
 

ABSTRACT

 

This work explores issues of computational disclosure control. We
examine assumptions in the foundations of traditional problem
statements and abstract models. We offer a comprehensive frame-
work, based on the notion of an inference game, that unifies various
inference problems by parameterizing their problem spaces. This
work raises questions regarding the significance of intractability
results. We analyze common structural aspects of inference prob-
lems via case studies; these emphasize why explicit policies are
needed to specify all social context and ethical values relevant to a
problem instance.
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1. INTRODUCTION

 

Increasingly, entities in modern society are recognizing the down-
sides of exposing their information to others’ access—how we wish
we could delete our email addresses from all those old posts acces-
sible forever on Listserv archives, or somehow limit access to those
who would not use that data against us! But it is impossible to retro-
fit role-based access controls [6] throughout the Internet, and

impractical even to devise policies to implement this enforcement
mechanism prospectively to cover most corporate Intranets.

As an alternative, consider what might happen if newly-published
data itself served as the enforcement mechanism for one of the key
principles of the 1973 Code of Fair Information Practices [32],
namely to prevent information “obtained for one purpose from
being used ... for other purposes without ... consent.” This is the
goal of 

 

sanitizing

 

 data—to alter it so that it remains usable for ben-
eficial purposes, while minimizing its use for harmful purposes.
Sanitization attempts to provide additional safeguards beyond tradi-
tional access control. Access to the sanitized data, without access to
the original data, should not enable an adversary to cause signifi-
cant harm.

In the context of statistical queries to databases, the inference prob-
lem is a long-studied research area [10]. Numerous related prob-
lems exist, including the 

 

database inference

 

 problem (whether any
classified information can be inferred from unclassified data), the

 

query audit

 

 problem (how to prevent or detect that query responses
disclose sensitive data), the 

 

privacy-preserving data mining

 

 prob-
lem (how data can be altered to protect individual privacy, yet still
be useful for data mining), and variants in census data and medical
records analysis. Some of these are specific to particular application
areas. But all these variants contain the same difficult core prob-
lem—how to control the 

 

inferences

 

 that can be drawn from particu-
lar data.

Sanitizing IP traffic before sharing it is a well-known problem in
network security [18], and we offer it as a tangible case study that
highlights why explicit privacy and analysis policies are a necessary
part of any inference problem’s specification. Initially, we provide
one simple formalization of the sanitization problem, and describe
our results (applicable to IP traffic and to different applications with
similar semantic structure or syntactic constraints). Next, we offer a
more comprehensive framework to unify our understanding of vari-
ous inference problems. We show how certain unwarranted assump-
tions and flawed problem statements are inherent to large portions
of the classical research core. Hence, we argue that what histori-
cally have been viewed as fundamental inference problems and
results may be little more than arbitrary and isolated peripheral
objects. In the remainder of this work, we examine the more impor-
tant structural aspects common to many inference problems.
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2. A SANITIZATION FRAMEWORK

 

We review one simple framework for the sanitization problem
[3,4]. The sanitization problem involves three entities: a 

 

collector

 

,
an 

 

analyst

 

, and an 

 

adversary

 

. The 

 

collector

 

 captures raw data, then
sanitizes it (to keep sensitive aspects of the data confidential)
before sending it to the 

 

analyst

 

 for analysis. 

 

Sanitization

 

 means to
perturb, delete, and/or add enough information that the sensitive
data cannot be inferred. For now, we oversimplify by saying the
goal of the 

 

adversary

 

 is to recover as much of the original, sensi-
tive raw data as possible. Several assumptions may be used:

1. The adversary may have partial “upstream” read or write
access at the source of the raw data. Analogous to a known (or
chosen) plaintext attack in cryptography, the adversary
attacks by remembering or creating specific markers in the
unsanitized traffic. If these markers remain recognizable after
sanitization, they may help the adversary infer the original,
raw data from the sanitized data. We assume the sanitizer is
informed of all such markers via an explicit threat model.

2. The adversary may be able to infer sensitive aspects of the 
raw data directly from supposedly non-sensitive (and hence 
unsanitized) components of the data that were sent to the ana-
lyst. Alternatively, the adversary may have access to auxiliary 
data or metadata—either public or private—such as organiza-
tional information, the role of specific systems, or certain cor-
relation functions, that when combined with the sanitized 
data, allows her to infer the raw information. This is the data-
base inference problem in a different context. Again, we 
assume the sanitizer is informed of all such inference paths 
via an explicit threat model.

3. There may be various degrees of public transparency at vari-
ous stages of the process. Most importantly, the collector may 
“publish” its sanitized data, making it equally available to 
both the analyzer and the adversary. Many situations appear 
to relax this requirement by providing the data to analysts 
under non-disclosure contracts. However, even with such 
agreements, it is still possible for sanitized data to leak to the 
adversary. The analyst’s network or data may be compro-
mised via insider misuse or outsider attack, for example. We 
assume the worst case, of equal access by analyzer and adver-
sary.

This model may seem to harbor hidden contradictions. Consider
the situation in which multiple, mutually-distrusting collectors
feed data to one mutually-trusted analyst. But if all collectors trust
the analyzer never to reveal their sanitized data, then why not sim-
ply give their raw data directly to the analyst? Besides guarding
against inadvertent leakage by the analyst, legal or contractual
requirements may forbid the collectors from sending unsanitized
data to the trusted analyzer. Moreover, the analyst may not be 

 

fully

 

trusted for all 

 

purposes

 

, or for all time! 

Conversely, suppose multiple collectors trust each other to keep
raw data secret, but do not trust the external analyzer with their raw
data. Then why do the collectors not share raw data and perform
the analysis themselves? The external analyst may have more
resources or expertise, access to more aggregate data (via collec-
tors who 

 

do

 

 trust it), or be more cost-effective. The same argu-
ments hold for the case of a single collector.

The collector’s goal is to sanitize the data in a way that maximizes
the efficiency and accuracy of the analyzer’s task, while minimiz-
ing the efficiency and accuracy of the adversary’s attempt to infer
the raw data. To formalize this, the collector develops (and
updates) an explicit threat model of the adversary.
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 When coupled
with the specifics of the data to be sanitized, and the inferences that
the collector wishes to remain confidential, this yields an explicit

 

privacy policy

 

.

Another way to look at these policies is that the privacy policy sug-
gests the original data that should be changed. The analysis policy
suggests the original data that should not be changed. If the privacy
policy inherently conflicts with the analysis policy, then sanitiza-
tion cannot proceed without violating a policy, so the two policies
must somehow be reconciled. Otherwise, one could sanitize the
data in various degrees. In one extreme, one could sanitize every
datum except those needed to conduct the analysis. In the other
extreme, one could sanitize precisely those data that the privacy
policy requires to be sanitized. A range of possibilities lie between
these extremes. The threat model describes what the adversary can
do, and will affect the selection of the sanitization technique
accordingly.

Previous formal approaches to related problems presented privacy
policies, but often those policies were based on unexamined or
untenable assumptions. We extend that work by incorporating con-
text-specific threat models into privacy policies, and by elevating
the issue of analysis to a similar and explicit policy level. Just as a
privacy policy is needed to specify which inferences to prohibit, so
also an explicit analysis policy [4] is needed to specify which
inferences to preserve. In some application domains (such as IP
traffic collection), the data may have been primarily “obtained for
one purpose” [32]—exactly such an analysis! 

Using formal extensional semantics, we can express a privacy pol-
icy (analysis policy, respectively) as a relation between the raw
data, the sanitized data, and a threat model (analysis capability
model, respectively). Intensional semantics offers more insight: a
privacy policy expresses constraints on the adversary's ability to
derive certain inferences

 

2

 

 from the sanitized data, given the adver-
sary's external knowledge. An analysis policy expresses the maxi-
mum permissible deviations between results of analyzing the
sanitized data, and the results if analysis had been performed on
the raw data.

 

1. Threat models of adversaries in a particular problem domain
would be useful to all collectors, and so could be shared.
2. A word of caution: every privacy policy will prohibit the
adversary from inferring all the original, raw data. But while this
clause might seem to provide a “bottleneck” through which all
other prohibited inference paths must flow, real-world risks are not
always so mathematically well-behaved. For example, we might
sanitize a one-record medical database so that a life insurance
company cannot recover its raw data, which states that Mr. Smith
has heart trouble. But if our sanitized record instead convinces the
life insurance company that Mr. Jones has AIDS, our sanitization
has “framed” an innocent person by promoting an inference that
put him at risk. Ignoring such inferences via a “closed world
assumption” may be legally or morally unacceptable.
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In this manner, the twin goals of safety and efficacy may be pur-
sued even if adversary and analyst are the same entity, or have
equal access to the sanitized data. The sanitizer may even be able
to insert completely spurious “confounders” into the data to mis-
lead adversaries, as well as hints that lead friendly observers to the
right conclusions (even if for the wrong reasons).

 

3

 

Formalizing privacy and analysis policies is difficult, partly
because most 

 

implicit

 

 policy constraints originate informally. As
such, they tend to be ill-defined or subject to varied interpretations.
Moreover, attempting to define informal semantics formally is not
only an error-prone process, but also may ignite social strife as cer-
tain interpretations are favored over others. The benefit of this
organizational “values-clarification” process is more accurate
assessment of—and control over—the risks and rewards of releas-
ing sanitized data for analysis.

 

3. SANITIZING NETWORK DATA

 

In this section, we sketch certain issues and results that arose in the
application area of sanitizing IP traffic. Our purpose is to provide
tangible examples for subsequent discussion, and to show that such
issues are common across many application domains. For details
of our work in sanitizing network traffic, interested readers are
referred to other papers [3,4], which raise additional issues not
covered here.

In what follows, we focus on IP addresses because, for many orga-
nizations, they are a key point of conflict between the competing
interests of privacy and analysis. Moreover, attempting to sanitize
them demonstrates how the state of the art is inadequate for han-
dling even this most basic data type. These difficulties arise in
every application domain whose syntax is constrained by a finite

 

namespace

 

 (set of names), which carries semantic 

 

connotations

 

 (in
addition to referential denotations).

Two kinds of data anonymization prove useful in sanitizing IP
addresses. 

 

Pseudo-anonymous

 

 transformations map all instances
of a particular raw identifier to the 

 

same

 

 unique identifier in the tar-
get namespace. An example is replacing all occurrences of “John”
by “Paul”. The advantage of pseudo-anonymous transformations is
that an analyst may correlate data related to an identifier without
knowing what the raw identifier is. For example, given a set of net-
work traces, an analyst can determine if two connections are
between the same hosts. The disadvantage is that the adversary
may be able to deduce private information from that knowledge.

 

Fully-anonymous

 

 transformations map each instance of a particu-
lar raw identifier to a 

 

different

 

 identifier in the target namespace.
An example is replacing the first occurrence of “John” with “Paul”,
the second “John” with “George”, and the third “John” with
“Ringo”. 

Either mapping may be done explicitly, using a table holding each
raw identifier and its corresponding sanitized identifier, or implic-
itly via hash functions, in which case the inverse mapping from
sanitized identifier back to raw identifier is not apparent. As a

research vehicle, we implemented a prototype sanitizer, 

 

tcpsani

 

,
that allows the user to configure hybrid modes of sanitization [3].

 

3.1. Finite Namespaces

 

IP addresses as identifiers are drawn from a namespace of finite
size. This has two crucial implications. First, any pseudo-anony-
mous mapping on a finite namespace must be a permutation.
Therefore, if a mapping implementation is not parsimonious and
“over-reserves” target space for a block of IP addresses in the orig-
inal namespace, the target namespace will overflow when all possi-
ble input names are sanitized.

Second, by the pigeonhole principle, any fully-anonymous map-
ping of 

 

n

 

+1 name occurrences to a namespace of 

 

n

 

 names is
impossible. This means that, if a long conversation between two
network nodes is to be sanitized fully-anonymously, the target IP
address namespace will eventually become exhausted and repeti-
tions of sanitized names will occur.

 

3.2. Risks of Aggregated Analysis

 

Consider the situation in which a single analyzer aggregates data
from several different collectors. The desired analysis may require
that all collectors pseudo-anonymously map certain raw IP
addresses to the same target namespace addresses, to ensure con-
sistency of identity and to prevent conflation. Prior approaches
using hashing to accomplish these results have required that all
collectors use the same hash function for the entire namespace.

This is unacceptable for collectors who trust the analyzer, but who
do not trust each other. The obvious insider attack is to guess an IP
address, hash the guess, and compare the result to the sanitized
data. Explicit maps can mitigate this problem by allowing mutu-
ally distrusting collectors to share—and hence risk—only portions
of a codebook. This feature could also be implemented by binding
specialized hash functions to particular input IP address regions,
and sharing only some of those hash functions. Both methods
allow fine-grained control over privacy risks caused by sharing
sanitization functions.

One property whose preservation benefits analyzers is that of IP
address prefixes. In its default configuration, 

 

tcpsani

 

 implements
only byte-aligned prefix preservation. 

 

Tcpsani

 

’s sanitization mod-
ules could be augmented with code to implement prefix preserva-
tion on the fly. This would provide the functionality of 

 

tcpdpriv

 

[25]. But if prefix preservation is the sole objective, a better alter-
native is CryptoPan [16], an elegant and efficient specialized hash.
CryptoPan also has the virtue that multiple collectors can imple-
ment the same prefix-preserving permutation for aggregation by a
single analyzer merely by sharing a small secret key, rather than
sharing large explicit maps.

CryptoPan and similar work (for example, Peuhkuri [26]) require a
high degree of trust among different collectors; perhaps this is why
they have not been more widely accepted as “the solution” to the
tension between IP address sanitization and the desire for aggre-
gated analysis. For example, given a prefix-preserving hash key,
any trusted collector (or its rogue insiders) can invert any target IP
address by a sequence of 32 chosen-plaintext attacks. These
attacks are performed offline—there is no need to inject them into
a monitored traffic stream. Hence, if any aggregated CryptoPan-
sanitized dataset is ever made available to an adversary, that data

 

3. An analysis policy should explicitly state what circumstances,
if any, would cause the “good” analysis inference ends to justify
the means. We address issues of responsibility for distorted infer-
ences in a later section.
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set will remain vulnerable to these insider attacks for all eternity.
The sharing of completely identical, explicit maps (even if they do
not preserve prefixes) by multiple collectors likewise carries this
perpetual vulnerability if the aggregate sanitized dataset is pub-
lished. 

Thus, regardless of how mutually-identical aggregate sanitization
is implemented, a collector is perpetually vulnerable to any other
entity with access both to the permutation key/map and to the per-
muted data. In light of recent security breaches at many commer-
cial analyzers of credit information, it is worth noting that a
collector who trusts an aggregating analyzer with its data today,
must also trust that analyzer in the future not to fall prey to an
adversary masquerading as a new collector who wants to sanitize
its data using the common, historical sanitization function.

It is intriguing to consider how the problem of sanitizing data
aggregated from multiple collectors is, in some sense, a dual of the
query audit problem. Given a central database and multiple queri-
ers, the query audit problem asks how the database management
system should respond to each query so that the aggregated results
reveal 

 

no more

 

 sensitive information than the sum of the individual
query results. By way of contrast, the aggregate sanitization prob-
lem asks how to perform a globally-uniform sanitization 

 

confiden-
tially

 

 on multiple distributed writes to a central database, so that
analyzing the aggregate results 

 

will

 

 reveal more than the sum of
analyzing each separately-confidential database write. Results
from multiparty-secure computation theory, where the tasks of the
parties are not symmetric, may prove helpful; in particular, the
approach in [21] appears promising. (Although Zhong et al. [33]
offer insight, they solve a different problem.)

 

3.3. Risks of 

 

Not

 

 Sharing an Aggregate Threat 
Model

 

 Privacy policies must be revised as we discover new vulnerabili-
ties in our data, and threat models must be updated as the adversar-
ies’ capabilities and external knowledge evolve. In economics, the
common good is harmed when companies “externalize” their costs
(e.g., health risks of toxic pollution) onto others. The realm of san-
itization is vulnerable to a similar dynamic, in which collectors
may externalize disclosure risks onto others.

Consider credit card records. If the adversary is an identity thief,
then the only information to be concealed may be the name of the
credit card holder, the credit card number, and the expiration date.
Raw purchase transaction data might be disclosed for market
research analysis. But if the adversary is a private investigator try-
ing to determine whether 

 

any

 

 card holder is having an affair, the
information to be concealed may include that raw purchase trans-
action data: the merchants from whom purchases are made (e.g.,
jewelers, florists, hotels), their locations, and the amounts. 

Suppose one credit card company’s privacy policy does not con-
sider private investigators to be a threat. Analyzing a sanitized ver-
sion of the raw transaction data then reveals that 7% of (pseudo-
anonymized) cardholders seem to be having affairs, and the onset
of this anomalous behavior causes them suddenly to carry a bal-
ance near their credit limit, whereas previously they had always
paid their balance in full each month. This correlation (between
affairs and monthly payoff behavior) then becomes “external

knowledge” that increases the capabilities of the private investiga-
tor threat class for the next attack iteration. Subsequently, another
credit card company—which 

 

does

 

 consider private investigators a
threat—must respond by updating its own privacy policy to require
sanitization of monthly balance data.

 

4. INFERENCE GAMES

 

Having examined the problem of sanitizing network traffic, we
now broaden the scope of our inquiry to encompass other prob-
lems. We consider all these problems as inference games, and offer
a unifying framework for understanding such games. Informally,
we define an 

 

inference game

 

 as an attempt by several players to
draw various inferences from various data sources.

Inference games constitute an extremely broad category of games.
When keeping score in such games, the scoring dimensions are not
limited to traditional notions of individual privacy, corporate or
government-classified secrecy, or accuracy of statistical analysis.
The only requirement for an interesting game is that some infer-
ences, by certain players, accrue higher scores than others. Infer-
ence scores are relative to the sanitizer’s values and preferences
because the sanitizer’s job is to limit, enable, or promote particular
inferences. For example, if a privacy-penetrating inference by an
adversary has a negative score, this does not mean that the adver-
sary loses points; rather, the sanitizer loses points if it allows that
inference. Moreover, since the players in inference games are not
limited to one (bad) adversary and one (good) analyzer, it may be
helpful to view all players as different 

 

interpreters

 

, with varying
degrees of access to various data, and we use this term to encom-
pass both adversaries and analysts.

For example, suppose a teenager travels to a statewide science fair.
During the trip, she asks people to take pictures of her with her
camera. These pictures constitute a sanitized record of her trip: the
teenager has selected particular scenes—and staged, posed, and
perturbed them to some extent—while rejecting (

 

i

 

.

 

e

 

., suppressing)
other photo opportunities. The inference game she plays is the fol-
lowing. Her parents, and her friends at school, will have equal
access to view the pictures. She wants her parents to infer that she
was focused on science throughout her trip, but she wants her
friends at school to infer that she had a romantic relationship with
a boy from another school who attended the fair. Which inference
corresponds to the “true” situation?

Truth has relevance in our framework only insofar as it is reflected
in the inference scoring metric. This is because, in real-world con-
texts, it is not truth, but 

 

beliefs

 

 (confidence levels of inferences)
that trigger the risks or probabilities of actions with 

 

consequences

 

.
If our teenager’s friends infer that she is a “science nerd”, they may
start to ostracize her as a consequence; whereas if her parents infer
that she behaved irresponsibly, they may limit her future privileges
as a consequence.

 Accurate game models that incorporate 

 

all relevant context

 

 are
crucial. Although the parents and school friends have equal access
to the sanitized data, these players begin the game with different
initial conditions—specifically, different inferential “working
hypotheses”, and different external or auxiliary data. Moreover, the
teenager may send different hints to different players via private
channels. Clearly, an accurate model of this game has no “rule”
requiring that all information be equally available to all players.
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To simplify assumptions, in this paper, we exclude from the scope
of our exploration those games where the significance of the “out
of band” data privately transmitted by the sanitizer to the interpret-
ers dominates the “equal access” data made public via sanitization.

 

4.1. Unifying Framework for Inference Games

 

In two-player non-zero-sum games, the two players often have dif-
ferent initial conditions, different capabilities, and different goals.
So far, this description applies to the games played by an adversary
and an analyzer. But what distinguishes sanitization from much of
game theory is that, given certain constraints, the sanitizer must

 

generate

 

 a game that the analyzer always wins, and the adversary
always loses.

Our focus is further limited by the frequent assumption or con-
straint that the analyzer is so dumb, that it may not even know its
data has been sanitized; whereas the adversary is so smart, that it
may even be able to simulate the analyzer. In such cases, it may be
acceptable to approximate the situation as a game played directly
between the sanitizer and the adversary.

All the “classical” inference problems are special cases of a more
general family of inference games. We introduce a generalized
framework for these inference games, in which any particular
game is distinguished by its rules of play, and by its system of
characterizing and scoring possible outcomes of play.

 

4.2. Terminology for Evaluating Sanitization 
Methods

 

For brevity in our discussion, we often will use the simplistic
phrase “score points”. But readers should bear in mind that such
“points” are a conceptually sloppy, albeit convenient, linguistic
abbreviation for characterizing the impact of a sanitization method
along various dimensions of value. These values may not be com-
mensurable; in particular, ethical values may not be reducible to a
one-dimensional numeric score.

For our purposes, a 

 

metric

 

 is a measure that quantifies a sanitiza-
tion method's performance along a particular value dimension,
totally ordering those values. A 

 

policy

 

 is a method that may par-
tially or totally order points in (a typically multi-dimensional)
space, and characterizes regions in that space qualitatively—for
example, as “acceptable”, “preferable”, “minimally protective of
privacy”, “too distorted for useful analysis”, and so forth. Thus, a
policy may determine whether a group of incommensurable opera-
tional metrics constitutes a metric space.

As a tangible example, one privacy metric might account for all
risks to an individual arising from disclosures of private medical
data, and a second privacy metric might consider risks from finan-
cial data disclosure. A privacy policy might employ these two met-
rics to evaluate overall risks to individual privacy along both
medical and financial dimensions. An analysis policy might deter-
mine whether a sanitization method introduces unacceptable dis-
tortion into an analysis that computes average life expectancy and
average salary. The policy resulting from the composition of these
privacy and analysis policies must reconcile any conflicts by speci-
fying for which regions of value space “the good of the many” in
having relatively accurate analysis outweighs “the good of the

few” individuals whose outlying attributes on the salary and life
expectancy axes might make them more vulnerable to privacy
risks.

 

4

 

If a policy imposes a total order covering all game-relevant dimen-
sions of value, then it is a 

 

utility function

 

 as defined in the standard
game theory literature. Such a utility function is completely differ-
ent from the “utility metrics” mentioned occasionally in the litera-
ture on classical inference problems. We refer to the latter as

 

analysis metrics

 

, because they quantify how well or poorly a sani-
tizer performs, measured along the dimensions of value that matter
to an analyzer.

Finally, a 

 

strategy

 

 is a plan for how to extend a policy (or group of
policies) to cover more than one iteration of an inference game.

 

4.3. Scoring Inference Games

 

Our framework begins with the notion of an analysis metric: how
useful is a particular sanitized dataset for the purposes of an ana-
lyzer? We score the result of this sanitization accordingly. In a
symmetric fashion, we consider the adversary: how useful is this
sanitized dataset for the purposes of an adversary? Again, we
assign an appropriate score(s), this time to quantify the benefit(s)
to the adversary.

Since, by definition, anything that assists the adversary to achieve
its goals harms privacy (and/or secrecy, depending on the seman-
tics of the particular game), then every adversary metric is the neg-
ative reflection of a privacy metric, and 

 

vice versa

 

.
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Various notions of computational 

 

costs

 

 can be included in our
inference game framework. The sanitizer, analyzer, and adversary
all have limited computational budgets, yet the most cost-effective
way to allocate the budget depends on how the opponents (and
allies) allocate their budgets. 

A major limitation of the inference game model is that it lacks an
accurate feedback channel so the sanitizer can learn how the adver-
sary scored. This can be alleviated somewhat by inserting “honey-
pot records” in sanitized data, or by periodically sampling or
monitoring real-world data subjects to see whether they incurred
damages that may be ascribed to the sanitization. But in general,
we must impute an adversary’s score by simulation, based on what
we know or suspect about its capabilities and tactics from other
known privacy breaches.

We elaborate further on our framework in subsequent sections, by
emphasizing how its generalized playing field differs from those of
classically-defined special case inference problems.

 

4. Clearly, such fundamental value judgments should never be
entrusted to an automatic policy composer.
5. To emphasize this, we might call an adversary metric a “dis-
utility metric”, but such terminology is too similar to the “utility
function” mentioned above. Moreover, such usage would imply
that privacy and analysis utility are diametrically opposed. Such
zero-sum game instances do occur, but positive-sum inference
games (in which privacy and analysis utility are somewhat inde-
pendent) also occur frequently.
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4.4. Questionable Assumptions

 

Initial simplifying assumptions help exploring hard problems.
But such assumptions become problematic when they are unexam-
ined, when they become an impediment to further progress, or
when they are unconsciously built into the underlying problem
statement. Two crucial assumptions permeate the literature on
inference problems: the 

 

closed world assumption

 

 (CWA), and the

 

uniform analysis metric

 

 (UAM).

In relation to inference problems, CWAs restrict researchers’ atten-
tion and concern to items that appear 

 

explicitly

 

 in the original (raw)
dataset.
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 But even if an adversary cannot infer original data, it can
still cause damage, by inferring joint probability distributions of
(still-indeterminate) raw data, by making probabilistic inferences
about a class of raw data, or even by making completely wrong
inferences (as in our example in footnote 2 above).

The UAM postulates that all attributes are equally valuable for
analysis purposes. Clearly, this might be true for certain particular
analyses. In contrast with CWAs, which limit the scope of prob-
lems, the UAM has been used to limit the scope of 

 

solutions

 

. The
implicit claim is that the UAM applies to a broad class of prob-
lems, but we are unaware of any attempt to justify that claim
explicitly. Absent such justification, we question whether funda-
mental intractability results based on the UAM apply to any broad
class of real-world problems. We discuss this issue more fully in
our Open Problems section.

We emphasize that both the UAM and CWA occur often in the lit-
erature. Further, they are seldom recognized as assumptions, but
instead are implicit. Hence they constitute an ongoing conceptual
hurdle for extending the work to many real-world domains.

 

4.5. What Are Legitimate Inference Goals and 
Targets?

 

Computer scientists tend to approach inference problems by scor-
ing their sanitization method (either implicitly or explicitly) solely
on the dimension of “attribute distortion”. That is, the sanitizer
loses points to the degree that an adversary is able accurately to
infer particular “sensitive” raw attributes from the sanitized data,
and gains points to the degree that an analyzer is able to access the
raw attributes it needs without undue distortion (that is, without the
data of interest being perturbed, swapped, generalized, or sup-
pressed).

Exceptions to the above are primarily in one application area—
census data. Here, a sanitizer loses points exactly as in the above
rule, yet it gains points not so much by revealing particular raw
attributes, but rather by enabling the analyzer to draw statistical
inferences from the sanitized attributes that are similar to those
inferences it would have drawn, had the analyzer been able to
access the raw data. But for other applications, computer science
researchers tend to treat information not represented 

 

explicitly

 

within the raw data set (call this a “higher-level” inference target)

as an illegitimate inference goal. We assume that such “higher-
level” inference targets are legitimate goals for the analyzer, and
that, by symmetry, “higher-level” inference targets likewise may
be legitimate goals for the adversary.

But the opposite notion remains a pervasive (and unexamined)
assumption. In particular, the Multi-Level Secure Database Infer-
ence Problem has a strong tradition of relying on a 

 

closed world
assumption

 

 [9,22]. Among other things, this assumption postulates
that all inference targets of concern are represented explicitly as
attributes in the 

 

same 

 

database. Conveniently, this limits the prob-
lem's scope to a great extent, but poses a problem. Consider the
ultimate in secure database design, where all classified data is par-
titioned between two separate and unconnected databases. All
“Low” data is in database 1, and all “High” data is in database 2.
Now, by the closed world assumption, it is impossible for an
adversary to infer any “High” data from “Low” data using any
method covered by the term “database inference” because the two
databases are separate. Yet in our “ordinary language” sense of the
term “inference”, it might be possible to infer virtually all the
“High” data from the “Low” data.

An example will clarify this. Suppose a sanitizer is given raw med-
ical records that include as attributes NAME, STREET_ADDR,
CITY, ZIP, GENDER, and DATE_OF_BIRTH. To protect patient
privacy, the Sanitizer first suppresses NAME, STREET_ADDR,
and CITY entirely, because they constitute sensitive (High) data.
But among the remaining, supposedly non-sensitive (Low)
attributes, the compound attribute of {ZIP, GENDER,
DATE_OF_BIRTH} may serve as a quasi-identifier that uniquely
can identify perhaps 87% of the population of the United States.
Therefore, the sanitizer perturbs or suppresses these attributes as
well. Next, the sanitizer is given exactly the same raw dataset,
except this time, someone else has already deleted the attributes,
NAME, STREET_ADDR, and CITY. If our sanitizer operates by
the closed world assumption, then no further sanitization is needed
to protect patient privacy, because no directly sensitive (High)
inference target appears explicitly in the raw dataset.

Therefore, our approach explicitly rejects the closed world
assumption. Instead, we allow inference targets that are 

 

not

 

 repre-
sented explicitly as attributes within the raw dataset to be consid-
ered legitimate scoring goals for players in the game.

Returning to the multi-level secure database inference problem,
with its notion of explicit government-issued classification labels,
one might argue that classifying attributes is an end in itself, rather
than a means to the end of preventing certain inferences by an
adversary. Therefore, ascribing particular inference goals to an
adversary is irrelevant. But, if knowledge is power, then classifying
attributes is a means to deny power to adversaries. Those adversar-
ies may include other nations, internal bureaucratic rivals, and
investigative reporters from one’s own nation. For all these cases,
whoever does the classifying must 

 

already

 

 have an implicit threat
model in mind

 

7

 

. Given the existence of this (possibly implicit)
threat model, it makes sense to develop and elaborate it by ascrib-
ing particular types of inference goals to the adversary—other-
wise, how else can the classifier have any confidence that the low-

 

6. The phrase “closed world assumption” is overloaded. It also
refers to an assumption that applies to database languages and log-
ics that is different from the assumption that pertains to inference
problems.

 

7. Unless the rule is to classify absolutely every piece of data,
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level raw data it denies to the adversary would correspond to deny-
ing higher-level inferences leading to undesirable power?

In general, much previous work on the database inference problem
has focused on a method-oriented privacy (secrecy) policy, whose
expressiveness was severely limited by the explicit attributes avail-
able in a particular database. Instead, we advocate a goal-oriented
privacy (secrecy) policy that incorporates an explicit threat model,
and ascribes potential inference goals to that adversary. 

 

4.6. Semantically Rich Scoring of Methods

 

We have introduced a framework for inference games in which all
scoring (both positive and negative) is explicit, and may be based
on arbitrary, higher-than-attribute-level inference targets. Some of
these inferences may have particular raw attribute values as their
ultimate target. But we do not limit the inference targets—or the
scoring—to the raw data.

Our generalized scoring framework stands in stark contrast to
other possible frameworks. A simplistic scoring function to imple-
ment the Uniform Analysis Metric would deduct one point for each
attribute value that is altered or suppressed by a sanitization
method. But many Analyzers have no interest in accessing certain
attributes, and for other attributes, certain perturbed values may
have only minor impact on the ultimate analysis results (infer-
ences). Moreover, in some applications, two perturbed attribute
values might offset each other, thus achieving the desirable effect
of minimal or zero distortion in the analysis result. If this seems
unlikely, consider that such offsetting perturbations are exactly
why the 

 

swapping

 

 method has been so successful in supporting
statistical analysis of census data. Thus, many real-world applica-
tions warrant very different analysis metrics than the simplistic
“change one attribute, lose one point” scoring system of the Uni-
form Analysis Metric.

Consider previous secrecy policies and metrics for the classical
multi-level secure database inference problem. The fine-grained
scoring gradations of our framework may seem irrelevant to this
problem, because the problem needs no subtle scoring nuances;
allowing certain attribute values to be inferred by someone with
insufficient classification level is absolutely forbidden. Thus, either
a sanitization method satisfies the classification policy, or it does
not, so the only possible scoring outcomes are either 0 or 1.

First, consider the detection phase that searches for inconsistencies
in classification, for example, a situation where “Low” attributes
allow one to infer the value of a “High” attribute. But if there is
any possibility that not all classification inconsistencies will be
remedied (perhaps due to constraints on time, budget, or qualified
personnel resources), then a nuanced scoring system can help the
sanitizer prioritize its limited resources. In particular, if one pair of
“Low” attributes discloses a single “High” attribute, whereas
another pair of “Low” attributes discloses multiple “High”
attributes, then (other things being equal) it seems more important
to address the second pair. As another example, suppose our MLS
system has not two, but three levels of classification. In this sys-
tem, it is worse for a “Low” attribute to disclose a “High” attribute
rather than a “Medium” one. Yet a simple Boolean secrecy policy
cannot express such gradations and distinctions.

 

8

 

Next, consider the correction phase of the database inference prob-
lem, in which classification levels of attributes are altered to rem-
edy detected inconsistencies. But there may be many possible
ways to produce a consistent classification. A “High” attribute may
be downgraded to “Low”, or 

 

vice versa

 

. Both attributes could be
reclassified at a “Medium” level. When faced with a choice of sev-
eral “Low” attributes, only one of which must be upgraded to
resolve an inconsistency, a framework with fine-grained scoring
can help the sanitizer evaluate different possible perturbations or
suppressions (re-classifications) that satisfy a secrecy policy.

 

4.7. Iterated Games and Greedy Strategies

 

 We now extend our model to discuss iterated games. Previously,
we examined sanitization in a non-iterated context. The sanitizer
“dealt” a single round to the analyzer and adversary, and the game
was scored based solely on that non-interactive round. In retro-
spect, it is apparent that all sanitizers practiced a 

 

greedy

 

 strategy of
maximizing their score in the current round. Obviously greed is the
optimum strategy for a single-round game. But this strategy may
not be optimal if scoring is cumulative and extends across a
sequence of iterated rounds. Naively, as one cannot foresee the
future and may not know how many rounds will be played, greed
may seem at least as good as any other strategy.

But if a sanitizer can reasonably foresee that future rounds will
involve a different analysis on the same raw dataset, or the same
analysis on an updated or extended dataset (that is, attributes per-
taining to some or all of the same entities), or an adversary armed
with new auxiliary information, then the sanitizer may adopt a
heuristic strategy that “errs on the side of privacy” and defers some
potential analysis points in the current round, in order to achieve a
better cumulative score (position in multi-dimensional value
space) after a series of rounds.

The strategic context is further complicated by the existence of
other collectors and sanitizers, whose data may pertain to some or
all of the same entities that appear in our own sanitizer’s raw data.
These other sanitizers may have very different privacy or analysis
policies (even if, by chance, they share the same metrics as our
sanitizer). Hence the sanitized data they release in the future, if
accessed by our adversary, may boost its auxiliary or external
knowledge, and thus retroactively endanger the privacy of entities
in our current dataset.

Therefore, even if our sanitizer plays only a single round—without
explicit iteration—there exists the potential for future “virtual
rounds” of scoring revisions, as new external data becomes avail-
able to its adversary. Perhaps our sanitizer also can gain points in
such virtual rounds, if a particular game’s rules allow its analyzer
likewise to operate on that new data.

 

8. Since its is unsafe to limit the problem scope under the closed
world assumption, it is possible that not all classification inconsis-
tencies will be remedied, because it is possible that not all such
inconsistencies will be detected. One could argue that it makes
sense to allocate some sanitization resources to detecting vulnera-
ble inference targets not represented in the database, rather than to
remedying known, but minor, classification inconsistencies.
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4.8. The Query/Audit Problem

 

 The query/audit problem has several definitions. The classical ver-
sions limit their scope to statistical databases, but even then, their
rules may differ regarding which statistical queries are allowed.
The version we use requires that a database respond to all queries
accurately until the answer to the current query, in combination
with answers to previous queries, would allow the questioner to
deduce sensitive information. Then the database refuses to answer
the current query.

Our approach models the query-audit problem as an iterated saniti-
zation game. In each round, a query is issued against the same raw
dataset, and the rules require the sanitizer (called an 

 

auditor

 

 in this
context) to practice a greedy analysis strategy. The auditor must
maximize the analysis score in each current round by answering
without perturbing or suppressing any values, until it receives a
query whose correct, raw-data answer—in conjunction with the
data disclosed by all the previous queries and responses—would
violate its privacy policy. In that case, the auditor must suppress its
answer, responding by giving an explicit refusal to answer the
query. This “all or none” sanitization method is required by the
rules of this game.

These sanitization rules governing the auditor raise two important
points. First, suppose we assume that the auditor is a 

 

rational

 

 game
player, and that its query-response behavior is not constrained by
the above rules. Rather, the auditor’s behavior is a rational strategy,
constrained solely by the scoring incentives of the game. We then
ask what scoring incentives would motivate it to behave in such a
seemingly greedy manner.

By thus transforming a game’s rules into equivalent scoring incen-
tives, we can “reverse engineer” its social context. This technique
can serve as an important check, because it helps ensure that a par-
ticular game—as governed by its specific rules and policies—is
played 

 

only in an appropriate real-world context

 

. The policy
makers for the auditor (sanitizer) can compare this game-inherent
scoring system with the values they place on various privacy and
analysis inferences. If the implied scoring incentives are not con-
gruent with their values, then their sanitizer has been told to play
the wrong game. The policy makers need to change the rules (typi-
cally those rules constraining the sanitization method), or play a
different game entirely. Transforming a game’s rules into equiva-
lent scoring incentives serves a social purpose analogous to the
technique of developing a prototype to implement proposed soft-
ware requirements. Making the implications of a given set of
requirements (rules) visible (in a “What-You-Specify-Is-What-
You-Got” manner) often helps policy makers revise, revisit, and/or
reconcile their requirements.

Obviously, for those contexts that are accurately modeled by the
query/audit problem’s scoring incentives, the short-term gains
from analysis inferences must be extremely lucrative—otherwise,
the auditor would practice at least a 1-round lookahead strategy as
a precaution to protect privacy. In our earlier discussion of the
multi-level secure database inference problem, its scoring incen-
tives were dominated by penalties for violating the secrecy (pri-
vacy) policy. But in stark contrast, the scoring incentives for the
query/audit problem are so dominated by analysis points, that
explicit violations of the secrecy (privacy) policy can occur.

This brings us to the second important point: Rules constraining a
sanitizer's ability to alter its responses may constitute a vulnerabil-
ity. This is possible if the adversary knows the rules of the game—
in this case, if it knows that the auditor will refuse to answer a
query 

 

if and only if

 

 that answer, in conjunction with previously
disclosed data, would violate the privacy policy. By exploiting the
auditor’s greedy strategy—and its transparent sanitization
method—the adversary can set a trap whereby the auditor’s refusal
to answer actually reveals as much information as its correct
response would have revealed.

For example, in queries regarding a particular subset of individu-
als, suppose the adversary asks for the COUNT of records in that
subset, and then asks for the SUM of their SALARY attributes.
The auditor will answer both queries, since they reveal very little
about any particular individual. Next, the adversary asks for the
MAXIMUM among those SALARY attributes. If the auditor
refuses to answer, this refusal tells the adversary that every individ-
ual in that subset has the same SALARY = SUM/COUNT [19]. In
effect, by failing to look ahead even one move when evaluating
whether the current query’s answer might lead to a privacy viola-
tion, the auditor fails to recognize positions where the adversary
has placed it in “check’, and thus allows a “checkmate” to occur.

 

4.9. Disclosing Sanitization Meta-Data: Pertur-
bation and Generalization

 

Sanitization mechanisms may be grouped into two broad classes.

 

Generalization

 

 either omits a sensitive datum (

 

suppression

 

), cate-
gorizes it with other data (

 

aggregation

 

), or replaces it by less spe-
cific values (for example, by rounding). Examples of this include
cell suppression techniques and aggregation techniques [5,8,17].

 

Perturbation

 

 replaces a sensitive item by some other legal value
from the domain of that datum; for example, by adding a random
number to it. Perturbation techniques have been widely studied in
databases [2].

Misconceptions abound regarding an alleged advantage of general-
ization over perturbation as a sanitization method. But to address
them, we need a deeper understanding of the relationship between
those methods. At this stage, our informal characterizations of
those terms are adequate.

We begin with what an adversary is told about the sanitization pro-
cedure: 

 

How much information regarding your raw data can leak
by disclosing particular sanitization meta-data?

 

 In the context of
the generalization-vs.-perturbation issue, that question can be
rephrased as: Why should the sanitizer let the adversary know
when the sanitizer is lying, or telling less than the whole truth?

Analyzing the query/audit problem using our inference game para-
digm helped to highlight this issue. But the underlying question is
not new. It is a somewhat similar question, for sanitization, that
Kerckhoffs’ Principle answered long ago for cryptography. But
sanitization is a different problem than cryptography. In particular,
we must consider the differential benefits—to the adversary, to the
analyzer, and to other sanitizers—of disclosing sanitization meta-
data. Moreover, it is not obvious that all sanitization procedures
will decompose cleanly into a (presumably public) algorithm, and
a nontrivial (secret) key.
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Duncan et al. [15] explore one sanitization context that does admit
a clean decomposition, namely, the use of additive multivariate
noise to sanitize data, when the analyzer’s goals involve specific
estimation problems, such as finding regression coefficients. The
authors’ purpose is not to satisfy a fixed privacy and analysis pol-
icy, but rather to help policy makers assess trade-offs when devel-
oping or reconciling such policies. Given well-defined application
domains with specific inference goals for the adversary and the
analyzer, they develop metrics for privacy and analysis, then plot
graphs of privacy risk versus analytic usefulness, as the sanitiza-
tion procedure varies its additive noise parameter.

In this work, the authors explore how the privacy vs. analysis
trade-off curves vary if they disclose the value of their additive
noise parameter. Thus, they offer policy makers a tool to assess the
differential benefits—to adversary and analyzer—of disclosing a
key item of sanitization meta-data. 

With this background, we return to the relationship of generaliza-
tion and perturbation. In essence, generalization means that the
adversary knows, with absolute certainty, the extent to which sani-
tization may have perturbed each raw datum.

Typically, generalization discloses this sanitization meta-data via
an explicit syntactic tag applied to a datum, such as Birth_Year =
“195*” or Birth_Year = “1950–1959”. Alternatively, if such an
enhanced syntax is not allowed, generalization might replace the
last digit of all Birth_Year values by “0”, and then publish to all
interpreters the enhanced semantics, namely that a “0” value in the
last digit of Birth_Year really means the individual may have been
born in that year, or in any of the following 9 years.

But in the above, the sanitizer (generalizer) could achieve the same
result by changing the last digit in Birth_Year to 

 

any

 

 digit, and then
publishing the semantic interpretation that 

 

any

 

 least significant
digit in Birth_Year must be interpreted in the context of this same
new semantics. Using this method, the syntax of generalized data
appears indistinguishable from perturbed data. In fact, for this
example, if we could “subtract” the meta-data publication, we
could convert this from a generalization method to a perturbation
method—without altering the algorithm that transformed
Birth_Year. 

Similarly, many perturbation methods can be converted to general-
ization methods, without any software changes. Perturb the data,
and then publish, for each and every sanitized datum, a set of pos-
sible raw pre-image data values.
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For example, consider numeric data perturbed by additive noise, as
follows:

Sani_Birth_Year = (Raw_Birth_Year 

 

div

 

 10) * 10 + 

 

rand

 

(0, 9) 

where 

 

rand

 

(

 

x

 

, 

 

y

 

) returns a random integer in the [

 

x

 

, 

 

y

 

] interval. 

If we add a post-processing step and publish the above equation as
sanitization meta-data, that would convert this perturbation method
into the same generalization method as our previous example.

Note that a sanitizer need not publish 

 

tight

 

 bounds on its meta-data
to implement generalization. For example, a sanitizer might per-
turb a numeric field by adding a value between +1 or –5, but pub-
lish a looser bound ranging between +20 or –6. Later, in a
subsequent “virtual round” of scoring, the sanitizer might choose
to disclose the tighter bound. This is much easier—and safer—
than publishing a re-sanitized version of the same dataset. More-
over, a sanitizer might choose to publish meta-data that is not even
true; this raises interesting strategic possibilities. 

Armed with this deeper understanding that a generalization is a
perturbation augmented by disclosure of certain meta-data, we are
now prepared to explore issues regarding the “quality” or “distor-
tion” of sanitized data, from the analyzer's viewpoint. 

 

4.10. Meta-Data, Analysis Distortion, and the 
UAM
In this section, we compare how an analyzer’s inferences may be
distorted by perturbation and generalization.

Assume, simplistically, that the analyzer’s initial condition is a
“blank slate,” meaning it has neither external data sources, nor pre-
conceived ontological categories or inferential “curves” to which it
will attempt to fit the sanitized data points. Supposedly, the
strength of generalization is that its “truthfulness” relative to some
attribute is preserved [29] even though an inference based on that
data may not be as precise as that inference based on the raw data.
For example, if the raw attribute for John’s height is 7 feet, and
sanitization generalizes that to “at least 6 feet”, then a resulting
inference that “John is not short” remains true (for the usual mean-
ing of “short”).

But the integrity of such inferences is not preserved if the uncer-
tainty introduced by generalization crosses the boundaries of an
ontologically significant category. Sanitizing John’s height to “at
least 3 feet” introduces the possibility that “John might be short”.
Thus, generalization allows the modal logic inference “X must be
false” to become “X might be true”. Clearly, generalization cannot
guarantee modal logic consistency between inferences drawn from
the raw and sanitized data, even in a vague “blank slate” context.

Although generalization increases uncertainty about a datum, it
allows a careful interpreter to bound the uncertainty of inferences
based on that datum. In contrast, unless sanitization meta-data is
published, perturbation methods do not tag sanitized data with
“error bars”. If an analyzer tries to draw inferences other than
those guaranteed by the analysis policy, its inferences may be
based on values whose perturbations cause significant distortion.
Hence, neither the probability nor the precision of those inferences
are guaranteed. But by publishing sanitization meta-data, perturba-
tion methods are more versatile than generalization. For example,
semantic meta-data easily can specify joint probability distribu-
tions among groups of sanitized data; but syntax-based generaliza-
tion cannot match that capability.

Yet, for example, Meyerson and Williams [24] argue that, “with
perturbations in data, only ‘probably true’ inferences may be

9. For perturbation methods where those pre-image values are
not semantically “contiguous”, opinions will differ regarding
whether such meta-data publication does or does not transform
them into generalization methods. 
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drawn.” They imply that generalizing data preserves the capability
“of rigorously proving to a judge that a certain trend is indeed
occurring.” But this claim depends on the analysis policy’s pub-
lished bounds on uncertainty, not on the method (generalization or
perturbation) used to implement that policy. Even in a “blank
slate” context, generalization might not preserve the capability of
proving that a certain trend is occurring, nor can it guarantee that a
countervailing trend is not occurring. The method used to imple-
ment that policy is secondary. 

In practice, very few adversaries and analyzers start in a “blank
slate” condition; rather, they operate under (different) contextual
constraints, and with various sources of external knowledge. Anal-
ysis outcomes in medical, military, terrorism, and legal contexts
are constrained by various decision thresholds such as reasonable
doubt, preponderance of evidence, and unacceptable risk. In these
contexts, the analysis may be performed to refute or confirm some
provisional hypothesis. Whether an inference game player must
cross a “burden of proof” threshold in order to score for or against
a particular hypothesis is critical, because the absence of evidence
to support that position will be treated as evidence that support is
absent. The standard that the analysis must meet to confirm or
refute that hypothesis is determined by the social context of the
application.10 Thus, the inferential power of evidence—and of its
absence—is context-specific. Inferences based on “evidence of
absence” can be crucially important in law, medicine, and even lit-
erature (as when the dog that did not bark in the night provided a
crucial clue to Sherlock Holmes [12]).

There is a risk that generalization techniques may cause a distorted
underemphasis. For example, in clinical trials of drugs, if even a
small number of detrimental side effects are suppressed or over-
generalized, resulting inferences may have fatal real-world conse-
quences. The analysis policy must preclude such outcomes, and
the sanitized data must conform exactly to that analysis policy.

Similarly, there is a risk that generalization may cause a distorted
overemphasis. For example, Sweeney [29] describes a Google
search for information on a particular person. The unavailability of
certain records regarding that person’s charitable donations might
cause a reasonable person to conclude either that the subject was
stingy, or that the subject heavily favored the one charitable organi-
zation that the search did reveal.

Whether perturbation techniques are better than generalization
techniques depends on each specific real-world application con-
text, the characteristics of each specific adversary and analyzer,
and the content of each specific dataset to be sanitized.

Sanitizing data using methods of generalization offers obvious
benefits [29]. The drawbacks are less apparent. To illustrate them,
we examine generalization in the context of sanitizing IP addresses
in network traffic.

Suppose we generalize every IP address by “blanking out” the low-
est-order bit. This preserves most of the locality of the addresses
present in the original data, and might be considered “minimal dis-
tortion” by some analysis metrics. The cost of doing so requires
that the IP address’ lowest-order bit can have three values: 0, 1,
and the blank, so we need new hardware to handle the ternary
value of that “bit”. As an alternative, in the software we might set
that low-order bit to the same value for all sanitized IP addresses.
In either case, the analyzer must know whether we are transform-
ing the syntax of the data that it will see, and if so how. The ana-
lyzer will need to understand how to interpret the semantics of the
sanitized data appropriately.

But changing software is costly too. If modifying the analyzer's
software to understand the blank value for a “bit” is acceptable,
then most likely modifying the software to increase the size of the
IP address space its data structures can represent is also acceptable.
Doing so allows us to overcome the problem of a limited
namespace, and eases other types of constraints.

Similar considerations apply to the syntax of less-constrained data.
For example, suppose previously the analyzer understood ASCII
integers to represent a person’s age in years. But the sanitized data
does not say that Tom’s age is 27. It says that Tom’s age lies in the
range of “20–30” years. It might be easy to modify the analyzer to
understand dashes in the syntax. But if the analyzer was designed
to measure complex statistical relationships, such as those between
one’s age and weight, the analyzer would need major changes to
properly interpret the syntax of the sanitized data. Even if the ana-
lyzer were designed simply to count the number of people in dif-
ferent age brackets, those ontological brackets exist only at the
semantic level, through internal logic and data structures. The ana-
lyzer does not understand the age bracket syntax, unless modified
to do so. Worse, suppose the analyzer understands age brackets,
but expects them to be “18–25”, “25–35”, and so forth. The ontol-
ogy of the sanitizer’s data intervals does not match what the ana-
lyzer is expecting. This disconnect renders the analyzer useless.
Clearly, embedding the meta-data semantics into the sanitized data
syntax can be a disadvantage. But it also constitutes the only inher-
ent advantage of generalization, since the resulting data are more
“idiot-proof” (and perhaps more lawsuit-resistant) than perturba-
tion (where the meta-data semantics must reside in a separate file
or a commented header).

To determine whether a specific generalization or perturbation
method is “better”, a sanitizer must know the relative importance
of particular inferences. To express those inferences adequately
requires not only a privacy policy, but also an explicit analysis pol-
icy.

Some authors [11,24] adopt the UAM as an implicit analysis pol-
icy. This might be formulated as: “any datum whose disclosure the
privacy policy does not prohibit is equally valuable under the anal-
ysis policy”. In addition, Meyerson and Williams [24] and others
imply that the proper metric for characterizing the aggregate anal-
ysis value of a sanitized data set is the sum of the number of indi-
vidual unsanitized data elements it contains.

But in real-world problem contexts, many data items of minor pri-
vacy concern (for example, whether someone has dial-up or DSL
access to the Internet) may have negligible value for certain kinds

10. Such analysis outcomes may include not only the first-order
results (to confirm or refute a particular hypothesis), but also the
meta-analysis outcomes of whether, and how, to continue search-
ing for further evidence, or whether, and how, to formulate a plan
to develop a new hypothesis.
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of analysis (such as for analysis of medical records), yet have con-
siderable value for other kinds of analysis (such as mining pur-
chase transaction data for market research purposes). Furthermore,
the inferences that can be drawn from an aggregate set of m
attributes often depend more on which particular attribute subsets
the aggregate contains, rather than on the number m.

Following Sweeney [28], if an adversary could pick only a few
attributes to identify an individual, the adversary’s privacy-pene-
trating inference would be far more accurate if it chose as
attributes gender, zipcode, and birth date, rather than weight,
height, zipcode, and birth date. Despite height alone partitioning
people into more than the 2 equivalence classes of gender, voter
registration data (which is public information) records gender, not
height and weight.

As not all attributes or subsets of attributes have equal value for
detrimental, privacy-penetrating inferences, not all attributes (or
subsets) have equal value for drawing beneficial inferences.

Dinur and Nissim [11] develop a highly-nuanced privacy metric,
yet use an analysis policy based on “noise”. They model the adver-
sary as a 2-phase query-audit game. First the adversary queries the
database (adaptively), and the auditor returns sanitized results.
After this phase, the adversary emits a list of all the data elements
whose original values it intends to guess. In the second phase, the
auditor/sanitizer reveals the entire contents of the raw database to
the adversary, except for those data elements the adversary will try
to infer. The privacy metric is the probability with which the adver-
sary is able to infer the specified data.

Although this privacy metric seems to have some drawbacks, sup-
pose we also allow the analyzer to play this game. A more useful
analysis metric than “noise” might be the probability with which
the analyzer is able to infer the data elements it has specified. Such
an adaptive querying model may be useful for characterizing bene-
ficial data mining performance on sanitized data.

Finally, Sweeney [30] suggests balancing warranties with privacy
protection; she states that a developer “should provide a guarantee
related to the utility of the algorithm (a warranty) and a guarantee
of privacy protections the algorithm provides (a privacy state-
ment).” We do not assume such a guarantee can be made; indeed,
the essence of our approach is to determine what guarantees, if any,
can be made for a given analysis algorithm and a privacy policy,
and moreover how either (or both) must change in order to provide
whatever guarantees are desirable.

4.11. Actionable Inferences
Earlier, we stated that in real-world contexts, it is not truth, but
rather beliefs (confidence levels of inferences) that can transform
abstract risks or probabilities into actions that have consequences.
To provide privacy protection against detrimental consequences, it
is essential that a sanitization method be based on an accurate
threat model. Specifically, a privacy policy must assess what
beliefs and confidence levels will trigger damaging action by an
adversary.

Terminology can shape—or distort—our thinking. Identification
risk and re-identification risk have become problematic terms.
Such research focuses on what seems necessary—but is not suffi-
cient—to protect individuals from the consequences of inference.

In this section, we argue that exclusive focus on a single, isolated
aspect of risk, coupled with the failure to develop an adequate
threat model, can result in privacy policies and sanitization meth-
ods that may not reduce detrimental consequences, but may
instead amplify those detrimental consequences, and shift them
onto innocent individuals.

To understand the limits of the focus on identification risk, we
examine what is required to trigger damaging action by an adver-
sary. We begin by introducing the notion of predicate risk.

We define predicate risk as a change in uncertainty (typically but
not necessarily a reduction). It is a newly-changed probability (or
confidence level) that an interpreter (in this case, an adversary)
assigns to a particular predicate, as a result of viewing a dataset.11

Identification risk might be considered one type of predicate risk,
but for clarity in our discussion, we exclude that possibility.

As an example, an anonymized medical record’s unsanitized diag-
nosis attribute says “Ms. D” has cancer. Previously, the interpreter
either had assigned that predicate an undefined probability (as it
did not know this particular anonymized tuple existed), or it had
inferred an average cancer risk for the population that it would
apply to every unknown entity. But based on this record, the inter-
preter assigns a 100% probability to the predicate (Ms. D, Cancer).

In this example, suppose the interpreter is a life insurance com-
pany. Although the cancer predicate risk for this particular tuple is
significant (100%), it is uncoupled from the real world because the
identity of “Ms. D” is not known. It might seem that this predicate
risk will not become actionable unless and until the interpreter can
couple it with some identification risk. That is, if the life insurance
company can infer (with some degree of confidence) which entity
in the real world is denoted by “Ms. D”, then it can translate the
predicate risk of cancer into actual consequences, by raising insur-
ance rates for Ms. D, or denying her coverage.

It is clear from this example that identification risk is a useful con-
cept. But it is a mistake to conclude that sanitizing the data merely
to reduce Ms. D’s identification risk below some threshold is suffi-
cient to ensure that the adversary will not take detrimental action.

Now, suppose that we sanitize the data solely by hiding the diagno-
sis attribute. Even though patients’ names and addresses are
revealed, an insurance company (adversary) would have no reason
to raise rates or deny coverage to anyone, because all cancer predi-
cate risk has been eliminated from the data. Instead, if we sanitize
solely to reduce a vulnerable individual’s identification risk, this
does nothing to reduce the underlying predicate risk. Thus, in the
absence of policy safeguards, that predicate risk may be shifted
onto other individuals. For example, if sanitization causes the
adversary to infer—incorrectly—that Ms. D corresponds to Robin
in the real world, then the privacy policy has done nothing to
reduce the real-world consequences of data disclosure, but has
merely shifted those consequences onto the wrong person. Alterna-
tively, suppose that the sanitization method does not alter any diag-
nosis attribute, but it perturbs ZIP codes and birthdates so that,

11. This informal definition is adequate for our purposes. Readers
desiring a formal definition may choose from a variety in the liter-
ature (see for example [9,20]).
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based on these quasi-identifier fields, Ms. D is indistinguishable
from k people in the real world. If k is a small number, the insur-
ance company could raise rates or deny coverage to all of those k
indistinguishable individuals. Thus, in comparison to disclosing
the raw data, sanitizing the data has caused this adversary to multi-
ply its damaging consequences by a factor of k.

In effect, such sanitization schemes first redistribute identification
risk, and then assume the adversary will transform that risk redis-
tribution into damage reduction. But sanitization methods that
attempt to defuse a threat solely by diffusing risk are successful
only for certain types of adversaries. Hence it is vital that the threat
model be explicit, and accurate.

To promote conceptual clarity, we note that, in general, nothing
forbids an interpreter from taking action based strictly on a predi-
cate risk that is uncoupled from any identification linking that
predicate to a specific entity, or even to a location. For example, if
the United States infers that a nuclear missile recently was stolen
from a former Soviet country by an unknown party, it is likely the
United States would commence a worldwide search. This inter-
preter (the United States) takes action because it infers what predi-
cate occurred, even though it knows nothing about who, where, or
why, and has only a general idea of when.

Rather than the often misleading notion of identification risk, it is
safer and more accurate to define entity access risk as the ingredi-
ent that makes predicate risk actionable. For example, to access a
particular anonymous individual, an interpreter might publish its
attributes, and offer a reward for information regarding its identity
or location. Alternatively, previously-anonymous individuals have
been apprehended via sting operations that enticed them by offer-
ing customized rewards that appealed to their known attributes.
Finally, in many contexts, probabilistic entity access may be suffi-
cient to trigger action. For example, an interpreter may target a
class of individuals reachable through a particular access channel
because the interpreter infers that the probability density of various
undesirable predicate risks in that class is high. Thus, individual
identification is merely one means to entity access—but it is not a
prerequisite for entity access.12

We have shown in this section that a research focus on identifica-
tion risk, sometimes called “re-identification risk”, is necessary but
not sufficient to protect individuals from the adverse consequences
of inference. The adversary determines what is actionable, and
from an adversary’s viewpoint, predicate risk can become action-
able when coupled with sufficient entity access risk, even in the
absence of identification risk.

5. CASE STUDY: K-ANONYMITY AND L-
DIVERSITY
An examination of k-anonymity offers tangible examples of some
issues mentioned previously, as well as some issues unique to k-
anonymity. In what follows, it is important to distinguish between
criticism of k-anonymity’s suitability as a policy in particular real-

world contexts, and criticism of generalization as the method cho-
sen to implement a given k-anonymity-based privacy policy (after
the analysis policy is fixed for some context).

We begin with the suitability of k-anonymity as a policy. K-ano-
nymity seems to provide all sanitized entities with a uniform level
of privacy protection, because it renders every entity indistinguish-
able from at least k–1 other entities in that sanitized dataset. But is
a uniform level of protection always the best privacy policy, and
does k-anonymity provide that?

From a public policy standpoint, one could argue plausibly that
both the very young and the very old warrant more protection than
others. Elders tend to be more trusting, and vulnerable to financial
scams. Moreover, because elders tend to live off their lifetime sav-
ings (rather than current income), their ability to recover from a
significant theft is more limited. The prevalence of medical prob-
lems among the elderly—both as an isolated factor and in conjunc-
tion with financial vulnerability—similarly argues for additional
privacy protection.

Younger people would have many years in which to recover from a
breach of privacy. But given current dynamics and trends in data
collection and (lack of) protection, it seems only prudent to assume
that young people will incur far more cumulative exposure to pri-
vacy risks during the course of their lives than have previous gen-
erations. As noted earlier, a “greedy analysis” strategy of releasing
all data that is “safe” today, may be recognized as a reckless pri-
vacy policy for this subpopulation in a future inference game.

Similarly, privacy risks and damages should be assessed to identify
other extra-vulnerable subpopulations.

As we have pointed out, privacy protection is commonly equated
with the notion of identification risk. But it would be a mistake to
equate any form of risk with privacy protection. A reputable threat
assessment in computer security analyzes both risk probabilities
and the consequent damages that would result from exploiting var-
ious vulnerabilities. Likewise, a privacy policy regarding personal
security ought to consider damages, not merely risk probabilities.

Let us assume the above policy issues have been settled. Now we
apply any k-anonymity algorithm that generalizes attribute values
to achieve the desired policy result—namely, that a sanitized entity
is indistinguishable from exactly k–1 others in the sanitized dataset
based on its quasi-identifier (QID) attributes.

In [20], the authors point out one significant concern with k-ano-
nymity generalization: if all k members of a QID-anonymous
group have the same value for one of their sensitive (unsanitized)
attributes (e.g., diagnosis = cancer), then the homogeneity of this
attribute may negate much of k-anonymity’s protection. As an
example, an insurance company might take action if sanitized data
reveals that all individuals in ZIPCODE = “8520*”, with BIRTH-
DATE = “May **, 1947”, have cancer. As a solution to this prob-
lem, the authors offer an elegant family of fixes they call l-
diversity, and provide guarantees that are not merely provable, but
also quite useful in the real world. But there are two problems.

One problem is that diversity of attribute values in the l-diversified
dataset does not guarantee similar diversity of consequences when
interpreted by an adversary in the real world. Suppose, in the

12. Nor does identification guarantee access. As an example, if an
adversary wishes to harm the President of the United States, learn-
ing the identity of the individual holding that office will open very
few new access channels.
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above example, the diagnosis attribute had a different value for
each entity in that k-anonymous group. If every diagnosis implies a
gloomy prognosis (for example, AIDS, Ebola, metastasized Mela-
noma, and so forth), then all these diverse attributes imply the
same high-level inference target—namely, major medical costs
over a short life expectancy. In an insurance context, a prudent
threat model would expect an adversary to take action to mitigate
its otherwise significant financial loss. But the old closed world
paradigm from the database inference problem does not take into
account consequences arising from the adversary’s higher-level
inferences.

It might appear that l-diversity can remedy this problem, merely by
simulating one aspect of the adversary, and mapping values of the
diagnosis attribute to their corresponding high-level inference tar-
gets. Then, by appropriate k-grouping of sanitized records, one
could ensure diversity from the adversary's viewpoint.

This approach acknowledges the central role a specific threat
model must play when designing an adequate privacy protection
system. But this method may not fully alleviate the problem. As
noted earlier, for many realistic adversaries in an insurance con-
text, the threshold for triggering action may be probabilistic entity
access (perhaps via targeting a location-based class of individuals),
coupled with a high probability density of various undesirable
predicate risks in that class.

If an adversary obeys this economic logic, how can we rehabilitate
k-anonymity and l-diversity? One option is to call for intervention
at the policy level, because decisions regarding the redistribution
(or even multiplication) of costs onto innocent people should be
recognized as matters of ethics, not low-level implementation
details. We emphasize that, in the absence of explicit additional
policy safeguards, k-anonymity—like many other sanitization
methods and policies—can redistribute and even amplify risks and
damages.

But suppose policy makers want to maintain privacy protection for
members of such k-groups, and want to maintain the diagnosis
attribute unsanitized, for purposes of medical analysis.Another
alternative is to recognize that the problem has two roots. One root
is the nature of the adversary, which implementors cannot change.
But the other root is the initial decision to implement the sanitiza-
tion method of generalization rather than perturbation to achieve k-
anonymity (and l-diversity). Various forms of perturbation have
different strengths and weaknesses compared to generalization, so
perhaps a perturbation-based technique can improve the situation.

A third, obvious fix is to increase the value of k (at least for vulner-
able k-groups) or shift this vulnerable class of individuals to a
higher degree of generalization (for example, by substituting the
wildcard character for not merely one, but the two least significant
digits in their ZIP codes). When the adversary interprets the entire
dataset, this dense cluster of predicate risk will then be diffused
throughout a larger region of attribute space, and its high predicate
risk will tend to revert to the mean.

The problem with this fix is that it accepts the implicit value judge-
ment that it would be bad to disclose a homogenous cluster of sen-
sitive attributes having the same (or similar) detrimental value. By
this reasoning, because the predicate risk—when interpreted by an

insurance adversary—could have detrimental consequences for the
vulnerable individuals; therefore, we must alter the sanitization to
protect their privacy. But one key theme throughout this paper has
argued for elevating analysis to the level of policy, because value
judgements about both privacy and analysis are matters of ethics.
Hence they should be addressed—and reconciled if necessary—
explicitly via policies.

In this particular example, the existence of (for example) a cancer
cluster is a matter of significant concern to public health officials
and medical researchers. Other people may be at risk if the cause is
a public health hazard such as an unknown toxic waste dump.
Moreover, if the individuals in this cluster were aware of its exist-
ence, they might rightfully be more concerned about how to pro-
tect their children's health, rather than how to protect their own
privacy and insurance coverage.

We are not arguing for the primacy of public health over privacy
rights, or vice versa, in this hypothetical example. But we do argue
that sanitization designs and decisions must be grounded in spe-
cific application domains and social contexts. Ethical aspects of
situations must not be abstracted out of the problem; rather, they
should be incorporated into formal approaches via explicit policies
and shared ontology libraries.

6. OPEN PROBLEMS
This section describes some open, fundamental problems in data
sanitization. They underlie much of the work being done, yet are
addressed only in the context of the particular work, or are cap-
tured by (often implicit) assumptions in the work. Here, we make
them explicit, because they are basic to many application domains.

6.1. Privacy, Analysis Policy Languages
Consider first how to express privacy and analysis policies for-
mally. A language for policy expression will meet the following
criteria, perhaps using tools that transform one expression of the
policy into different forms or languages:

• It should express the policy in terms that a non-technical pol-
icy maker can understand; in essence, the language needs to 
be a “what you say is what you get” language.

• It needs to allow a direct comparison of privacy and analysis 
policies to detect and identify conflicts. This suggests the pol-
icy expression should be declarative rather than procedural, 
because policies make statements; they do not describe proce-
dures. That raises foundational question of how to represent 
inferences as distinct from more general forms of computa-
tion.

• The expression of the policies needs to lead to an efficient 
sanitization function. Ideally, that function can be generated 
automatically from the policy expression.

• Finally, the expression of the policy must allow changes to the 
threat model to update the privacy policy automatically.

As each application will occur in a particular context and environ-
ment, significant portions of such policies will be specific to the
particular domain for which they are generated. One question is
whether the common features of these policies will be sufficient to
warrant a single, common language to express these policies.
Clearly, some augmentation of such a language will be necessary,
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but if the common body of those policies is too small, then
domain-specific languages may seem more appropriate. But we
suspect this assessment has stymied progress, because it has bal-
kanized the problem. A more productive approach might be to
develop application-specific ontology libraries. This would allow
research costs, results, and insights to be shared across domain
boundaries. In any case, perhaps common characteristics of threat
models may lead to a better understanding of how to express these
policies across multiple domains. This would lead to a modular
form of the threat model, with different components expressing
differing details of many threats, but a common set of threats mak-
ing up the core of the model. As many different environments have
similar threats, such as inferencing and aggregation attacks, per-
haps a general view of an adversary would provide something to
focus the threat model around.

A second issue related to policy language is the need to measure
the efficacy of the sanitization. First, does the sanitization allow the
adversary to determine information that violates the privacy pol-
icy? Second, does the sanitization prevent analysis that are
required by the analysis policy? Answers to these questions form a
continuum, not a binary set. Hence they can be measured, but
deriving a meaningful metric depends upon context.

6.2. Sanitization and Game Theory
As noted, the provable results pertaining to classical special-case
inference games tend to be impossibility (or at least intractability)
results. And such results appear isolated, giving scant insight into
“neighboring” issues. Given the above framework, a new approach
to data sanitization is to formulate new families of inference
games, whose rules, scoring incentives, dominant tactics, and
ontological structures will define boundary conditions between
regions in the inference game space.

By thus mapping the contours of the game space, games within
certain regions then may be proven to have tractable solutions, and
policy makers may learn the extent to which certain game parame-
ters may (or must) be varied if certain types of solutions are
desired. Producing even a rough “Guide to Winnable Games”
would provide a significant service not only to policy makers, but
also to sanitizers, collectors, analyzers, and the subjects of data
collection, who could then decide which games they consider suffi-
ciently safe and worthwhile to play with (selected) other parties,
and which games are too risky to play in any form other than as
solitaire.

Thus, one goal of future research should be to determine what kind
of new games define useful boundaries in the problem space.

6.3. Justifying the UAM
In studying the literature, we found that the intractability results
we had regarded as fundamental depend on the UAM. Clearly the
UAM does apply in certain situations. Hence certain instances of
the inference problem are indeed computationally intractable. By
introducing our inference game framework, we have shown how to
unify and parameterize several large problem spaces. Yet until
boundaries of parameterized regions can be delineated (for exam-
ple, by our suggested contour-mapping research program), it
seems premature to make any large-scale claims about NP-hard-
ness.

Similarly, we question the scope of existing UAM-based intracta-
bility results. To extend these beyond a few isolated problem
instances, explicit justifications must address and overcome several
issues.

One argument for the CWA and the UAM begins with the premise
that we know nothing about the adversary or the analyzer, and con-
cludes that, therefore, the CWA and the UAM are the most accu-
rate assumptions we can make regarding the respective inference
goals of the adversary and the analyzer. But the conclusion does
not follow from the premise. Indeed, the CWA and the UAM are
completely arbitrary assumptions.

An interesting experiment would run a Monte Carlo simulation
with many different real-world analyzers. We suspect that several
other analysis metrics would beat the UAM, for two reasons. First,
all real-world analysis has a purpose that has real-world relevance,
and certain attributes tend to serve as the actionable “links” to the
real world, even if those attributes are neither explicit identifiers
nor quasi-identifiers. (This especially is true for data mining.) Sec-
ond, if privacy requires that attribute X be perturbed, then the UAM
penalizes a sanitizer if it perturbs attribute Y, X’s multivariate part-
ner. This discourages multivariate analysis.

If the analyzer’s “high-level” inference goals include terms of the
form A–B, we can sanitize attributes A and B by adding the same
noise to each. This changes 2 attributes without distorting the anal-
ysis. This example is a significant real-world case. Many medical
analyses compute elapsed time, and the date of death is very
important for studying disease and treatment dynamics (for exam-
ple, did a particular treatment delay death?) as well as for privacy.
Real-world sanitization practitioners have used this simple method
for over 10 years [14]. But neither the UAM nor the CWA apply to
such problems.

For many attributes, and for many interpreters, small perturbations
in “syntacs” produce no significant changes in “semantix”. That
claim proves itself by inspection. But the UAM insists we lose one
point by changing one attribute. Next, consider a person’s SAL-
ARY, represented not as a single attribute, but rather as a bitstring,
with one bit per attribute. We name these attributes b0, ..., bn, with
b0 being the most significant bit and bn the least significant bit. But
the UAM insists that all these bits are equally significant, and a
CWA insists a sanitizer bears no responsibility for considering the
impacts of sanitization on some “high-level” inference goal,
denoted SALARY, derived from these low-level attributes. Instead,
under these assumptions, analysis is harmed equally and in direct
proportion to the number of these one-bit attributes we change. 

Logically, from these two assumptions, we must conclude that per-
turbing the single bit b0—rather than the two bits bn–1 and bn—is
better for analysis. Given the context of the attributes, and their
semantics, this is almost certainly incorrect. 

The UAM and the CWAs risk ignoring the things that really mat-
ter, in favor of the things that are easily counted. 

7. CONCLUSION
As more aspects of life are routed into digital channels, previous
de facto privacy protections are bypassed and undermined.
Researchers have recognized this. Some have sketched a vision of
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personal data moving rapidly between different security contexts.
For example, Dragovic et al. [13] suggest maintaining and updat-
ing an extremely dynamic threat model, and sanitizing the data
accordingly. But our work shows how hard it is to develop a realis-
tic threat model for particular relatively slow-changing, or even
static, situations. And once we have an adequate threat model, we
have shown that it is nontrivial to sanitize data, to satisfy even a
simple analysis policy.

The goal of this paper has been to strengthen the foundation of the
data sanitization problem as an information security problem by
explicitly characterizing the gap between the core sanitization
problem and various formal approaches to this problem, and by
showing how the classical special-cases of sanitization problems
can be subsumed by a unifying inference game paradigm. Current
formal approaches develop abstract problems under various
assumptions that essentially remove or ignore many contextual ele-
ments in which the problems arise. The result is that the solid foun-
dational work is applicable in a mathematical context, or in real-
world contexts that do not reflect the environment in which the
problem arose.

One avenue that might prove fruitful is to study inference methods
using ontologies. In particular, Sowa’s inference graph and con-
ceptual structure work [27] seems ideal for expressing privacy and
analysis policies in a semi-executable form, as noted by Thurais-
ingham [31] and Delugach and Hinke [7] over a decade ago in
database work. Given the subsequent popularity of ontologies in
other problem areas, significant expertise and software have devel-
oped in the ensuing decade. Perhaps sufficient resources now exist
that ontologies can be applied productively to policy languages for
specific application domains.

Formulating a common ontological language would promote shar-
ing of results both within and across application domains. By thus
unifying research efforts among formerly isolated disciplines, this
might serve to catalyze significant progress toward a general solu-
tion to the inference problem, leading to metrics for testing the
trade-off between analysis policies and privacy policies—with
results immediately applicable to many areas including the data-
base inference problem [23].

Perhaps the negligible role of ontologies arises because, even
within one particular application domain, such ontologies have
been expressed via specialized, often proprietary, languages. But a
semantics-preserving language for exchanging ontological con-
tent, called Common Logic [1], is under consideration as a possi-
ble ISO standard. Expressing privacy and analysis policies in terms
of application-domain specific ontologies in this (or some other)
language may allow inferencing to be performed. In this manner,
ontologies and threat models may be shared usefully within an
application domain. Research results, including inference heuris-
tics, would become portable between domains, and the component
problems could be subsumed as special cases under a “grand uni-
fied theory.”
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