
and timing of memory writes to those allocated variables.
However, it is likely that new tools will no t need to record
all memory writes. Assembly code store instructions gener-
ated by the compiler for manipulating intermediate variables
could represent a massive portion of the code. These do not
need to be recorded. Unfortunately, a binary rewriter does
not know how to deal with any higher-level constructs. On
the other hand, after recording the syscalls above, a compiler
could insert code not after every assembly store instruction
(unless there is assembly inline with the C / C + + code) but
after every C / C + + assignment operation, as represented in
the compiler's abstract symbol tree (AST) or other interme-
diate language. While there are also a very large number of
assignment operations in typical C / C + + code, the number
may be an order of magnitude less than the number of as-
sembly code store instructions. Therefore, though using a
binary rewriter is undoubtedly less cumbersome than instru-
menting a compiler, the improvement of the resulting infor-
mation given by both the symbol table and the ability to
audit events and constructs at a higher level than assembly
code, is likely to improve forensic analyzability. The timing,
size, and nature of memory writes is merely one example of
this.

Using compilers and binary rewriters raises the following
problem: capturing information about the entire system re-
quires that even the operating system be recompiled. If im-
posed on the kernel and drivers, this restriction could cause
problems for code dependent on specific timing responses

4http://www. netbsd, org/Releases/formal- 2. O/
NetBSD-2. O.html

from the hardware. While not all systems have such depen-
dencies, we would like our techniques to be generic. Fortu-
nately, the parts of the code that rely on timing information
interact with the hardware and need not be instrumented
at the same level as all the other system and user code.
Because we know the inputs to the kernel (syscalls, traps,
interrupts), and the kernel is deterministic, we can deter-
mine its results via replay. Similarly, by using forensic data
gathered from other programs and by drawing upon col-
lected user space information (for instance, a hash of the
memory image of the kernel [6]), we can determine how a
kernel has changed and how that change has affected the
system, without instrumenting the kernel itself.

To date, we have made a conscious decision to concentrate
on completeness and efficacy rather than efficiency and per-
formance. We are well aware that there are significant per-
formance considerations with the techniques that we sug-
gest, however. Obvious approaches include information com-
pression, co-processor-assisted logging [14], and dedicated
hardware [19] for logging non-deterministic events.

In the next section, we discuss principles-based auditing,
particularly principle 5, and specifically how to audit the
information obtained using the techniques described in this
section and present it to an analyst.

3.2 Principles-Based Auditing
Though only represented by a single principle, the most dif-
ficult part of forensic analysis is auditing the data. A solu-
tion requires a method of presenting kernel and user space
context and events together to the analyst. New tools need
not exhaustively analyz ing the data themselves, since this
would require foreknowledge about the nature of the event,
which is an assertion that we avoid (principle 2). Rather, a
principles-based tool should exhaustively log data, and, in
presenting it, enable the human analyst to perform analysis
more easily and completely. A presentation should include
the raw events themselves, and enable the ability to easily
view events and environments at arbitrary points in time.
It should also allow correlation of those events arbitrarily
with others at similar points in time or operating on similar
points in memory or on disk. An analyst should be able
to easily speculate about global questions involving foren-
sic data ("were there any potential memory race conditions
recorded in this day-long t ime period, and where?") and
also to look in more detail [8] into the macro-views of pro-
cess and file information provided by existing tools to find
a n s w e r s .

Storing and representing data in a coherent way is critical
to the forensic process. A first-order step for auditing is
correlating and associating all recorded objects and events
into a multi-resolution, finite state machine. To analyze this
information, new tools can use techniques similar to those
used in debugging, which allow a programmer to "step" into
functions or walk through higher-level function calls. We de-
fine this display of detailed information along with coarser-
grained data to be a mul t i - reso lu t ion view of forensic data.
This would allow an analyst to zoom in on specific processes
and memory events, and anything that those events are re-
lated to, to see more detail. In keeping with this goal, tools
must store data in a way that enables this. One way is by

91

viewing a computer system as a relat ional database. An ap-
plication launch can be viewed as a record in a table, having
a large number of i tems associated wi th it. At the least, this
includes: a process ID, user ID, group ID, time, checksum,
path, current working directory, size of initial stack memory
allocation, set of heap allocations, set of functions, set of
variables, and a set of filehandles associated wi th the pro-
cess. Each field within this process record is also a record
itself. For example, a user ID needs to be associated wi th
a user name, and also wi th processes, file handles, heap al-
locations, memory writes, and so on. Using symbol table
information, each memory al locat ion is associated with a
variable, function, program, user, and time. A critical par t
of the automated analysis is t r ans la t ing abs t rac t addresses
into unders tandable objects and events (principle 4).

Principles-based tools can perform context-assisted transla-
t ion not only for memory but also for abs t rac t ion shortcuts .
For example, a write to an a rb i t ra ry disk location th rough
a raw device may have a file associated wi th it (and if i t
does not, this can be an indicat ion of covert information
sharing). Then, the same correlat ions t h a t were done wi th
memory can also be done wi th files and network events: a
file or socket is owned by a user and has a process ID of
the process which accessed it, and so on. All of this corre-
lated information, including how d a t a is viewed or modified,
should be in the multi-resolution view.

Once translat ions and correlations are finished, principles-
based tools can perform au toma ted analyses to generate
warnings for a human analyst . As wi th intrusion detec-
t ion, automated methods can be b o t h anomaly-based and
signature-based. Anomaly detect ion is always an available
tool, bu t is useless when the "a t tack" in question is "nor-
mal," common, or innocuous enough not to appear as an
invariant [5]. However, if modeled correctly, even those can
be discovered through s ignature detect ion. Usefulness of
anomaly detection and s ignature detec t ion to forensics may
be exactly the inverse as the i r uses to intrusion detection,
because in forensics, we do not have to predict s ignatures in
advance, and can refine t hem after the fact.

An example of the result of an anomaly-based technique us-
ing statistical or artificial intelligence techniques might in-
volve discovery of an invariant t h a t indicates t ha t a user 's
files were modified by the superuser when t h a t action is rare.
An example of a s ignature-based technique is a tool t h a t can
compare the sizes of memory writes to buffer sizes to look
for potential overflows. Rapid accesses on the same location
in memory or disk by different p rograms should provide a
warning about a possible race condi t ion, as would rapid ac-
cesses to the same network ports . Additionally, addresses
of memory writes by user programs can be audi ted to see
whether the program ins t ruct ion s t r eam is being tampered
with, and correlated with user IDs to de termine whether in-
formation is being shared between user spaces. Those same
memory writes can also be analyzed to determine whether
they might possibly be covertly recording user inputs. Pro-
gram environments at the t ime of each event can be au-
dited so t ha t effects of act ions can be correctly identified.
Function names can be analyzed in an a t t e m p t to determine
whether remote access may have been granted by program-
mer backdoor or by exploit of a software bug. Tools can

also provide a facility to keep a record of the history of the
values of selected variables in memory, and when different
programs accessed or changed them.

Covert channels are difficult to eliminate, and even where
they are preventable, often it is undesirable to do so. On the
other hand, storage channels and legitimate channels [12],
are currently as badly audi ted in today 's operat ing systems
as covert channels. A principles-based forensic system would
possess the necessary da ta , since i t logs all such data .

A final me thod of analysis required for principles-driven
tools, addressing principle 2, is to perform analysis not only
about wha t did happen , bu t what could have happened at
each step in a sys tem's execution, bo th in kernel and user
space. For example, in a buffer overflow, the re turn address
is typically al tered to r e tu rn the execution point to an al-
te rnate location. In th i s au tomated analysis, we also want
to know the o ther active programs and thei r functions t h a t
could have been j u m p e d to. Or, in a possible race condition
si tuation, we want to know the programs and nature of the
objects involved. To perform this analysis, one might use
requires/provides techniques [17] as a model to present ab-
s t ract events, and look not jus t a t t ha t series of events bu t
also at a set of conditions and capabilities acquired given
the events and the context in which they occur.

The techniques we have described in this section address one
possible solution to principle 5. They completely t ransform
typical methods forensic software uses to present informa-
t ion to a user. No cur ren t tools come anywhere close to
providing any sort of useful and au tomated analysis with-
out sacrificing a significant amount of accuracy by ignoring
or filtering out relevant data . Combined with proper da ta
acquired by adher ing to the first four principles, these tech-
niques give a possible solut ion to performing forensic anal-
ysis in a way t h a t assists a h u m a n analyst to obtain proof,
not inference, in a pract ical way.

3.3 Summary of Principles-Based Solutions
Using ei ther in t rospect ion of a hypervisor, a binary rewriter,
or compiler modifications, principles-driven tools must gather
not only kernel events, bu t also information on timings,
sizes, and locations of memory allocations, reads, and writes.
Tools must ga ther in format ion on events using abst ract ion
shortcuts, par t icular ly those bypassing the filesystem or net-
work. They mus t ga the r information on program, function,
and variable names. By correlat ing those names, memory
events, system context , and program environments, principles-
driven tools mus t t r ans la t e these objects and events into
human-unders tandab le da ta . Finally, after generating human-
unders tandable da ta , principles-based tools must present
t ha t da ta in a multi-resolution fashion t h a t allows for view-
ing da ta at granular i t ies ranging from memory writes to pro-
gram launches and user logins. This representat ion should
provide an oppor tun i ty for au tomated vulnerabil i ty analysis
of not only what did occur bu t what could have occurred.

4. CONCLUSIONS
The principles of compute r forensics we have described help
us devise techniques to significantly improve our ability to
unders tand wha t has happened previously on a computer
system, when compared wi th current tools. Those techo

92

niques, which we have also outlined, do not require pre-
determination of the nature of the events or the skill level of
the attacker, and do not require the analysis to begin with
knowledge of precise details after the fact about users, times,
processes, and system objects involved. The techniques also
have the potential to perform their work in a practical way.

We believe that looking at the complete system to record in-
formation not recorded by previous forensic tools (principle
1), particularly data about user space events and environ-
ments (principles 3 and 4), and events that have occurred
using abstraction shortcuts (principle 3), will allow us to
more precisely analyze events that involve covert memory
reads, buffer overflows resulting from memory writes, race
conditions in memory or on disk, reads and writes to raw
devices, and other similar events. These techniques address
forensics without making assumptions about the opponent
(principle 2), and they allow for understanding not just ac-
tions, but the results of those actions based on context (prin-
ciples 3 and 4). Auditing tools that allow for analysis of
the recorded information should also allow for vulnerability
analysis based on the current context from any point in time,
translation of abstraction shortcuts to a higher granularity,
and, most importantly, a multi-resolution view of the data,
which allows zooming in and out of kernel and user events
and environments, and the ability to easily analyze at any
point in time (principle 5).

The techniques derived from these five forensic principles
lead to answers more easily proven correct. This greatly re-
duces inferences and guesswork. These concrete answers are
exactly what we desired in our intrusion example, and were
impossible without the changes that that we suggest. The
techniques go a long way towards making the final analysis
by a human easier by performing automated analysis first.
And finally, they go a long way to addressing scenarios that
were previously unsolvable, such as the insider problem and
events occurring in user space.

5. ACKNOWLEDGEMENTS
This material is based on work sponsored by the United
States Air Force and supported by the Air Force Research
Laboratory under Contract F30602-03-C-0075. Matt Bishop
gratefully acknowledges support from awards CCR-0311671
and CCR-0311723 from the National Science Foundation to
the University of California at Davis. Thank you very much
to Roger Bohn, Larry Carter, Drew Gross, and the NSPW
2005 delegates whose comments greatly improved this work.

6. REFERENCES
[1] J. P. Anderson. Computer security threat monitoring

and surveillance. Technical report, James P. Anderson
Co., Fort Washington, PA, April, 1980.

[2] M. Bishop. Computer Security: Art and Science.
Addison-Wesley Professional, Boston, MA, 2003.

[3] M. Bishop. The Insider Problem Revisited. In
Proceedings of the 2005 New Security Paradigms
Workshop (NSP W), 2005.

[4] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai,
and P. M. Chen. ReVirt: Enabling intrusion analysis
through virtual-machine logging and replay. In

Proceedings of the ~002 Symposium on Operating
Systems Design and Implementation, 2002.

[5] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and
B. Chelf. Bugs as deviant behavior: A general
approach to inferring errors in systems code. In
Proceedings of the Symposium on Operating Systems
Principles, 2001.

[6] T. Garfinkel and M. Rosenblum. A virtual machine
introspection based architecture for intrusion
detection. In Proceedings of the 2003 Network and
Distributed System Security Symposium, 2003.

[7] D. P. Gilliam, T. L. Wolfe, J. S. Sherif, and M. Bishop.
Software security checklist for the software life cycle.
In Proceedings of the Twelfth IEEE International
Workshop on Enabling Technologies: Infrastructure
for Colaborative Enterprises (WETICE'03), 2003.

[8] A. H. Gross. Analyzing Computer Intrusions. PhD
thesis, University of California, San Diego, 1997.

[9] S. T. King and P. M. Chen. Backtracking intrusions.
A CM Transactions on Computer Systems,
23(1):51-76, February 2005.

[10] S. T. King, G. W. Dunlap, and P. M. Chen. Plato: A
platform for virtual machine services. Technical
Report CSE-TR-498-04, University of Michigan, 2004.

[111 B. A. Kuperman. A Categorization of Computer
Security Monitoring Systems and the Impact on the
Design off Audit Sources. PhD thesis, Purdue
University, 2004.

[12] B. W. Lampson. A note on the confinement problem.
Communications off the ACM, 16(10):613-615,
October 1973.

[13] S. Peisert. Forensics for System Administrators.
;login:, August 2005.

[14] N. L. Petroni, Jr., T. Fraser, J. Molina, and W. A.
Arbaugh. Copilot - a coprocessor-based kernel runtime
integrity monitor. In Proceedings of the 2005 USENIX
Security Symposium, 2005.

[15] T. Stallard and K. Levitt. Automated analysis for
digital forensic science: Semantic integrity checking.
In Proceedings of the 19th Annual Computer Security
Applications Conference, December 8-12 2003.

[16] Sun Microsystems, Inc. Auditing in the
SolarisTM Operating Environment, February 2001.

[17] S. J. Templeton and K. Levitt. A Requires/Provides
model for computer attacks. In Proceedings of the 2000
New Security Paradigms Workshop, pages 31-38, 2000.

[18] K. Thompson. Reflections on Trusting Trust.
Communications of the A CM, 27(8):761-763, August
1984.

[19] M. Xu, It. Bodik, and M. D. Hill. A "Flight Data
Recorder" for enabling full-system multiprocessor
deterministic replay. In Proceedings of the 30th annual
international symposium on Computer architecture,
2003.

93

