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ABSTRACT

In 1987, Dorothy Denning published the seminal paper on
anomaly detection as applied to intrusion detection on a sin-
gle system. Her paper sparked a new paradigm in intrusion
detection research with the notion that malicious behavior
could be distinguished from normal system use. Since that
time, a great deal of anomaly detection research based on
Denning’s original premise has occurred. However, Den-
ning’s assumptions about anomalies that originate on a sin-
gle host have been applied essentially unaltered to networks.
In this paper we question the application of Denning’s work
to network based anomaly detection, along with other as-
sumptions commonly made in network-based detection re-
search. We examine the assumptions underlying selected
studies of network anomaly detection and discuss these as-
sumptions in the context of the results from studies of net-
work traffic patterns. The purpose of questioning the old
paradigm of anomaly detection as a strategy for network
intrusion detection is to reconfirm the paradigm as sound
or begin the process of replacing it with a new paradigm in
light of changes in the operating environment.
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1. INTRODUCTION

Intrusion detection is an important defence mechanism used
by defenders to determine if someone has penetrated their
system. Two approaches have typically been taken when
designing intrusion detection systems: signature-based and

anomaly detection. Signature-based systems, such as Snort [25],

match incoming packets against various signatures that rep-
resent different types of malicious activity, such as particu-
lar buffer overflow attacks or signatures for worms. Unfor-
tunately, such a system is reactive in that a malicious ac-
tivity must first exist before a signature can be developed.
Anomaly detection attempts to address this short-coming
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by alerting on changes in activity, where these changes are
unusual (anomalous).

A great deal of research effort has gone into creating anomaly
detection systems, although very few systems have seen wide-
spread use. Such systems have been developed to operate
at the host level to detect if a user is attempting to abuse
an application in order to gain root privileges (e.g., Forrest
et al. [11]), and at the network level to detect if a remote
adversary is attempting to gain unauthorized access (e.g.,
MInDS [10]). However, little work has gone into determin-
ing if the underlying assumptions hold. In particular, it is
assumed that malicious behaviour is anomalous, and there-
fore that by detecting anomalous behaviour we are detecting
malicious behaviour. This assumption was first introduced
by Dorothy Denning in her landmark paper on the subject.
In this paper [8], she states “... exploitation of a system’s
vulnerabilities involves abnormal use, of the system; there-
fore, security violations could be detected from abnormal
patterns of system usage.”

While this assumption was perhaps correct in 1987, when
the main concern was detecting intrusions within a single

system, we believe the assumption of anomalous-equals-malicious

breaks down in the highly variable, networked systems of to-
day. In fact, we question whether anomaly detection is even
a viable approach for a network environment given the well
documented difficulties of characterizing Internet traffic [24].
Yet the appeal of anomaly detection along with the unques-
tioning acceptance of Denning’s work continues to influence
research within the security community despite significant
differences in the computing environment over the past 19
years. Modern anomaly detection systems that are based
on Denning’s premise tend to function poorly in produc-
tion environments with many false positives and difficulty
in tuning, because the underlying premise is wrong for the
environment. There are many instances where normal look-
ing events are in fact malicious and there are numerous cases
of anomalous looking events that are not malicious. While
this is acknowledged by anomaly detection researchers, it is
not given as much importance as we believe it deserves.

In this paper, we are not so much proposing a new paradigm
for anomaly detection that will radically alter the field and
provide solutions to specific problems, but instead are sug-
gesting that by carefully examining the assumptions com-
mon to most anomaly detection research, we are re-examining



an old paradigm. The main benefit of this approach will be
to clarify and precisely define generally accepted concepts
found in anomaly detection studies so that future work will
be based on more complete knowledge and thus hopefully
produce better anomaly detectors. Another benefit of ques-
tioning an accepted paradigm is to begin the process of re-
placing it if necessary in light of recent developments or else
reaffirm that the paradigm is still valid in spite of changes
within the field. This last point is the main purpose of our
paper.

In Section 2 we define for commonly used terms in anomaly
detection research. These terms provide the context for our
discussion. Section 3 presents a critical review of the litera-
ture with the goal of identifying the assumptions underlying
anomaly detection systems with an emphasis on network
anomaly detectors. We point out that our review is not
meant to be comprehensive with regards to anomaly detec-
tion research but rather we include papers whose results are
most relevant to the discussion. In Section 4 we question
the assumptions that we identified in Section 3, providing
material from both within and outside the anomaly detec-
tion community to support the idea that these assumptions
may be wrong, or should at least be revisited and perhaps
refined. We believe that the anomaly detection commu-
nity needs to recognize the requirements for studying and
quantifying what constitutes normal behaviour, malicious
behaviour and anomalous behaviour given today’s Internet.
We provide some concluding remarks and suggestions for
future research directions in anomaly detection in Section 5.

2. DEFINITIONS

In order to determine how well anomaly detectors perform,
we must first provide a standard set of definitions for each of
the key terms. In particular, we define the terms anomalous
and malicious.

An anomaly detection system develops a model of normal
behavior, and then defines activity which deviates from pre-
dictions generated by that model as anomalous. Maxion
and Tan [19] define three types of anomalies in their work:
foreign-symbol anomalies, foreign n-gram anomalies and rare
n-gram anomalies. Foreign symbol anomalies occur the first
time a character or item is encountered by the IDS. The
appearance of a previously unseen sequence of characters is
called a foreign n-gram anomaly. A rare n-gram anomaly oc-
curs when a sequence of characters appears more than once,
but below a user specified threshold, such as 5% of the time.

These definitions can be extended to describe network anomaly

detectors, however are not sufficient. Many network based
anomaly detectors look for changes in the behaviour of the
network, which is not captured in the definitions by Max-
ion and Tan. For example, while a particular sequence of
n-grams, or packets, might not be rare, a sudden or unex-
pected increase in the number or rate of occurrences might
be considered anomalous. Lakhina et al. [13] have identi-
fied nine different anomalous behaviours in connection in-
formation from network traffic, which they detect using an
entropy-based approach. Thus we add to the previous defi-
nitions of anomalous: a behavioural change is anomalous if
it deviates too much from the baselined activity, where “too
much” can be defined by the user (e.g., two standard devi-
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ations). Note that we use baseline activity and not normal
here. We define a behaviour as some characteristic that can
be measured over time.

Unlike anomalous activity, the definition of “malicious” ac-
tivity is subjective and often site-specific. For example, a
government or military site that has a policy against using
peer-to-peer services might consider any peer-to-peer activ-
ity to be malicious. In contrast, a university or home net-
work might consider such activity to be normal. This in-
teraction with site policy makes testing anomaly detection
systems in the context of detecting malicious activity par-
ticularly difficult. A system that might work well at one
site might generate what another site considers to be a high
number of false positives, simply due to differences in policy.
Maxion and Tan [19] avoided this issue by focusing specifi-
cally on how well detectors performed at detecting anoma-
lies, without regard for what an anomaly might represent.
Due to the site-specific nature of malicious behaviour, we do
not provide a definition, but note instead that any definition
must be developed in the context of a site’s security policies.

3. ASSUMPTIONS

Anomaly detection systems begin from the hypothesis that
exploitative behavior is quantitatively distinct from normal
system behavior. This is the essence of Dorothy Denning’s
seminal paper on the topic [8], which has since been imple-
mented and expanded upon by numerous researchers over
the past 19 years. However, computing and networking en-
vironments have evolved considerably since 1987, and the
view taken by Denning, whose focus was host-based detec-
tion, is perhaps not appropriate to today’s networked envi-
ronments. Regardless, this assumption has formed the basis
of most modern anomaly detectors, several of which are dis-
cussed further in this section.

While Denning is credited with the initial idea of using
anomaly detection to detect exploitive activity, later anomaly
detection studies have made several additional assumptions
beyond the idea that intrusive activity can be recognized be-
cause it is abnormal. We identify nine assumptions, which
can be grouped into three broad categories: assumptions
about the problem domain, assumptions about the training
data and assumptions about the operational usability.

For each assumption we present research that either explic-
itly or implicitly is based on acceptance of the assumption.
We review the results and examine how the particular as-
sumption influenced both detector design and performance.

3.1 Problem Domain

Denning states that her intrusion-detection model is based
on the expectation that attacks constitute unusual use of the
system and that they are distinguishable from more typical
system usage. This hypothesis implies not only that attacks
are anomalous (“abnormal”), but also that the anomalous
behaviour will be distinguishable from normal behaviour.

The primary assumptions that are made regarding
the problem domain are:

e attacks are anomalous (different from the norm),



e attacks are rare, and

e anomalous activity is malicious.

Attacks Are Anomalous

Ertoz et al. [10] have developed an unsupervised clustering
approach for intrusion detection, called MInDS (Minnesota
INtrustion Detection System). Their system analyses con-
nection information derived from flow data, generating clus-
ters of data. An anomaly score is assigned to a connection
based on its distance from the cluster and the density of
the cluster. They state that “Connections that have high
anomaly scores are most likely to be attacks and those with
low anomaly scores are most likely to be normal traffic.”
Thus, like Denning, they assume that attacks are anoma-
lous and that the majority of traffic is benign or legitimate.

Associated with the assumption that attacks are anomalous
is the related assumption that attack traffic will be easily
distinguishable from normal traffic. Lee et al. [14] base
their unsupervised learning approaches on an assumption
that “attacks are different” from normal data. This implies
that attacks can be detected using methods such as outlier
analysis, which is one approach used by both Lee et al. [14]
and Ertoz et al. [10].

Attacks Are Rare

Related to the assumption that attacks are anomalous is
the assumption that attacks are rare, which is not the same
concept. Anomalous implies that an event deviates from
the normal or expected behaviour, however it does not nec-
essarily indicate the frequency with which such deviations
will occur. In contrast, rare indicates that attacks (anoma-
lies) are not common. Lee et al. [14] comment that “if the
ratio of attacks to normal data is small enough ... the at-
tacks stand out against the background of normal data.”
(Note that this statement is also related to the previous as-
sumption that attack traffic is distinguishable from normal
traffic). The authors use this assumption as the justification
for a clustering method, where the smallest clusters are la-
beled anomalous (and therefore represent intrusive activity).
Ertoz et al. [10] have also relied on this assumption, stat-
ing that “the proportion of network traffic that corresponds
to an attack is considerably smaller than the proportion of
normal traffic.”

Anomalous Activity Is Malicious

In addition to Denning’s hypothesis that system exploita-
tion or attacks are anomalous [8], many researchers have
also made an assumption of the reverse — that anomalous
activity represents attacks or malicious behaviour. In fact,
this reverse assumption forms much of the basis of anomaly
detection — the assumption that administrators are inter-
ested in all anomalous events because it is likely to represent
attack activity. While researchers acknowledge that this is
not always the case (for example, when discussing their false
positive rates), the underlying assumption is still the basis
for the approach.

3.2 Training Data

The availability of good data is extremely important to the
training of an anomaly detector. If anomaly detectors are
trained with data that is not representative of the intended
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operational environment, the result could be a higher rate
of false positives or equally important, a high rate of false
negatives.

The common assumptions about the training data
include:

e attack-free data is available,
e simulated data is representative, and

e network traffic is static.

Attack-free Data Is Available

Denning [8], when describing her model of intrusion detec-
tion, describes the development of usage profiles. She devel-
ops statistical models of the observations obtained from au-
dit records, using this as the underlying profiles of expected
user and system behaviour. While not explicitly stated, this
implies the assumption of attack-free training data. Other-
wise, the profiles that were developed would contain attacks
as part of the expected user and system behaviour.

Barbard et al. [2] describe a testbed that they developed
for testing data mining approaches to intrusion detection,
called ADAM. This approach requires building a repository
of “normal” frequent itemsets, which requires attack-free
data.

In later work [3], they describe an approach to detecting at-
tacks based on an unsupervised clustering approach, where
they also require a base data set that is composed exclusively
of attack-free connections. They generate this set by using
only those connections that meet association rules that are
found to be common across three different days of data. The
implicit assumption behind this approach is that “normal”
data will consistently appear across all three days, whereas
malicious behaviour (which will be anomalous) will not per-
sist across the three days.

Mahoney and Chan [17] present an approach to detecting
rare events in time-series data, called LERAD. Their ap-
proach requires two passes of data, the first pass of which
requires attack-free network traffic.

The most prevalent approach to dealing with the require-
ment for attack-free data has been to use a canned dataset
for reference, in particular the MIT Lincoln Labs dataset [15].
The Lincoln Labs data set consists of simulated, attack-free
or “normal”; hosts and network traffic, along with labeled
attacks that were generated manually. This data set was de-
veloped specifically for testing anomaly detection systems.
For example, Mahoney and Chan [17] test their approach,
LERAD, in part using the Lincoln Labs data set from 1999.
(We note, however, that they also provide results from test-
ing their approach on data gathered from their university
network.)

Simulated Data Is Representative

The key assumption made by researchers who used the Lin-
coln Labs data set for either training or testing anomaly
detectors is that this data set is representative of network
traffic, and that it is generalizable to other networks.



For example, Ye et al. [30] compare the capabilities of sev-
eral different statistical techniques for detecting intrusions.
However, their approach focuses on determining if intrusions
can be detected from a single event or if a series of events is
required, testing the hypothesis using clean data only from
Lincoln Labs and injecting their own attack data.

Sekar et al. [26] also used Lincoln Labs data to verify their
approach to anomaly detection, which they describe as spec-
ification based. In their experiments, they generate state
diagrams that represent protocol usage. Network data is
used to generate statistical baselines for each state change.
Anomalies are detected as statistical outliers of changes in
state. While not explicitly identified in the paper, it appears
that this approach requires attack-free data for generating
the statistics for the state model.

Network Traffic Is Static

An implicit assumption that is made both by those using
the Lincoln Labs data set and by those requiring clean data
is that the behaviours observed in networks are static. This
is an implicit assumption because none of the referenced pa-
pers discuss how to perform ongoing training and updating
of the anomaly detectors to take into account changes in
network traffic composition and concept drift.

3.3 Operational Usability

Denning comments that false alarms “can be controlled by
an appropriate choice of statistical model for the activities
causing the alarms and by an appropriate choice of pro-
files.” [8] However, this approach is not often used by the
anomaly detection community. Rather, the anomaly detec-
tion technique tends to be tested and the results presented
often with little or no discussion as to how the number of
false alarms (false positives) can be reduced. A given false
alarm rate may be tolerable in a research setting but com-
pletely unacceptable in an actual production environment.
Consequently, both the false positive and false negative rates
of anomaly detectors should be critically important in de-
termining the effectiveness of an anomaly detector since the
operational usability of the detector is affected.

The primary assumptions that are made regarding
operational usability are:

e false alarm rates > 1% are acceptable,
e the definition of malicious is universal, and

e administrators can interpret anomalies.

False Alarm Rates > 1% Are Acceptable

One hidden consequence of largely ignoring false positives
is an unusually high tolerance for false alarms in the aca-
demic literature. Barbard et al. [3] tested their approach
to creating clusters using the Lincoln Labs data set [15].
Based on one day of data from the training set they found
that a threshold of 8.5 resulted in a detection rate of 99%
and a false alarm rate of 4%. Using the test data from the
1999 DARPA evaluation, they found that their best thresh-
old was 7.0, which resulted in a 99.9% detection rate and
a 14% false alarm rate. This result is somewhat difficult to
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interpret as the unit of analysis is not known. That is, it is
unclear whether the 4% and 14% respectively are based on
the percentage of packets that were falsely characterized, or
the percentage of sessions, etc.

Mahoney and Chan [17] describe the results for their ap-
proach, LERAD, in terms of the detection rate when there
are only 10 false alarms per day. In this case, their detection
rate varied from 40% using TCP data gathered from their
university network (given only a small number of known at-
tacks) to 64% on TCP data from the Lincoln Labs data set.

Similar values are described in the literature for host-based
anomaly detectors. For example, Ye et al. [30] comment
at one point that for their decision tree approach “a hit
rate of 88.1% brings up the false alarm rate to only 4.6%.”
[Emphasis ours.]

Definition of Malicious is Universal

Another assumption that is implicit to the previous studies
is that the definition of malicious activity is universal. That
is, there is no discussion on how the true and false positive
rates might interact with differing site policies, but rather
the unstated belief that all anomalies are potentially ma-
licious and therefore of interest. For example, Kendall [12]
provided a taxonomy of attacks, which was later used for the
Lincoln Labs data set [15]. This taxonomy included scans
and other probing activities, and represents the set of at-
tacks that is of interest to the U.S. military. This has since
been assumed to be of universal interest.

Administrators Can Interpret Anomalies

Xu et al. [29] present a clustering approach that uses en-
tropy measures across a four-tuple (srcIP, srcPort, dstIP,
dstPort) of flow data collected from backbone routers. They
demonstrate that traffic clusters largely into three types of
behaviour: servers or services, heavy-hitters (such as web
proxies, crawlers and NAT boxes), and scanning activity.
They highlight that their approach can identify anomalies
that consist of unusual changes to common clusters (for ex-
ample, sudden scans of unusual ports or unusual profiles
being generated for popular services), as well as generat-
ing clusters of rare behaviours and recognizing behavioural
changes in clusters. Determining if a cluster genuinely con-
tains events of interest is an activity left for the administra-
tor.

Ertoz et al. [10], recognizing that administrators may have
constraints on their time, try to reduce administrator over-
head by grouping anomalies together into sets of network
events exhibiting similar characteristics, rather than requir-
ing an administrator to examine each anomaly individually.
However, regardless of the attempts to reduce the amount
of information to be examined manually, there is still an un-
derlying assumption that an administrator will be able to
perform a manual investigation of the clusters of anomalies
presented.

4. QUESTIONING THE ASSUMPTIONS

In this section we revisit the assumptions presented in Sec-
tion 3 and critically examine whether the assumptions hold
for the network environment.



4.1 Problem Domain

Attacks Are Anomalous

The assumption that attacks are anomalous, which was orig-
inally developed for host based anomaly detection, needs to
be verified for network environments. For an attack to be
anomalous means it must be distinguishable from normal
traffic. However, this is not always possible given the vari-
able nature of the network and the ability of attackers to
hide their activities.

Many of the anomaly detection studies that utilize network
data don’t place enough emphasis on how intruders can
hide their attacks. Tan et al. [27] investigate how intrud-
ers hide their activities within normal data by first identi-
fying a detector’s blind spots and then changing the attack
to fall within those blind spots. While their work dealt with
host-based detectors the authors hypothesized that the same
technique would probably work for network based detection.

In another study, Handley et al. [21] discuss how intruders
could hide their activities from intrusion detectors by taking
advantage of traffic ambiguities. The attacker’s strategy is
to not have their attack appear anomalous but simply hide
their actions in the variable nature of the traffic and protocol
implementations.

Attacks Are Rare

The assumption that attacks are rare is based on of the
original host environment which consisted of normal sys-
tem users engaged in typical use of the system with only an
occasional instance of intruder presence. This assumption
is false as applied to today’s networked environment where
there is a much higher probability of intruder activity. With
regards to network traffic, there have been numerous studies
recording percentages of legitimate and non-legitimate traf-
fic as the Internet has matured which indicate that attacks
are not rare assuming we include scanning in the attack set.
Several studies are presented that attempt to quantify the
percentage of attack data in network traffic.

Yegneswaran et al. [31] studied logs collected from over 1600
globally distributed sites and concluded that scans were
rapidly increasing with time and generally occur over a mas-
sive scale throughout the Internet. They go on to state that
“By projecting intrusion activity as seen in our data sets to
the entire Internet we determine that there are typically on
the order of 25B intrusion attempts per day and that there
is an increasing trend over our measurement period.” They
also state that “Daily intrusion attempts take place on an
massive scale - as many as 3 million scans in our logs on a
single day.

Another study by Pang et al. [22] used three different net-
work telescopes to characterize Internet “background radia-
tion”, where background radiation is traffic sent to unused
IP addresses. They comment in their introduction that “The
volume of this traffic is not minor. For example, traffic logs
from the Lawrence Berkeley National Laboratory (LBL) for
an arbitrarily-chosen day show that 138 different remote
hosts each scanned 25,000 or more LBL addresses, for a total
of about 8 million connection attempts. This is more than
double the site’s entire quantity of successfully-established
incoming connections....”
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Confirmation that attacks are not rare was also reported
by Xu et al. [29], who used entropy measures to develop
clusters. The authors comment that “A disproportionately
large majority of extracted clusters fall into [the scanning]
category, many of which are among the top in terms of flow
counts”. If scanning is considered to be malicious (which
they are in Kendall’s attack taxonomy [12], for example),
then this indicates that it is not anomalous, but rather quite
common!

Anomalous Activity Is Malicious

Assuming all (or most) anomalous activity to be malicious
might be true for a single system depending on the OS and
applications. However, the Internet has a long history of
documented anomalies that are not malicious in nature.

In 1992, Bellovin [5] found that odd packets occurred as
a result of router and server problems none of which were
malicious. Another study from 1990 documented Ethernet
anomalies on a computer science department network [18].
None of the anomalies were due to malicious activity but
were the results of a broadcast storm, a “babbling” node, a
new network protocol and a graduate student project.

More recently, Mahoney and Chan [17] concluded from their
study that, “Many of the anomalies detected by LERAD
are not due to hostile code, but rather to legal but unusual
protocol implementations.”

In another study, Barford and Plonka [4] identify three classes
of anomalies: network-operation, flash-crowd and network-
abuse anomalies. Network-operation anomalies encompass
reconfiguration and transient failures in network architec-
tures, while flash crowds are nonmalicious increases in traf-
fic to target sites. Neither of these two classes of common
anomalies represent malicious traffic.

In 2005, Lakhina et al. [13] identified eight classes of anoma-
lies that they were able to detect by deploying an entropy-
based method against the behaviour of connection infor-
mation (source IP, source port, destination IP, destination
port): alpha flows (very large point-to-point data exchanges),
denial-of-service attacks, flash crowds, port scans, network
scans, outage events, point-to-multipoint connection (such
as content distribution mechanisms), and worms. Of these,
only four represent potentially malicious activity (denial-
of-service attacks, port scans, network scans, and worms),
while the rest represent unusual, but legitimate, events and
connection activity.

4.2 Training Data

Attack-free Data Is Available

The assumption that there exists attack-free data for train-
ing a detector outside of simulated data is not a realis-
tic assumption. As noted in the previous section (see [22]
and [31]), network traffic contains a large number of scans,
denial-of-service attacks and backscatter, and worm activity.
If not careful, this activity will become part of the normal
state for an anomaly detector.

Data from a live network was used to validate NATE, a TCP
packet header anomaly detector [28]. Before this data could
be used for training, it had to be made attack-free. Taylor



and Alves-Foss commented that this required a great deal of
traffic screening in order to remove scans and other types of
probe activity common to traffic traces from live networks.

Simulated Data Is Representative

Simulated data of any type is suspect unless a convincing
argument is made that the simulated data truly represents
the actual data being modeled. This is not the case with the
Lincoln Labs data, which has documented, known problems,
particularly with the network portion of the data set [16, 20].
These problems include: a lack of variability in the traffic
types, a lack of non-attack anomalies, and unrepresentative
traffic volume for the simulated environment [20]. One other
problem that is not generally acknowledged is that this data
set is old and not representitive of current network traffic
condidtions having been generated in 1998 and 9999. Yet,
despite the known problems with this data set, it contin-
ues to be used as a basis for training and testing intrusion
detection systems.

Using only simulated data to test an anomaly detector runs
the very real risk that the anomaly detector will not func-
tion as well in a real environment. This was confirmed in a
study by Mahoney and Chan [16], who attempted to quan-
tify the difference in network anomaly detector performance
between exclusive use of the Lincoln Labs data and mixed
Lincoln Labs and real network data. They identified “sim-
ulation artifacts” in the Lincoln Labs data, which are those
attributes that exhibit high variability in real environments
but demonstrated a limited range in the Lincoln Labs data.
The artifacts included TCP Time To Live window size, TCP
options and the client/source IP address range, among oth-
ers. After mixing in real data, they observed a much higher
attack detection rate for several anomaly detectors when
trained with the mixed data.

For many researchers the advantages of using a slightly flawed,
but well-known dataset to train an anomaly detector out-
weigh the disadvantages of using that dataset. Among the
reasons stated for using a dataset with flaws include avail-
ability of a large set of labeled attacks, ability to compare
research based on a standard data set, and the lack of prob-
lems with privacy issues since the data is simulated [14, 15,
28]. However, there are more serious consequences when the
detector being developed depends on the correctness of the
data for its inTernal representation of normal versus anoma-
lous.

Maxion and Tan [19] studied the effect of data regularity
on anomaly detectors by generating data sets of different
regularities as measured by conditional relative entropy and
then seeing how well a detector could detect anomalies em-
bedded in datasets of different regularities. The authors
show that data regularity greatly affects detector perfor-
mance and they cautioned against deploying an anomaly
detector into environments where regularity differs signifi-
cantly from that of the training set. As a result of this study,
researchers should be cautious when deploying an anomaly
detector trained with the Lincoln Labs dataset in a real net-
work environment because the regularity (or variability) dif-
fers between these two environments.

Network Traffic is Static
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The assumption that network data is even remotely static
over both short and long time frames has been negated by
multiple traffic studies. Paxson [23] presented statistics of
Internet traffic that confirms the huge variability of traffic
across sites, over time and by source. According to Paxson,
there is no such thing as a typical site because traffic is in
continuous flux. kc claffy from the CAIDA project, whose
purpose is to model Internet traffic, is also frequently cited
with regards to the difficulty in modeling network traffic
since it is so highly variable in nature [6].

The fact that Internet traffic is continuously changing in
terms of content, volume and percentage of attacks versus
legitimate traffic appears to be acknowledged by most re-
searchers engaged in anomaly detection research, as it affects
the detector’s ability to distinguish attacks. Thus, most de-
tection algorithms appear to account for the dynamic na-
ture of network traffic for performance reasons. However,
researchers typically fail to address re-training or recalibra-
tion of detectors which is important for detector usefulness
over time especially in environments that are fairly unsta-
ble. Consequently, we believe that the assumption of static
network traffic is implicit in most network anomaly detec-
tion research since the authors typically fail to address re-
training or update issues for their detectors. This does not
appear to be as much of a problem with signature based
intrusion detection systems where there is a more obvious
path to updates by the creation of additional signatures for
new attacks (e.g., in Snort [25]).

Some researchers acknowledge a strong need for updating
an anomaly detector over time. Re-training was stressed by
Maxion and Tan [19], who discussed the notion that normal
tends to drift over time and any system capable of learning
normal must be able to track drift. Dorothy Denning also
stressed the idea of normal adjustment with time since she
advocated a heavier weighting of more recent behavior in
her characterization of normal profiles [§].

4.3 Operational Usability

False Alarms > 1 Percent Are Acceptable

The assumption that relatively high percentages of false
alarms are an acceptable price to pay for anomaly detec-
tion is partially the result of incomplete problem definition.
Most of the anomaly detection research community place a
greater emphasis on detection than false positive constraint.
While some researchers report tradeoffs in detection accu-
racy versus false positives when setting detection thresholds,
these studies are an exception. We believe a greater empha-
sis should be placed on constraining the false positives in
a network environment in order to produce usable anomaly
detectors since even a 1% false positive rate can generate
thousands of alerts per day depending on the traffic volume.
The issues with a high (or even a modest) false positive rate
were highlighted in a paper by Axelsson [1], where he dis-
cussed the issue of non-attack traffic being > than attack
traffic causing an unacceptable number of false positives, be-
cause a small percentage of a large number is still a large
number!

Definition of Malicious is Universal
Returning to our discussion on definitions (see Section 2),
the definition for malicious activity can potentially vary be-



tween organizations. This can be for two reasons. First, the
definition of malicious for any given organization is related
to their site policy. Thus activity that might be considered
benign in one network (e.g., peer-to-peer (P2P) traffic) could
be considered malicious in another, simply because the site
policy states that P2P traffic is not allowed on the network.
A second reason that malicious activity will vary between
organizations is based on the priority that each organiza-
tion gives to the activity. For example, one organization
might consider scanning activity to be malicious and there-
fore want to record and/or block that activity. However, a
second organization might not be interested in such activity,
considering it a nuisance at best. Thus anomaly detection
systems need to be designed that can classify the type of
anomalous activity they are detecting, allowing the end user
to then specify which of these activities are of interest and
providing the option to ignore all alerts generated by other
activities.

Administrators Can Interpret Anomalies

This assumption is not particularly realistic given the amount
of work that typically characterises system administrators
who manage networked systems. Administrators must con-
stantly patch applications, update firewall rules and man-
age users with all their inherent human introduced secu-
rity problems. The assumption that a system administrator
has the ability, time or interest to identify unknown anoma-
lies when there are already abundant known threats is not
a practical assumption for maintaining an anomaly detec-
tor. The on-line journal of Computer Economics [7] re-
port that, “Most I'T departments are overworked and under-
staffed without adequate time to develop adequate security
procedures and processes.”

5. CONCLUDING COMMENTS

Denning discusses a number of open issues in the conclu-
sion of her seminal paper on intrusion detection models. In
particular, she notes:

e Soundness of Approach - Does the approach
actually detect intrusions? Is it possible to
distinguish anomalies related to intrusions
from those related to other factors?

e Completeness of Approach - Does the ap-
proach detect most, if not all, intrusions, or
is a significant proportion of intrusions un-
detectable by this method?

Even 19 years later, the community has not attempted to ad-
dress these questions, but rather continues to make the same
assumptions, and is additionally making these assumptions
about network data rather than host datal

In this paper we call into question the assumptions sur-
rounding anomaly detection, with a focus on network-based
anomaly detectors. We provide a critical review of the litera-
ture, highlighting the assumptions that underlie the various
detectors. We identify nine different assumptions that can
be classified in three categories: problem domain (e.g., that
anomalous behaviour is malicious), training data and op-
erational usability. We go on to discuss the characteristics

27

of network data in relationship to these assumptions, high-
lighting those assumptions that need to be reviewed in light
of current network traffic patterns. We note that malicious
and unwanted traffic has become prevalent enough that we
believe that the entire field of anomaly detection as applied
to networks needs to be reconsidered. Many of the original
assumptions are not valid, or at the very least need to be
redefined in the context of today’s network characteristics.

At a minimum, we recommend:

1. A consideration for whether anomalies are actually
what should be detected. That is, a better approach
might be to determine what malicious activities we
want to detect, and what characteristics of those ac-
tivities might appear as anomalous, and then focus on
detecting those specific activities. This addresses the
blind adherence to the idea that malicious and anoma-
lous are somehow equivalent. It also potentially ad-
dresses some of the usability issues surrounding false
positive rates.

2. A combination of anomaly detection and classification
approaches. Anomaly detection alone places a large
burden on the administrator of a network, who must
then analyse and manually classify each anomaly. The
grouping of anomalies (as performed in MInDS [9] for
example) is a good start, however if each anomaly
could be further classified as to the type of behaviour
or anomaly detected, it would allow an administra-
tor to prioritize. Current approaches of prioritizing
by how anomalous an anomaly is does not necessarily
capture what an administrator might consider to be
the more important security events.

3. Testing testing testing! The Lincoln Labs data set [15]
was a good idea, however is no longer an appropriate
data set. Real network data is required, however it
suffers from the lack of ground truth. An alternative,
community-based, testing approach might be to find
a good data set (perhaps one available through DHS’s
Predict project) and then have the community use this
data set consistently for testing. Results should be
published in a public location, allowing the data set
to slowly become labeled. This data set should be up-
dated on a yearly basis to reflect new trends in network
data, while still allowing access to older sets whose be-
haviour may be better understood. While this is not
an ideal solution, it is at least better than the ad hoc
methods currently employed for testing different net-
work detectors.

4. A re-examination of what defines malicious behaviour
of interest. For example, Xu et al. [29] found that, of
three main clusters of network data, one represented

scanning activity. Additionally, background radiation [22]

is distressingly common. This indicates that certain
malicious behaviour may no longer be anomalous, but
actually the norm! Perhaps it is time that we applied
anomaly detection to the detection of legitimate traf-
fic, filtering it out and leaving the majority for further
analysis!
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