
PKI Design for the Real World
Peter Gutmann

Department of Computer Science
University of Auckland

New Zealand

pgut001@ cs.auckland.ac.nz

ABSTRACT
What would a PKI look like if it were designed for
implementability and deployability rather than strict adherence
to a particular theoretical or mathematical model? This paper
presents and examines the results of a series of interviews in
which a cross-section of experienced programmers, system
administrators, and technical project managers with many years
of practical, real-world experience were asked which
technologies they would use to solve some of the major
problems that occur in PKI implementation. The results of the
interviews and various significant issues identified by them are
presented and discussed. Finally, a PKI technology blueprint
based on recommendations made by respondents is presented.
The resulting design is noteworthy in that it is almost completely
unlike the one proposed in X.509 and related standards, which
would indicate that at least some of the deployment difficulties
being encountered with X.509-style PKIs are due to their sub-
optimal choice of technology.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information Systems]:
Security and Protection.

General Terms
Design, Security.

Keywords
PKI, certificate management.

1. INTRODUCTION
PKI users have for many years been trying to build PKIs using
the methods and mechanisms described in the X.500 series of
standards, and more recently profiled in an ongoing series of
IETF RFCs and drafts that currently amount to over two
thousand pages of text. During this time the feasibility and
practicality of these technologies have been called into question
as the result of numerous negative implementation experiences
[1][2][3][4]. While PKI designs other than the X.509 one exist
(examples being PGP [5], SPKI/SDSI [6][7] and AADS
[8][9][10]), these are mostly based on different
theoretical/mathematical models for handling certificates, or the
use of PKI-like systems such as IBE [11][12].

RDN

RDN

C=NZ
National CA

O=University of Auckland
Organisational CA

OU=Computer Science
Departmental CA

CN=end user

RDN

DN

Figure 1: X.500 directory and certificate model

Although the global X.500 directory for which X.509 was
designed never eventuated, PKI designers and users have had to
live with the legacy X.509’s origins ever since. In an attempt to
determine which technologies would be the most suitable for
implementing a real-world PKI, the paper therefore looks at the
following question:

If you asked experienced programmers, system
administrators, and technical project managers how they
would implement certificate management, what would the
technology framework for your PKI look like?

The intent of this work is to take a cross-section of technical
computer users with many years of practical, real-world IT
experience and see which technologies they would select if
asked to implement a PKI, or more specifically how they would
solve the major problems that occur in PKI implementation. To
this end the paper asks a series of “How” questions (such as
“How would you store certificates”) rather than “What”
questions (such as “What policy would you employ for private-
key handling?”). The intent is solely to determine the most
practical means of solving common PKI-related technology
problems without trying to address policy and legal issues,
which are best left to upper management, lawyers, and
lawmakers. Some of the technology issues that need to be
addressed are relatively obvious and sufficiently well-known
that they have their own names, examples being the “Which
directory?” problem and the “Which John Smith?” problem.
The background of the users involved in the study included
medical, government, and university IT, telcos, financial
institutions, and software houses, providing a good cross-section
of potential PKI users.

The remainder of this paper is organised as follows. Section 2
covers the method used to interview respondents and the
questions they were asked. Section 3 presents the raw results
obtained from the interviews, and section 4 analyses various
common issues that showed up in the information provided by

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NSPW 2006, September 19–22, 2006, Schloss Dagstuhl, Germany.
Copyright 2007 ACM 978-1-59593-857-2/07/0007...$5.00.

109

respondents, as well as presenting additional (unsolicited)
feedback provided in areas that respondents saw as being a
source of significant implementation or deployment difficulties.
Finally, section 5 presents a PKI implementation blueprint based
on the recommendations made by respondents. Readers are
advised that any odd-sounding portions of the text are probably
manifestations of the author’s antipodean sense of humour.

1.1 Motivation
It has by now become generally acknowledged that PKI is
extremely expensive [13], difficult to deploy [1], hard to use
[14], and in many cases almost completely ineffective in
providing any real security [15]. So why a paper on PKI design
when better, cheaper, easier-to-use, and far more effective
mechanisms are readily available?

Because a not inconsiderable number of IT staff, for various
political and bureaucratic reasons, are required to implement and
deploy PKI, and like the dying gasps of OSI this phenomenon is
likely to continue for some time yet. The intent of this work
therefore isn’t to revolutionise the world with another new PKI
design (it’s almost certainly too late for that), but to ease the
pain of those still required to work with some form of PKI.

It has been observed that PKI is like opera, you pour in money
and PKI comes out. When you stop pouring in money, the PKI
stops (for this reason the US Federal Bridge PKI has been
likened to a US government charity). In many cases the best
alternative to PKI is to do nothing at all, or at least nothing too
different from what we’ve already been doing. Mechanisms like
RADIUS, EAP, and Kerberos are widely deployed and relatively
effective, particularly when compared to PKI-based alternatives.
Key continuity [16], a simple, effective site authentication
mechanism best known through its use in SSH, is an effective
way of achieving what SSL’s expensive and complex PKI tries
to do with little actual effect.

As one paper on authentication mechanisms observes, Kerberos
was originally designed with three heads: authentication,
authorisation, and audit (AAA). Kerberos had taken care of the
first and was halfway through the second “when public-key
cryptography came along. Then we all disappeared down a
rabbit hole for twenty years, and we’ve just emerged now. The
effect of public key was that we went back and did
authentication again, but never re-did authorisation, or did audit
at all” [17].

It’s interesting to note that a panel evaluating security-related
protocols for conformance to a set of AAA requirements created
by pretty much a who’s who of the computer and
communications industries [18] never even considered PKI
because it couldn’t come close to meeting the AAA
requirements (PKI architects are still too busy playing with
authentication to have gotten around to authorisation or audit).
So the simplest, most effective PKI may well be none at all. As
the WOPR computer in the movie Wargames concludes, “The
only winning move is not to play”.

2. SURVEY METHOD
A series of interviews was conducted in which a number of
programmers, system administrators, and technical project
managers were asked various questions about their choice of
technology for implementing certificate management. In order
to avoid problems with the type of self-selecting survey often

posted to Usenet newsgroups and web pages, the respondents
were explicitly selected from among the employees of various
companies and organisations rather than by soliciting responses
from volunteers.

This proved to be somewhat more difficult in practice than it at
first appeared. The straightforward approach of { obtain
permission from a company to interview their IT people, work
up and down the rows of cubicles } led to problems because
many of the people working in the area weren’t necessarily
capable of architecting a solution to the particular problems
presented by the survey (this is covered in more detail in the
discussion of the results given in section 4.4). For example a
network admin whose specialty was managing complex router
and server configurations wasn’t necessarily able to provide
useful input on PKI design.

The lack of useful results from first attempt at a breadth-first
survey led to a second approach, which was to ask managers in
each organisations which people they’d consider best able to
respond to the survey and then to only ask them. This somewhat
more targeted approach considerably improved the quality of the
answers, since now only the people with the expertise required
to provide useful input (at least in the opinion of their managers)
were being consulted.

The respondents were instructed to choose the technology they
would use if they were responsible for implementing, deploying,
and supporting the PKI. The intent of this was to emphasise the
fact that they were being asked to design a practical, real-world
system rather than one based on bleeding-edge or experimental
technology. In addition they were told that there were no right
or wrong answers to questions, and in particular that “I don’t
know” was a perfectly valid answer since it indicated that the
question corresponded to a particularly tough problem. Despite
the fact that most of the respondents were male primates, several
of them did admit to not knowing the answers to various
questions.

Selecting an appropriate survey methodology proved to be by far
the most difficult part of the overall process, requiring both
careful planning and some experimentation to try and find the
best solution. The author is open to suggestions for techniques
to apply to future work.

2.1 Bias Removal
The author has for some time been exposed to user feedback on
preferred PKI implementation technology as a side-effect of
involvement in numerous PKI implementation and deployment
operations. This lead to concerns that the questions might
(inadvertently) be phrased in a manner that influenced
respondents into replying in a manner that matched the author’s
existing experience with users.

In order to ensure that the results weren’t biased because of the
way the questions were phrased, they were sent to
representatives of every major and some minor PKI theologies
for comment. The intent of this solomonic bias-removal process
was to ensure that none of the theologies could later claim that
they had been unfairly excluded from consideration because of
the way that a particular question was phrased. For example
instead of asking about revocation checking (which would bias
the results towards a CRL-style solution), the question was
phrased in terms of freshness/validity checking, which allowed

110

for a variety of answers, including CRLs. Feedback from the
PKI representatives was applied to the initial questions
(although almost no changes were deemed necessary), leading to
the final survey questions given in the next section.

2.2 Survey Questions
Before being asked the questions themselves, the respondents
were asked about any existing exposure to PKI that might bias
the response. The actual questions that followed were broken
down into five groups covering enrolment, identification of
certificates, storing and obtaining certificates, checking
certificate validity, and a miscellaneous section. Although these
questions don’t represent an exhaustive enumeration of all
possible PKI technology issues (it’s unlikely that any finite
question list can), they cover all of the major areas and, in their
answers, provide a good solid technology framework on which
to build a practical PKI.

The identification, storing and obtaining certificates, and
validity checking question groups were presented in that order
because the results from one group tended to affect the
following ones. For example a choice of domain names as a
certificate identifier early on would lead logically to the use of a
DNS-based certificate distribution mechanism in the following
question group, and a DNS-based validity checking mechanism
in the group which followed that.

Questions within each group were ordered logically and in some
cases anticipated answers to earlier questions. For example
experience with users indicated that email addresses were
popularly used to identify certificate owners, so one of the
questions that followed the initial identification question was
how someone (or something) that didn’t have an email address
would be identified. Finally, two questions about the cost
and/or complexity of the solutions given in previous questions
were added in order to discourage impractical and extravagant
schemes.

Enrolment

1. How do people sign up?
2. Can this be bypassed/made less labour-intensive?

Identification

2. How would you identify certificate owners?
3. What if there’s more than one John Smith?
4. What if they don’t have an email address?
5. How would you get an ID which is globally

unique?

Obtaining certificates

6. How would you store a collection of certificates?
7. How would you access a collection of certificates?
8. How would you locate a collection of certificates?

Freshness/validity checking

9. How would you check the validity/freshness of a
certificate?

10. How would you handle the cost of doing this?

Miscellaneous

11. How would you check that an operation was
valid at a given time in the past?

Respondents who were particularly quick to leap in with an
answer were asked to justify their choice, mostly by being
reminded that they would be responsible for implementing and
supporting their choice of technology. As mentioned earlier, the
intent behind the explicit step of making users eat their own
dogfood was to weed out technology that they were only aware
of through trade magazines or vendor literature in favour of
technology that they were familiar with and believed was
practical to deploy and maintain in the field.

3. RESULTS
When it came to exposure to existing technology, it proved
almost impossible to find anyone who hadn’t been exposed to
PGP and (to a lesser extent) ssh. In an attempt to locate
someone who hadn’t been subject to these potential sources of
bias, the net was cast wider and wider, eventually landing non-
technical managers who, unfortunately, weren’t able to provide
answers to most of the technical questions. However, since both
PGP and ssh have little in the way of infrastructure, the results
were probably not affected by preconceived notions of how a
PKI was supposed to be implemented.

Only one respondent had had any significant exposure to X.509,
and his responses to the questions differed markedly from the
other responses (details are given further on). None of the
respondents were aware of other PKI systems such as
SPKI/SDSI or AADS, or PKI-like systems such as IBE.

The remainder of this section presents the responses to the
questions provided by users. The section that follows this one
contains an analysis of the results.

3.1 Enrolment
This group of questions was seen by most as being policy rather
than technical questions. As a result, the non-technical
managers were able to answer them while most of the remainder
saw it as being an issue that was best handled by others. This
position wasn’t taken because they were trying to avoid work or
responsibility, but because they were used to such decisions
being made by management, the clients, or other external agents.
In other words, they were unfairly being asked “What” rather
than “How” questions.

The responses that were provided tended to be domain-specific.
One respondent who worked for an organisation with a large
number of clients suggested a paper-mail-based enrolment
system in which the (known to the organisation) clients were
enrolled using traditional paper documents, with all certificate
details being filled out from the organisation’s records. Another
respondent with a healthcare background suggested creating
certificates based on existing health records. The responses
tended to leverage existing mechanisms for use in the enrolment
process as much as possible, both for ease of deployment and
because they represented established business practice and were
therefore likely to be looked on favourably if a dispute over
enrolment details arose. The main design goals of these
schemes appeared to be a combination of ease-of-use and risk
avoidance.

111

3.2 Identification
Almost all users immediately suggested the use of an email
address as the primary identifier for a certificate. One or two
users suggested domain-specific identifiers, for example in
healthcare the patient ID or medical registration number might
be used as the identifier, and an organisation with known clients
such as a financial institution would use the clients’ account
number.

In cases where the certificate owner didn’t have an email
address, various (obvious) solutions such as the DNS name or IP
address were suggested (an alternative way of phrasing question
4 was “What if the certificate owner is a printer?” when the
respondent had immediately suggested using an email address as
the answer to question 3). Other responses included MAC and
IPv6 addresses (the latter because they included more
information than IPv4 ones). One respondent provided a nice
generalisation to “the name you saw when you first encountered
the device”, so that if the printer mentioned earlier appeared on
the local network as “Wallet Buster 300” (the name used in one
department for a photographic-quality printer with a particularly
high per-page printing charge) then it would also be identified in
the certificate as the “Wallet Buster 300”. Although names such
as these were meaningful only in the local context, the fact that
the identified item was only visible locally made this issue
irrelevant (the user had thus independently rediscovered
SDSI/SPKI’s local names).

Some users had problems coming up with an identifier. One
user suggested using a personal name or company name and
asking the user to select a certificate if several matching ones
were found, but wasn’t able to provide a solution that would be
amenable to automated processing. It’s probable that they
misunderstood the nature of the question, however the author
was reluctant to provide further prompting for fear of
influencing the results.

Most users immediately suggested the use of a GUID (Globally
Unique ID) as a unique value to identify certificates. Two users
weren’t aware of GUIDs but described (in some detail) an
identifier built up in much the same way as a GUID.

3.3 Obtaining Certificates
As with the email addresses, almost all users immediately
suggested using a database as the certificate storage mechanism,
seasoned to taste (“Anything but Oracle”, “ODBC, because it’s
on every Windows machine”, “Whatever the company’s using at
the moment”, “Oracle, DBAs are a dime a dozen”, and so on).
One respondent suggested LDAP “because that’s what you store
certificates with” but was unable to provide further information,
and had no actual LDAP experience. Another respondent (the
one with X.509 experience) also suggested using LDAP
“because that’s what you use”, but immediately followed it up
with the comment that it wouldn’t work in his organisation
because users typically occupied multiple roles (leading to a
multitude of possible entries in the directory, which could
change several times a year), and the only way they had found to
resolve the problem was to use the directory as a flat database.
Another respondent who was a strong OSS advocate initially
suggested “Whatever I can find on SourceForge”, but eventually
settled on a database like most of the others because of the

availability of open-source solutions such as Berkeley DB and
MySQL.

The unanimous consensus for the access mechanism was HTTP
(“That’s reality”). One user commented that they’d really prefer
XML and SOAP if it were a bit more widespread, and another
user suggested ODBC as another possibility, while
acknowledging that there would be some problems due to it
being a mostly Windows-only solution and having some
problems with Internet traversal. Several users expanded their
basic answer to address reliability and scalability issues (“We’ve
had zero downtime for our web pages in the last year (except for
link outages) even though individual servers have occasionally
gone down”). They provided sketches for web architectures to
handle almost any eventuality, based on their existing
experience with web technology.

Most respondents suggested fetching the certificate from what
can be generalised to “the most obvious place”. For example if
the certificate belonged to someone at a given organisation, they
would query the organisation’s web server. If they needed a
certificate for someone at their own organisation, they would
query their main corporate file or web server. If they had an
email address, they would query the corresponding web server,
for example www.hotmail.com for a Hotmail email address.

Some of the respondents who worked for organisations with
known clients indicated that their (custom) client software
would be configured when it was built or deployed so that it
would talk to their own servers. For example one user’s
organisation had an application that used a particular EDI
protocol to talk to a given server, so certificate retrieval would
be piggybacked on top of this existing mechanism in the form of
an HTTP-style GET using EDI instead of HTTP. One
respondent also suggested using the DNS as a certificate storage
mechanism, but quickly decided that it wouldn’t work for much
of the standard reasons that DNS-based certificate storage has
been regarded as impractical. Two users suggested the
possibility of a certificate search engine that worked like
existing web crawlers and indexers, extracting certificate
information and providing a single portal from which multiple
disparate certificate stores could be accessed.

Finally, several respondents commented that if all else failed,
users would have to manually set preferred server URLs in the
same way that they set preferred home pages in web browsers.

3.4 Freshness/Validity Checking
As with the previous responses, the almost unanimous response
to the question of validity checking was to use the certificate
store in the manner of a trusted directory. Freshness and validity
checking would be performed through a simple fetch operation,
with the result being either a known-good certificate or some
form of error indication. This goes back to the original 1970s
concept of public-key distribution in which keys were to be held
in public directories or key distribution centres (KDCs) that
handed out only known-good keys in response to queries [19].
The user with X.509 experience suggested using CRLs, but
immediately followed it with the observation that they didn’t
really work, and something better would have to be found.

Since this question required a bit more information than the
basic “Use HTTP”-type response to question 7, users provided a
fair bit of detail on the operations involved. For example one

112

respondent suggested communicating a checksum (meaning a
cryptographic hash) rather than the full certificate to save
bandwidth, and several used the GUID (the unique ID from
question 5) to fetch the certificate. What the respondents were
in effect describing was a form of distributed hash table, a data
structure capable of answering the question “Is element e in set
S?” [20]. Other respondents added use-by dates to certificates
to indicate the interval after which it should be re-fetched from
the certificate store (again, an independent rediscovery of a
SDSI/SPKI concept), or suggested the use of HTTP-type cache
control mechanisms that served a similar purpose.

Interestingly, none of the respondents considered the further
refinement of using something like Diffie and Hellman’s
original Public File approach [21], which sidesteps the need for
certificates altogether. Another approach, proposed by Davies
and Price in the late 1970s in which a CA (or more specifically
its predecessors at the time, arbitrators and key registries)
provided a dispute resolution mechanism to relying parties by
issuing an interactive certificate attesting to the validity of a key
in the context of a particular transaction [22], was also not
considered by respondents. This was probably a side-effect of
the way in which the questions were structured, since they
presuppose the need for certificates. A further set of tests with a
fresh set of users would have been necessary to resolve this
issue, however it wasn’t considered productive since the goal
was to determine how to make existing PKI technology more
practical and not to design yet another PKI-alternative.

As with questions 1 and 2, most of the respondents regarded
question 10 as being a policy issue and therefore someone else’s
problem (“That’s beancounter material”). The main motivation
for adding this question, as with question 2, was to discourage
excessively extravagant solutions in the answers to the previous
question.

Those who did answer this question suggested a variety of
approaches such as a multi-tiered charging structure similar to
the pricing schemes used by ISPs and for web hosting in which
different levels of service and usage were billed in different
ways. Other suggestions were to use per-query charging, to
specifically charge the relying party rather than the certificate
owner, or (in recognition of the fact that charging for queries
would discourage use) the use of cost-sharing schemes to avoid
one party carrying the cost while another party obtained all the
benefits.

3.5 Miscellaneous
Again as with earlier responses, the unanimous response to the
historical-query question was that the certificate store should
maintain audit logs of certificate histories and use those to
resolve historical queries. This is a logical extension of the
distributed hash table-like mechanism from the previous section
in the form of a persistent authenticated dictionary, a data
structure capable of satisfying the extended query “Was element
e in set S at time t?” [23]. Since auditing was built into most
databases and the certificate store was the ideal place to
maintain this information, the consensus was that this was a job
for whatever or whoever was managing the certificate store.

As with question 9, some respondents provided a fair amount of
detail on the operations involved. For example one user
suggested charging for the length of storage of historical

information, and another user came up with the novel idea of
storing historical information for previous certificates in the
current certificate, so that anyone obtaining an end entity’s
current certificate (via the mechanism from question 9) could
also use it to answer historical queries. While this is in theory
impractical due to bandwidth considerations, in practice having
a 2Kb vs. 1Kb certificate would make no difference with a PC-
based application, affecting only highly constrained devices
such as smart cards.

3.6 Summary of Results
A summary of the results or the survey, which contrasts the
approach provided by the X.509 standards (which represent the
most commonly-used PKI blueprint) with the approach
suggested by programmers, system administrators, and technical
project managers, is shown in Table 1.

Table 1. Survey Results Summary

X.509 Survey response

Identifier X.500 DN email address/DNS
name/IP address

Unique ID X.500 DN GUID

Storage X.500 directory Database

Access LDAP HTTP

Validity check CRL Repository presence
check

Historical query (Timestamping) Authority records

4. DISCUSSION
This section analyses the responses from users given in the
preceding section. The major trends that were apparent in the
responses are presented in their own subsections, with
miscellaneous comments gathered at the end.

4.1 Consistency of Results
The most remarkable thing about the results presented in the
previous section is the fact that almost all of the respondents
agreed on one particular solution to the problem presented by
each question. So consistent were the answers (somewhat akin
to finding a straight line on a double-log graph) that the author
felt it necessary to locate and question further respondents,
leading to the eventual extension of the survey to non-technical
managers as described in section 3.

The fact that the respondents had been specifically instructed to
select the technology they felt was the most practical and
feasible probably helped produce this consistent result. A few
of the respondents were later informally asked what they would
have suggested if they had been allowed to choose any
technology (no matter how impractical), and came up with very
different answers such as CORBA (although this was suggested
as a joke by someone whose employer had a customer with a
particular obsession with CORBA).

Almost all users suggested using a GUID or GUID-equivalent as
a unique identifier for a certificate. This came as something of a
surprise to the author, since the conventional approach (at least
in PGP, SPKI/SDSI, and recently-issued X.509v3 certificates) is
to use a value derived from the certificate’s public key. When

113

asked why they hadn’t used the public key, the users responded
that they hadn’t considered it, but that that would also work. It
appears that the widespread acceptance and use of GUIDs as
general-purpose unique identifiers lead to this being the
immediate choice for unique certificate identifiers as well.

4.2 Universality of WWW Technology
The penetration of the web into all aspects of computer use was
very obvious in the responses. All respondents regarded HTTP
as the universal glue to tie the PKI together. The use of web
technology went far beyond the basic transport mechanism.
Users suggested the use of HTTP cache-control mechanisms to
handle certificate re-validation, web search engine technology to
make locating certificates when their exact location wasn’t
known easy, and the use of various standard reliability and
scalability-enhancing techniques such as round-robin DNS to
address availability concerns.

The ability of the respondents to design sophisticated web-based
solutions without too much effort reflects the extensive practical
expertise available in this area, backed up by a large number of
tools (both commercial and open source, to suit all tastes) and
background technical information. For example the level of
scalability planning extended beyond the basic bullet-point-on-
a-PowerPoint-slide level to “we’ll use these servers and this
software because we’ve done it before and we know that it
works”, a good indication that the resulting design would be
practical under real-world conditions.

4.3 Key Management Issues
Several users expressed concern about the complexity involved
in the key and certificate setup process. One user proposed a
certificate-vending-machine type mechanism for which the only
user interface task consisted of entering some form of
authenticator and clicking a button labelled “Click here to
generate a key and obtain a certificate”. This was to be
implemented using an HTTPS interface to the CA, submitting
the public key and reading the resulting certificate back from the
certificate store. Another user suggested “look at how browser-
name does it and then do the exact opposite”, a reference to the
complexity of the browser-based enrolment process used to
obtain certificates from some public CAs [24].

Yet another user, from a healthcare background, commented that
many of their users would require per-site (rather than per-user)
keys, since doctors expected many of the operations requiring
the keys to be performed by nurses or administrative assistants,
and keys were expected to be associated with roles such as
“Duty doctor” (covering several GPs and assistants) rather than
a particular individual. The inevitable result of this inability of
per-user certification to match existing practice was that “they’ll
take whatever doctor turns up first in the morning’s key and use
that for the rest of the day”, an observation arising from many
years of experience with equivalent (non-public-key-based)
solutions.

Other users also expressed concern about the enrolment/setup
process. One user, working for a large organisation with known
users, commented that a one-click enrolment process (“assuming
Amazon hasn’t patented that too”) would be an absolute
requirement, with an automated phone call-back being used to
confirm that the user had indeed required the certificate
(“cumbersome but functional”).

This is clearly an area that needs further study to determine how
low-impact the enrolment process can be made while still
satisfying various legal concerns. Without any rigorous (and
workable) framework for this area, users are coming up with
solutions such as the alarming practice of having the CA
generate the end user’s private key and then sending it to them
via email, either in plaintext form or with the password attached
[25].

4.4 Miscellaneous
The fact that some respondents worked in a particular area
influenced their replies to policy (rather than purely technical)
questions. For example people working for organisations with
clients or members tended to think of end entities in that role,
with the organisation managing certificate issuance by taking
advantage of its existing knowledge of users.

Several respondents spontaneously evolved SPKI/SDSI-type
concepts such as local and global naming and timed re-
validation of certificates, even though they had no previous
exposure to PKI design. This mirrors experience with
psychological studies of non-programmers who spontaneously
evolved programming-language-like constructs such as control
statements when they were asked to create descriptions of
algorithm-like tasks [26].

The innate tendency of system administrators and technical
managers to build in disaster-planning has already been pointed
out elsewhere [27]. This was also apparent in many of the
architectures laid out by respondents, with multiple development
paths being possible in order to arrive at the final goal (one user
summed it up with “Postgres if possible, Perl, Apache, and
MySQL if they need it by Monday”). This was further
reinforced by the fact that a number of respondents planned in
future extensibility to handle scalability and reliability issues.
The initial survey requirement that users would be required to
eat their own dogfood appears to have been a powerful influence
in both the choice of technology and the overall architecture.

Another fact that became apparent from the replies to the
questions (although it’s not directly relevant to this paper) was
that the respondents’ job position often matched their ability to
provide answers to the questions. For example respondents who
were working as programmers often had difficulty in
architecting solutions to some of the more complex problems
like identification or billing, while respondents with a similar
amount of work experience who had been migrated into
technical project management had little difficulty in this area.
Although this has little effect on the results presented here (the
respondents were chosen from a general cross-section of
technical users without concentrating on one particular area), it’s
interesting to note that people seemed to have drifted into the
job role they were most suited to, at least as determined by their
ability to answer the survey questions.

5. PKI IMPLEMENTATAION
BLUEPRINT
Using the results presented in the preceding sections, we can
now look at how a PKI might be implemented with a particular
goal of using the most practical real-world technology in order
to increase the chances of successful deployment. As was
already mentioned earlier, this implementation blueprint covers

114

only the “How” aspect and leaves issues such as policy and legal
concerns to the appropriate entities.

The basic certificate-management system is built on top of the
database of choice, and uses an HTTP (or HTTPS) interface for
communication. Certificates are generally identified by user
name (CommonName in X.500 terminology) and email address,
with alternatives such as an account number, IP address, or
device name being used where this isn’t feasible.

Certificate issue is handled via a minimal one-click interface,
which can be accomplished on most systems in a reasonably
automated manner by reading the user name and email address
from the user account information (for example the GCOS field
under Unix or the Windows user information), and using it to
populate the certificate request. The generated certificate is
obtained by fetching it from the certificate store.

The process of obtaining a certificate is also the mechanism used
for freshness/validity checking, with the certificate store
returning only known-good certificates. Historical queries and
similar issues are handled through the standard auditing and
accounting mechanisms built into the database, which are used
to track certificate additions and deletions and similar
operations.

The basic mechanisms presented here can (obviously) be
garnished to taste. For example some CAs may require a
private-key proof-of-possession operation before issuing a
certificate, which may require a two-stage process to be used
when requesting a certificate. Potential implementers should
however bear in mind that the goal of this work was to
determine how to build a practical, deployable PKI. A workable
(but not quite theoretically perfect) practical PKI is still better
than theoretically perfect vapourware.

A number of CAs and PKIs are in fact already employing some
of these mechanisms, although their use is often hidden from
public view. For example many large public CAs use (and an
unknown number of non-public ones) already use databases as
their underlying certificate store. As an example of this practice
Verisign, the world’s largest CA, is built on top of Oracle, with
LDAP being merely a shim on top of the database [28] (Verisign
used the same approach for their “LDAP” Whois service when
they found that LDAP wasn’t up to the task [29]). Many other
CAs have taken a similar approach, with Oracle, Ingres, and MS
SQL Server being popular certificate store solutions.

6. CONCLUSION
This paper has presented the results obtained from asking a
number of technically skilled users with extensive practical IT
experience how they would implement a certificate-management
system. The resulting design is noteworthy in that it is almost
completely unlike the one proposed in X.509 and related
standards, although it does bring in some concepts that also
appear in SDSI/SPKI. This would indicate that at least some of
the deployment difficulties being encountered with X.509-style
PKIs are due to the sub-optimal choice of implementation
technology. To address this problem, the paper proposes a new
certificate management technology blueprint based on
information in the responses from users. This blueprint makes
use of widely-utilised, mature technology and the extensive
experience that users have working with it.

7. ACKNOWLEDGEMENTS
The author would like to thank various PKI theology
representatives for providing feedback/bias removal on the
questions asked, Paul de Bazin, Tony Bryant, Tom Bowden,
Nick Brooker, Russell Fulton, Paul Kendall, Suad Musovich,
Edwin Ng, Steven Perreau, Steven Robb, Raymond Sellars,
Chris Stephens, Russell Street, Clifford Wilson, and Stuart
Woolford for putting up with the questioning, and NSPW
attendees for feedback and comments on the paper.

8. REFERENCES

[1] “Advances and Remaining Challenges to Adoption
of Public Key Infrastructure Technology”, United
States General Accounting Office report GAO-01-
277, February 2001.

[2] “Solution and Problems: (Why) It’s a long Way to
Interoperability”, Jürgen Schwemmer, Datenschutz
und Datensicherheit, No.9, 2001 (September 2001).

[3] “Prime-Time Player?”, Leo Pluswich and Darren
Hartman, Information Security Magazine, March
2001.

[4] “PKI: An Insider View”, Ben Rothke, Information
Security Magazine, October 2001.

[5] “OpenPGP Message Format”, RFC 2440, Jon
Callas, Lutz Donnerhacke, Hal Finney, and Rodney
Thayer, November 1998.

[6] “SPKI Requirements”, RFC 2692, Carl Ellison,
September 1999.

[7] “SPKI Certificate Theory”, RFC 2693, Carl Ellison,
Bill Frantz, Butler Lampson, Ron Rivest, Brian
Thomas, and Tatu Ylönen, September 1999.

[8] “PKI Account Authority Digital Signature
Infrastructure”, Anne Wheeler and Lynn Wheeler,
draft-wheeler-ipki-aads-01.txt, 16
November 1998.

[9] “Account-Based Secure Payment Objects”, ANSI
X9.59 draft, 28 September 1999.

[10] “CONSEPP: Convenient and Secure Electronic
Payment Protocol Based on X9.59”, Albert Levi
and Çetin Kaya Koç, Proceedings of the 17th Annual
Computer Security Applications Conference
(ACSAC’01), December 2001, p.286.

[11] “Identity-Based Cryptosystems and Signature
Schemes”, Adi Shamir, Proceedings of Crypto'84,
Springer-Verlag Lecture Notes in Computer Science
No.196, p.47.

[12] “Identity-Based Encryption from the Weil Pairing”,
Dan Boneh and Matthew Franklin, Proceedings of
Crypto 2001, Springer-Verlag Lecture Notes in
Computer Science No.2139, p.213

115

[13] “PKI Billion-Dollar Boondoggle?”, Information
Security Magazine, February 2004, p.14.

[14] “In Search of Usable Security: Five Lessons from
the Field”, Dirk Balfanz, Glenn Durfee, Rebecca
Grinter, and D.K. Smetters, IEEE Security and
Privacy, Vol.2, No.5 (September/October 2004),
p.19.

[15] “Hardening Web Browsers Against Man-in-the-
Middle and Eavesdropping Attacks”, Haidong Xia
and José Brustuloni, Proceedings of the 14th

international conference on the World Wide Web
(WWW’05), May 2005, p.489.

[16] “Design Principles and Patterns for Computer
Systems That Are Simultaneously Secure and
Usable”, Simson Garfinkel, PhD thesis,
Massachusetts Institute of Technology, May 2005.

[17] “Anonymous Authentication (Transcript of
Discussion)”, Bruce Christiansson, Proceedings of
the 12th International Workshop on Security
Protocols (Protocols’04), Springer-Verlag Lecture
Notes in Computer Science No.3957, April 2004,
p.306.

[18] “Criteria for Evaluating AAA Protocols for
Network Access”, RFC 2989, Bernard Aboba, Pat
Calhoun, Steven Glass, Tom Hiller, Peter McCann,
Hajime Shiino, Glen Zorn, Gopal Dommety,
Charles Perkins, Basavaraj Patil, David Mitton,
Serge Manning, Mark Anthony Beadles, Pat Walsh,
Xing Chen, Sanjeevan Sivalingham, Alan Hameed,
Mark Munson, Stuart Jacobs, Byung-Keun Lim,
Brent Hirschman, Raymond Hsu, Haeng Koo, Mark
Lipford, Ed Campbell, Yingchun Xu, Shinichi
Baba, and Eric Jaques, November 2000.

[19] “Cryptography: A New Dimension in Computer
Data Security”, Carl Meyer and Stephen Matyas,
John Wiley & Sons, 1982.

[20] “Chord: A Scalable Peer-to Peer Lookup Protocol
for Internet Applications”, Ion Stoica, Robert
Morris, David Liben-Nowell, David Karger,
M.Frans Kaashoek, Frank Dabek, and Hari
Balakrishnan, Proceedings of ACM SIGCOMM
2001, August 2001, p.149.

[21] “New Directions in Cryptography”, Whitfield Diffie
and Martin Hellman, IEEE Transactions on
Information Theory, Vol.22, No.6 (November
1976), p.644.

[22] “Security for Computer Networks : An Introduction
to Data Security in Teleprocessing and Electronic
Funds Transfer”, Donald Davies and W.Price, John
Wiley and Sons, 1984.

[23] “Persistent Authenticated Dictionaries and their
Applications”, Aris Anagnostopoulos,Michael
Goodrich, and Roberto Tamassia, Proceedings of
the 4th International Information Security Workshop
(ISW’01), Springer-Verlag Lecture Notes in
Computer Science No.2200, October 2001, p.378.

[24] “Plug-and-Play PKI: A PKI Your Mother Can Use”,
Peter Gutmann, Proceedings of the 12th USENIX
Security Symposium, August 2003, p.45.

[25] “Lessons Learned in Implementing and Deploying
Crypto Software”, Peter Gutmann, Proceedings of
the 11th Usenix Security Symposium, August 2002,
p.315.

[26] “What non-programmers know about programming:
Natural language procedure specification”,
Kathleen Galotti and William Ganong III,
International Journal of Man-Machine Studies,
Vol.22, No.1 (January 1985), p.1.

[27] “Apropos: Re-Routed Packets”, Tina Darmohray,
;login, Vol.26, No.8 (December 2001), p.3.

[28] “Extranet Directory Delivers Digital IDs for
Millions of Customers”,
http://wp.netscape.com/solutions/bu
siness/profiles/verisign.html.

[29] “Replacing the Whois Protocol”, Andrew Newton,
IEEE Internet Computing, Vol.10, No.4
(July/August 2006), p.79.

116

