
Dark Application Communities

Michael E. Locasto
Network Security Lab

Dept. of Computer Science
Columbia University

locasto@cs.columbia.edu

Angelos Stavrou
Network Security Lab

Dept. of Computer Science
Columbia University

angel@cs.columbia.edu

Angelos D. Keromytis
Network Security Lab

Dept. of Computer Science
Columbia University

angelos@cs.columbia.edu

ABSTRACT
In considering new security paradigms, it is often worth-
while to anticipate the direction and nature of future attack
paradigms. We identify a class of attacks based on the idea
of a “Dark” Application Community (DAC) – a collection
of bots and zombie machines that actively performs binary-
level supervision of applications to help an attacker auto-
mate the process of finding vulnerabilities. A collection of
such hosts can observe and attempt to influence the behavior
of automatic defense systems. An attacker can use the DAC
as both a test platform for subverting security applications
and as a reconnaissance network for exploiting commonly
deployed automatic update and early warning systems.

An instance of this type of Application Community can
host what we call an automorphic worm. An automor-
phic worm is application-agnostic and vulnerability-generic.
Such a worm attempts to remain stealthy by cycling through
the portfolio of vulnerabilities that the DAC has identified.
We examine the underlying principles of a DAC, which are
based on the existing paradigm of using security tools to
help violate security.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Invasive software; I.2.6
[Learning]: Knowledge acquisition

General Terms
Network Security, Application Communities

Keywords
automorphic, dark application communities

1. INTRODUCTION
Botnets have emerged as a major source of problems for

systems security, ranging from supporting Distributed De-
nial of Service (DDoS) attacks against Web services [31, 15,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

28] to sending spam email and enabling distributed phish-
ing [32, 10]. The increasing size of real-world botnets and
the sophistication of bot malware has promoted them to an
effective tool for profit-motivated online crime [10]. Tradi-
tionally, the use of botnets has been focused on carrying out
attacks and reconnaissance. Relatively little attention has
been paid to actively using botnets to automatically identify
vulnerabilities and generate exploits. A collection of zombie
machines engaged in the latter activities can form what we
call a “Dark” Application Community (DAC)1.

Just as researchers have suggested the idea of using Appli-
cation Communities [18] to leverage the large resources avail-
able in a monoculture for defensive operations, so too can
the resources of a botnet be leveraged by attackers. They
can do so in at least two distinct ways. First, a DAC can
host malware that actively performs binary supervision of
applications to automate finding software errors – poten-
tial vulnerabilities. Second, members of a DAC can observe
the behavior of defense systems, test their thresholds and
sensitivity to attacks, and attempt to influence their op-
eration. For the attacker, both propositions are justified
by an economic argument. Attackers, even if well-funded,
can only automate their bug-finding, reconnaissance, and
counter-evasion activities to a certain degree. Identifying
vulnerabilities and creating exploits based on them is a time-
consuming, manual process.

This process is exactly the process of quality assurance
that large software vendors try to perform. The only dif-
ference is that once a vendor identifies a vulnerability, they
fix it and distribute a patch. When a cracker finds a fault
or vulnerability, they construct an exploit to attack it. The
process of identifying such faults is very much the same for
both entities.

Discovering vulnerabilities is only the first part of a suc-
cessful intrusion. Crafting malware that is stealthy enough
to bypass the variety of security systems that are deployed
on the target hosts is also critical. Finally, if the constructed
exploit is ultimately discovered, the members of a DAC
should be able to take advantage of the alerts emitted by
any automated early warning systems. Upon noticing alerts
related to the current vulnerability being exercised, a DAC
can shift operation to another vulnerability or even blind
the early warning system with a bogus exploit or disposable

1Note that we do not use the term “dark” in the sense of
dark IP address space, and a DAC does not require a hon-
eynet or other dark IP space monitor. Rather, we use “dark”
to refer to the malicious nature of this type of Application
Community.

NSPW 2006, September 19-22, 2006, Schloss Dagstuhl, Germany.
Copyright 2007 ACM 978-1-59593-857-2/07/0007...$5.00.

11

vulnerability. For the rest of the paper, we refer to this new
type of attack as a “shift-blind” attack.

1.1 Motivation for a DAC
Parallelization helps speed up the task of testing an appli-

cation for bugs and faults. Some vendors may have enough
resources to build a virtual or isolated network infrastruc-
ture for this type of testing. Certain popular open source
projects may have a large enough developer community and
user base to both provide meaningful bug feedback and cor-
rect fixes. On the other hand, attackers probably do not
have the financial resources to construct their own testbed
and employ a QA team. However, attackers can use the large
collection of bots under their control as a Dark Application
Community, rather than leaving them idle.

Part of the task of a DAC is to supervise the execution
of all software on the zombie machine and report errors and
faults back to the attacker (along with the input causing
such events) to direct his or her research activities. Such
distributed fault identification helps parallelize the “debug-
ging” operation, since a large population of end-users exe-
cutes a variety of applications under a number of configu-
ration settings and many different inputs. Many of the de-
fense systems proposed in the current research literature ef-
fectively allow the attacker to expose a previously unknown
exploit or vulnerability in order to construct a defense. A
DAC, on the other hand, delegates the identification of vul-
nerabilities to the end users. The mission of a DAC is to
assemble a portfolio of vulnerabilities. Having such a port-
folio implies a variety of different vulnerability categories,
with some vulnerabilities (e.g., remote access) being more
valuable for propagation, while others may be more valuable
for direct economic gain.

A widespread DAC will most likely contain a variety of
security applications in addition to the “normal” array of
software installed on machines in its population. The pres-
ence of security systems provides the opportunity for the
DAC to employ these systems as a type of testbed to vet
any generated exploits without risking exposure.

1.2 Use Cases
A Dark Application Community can be used to support

the spread of malware that exploits a new vulnerability from
generation to generation. In doing so, a DAC can also at-
tempt to subvert the operation of automatic defense sys-
tems. We call such malware an “automorphic worm.”

1.2.1 Automorphic Worms
Most known worms (malware that spreads in an auto-

mated fashion) are strictly identical from generation to gen-
eration. This statement is somewhat true for polymorphic
and metamorphic worms as well; even though new instances
may be encrypted or otherwise obfuscated, the operation of
the worm remains the same (it repeatedly exploits the same
underlying vulnerability to infect a host). Past approaches
to worm detection are predicated on rate limiting or ex-
ploit signature matching. While such detection techniques
are adequate for loud, fast-spreading worms, they are not
appropriate for slow, stealthy, and polymorphic worms.

Many recent detection [24, 13, 33] and protection [5, 23,
35] mechanisms seek to identify and deter worms without
reference to the particular exploit string or input. That is,
this body of work attempts to defeat polymorphic worms

by identifying the underlying vulnerability [6] rather than a
particular exploit string. Such systems are termed exploit-
agnostic or vulnerability-specific, and they have some hope
of identifying and stopping polymorphic worms.

Automorphic worms, on the other hand, are designed to
exploit new vulnerabilities with each generation so that cur-
rent mechanisms (aimed at polymorphic detection and pre-
vention) are not as effective as they might otherwise be. An
automorphic worm is a worm that is application-agnostic
and vulnerability-promiscuous. This type of stealthy worm
actively performs binary supervision of applications to au-
tomate finding software errors – potential vulnerabilities.

The term “automorphic” means “patterned after oneself,”
and this description is an apt one. The next generation aims
at the same behavior or set of tasks that the parent genera-
tion performs, but augments itself by creating and maintain-
ing a portfolio of exploits. However, rather than rely solely
on polymorphic techniques (e.g., encryption) to disguise its
content in the hopes of avoiding detection, it spreads via a
changing set of vulnerabilities. It should be noted that this
portfolio is not composed of a strictly static set of exploits
like those employed by multi-vector worms (e.g., Nimda).
In this way, an automorphic worm can potentially evade
vulnerability-specific protection mechanisms.

1.2.2 Anti-Security & Malicious Feedback
Having generated a portfolio of exploits, an attacker can

go one step further and apply them to the botted network
(DAC), monitoring and controlling the reaction of the se-
curity mechanisms on each of the botted hosts. Since the
attacker is already in control of these bots, there is no risk of
exposure when a new, possibly untested, vulnerability is de-
ployed. A DAC is also diverse enough to host a plethora of
security protection mechanisms such as Vigilante [5] or other
commercial malware detection systems, thus transforming
the DAC to a formidable anti-security testbed, although
some research has been done to harden security mechanisms
against this type of analysis[34].

This malicious feedback can be used in various ways, and
generating stealthier worms is only one of them. Manipulat-
ing and subverting automatic defense systems in the DAC
can have even more widespread and devastating effects. In-
deed, most modern defense systems activate their signature
generation algorithms upon detection of a new exploit. This
signature information is transmitted to a set of centralized
servers where an assessment about the new exploit can be
made to allow a fast reaction to new worms. An automor-
phic worm, since it operates on a lower level, can force the
automatic defense systems in the DAC to generate fake or
real exploit signatures. These signatures can be transmit-
ted in a coordinated and distributed fashion to “blind” the
early worm warning systems. Such an action effectively cre-
ates a Distributed Denial of Service attack to “shift” their
attention from the real threat.

The same worm early warning systems can be used to no-
tify attackers about new or discovered vulnerabilities since
this type of information is transmitted to hosts in the Inter-
net including botnets. To make things worse, these signature
and vulnerability announcements are security application
specific, giving the attacker knowledge about the detection
capabilities of each individual security application. The at-
tacker can either use this information to scan for susceptible
systems or to avoid detection by shifting to an undiscovered
exploit.

12

1.3 Contributions
This paper makes three primary contributions:

1. a review of the emerging intrusion defense paradigm
of vulnerability–specific (rather than exploit–specific)
protection mechanisms and an exposition of the col-
laborative insecurity paradigm: collections of machines
that form a Dark Application Community.

2. the identification of a new type of malcode that is
one result of this new attack paradigm. Automorphic
worms can potentially defeat vulnerability-specific fil-
ters and protection mechanisms.

3. the introduction of a new type of attack, the shift-
blind attack. This attack can manipulate the signa-
ture transmission and early worm warning systems to
“blind” the intrusion detection and host based secu-
rity systems and “shift” their attention to a fake or
disposable vulnerability while the real worm spreads
unnoticed.

In order to frame the discussion of these contributions, we
next turn our attention to related research.

2. RELATED WORK
Automorphic worms are related to work on Collaborative

Security, virtualization techniques, kleptography, and auto-
matically spreading malware. Kleptography [38] is the use
of cryptography to secretly and securely steal information.
Cryptosystems can be constructed by an attacker such that
it provides cryptographic services, but also encodes a hidden
weakness or subliminal channel. The work most closely re-
lated to ours is a combination of Application Communities
and subversive virtual machines.

2.1 Collaborative Security
Organizations often lack the resources to recognize and

respond to large scale threats. Enabling them to leverage
the resources of their peers by sharing information related
to threats and attacks seems like a promising solution to
this problem. Collaborative security is the growing trend
towards sharing information security resources within and
across administrative domains and systems to improve the
overall security of the peer group. Three areas of com-
puter security where a collaborative approach are immedi-
ately applicable are (a) worm detection and notification, (b)
self-healing software, and (c) spam filtering. The reasoning
is that a large, distributed network of sensors can achieve
knowledge of an attack faster than a single isolated node.

This observation is a widespread one. In particular, for
worm detection [20], notification [21], and containment [1]
systems, a collaborative approach is mentioned several times
in the literature. Systems that seek to generate signatures
for worm traffic include Autograph [11], Polygraph [24], and
EarlyBird [30]. All three papers refer to signature distribu-
tion as a fundamental step in defending against worms.

A study by Moore et al. [21] concludes that a worm con-
tainment response needs to occur within three minutes. In
addition, the participation of nearly all major AS’s is re-
quired for a containment to be effective. While these re-
quirements are quite challenging, they confirm that foresee-
able threats are best addressed by a collaborative approach.

Vigilante [5] is a system motivated by the need to contain
Internet worms. To that end, Vigilante supplies a mecha-
nism to detect an exploited vulnerability. A major advan-
tage of this vulnerability-specific approach is that Vigilante
can be exploit-agnostic and can potentially be used to defend
against polymorphic worms. Vigilante defines an architec-
ture for production and verification of Self-Certifying Alerts
(SCA’s), a data structure for exchanging information about
the discovered vulnerability. Vigilante works by analyzing
the control flow path taken by executing injected code.

Collaborative security can also be leveraged for more mun-
dane intrusion detection tasks. DOMINO [37] is a system
for correlating intrusion alerts. Lincoln et al. examine the
problem of privacy–preserving alert sharing for IDS systems
[17], one of the challenges proposed in Du and Atallah [8].
Kruegel et al. [14] propose a peer-to-peer system that rec-
ognizes attacks in a distributed manner. In their system,
only a small number of messages needed to be exchanged to
determine that an attack was underway.

A collaborative approach to security also seems useful in
the context of self-healing software. Not only can networks
and end-hosts exchange information about intrusion alerts,
but they can also exchange information about exploited vul-
nerabilities and code patches for these vulnerabilities. Ap-
plication Communities [18] are one particular expression of
this idea whereby a large collection of hosts agree to col-
laboratively monitor small slices of each instance of an ap-
plication locally. Taken together, all peers provide global
coverage of the application, even though they execute it in-
dependently. When a fault or vulnerability is discovered,
information that enables each host to prevent further occur-
rences of that fault is exchanged with peers.

2.2 Vulnerability-Specific Protection
The first attempts at automatically identifying worms and

creating signatures from this detection process focused on
using certain worm traffic characteristics: spreading and
contact rate, uniformity of packet header fields, etc. While
this type of detection helps with simple and fast spreading
worms, it does not help in the case of polymorphic or slow
and stealthy worms. Subsequent attempts examined the ac-
tual packet content to differentiate executable malcode from
normal traffic. Such content-based approaches (e.g., PayL
[36], APE [33], Polygraph [24] etc.) may work against slow
and stealthy worms, but not all polymorphic ones. Current
approaches such as Vigilante [5] or VSEF [23] attempt to in-
strument the host to automatically identify vulnerabilities
and then block input that exercises that vulnerable state
without reference to a particular exploit string or input, as
first proposed by the Shield system [35] for known vulnera-
bilities. Other work attempts to automatically reconstruct
a worm’s control flow from the captured binary code [13] [4].
Crandall et al. [6] discuss the problem of generating qual-
ity vulnerability-specific signatures via an empirical study
of the behavior of poly- and meta-morphic malcode. They
outline the difficulty of identifying enough features of an ex-
ploit to generalize about a specific vulnerability. Focusing
on the behavior of malcode seems to be a more promising
approach. Some work has been done to generate anomaly-
based signatures for web servers [29].

2.3 Virtualization
Virtualization is not a new idea; it was first popularly re-

13

alized in the IBM System/360, but fell into disuse during the
advent of personal computers. Recently, the use of virtual
machines has come back into fashion in both research and
industry to leverage underutilized hardware, reduce man-
agement complexity, and provide isolation. The ability to
isolate execution contexts and intercept their actions is an
attractive capability for security systems.

Virtual machine emulation of operating systems or proces-
sor architectures to provide a sandboxed environment is an
active area of research. Virtual machine monitors (VMM)
are employed in a number of security contexts from auto-
nomic patching to intrusion detection [9]. King et al. [12]
propose implementing rootkits with binary supervision ca-
pabilities. In their work, the entire host operating system is
“lifted up” and run inside a malicious VMM. This work is
most closely related to ours, but there are a number of key
differences. Our purpose is not simply to install a rootkit,
nor do we wish to virtualize the execution of the victim OS.
Instead, we are interested in both virtualizing and supervis-
ing the execution of individual applications on the victim
host to help automate the discovery of faults and vulnera-
bilities.

The members of a DAC stealthily intercept the execution
of applications on the victim host and instead run the ap-
plication in a supervised environment. We have proposed
binary-level application behavior profiling [19] in the con-
text of self-healing systems; DAC members profile an appli-
cation’s behavior looking for errors and faults with exactly
the opposite goal. The behavior of an automorphic worm is
somewhat similar to a Midgard worm [16, 27].

Finally, in a parallel proposal, Raiciu et al. [26] propose
the notion of exploit hijacking, where an attacker listens for
alerts such as those produced by Vigilante, and automati-
cally creates their own worm based on the exploit described
in these “smart” defenses.

3. AUTOMORPHIC WORM DESIGN
The theme of this paper is to examine the implications of

using binary supervision mechanisms from the self-healing
arena for the automation of malware creation. Attackers
already use similar tools to assist in identifying potential
vulnerabilities. Debuggers and code-coverage tools are used
manually for a small set of applications at a time. Inputs
that trigger errors are manually created and correlated.

The main intent of an automorphic worm would be to
create and maintain a database of discovered bugs and vul-
nerabilities in the applications it would supervise. It will
use this portfolio to spread in a variety of ways. Of course,
these worms should include a component that notifies the
DAC owner about a newly discovered bug and the input
that triggers it. Finally, this type of worm may also con-
tain a polymorphic engine to help further disguise it, but
this capability is not strictly necessary or definitive for an
automorphic worm.

An automorphic worm has two main purposes:

1. decrease the likelihood of detection via network traf-
fic analysis (not necessarily host-based analysis) by
changing the application or vulnerability that is at-
tacked with each generation. This type of worm is
not initially written to be metamorphic, but rather
becomes so with experience.

2. increase the attacker’s resources by testing many dif-

ferent applications and configurations for errors that
may lead to vulnerabilities in an automated fashion

Automorphic worms will generally contain a supervision
environment that will be used to monitor a set of applica-
tions on the victim host. The Memcheck tool for Valgrind
[22] is a good example; the tool can assist in detecting mem-
ory corruption errors. Each worm instance would not nec-
essarily need to carry a full binary supervision environment
when spreading. It may be able to take advantage of one
already installed on the machine, or download one from the
web (such an action seems relatively harmless: an http down-
load or CVS checkout may be fairly common) and patch it
if necessary.

The supervision environment can be selectively invoked
for a subset of application runs, or it can operate each time
the application is loaded. Different strategies may be appro-
priate for I/O bound vs. CPU bound applications, depend-
ing on how much of a slowdown the user would experience.
Furthermore, the advantage of an Application Community
idea can be well applied: the large size of the DAC can be
used to collaboratively “cover” all portions of an application
such that any single instance is only slowed down during a
small fraction of its execution.

The goal of using the supervision environment is to dis-
cover how the application’s execution is affected in response
to particular inputs. These inputs can be generated by the
worm instance itself, delivered from other worm instances
in the DAC, supplied by the botnet owner, or simply occur
during the “normal” operation of the application on that
particular host.

One interesting idea is to develop the ability to do ma-
chine learning on sequences of basic blocks to see if a dis-
covered bug or vulnerability occurs in other places in the
supervised application’s execution. The worm can also see
if such a vulnerability exists across applications and hosts. If
the automorphic worm has already identified a high-quality
portfolio of vulnerabilities, finding basic blocks that match
the features of “known” (to the worm and attacker) vulnera-
bilities is a powerful advantage. However, identifying such a
feature set is a research-level problem that we are currently
investigating in other work.

Finally, an automorphic worm could be made more pow-
erful by the use of various planning techniques, although
this is not a focus of our work. As an example, once a DAC
node has identified an input that causes an error for a partic-
ular application, it may try several transformation strategies
on that input and re-run the application on it. The point
of such a feedback loop with the application as an oracle
would be to generalize the particular input data or events
that cause an error. Such knowledge is potentially useful in
generating polymorphic variants. This type of AI technique
may be of interest to an attacker, but would probably re-
quire some application or domain-specific knowledge to be
of practical use.

4. TESTBEDS & SHIFT-BLIND ATTACKS
After infecting a machine, bot malware usually tries to dis-

able the security applications running on the host. The list
of commonly targeted security applications includes Win-
dows XP built-in firewall and its anti-spyware technology,
commercial anti-spyware tools, anti-virus applications, and
security or management tools that may be used to detect,

14

block, disable, or remove malware from the system [10].
Instead of removing the security mechanisms in a sub-

verted host, an attacker may take a different approach: dis-
able their ability to report malware detection both to the
user and to the network and use them to monitor and an-
alyze their reaction to newly developed exploits. Disabling
the reporting ability of a security application is relatively
simple: it requires that the malware is installed in a lower
layer in the botted system [12]. Modern rootkits can easily
monitor, intercept, and modify the state and actions of other
software on the system while remaining relatively invisible.

Harnessing the power of a DAC is just the next evolution-
ary step: instead of testing the exploits on a single botted
machine, attackers farm out the testing process to multi-
ple zombies. This has a multitude of benefits: through its
inherent diversity and heterogeneity a DAC can report de-
tection and reaction results from a large collection of anti-
malware and protection mechanisms. In addition, triggering
a defense system in a botted host provides valuable informa-
tion about its internal operation. Such operation includes,
but is not restricted to, signature generation, false posi-
tive/negative assessment algorithms, and communications
with centralized servers to obtain program and signature
updates. An automorphic worm can take advantage of this
information to evade and attack the defense systems.

Indeed, when a new vulnerability is discovered, update
messages are transmitted to all hosts subscribed to the se-
curity service enabling them to identify the new threat. Of
course, if the host is botted, the same messages become an
early warning system for the attacker allowing him to “shift”
to another dormant and undiscovered exploit. Since these
signature and vulnerability announcements are security ap-
plication specific, the attacker gains knowledge about the de-
tection capabilities of all the security applications deployed
in the botnet. Even if the botnet does not have a specific
security application deployed, the attacker can potentially
install the application on some of the botted hosts to obtain
the output of the updates and the early warning system. A
trivial example of this type of notification is the Windows
automatic update “Patch Tuesday” cycle.

Finally, the automatic feedback systems present in most,
if not all, of the anti-virus and anti-spyware systems can
be employed to “blind” these defense mechanisms by “shift-
ing” their attention from the real threat. We can imagine
the following scenario: a DAC triggers the detection mecha-
nisms of its security application by feeding them with either
a synthetic or real exploit. As a reaction to this exploit,
the security mechanisms contact their respective centralized
servers to transmit information about the newly identified
exploit. If the DAC is large enough (botnets of size more
than 100, 000 nodes have emerged [7]), and the transmission
is coordinated, the central servers in charge of gathering
the signatures will suffer an application-level (and perhaps
also a network-level) DDoS attack. This attack will im-
pede or completely cripple the servers’ operation and ren-
der the early warning systems incapable of responding to
other threats. In the meantime, the attacker will deploy the
real worm so that it is concealed in the noise of the newly
generated alerts. This type of attack could successfully com-
promise large numbers of additional nodes, since the spread
of a worm or scans for new victims will be completely un-
observed despite the deployed security mechanisms and in-
trusion detection systems.

5. DISCUSSION
The primary difference between a computer security pro-

fessional and a cracker is mainly one of ethics – tools remain
largely the same. An illustrative example of this incongruity
is the nmap tool, but the analogy extends to many other se-
curity tools and techniques. In addition, attackers have long
known that compromising a large collection of machines pro-
vides an amplification in the amount of force they can bring
to bear in DDoS attacks. We have recently suggested us-
ing similar collections of machines for defensive operations.
However, one of the main goals of this paper was to show
how binary-level supervision (previously used for detection
and self-healing) can be used to help identify vulnerabili-
ties on behalf of an attacker. While we are not aware of
any botnets that employ the techniques we describe in this
paper, constructing them can be done with tools that are
broadly available today. Certain aspects of an Application
Community (and by extension, a DAC) are similar to those
in a GRID computing environment; specifically, the com-
mand and control infrastructure for dispatching jobs must
address the same challenges.

5.1 Distributed, Automatic Bug Reports
The intelligence-gathering mechanisms in a Dark Applica-

tion Community share similarities with automated bug re-
porting facilities like the TalkBack plugin for Mozilla Firefox
or Microsoft’s crash reporting utility. Many other software
systems, both open source and proprietary, often include
some form of bug reporting with varying degrees of automa-
tion. While it would be difficult to obtain this type of data
from Microsoft, it would certainly be worthwhile to gather
statistics from open source projects on the rate of bug dis-
covery and how quickly the corresponding error is fixed and
made available for download. Such statistics would give a
good starting point for evaluating the rates at which a DAC
can identify potential vulnerabilities. Even if such data is
subject to sources of error (e.g., self-selected group report-
ing, refusal to report due to privacy concerns, errors that
are not reported because they may be timing-dependent and
rarely occur, etc.), it is a valuable resource to help assess the
threat posed or reward offered (depending on one’s point of
view) by a DAC.

5.2 Challenges and Limitations
While a proof of concept DAC is straightforward to im-

plement, there are some issues that may prove difficult in
making this idea practicable. Aside from defense measures
like artificial diversity (e.g., address space, instruction set,
or configuration randomization), the key question is whether
this form of distributed bug identification produces enough
leads and does not cost too much in terms of resource us-
age to be noticeable to the user. Furthermore, exploitable
vulnerabilities may be very rare compared to all discovered
bugs, so an attacker has a small space to choose from, even
assuming that an exploit is easy to prepare. As one partic-
ipant summed it up, the most critical issue is the question
of yield – how many DAC machines are required to discover
a given number of bugs? Moreover, it is clear that relying
solely on user input to drive the bug discovery process is
not enough, because users may not behave sufficiently dif-
ferently to raise the yield. A similar form of this problem
reduced the utility of n-version programming for introducing
artificial diversity. Finally, the behavior of a DAC member

15

is probably detectable via host-based mechanisms.
Behavior-based approaches to host-based anomaly detec-

tion are a large part of the answer for these types of attacks,
but only if they are employed in an environment that can
reliably observe the events that form the basis of the behav-
ior. This requirement is equivalent to the observation made
in [12] that the fundamental advantage goes to the “lower-
level” system. The key problem is to classify “emulation” or
“supervision” behavior and determine if this type of activity
is happening to applications.

The creation of systems that achieve this capability is a
serious challenge. The core capabilities essentially amount
to creating signatures specific to a vulnerability. While there
has been some recent work on the theory of such vulnerabil-
ity signatures [3], the definition of a vulnerability is not clear,
and some work [6] questions whether identifying vulnerabil-
ities rather than control primitives is actually worthwhile.

We define a vulnerability to include two things: a set of
code paths in an application that collectively represent the
actions enabling an attacker to gain control via some input,
and the set of configuration data, process state (e.g. thread
timing), and application data that is outside the control of
the attacker that activate these code paths.

A vulnerability-specific signature is a point on a line some-
where between exploit-specific signatures and full “behavior-
based” recognition. Both signature and behavior model
recognition have a spectrum ranging from regular expres-
sions through pushdown automaton/symbolic execution to
Turing Completeness. However, it is a fundamental result of
computability theory that high-level system behavior is un-
decidable – Turing Machines are unable to computationally
recognize (i.e., decide) complex behavior. As an alternative,
researchers build models that approximate the behavior and
accept certain false positive and negative rates. Even in the
case where behavior is simple enough to be computation-
ally recognizable, the computation may take too long, so
uncertainty is accepted there as well.

5.3 Future Work
Further study is needed to assess how much work such a

system would save malware writers. Several experiments are
possible. First, a simulation can be constructed that splits
the spreading behavior of one worm into three or four dif-
ferent ones so that it remains under the threshold of traffic
rate based detectors. Second, we can construct an Appli-
cation Community based on either a VMM or a change to
the OS application loader that intercepts process creation
and runs each process inside a memory debugger like the
Memcheck tool for Valgrind. This Application Community
can gather statistics on the number of memory-based errors
present in a wide variety of applications under many differ-
ent inputs. Such inputs can be saved and forwarded along
with the error alerts for further analysis. One important
consideration for a DAC is to make sure that it is able to
avoid a DoS based on submitting duplicate or bogus bug or
error reports. Duplicates can easily be discarded by keeping
a keyed hash database of previous reports based on impor-
tant fields. Duplicate notifications are actually somewhat
encouraging (if not produced maliciously) because they in-
dicate that an error may be widespread and therefore be
quite valuable if it is remotely exploitable. Bogus reports
are somewhat more difficult to deal with. An approach sim-
ilar to Vigilante’s Self-Certifying Alerts (SCA’s) is probably

appropriate: an error report must contain enough informa-
tion to duplicate the error or vulnerability automatically.
We note that most users will not have the expertise to in-
ject fake reports and that deliberately generating crash re-
ports at a manual timescale effectively means continuously
crashing an application, which most users won’t have the
patience for.

Valgrind is a popular platform for creating such security
analysis tools; researchers have implemented instruction set
randomization [2], function profiling [19], and taint-tracking
[25] tools. Our own experience with Valgrind tools suggests
that most applications remain usable, but are noticeably
slower during startup and somewhat slower during opera-
tion. Slicing the monitored application up in an Application
Community style should reduce the performance overhead,
as each member of the DAC only does a fraction of the total
work. Since the application is slowed down for a small (and
potentially variable) part of its operation, the user may be
able to rationalize the reduced performance by incorrectly
blaming their CPU, network hardware, ISP, primary mem-
ory, operating system, the computer in general, or even other
spyware or malware.

6. CONCLUSIONS
We have described a new class of malware based on the

idea of “Collaborative Insecurity.” A collection of such mal-
ware can be leveraged to perform distributed profiling of a
wide set of applications in order to magnify the ability of the
attacker to identify vulnerabilities and construct exploits. In
an Application Community, such monitoring can assist de-
fensive operations. Instead, a Dark Application Community
employs this type of monitoring to subvert system security.
The key idea is to make a collection of bots a renewable
resource. For example, bots that have been identified as
spam relays or DDoS zombies can be re-commissioned by
the attacker as “research” bots that seek to fuzz or stress
test applications for new vulnerabilities. Such behavior min-
imizes the overhead of botnet maintenance by finding uses
for retired nodes.

Finding vulnerabilities and constructing attacks is a diffi-
cult and time-consuming process. Attackers can benefit as
much as security professionals from automating the iden-
tification of vulnerabilities. Such automated identification
is made easier by the very security tools that attempt to
mitigate the presence of a vulnerability. Attackers can take
advantage of binary-level supervision techniques to quantify
the behavior of applications running on the victim hosts
in the DAC. If these applications include intrusion defense
systems, the DAC can be used as a testing platform to vet
new exploits. The main purpose of a DAC is to support
the assembly of a portfolio of vulnerabilities that the DAC
malware can use to spread. The attacker can employ a
shift-blind attack using this portfolio by shifting to a new
vulnerability after blinding early warning systems with an
expendable exploit. These capabilities motivate a discus-
sion on uses for a trusted computing base and binary-level
behavior tools in order to counter this type of attack.

Acknowledgments
The authors would like to thank the initial round of review-
ers for pointing out ways to deepen the discussion about
automorphic worms and attacks on “smart” defenses. In

16

particular, we were able to refine our definition of automatic
vulnerability discovery. There is some amount of disagree-
ment as to what actually constitutes a vulnerability, and
the reviewers motivated us to clarify our definition. We
were also able to clarify the basic mechanism an attacker
might use to automatically identify vulnerabilities. Lastly,
one reviewer pointed out that a DAC is essentially one way
to define the threat that botnets pose beyond sending unso-
licited bulk email.

The discussion session at the workshop itself was quite
productive and raised a number of issues that we have at-
tempted to address in the final revision. One recurring line
of questioning focused on the feasibility of leveraging “nor-
mal” user input and actions to trigger exploitable vulnera-
bilities. While we explore this question and other issues in
Section 5, it is important to keep in mind that user input is
but one method of driving the “testing” of applications on
behalf of the attacker. We enjoyed the fruitful discussion of
all aspects of this idea. Finally, thanks are again due to Car-
rie Gates and Bob Blakley for their detailed note-taking.

7. REFERENCES
[1] Anagnostakis, K., Greenwald, M. B., Ioannidis,

S., Keromytis, A. D., and Li., D. A Cooperative
Immunization System for an Untrusting Internet. In
Proceedings of the 11th IEEE International Conference
on Networks (ICON) (October 2003), pp. 403–408.

[2] Barrantes, E. G., Ackley, D. H., Forrest, S.,

Palmer, T. S., Stefanovic, D., and Zovi, D. D.

Randomized Instruction Set Emulation to Distrupt
Binary Code Injection Attacks. In Proceedings of the
10th ACM Conference on Computer and
Communications Security (CCS) (October 2003).

[3] Brumley, D., Newsome, J., Song, D., Wang, H.,

and Jha, S. Towards Automatic Generation of
Vulnerability-Based Signatures. In Proceedings of the
IEEE Symposium on Security and Privacy (May
2006).

[4] Chinchani, R., and Berg, E. V. D. A Fast Static
Analysis Approach to Detect Exploit Code Inside
Network Flows. In Proceedings of the 8th International
Symposium on Recent Advances in Intrusion Detection
(RAID) (September 2005), pp. 284–304.

[5] Costa, M., Crowcroft, J., Castro, M., and

Rowstron, A. Vigilante: End-to-End Containment
of Internet Worms. In Proceedings of the Symposium
on Systems and Operating Systems Principles (SOSP)
(October 2005).

[6] Crandall, J. R., Su, Z., Wu, S. F., and Chong,

F. T. On Deriving Unknown Vulnerabilities from
Zero-Day Polymorphic and Metamorphic Worm
Exploits. In Proceedings of the 12th ACM Conference
on Computer and Communications Security (CCS)
(November 2005).

[7] Dagon, D. The Botnet Trackers. Washington Post
(February 2006).
http://www.washingtonpost.com/wp-dyn/content/

article/2006/02/16/AR20060%21601388.html.

[8] Du, W., and Atallah, M. J. Secure Multi-Party
Computation Problems and their Applications. In
Proceedings of the New Security Paradigms Workshop
(September 2001), pp. 11–20.

[9] Garfinkel, T., and Rosenblum, M. A Virtual
Machine Introspection Based Architecture for
Intrusion Detection. In 10th ISOC Symposium on
Network and Distributed Systems Security (SNDSS)
(February 2003).

[10] Ianelli, N., and Hackworth, A. Botnets as a
Vehicle for Online Crime.
http://www.cert.org/archive/pdf/Botnets.pdf,
December 2005.

[11] Kim, H.-A., and Karp, B. Autograph: Toward
Automated, Distributed Worm Signature Detection.
In Proceedings of the USENIX Security Conference
(August 2004).

[12] King, S. T., Chen, P. M., Wang, Y.-M.,

Verbowski, C., Wang, H. J., and Lorch, J. R.

SubVirt: Implementing Malware with Virtual
Machines. In Proceedings of the IEEE Symposium on
Security and Privacy (May 2006).

[13] Krugel, C., Kirda, E., Mutz, D., Robertson,

W., and Vigna, G. Polymorphic Worm Detection
Using Structural Information of Executables. In
Proceedings of the 8th International Symposium on
Recent Advances in Intrusion Detection (RAID)
(September 2005), pp. 207–226.

[14] Krugel, C., Toth, T., and Kerer, C.

Decentralized Event Correlation for Intrusion
Detection. In Proceedings of the International
Conference on Information Security and Cryptology
(ICISC) (December 2001).

[15] Leyden, J. DDoSers attack DoubleClick,
http://www.theregister.co.uk/20 04/07/28/ddosers
attack doubleclick/ , July 2004.

[16] Li, J., Ehrenkranz, T., Kuenning, G., and

Reiher, P. Simulation and Analysis on the Resiliency
and Efficiency of Malnets. In Proceedings of the 19th

Workshop on Principles of Advanced and Distributed
Simulation (PADS 2005) (2005).

[17] Lincoln, P., Porras, P. A., and Shmatikov, V.

Privacy-Preserving Sharing and Correlation of
Security Alerts. In Proceedings of the USENIX
Security Symposium (2004), pp. 239–254.

[18] Locasto, M. E., Sidiroglou, S., and Keromytis,

A. D. Application Communities: Using Monoculture
for Dependability. In Proceedings of the 1st Workshop
on Hot Topics in System Dependability (HotDep-05)
(June 2005).

[19] Locasto, M. E., Stavrou, A., Cretu, G. F.,

Stolfo, S. J., and Keromytis, A. D. Quantifying
Application Behavior Space for Detection and
Self-Healing. Tech. Rep. CUCS-017-06, Columbia
University, 2006.

[20] Malan, D. J., and Smith, M. D. Host-Based
Detection of Worms through Peer-to-Peer
Cooperation. In Proceedings of the 3rd ACM Workshop
on Rapid Malcode (WORM) (November 2005).

[21] Moore, D., Shannon, C., Voelker, G., and

Savage, S. Internet Quarantine: Requirements for
Containing Self-Propagating Code. In Proceedings of
the IEEE Infocom Conference (April 2003).

[22] Nethercote, N., and Seward, J. Valgrind: A
Program Supervision Framework. In Electronic Notes
in Theoretical Computer Science (2003), vol. 89.

17

[23] Newsome, J., Brumley, D., and Song, D.

Vulnerability–Specific Execution Filtering for Exploit
Prevention on Commodity Software. In Proceedings of
the 13th Symposium on Network and Distributed
System Security (NDSS) (February 2006).

[24] Newsome, J., Karp, B., and Song, D. Polygraph:
Automatically Generating Signatures for Polymorphic
Worms. In Proceedings of the IEEE Symposium on
Security and Privacy (May 2005).

[25] Newsome, J., and Song, D. Dynamic Taint Analysis
for Automatic Detection, Analysis, and Signature
Generation of Exploits on Commodity Software. In
The 12th Annual Network and Distributed System
Security Symposium (February 2005).

[26] Raiciu, C., Handley, M., and Rosenblum, D.

Exploit Hijacking: Side Effects of Smart Defenses. In
Proceedings of the SigCOMM Workshop on Large
Scale Attack Defense (LSAD) (September 2006).

[27] Reiher, P., Li, J., and Kuenning, G. Midgard
Worms: Sudden Nasty Surprises from a Large
Resilient Zombie Army. Tech. Rep. CSD-TR040019,
University of Oregon, 2006.

[28] Richardson, T. Cloud Nine blown away, blames
hack attack. http://www.theregister.co.uk/
content/archive/23770.html, January 2002.

[29] Robertson, W., Vigna, G., Kruegel, C., and

Kemmerer, R. A. Using Generalization and
Characterization Techniques in the Anomaly-based
Detection of Web Attacks. In Proceedings of the 13th

Symposium on Network and Distributed System
Security (NDSS) (February 2006).

[30] Singh, S., Estan, C., Varghese, G., and Savage,

S. Automated Worm Fingerprinting. In Proceedings of
Symposium on Operating Systems Design and
Implementation (OSDI) (2004).

[31] The Cambridge-MIT Institute. DoS-Resistant
Internet Working Group Meetings, February 2005.

[32] The Honeynet Project & Research Alliance.
Know your Enemy: Tracking Botnets.
http://www.honeynet.org, March 2005.

[33] Toth, T., and Kruegel, C. Accurate Buffer
Overflow Detection via Abstract Payload Execution.
In Proceedings of the Symposium on Recent Advances
in Intrusion Detection (RAID) (2002).

[34] Wang, C. A Security Architecture for Survivability
Mechanisms. PhD thesis, University of Virginia, 2000.

[35] Wang, H. J., Guo, C., Simon, D. R., and

Zugenmaier, A. Shield: Vulnerability-Driven
Network Filters for Preventing Known Vulnerability
Exploits. In ACM SIGCOMM (August 2004).

[36] Wang, K., and Stolfo, S. J. Anomalous
Payload-based Network Intrusion Detection. In
Proceedings of the 7th International Symposium on
Recent Advances in Intrusion Detection (RAID)
(September 2004), pp. 203–222.

[37] Yegneswaran, V., Barford, P., and Jha, S.

Global Intrusion Detection in the DOMINO Overlay
System. In ISOC Symposium on Network and
Distributed Systems Security (February 2004).

[38] Young, A., and Yung, M. Malicious Cryptography:
Exposing Cryptovirology. John Wiley and Sons,
February 2004.

18

