

Inconsistency in Deception for Defense

Vicentiu Neagoe, Matt Bishop

Dept. of Computer Science

University of California at Davis

One Shields Ave.

Davis, CA 95616-8562

email: {neagoe,bishop}@cs.ucdavis.edu

ABSTRACT
The use of deception is one of many defensive techniques being

explored today. In the past, defenders of systems have used

deception haphazardly, but now researchers are developing

systematic methods of deception. The cornerstone of these

methods is internal consistency: projecting a “false reality”, or

“fiction”, that the attacker is to accept as reality. We challenge the

necessity of this cornerstone, and explore the nature and possible

uses of inconsistency in deception as a defense.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection – access

controls, information flow controls, invasive software.

H.1.2 [Models and Principles]: User/Machine Systems – human

factors, human information processing, software psychology.

General Terms
Experimentation, Security, Human Factors.

Keywords
Deception, inconsistency, security, operating systems.

1. INTRODUCTION
The art of deception is invaluable in warfare and conflict. It

is used to trick the adversary into taking actions that absorb

resources or position resources to make them easier to attack. It is

used to sap the morale of the adversary, thereby affecting their

ability to initiate actions or to respond to attack. It is also used to

conceal actions against the adversary. Sir Winston Churchill

summarized the use of deception best when he said, “In time of

war, the truth is so precious, it must be attended by a bodyguard

of lies.”

A deception aims to force the target of the deception to

perceive a false reality (called a fiction for short). Deception may

be consistent or inconsistent. A consistent deception builds a

fiction that functions under the rules of reality, so the attacker

does not perceive the deception. This is the usual mode, because

by controlling the fiction, the deceiver can control the perception

of the adversary and, indirectly, affect the adversary’s actions.

With luck, the adversary will act as the deceiver wishes.

There are abounding wartime examples of deceptions where

consistency was critical. For example, the British created a false

military officer, faking his death, and causing the body to wash up

on the Spanish shore. The body had on it papers indicating a false

location for an Allied attack. Hence it was imperative the

Germans not realize the deception. In fact, they did not, and

diverted their resources to defend a coastline that was never

attacked. Interestingly, even after the Allies landed, the German

High Command did not realize that the landing was the real attack

for several days; they continued to think it was a diversion [15].

Inconsistent deceptions serve an entirely different purpose.

Their goal is to discombobulate and disorient the adversary. The

adversary will realize that something is wrong, possibly even

realize that there is a deliberate attempt to deceive them, but not

know which perceptions are of fiction and which are of reality.

Thus, they will be confused. Possible responses include trying to

figure out which perceptions are of reality, or trying to withdraw

from the situation, or acting on random perceptions.

In the “cyberworld,” defenders have responded to attacks

with deception. The best known case was Cliff Stoll’s use of

deception to keep an intruder on an international telephone line

for several hours, downloading a bogus but interesting file [21].

The authorities were able to trace the call, and broke up a spy

ring. Stoll raises the issue of whether defenders should remain

open to an intruder once they are detected:

Should we have remained open? A reasonable

response to the detection of this attack might have been

to disable the security hole and change all passwords.

This would presumably have insulated us from the

intruder and prevented him from using our computers to

attack other internet sites. By remaining open, were we

not a party to his attacks elsewhere, possibly incurring

legal responsibility for damage?

... Closing up ... would have done nothing to

counter the ... offenders...
... had we closed up, how could we have been

certain that we had eliminated the intruder? With

hundreds of networked computers at LBL, it is nearly

impossible to change all passwords on all computers.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NSPW 2006, September 19-22, 2006, Schloss Dagstuhl, Germany.
Copyright 2007 ACM 978-1-59593-857-2/07/0007...$5.00.

31

Perhaps he had planted subtle bugs or logic bombs in

places we did not know about. Eliminating him from

LBL would hardly have cut his access to MILNET. And,

by disabling [attacker's] access into our system, we

would close our eyes to his activities: we could neither

monitor him nor trace his connections in real-time.

We agree with Stoll that, in many cases, keeping the attacker

in our sight is preferable to cutting her access to our systems and

deception provides a means for doing just that.

Cheswick’s response to Berferd is another classic in this area

[5], and foreshadowed much of the honeypot work. Honeypots

and honeynets are systems designed to look like production

systems, to deceive intruders into attacking the systems or

networks so that the defenders can learn new techniques or better

understand the attackers’ goals without risking their production

systems. Sandboxes and virtual machines limit the actions of the

attackers while giving the appearance of unfettered access to

resources.

All these deceptions are consistent. Stoll’s actions were

designed to make the attacker think he had found a system with

classified documents on it. Cheswick created a falsity of a system

that was old, slow, and vulnerable. Honeypots and honeynets are

systems, so they present a consistent reality of being systems.

Sandboxes and virtual machines attempt to present themselves as

systems; while they may be less successful, especially if the

attacker can determine he is running in confinement, they present

a consistent falsity (or reality, depending on the goals of the

confinement).

Our work begins with the assumption that the attacker has

already been detected, so regular users are not affected by these

tactics.

We argue that inconsistent deception has been overlooked as

a viable tool for defense in the cyber-world. Our paper is

organized as follows. First, we review some of the work being

done in deception. We then discuss inconsistent deception in more

detail, and give a scenario as an example of where inconsistency

would be more useful than consistency. We present a model of

deception, and discuss the advantages of allowing inconsistency

in the deception. We conclude with suggestions for future

research.

2. BACKGROUND
Several technologies for providing deception are currently

being studied. Software decoys are agents that protect objects

from unauthorized access [12,13,14,19,20]. The goal is to create a

fiction that the defended systems are not worth attacking or that

the attack was successful. The researchers considered tactics such

as responding with common system errors and inducing delays to

frustrate attacker. The work assumed consistency of the deception.

Red-teaming experiments at Sandia tested the effectiveness

of network deception on attackers working in groups [6]. Results

indicated that deception mechanisms at the network level could

successfully delay attackers for a few hours. Deception apparently

wore down those who were exposed to it and prompted some

experimental groups to quit the experiments before they were

over. Even the teams not being deceived doubted truthful answers

and contemplated whether these responses were deceptive. In one

experiment designed to lead attackers to perform a sequence of

particular actions, researchers developed an attack graph and

planned deceptions in such a way that an attacker would follow a

predetermined path through the graph. The attackers followed

many of the predicted sequences.

Deception at the host level modifies system behavior when

an attacker is logged in. One method of implementation is to use

an execution wrapper that intercepts program execution requests

and optionally runs a different program without the user detecting

the switch [18]. The problem here is that many command

interpreters perform some of the requested actions directly,

without invoking system calls and thereby bypassing the wrapper.

Symantec's ManTrap [11] is a honeypot that automatically

generates content such as email exchanged between different

users. If an attacker observes these indicators, he will be under the

impression that the system has active users. It implements

separate environments through cages, so attackers are unaware of

their isolation and cannot escape from the cage.

Castelfranchi’s research combines cognitive science with

computer science and artificial intelligence [2,3,4,8,9]. He

explores whether computers can choose a deception ploy that

would be cognitively plausible [8] by comparing the computer's

selection with those of human subjects. About 50% of the

selections matched, indicating that the computer could generate

fictions that the human would believe to be reality half of the

time.

All the above work either assumes consistency of the

deception or tries to implement a deception that is consistent.

Apparently, none have explored inconsistent deception.

The goals of deception can be either to keep the attacker on

the system in order to trace him, or to have them go away. If we

desire for them to go away, we must induce the attacker to lose

interest so that she leaves out of her own initiative. If we simply

cut them off, they may try to come back through a different way,

but if they go away on their own, then they are unlikely to come

back.

If we want the attacker to stay, we may distract her by taking

her down a path that leads nowhere. For example, we may present

her with a fake vulnerability or misconfiguration so that she

moves away from her original attack which might have

succeeded.

3. INCONSISTENT DECEPTION
Current deception research focuses on consistent deception

because of an underlying paradigm that consistency is more

beneficial than inconsistency. If the attacker sees something

inconsistent, then he will conclude that deception is being used on

the system. Previous work assumes it would be bad if deception is

detected by the attacker.

Tognazzini discusses stage magic principles for interface

design and emphasizes the importance of consistency [22].

"Consistency is the key to conviction... Irregularities destroy

naturalness... When naturalness disappears... the spectator's

attention becomes vigilant and alert". He supports that vigilance

and alertness would be disastrous to deception.

The Greek philosopher Parmenides summed this up

succinctly in his law of non-contradiction: “Never shall this be

proved—that things that are not, are.” [16]. But other Greek

32

philosophers disagreed. In particular, Heraclitus asserted that

contradictions existed and indeed were central to identity: “Not

only could it be stated that identity is the strife of oppositions but

that there could be no identity without such strife within the

identity.” [7].

On a philosophical note, Gotesky [10] mentions that

inconsistency is an accepted part of life. People cope with it.

Inconsistency does not stop people from acting and it can be used

as a means for attaining goals. In combat situations, deception is

assumed, so the enemy may not believe a message unless a

contradiction is asserted. In mathematics, paraconsistent logic

allows one to study contradictions formally [17].

This suggests that inconsistent deception may be as useful a

defensive technique in “cyberspace” as in real life. It suggests that

even if an attacker identifies inconsistencies, she may not

conclude that deception is involved, but may attribute the

inconsistencies to system problems or errors, or even her own

misperceptions.

To present a consistent reality, the deception mechanisms

need to keep track of previous answers given. Inconsistency has

advantage over consistency because there is no need to keep track

of previous responses.

4. MODEL OF DECEPTION
All commands can be classified in two categories: do

commands and tell commands. Do commands (write) request

some change in the system state. Tell commands (read) obtain

system information without requesting any change. These are

analogous to a mutator and observer in object-oriented

programming. Do is like a mutator and tell is like an observer.

Do commands can be modeled as a 3-tuple: (command,

action performed, system response). Command is the set of

commands available on the system. Action performed reflects

whether the system faithfully performed the requested action.

System response indicates whether the system says the request

was performed or not. Deleting and modifying files are examples

of do commands.

Tell commands are modeled as a pair: (command, system

response). Command is the set of commands available to the

system and system response is the information returned by the

system as a response to the command. Directory listings and

reading files are tell commands.

Table 1 depicts all cases for a do command. The action

performed column describes whether or not the system performed

the requested action. System response indicates whether the

system said the command was executed (success) or whether it

was not executed (fail). The system will either indicate that the

request was fulfilled or give an error indicating why the request

was not fulfilled. Response truthfulness is true when the system

response is consistent with the action performed.

The verify response column gives the system response to a

subsequent verification request. Both do and tell commands can

be used to verify whether an action was performed in a previous

request.

Lines 3 and 8 represent the behavior of a normal system. In

lines 2 and 5, the answers returned in a verification request are

consistent with the answers given in the original request. Verify

truthfulness indicates whether the verify response is an accurate

reflection of the system.

For each (system response, verify response) combination,

there is both a Yes and an No in the “action performed”

column, so an attacker cannot determine what happened in the

system, even if multiple verifications are made and inconsistent

results are obtained.

Through inconsistent deception, a system that normally

replies with a status for commands executed can be essentially

turned into a system that returns no status for requested actions.

The consistent column indicates whether the system response

of the original request and the verify response were consistent. In

half the cases, replies are consistent with each other. Two cases

are consistent because they are part of normal system behavior.

The other two cases represent deception.

As an example, Table 2 instantiates the above for a request to

delete a file. Action performed describes whether the system

deleted the file. System response indicates the response of the

system call to delete the file when the user executes the delete

command. The system will either indicate that the request was

fulfilled or give an error indicating a reason for failure.

Table 1. Deception Options for a do Command

Action

performed

System

response

Response

truthfulness

Verify

response

Verify

truthfulness
Consistent

1 No Success False Fail True No

2 No Success False Success False Yes

3 No Fail True Fail True Yes

4 No Fail True Success False No

5 Yes Fail False Fail False Yes

6 Yes Fail False Success True No

7 Yes Success True Fail False No

8 Yes Success True Success True Yes

33

An attacker can use both do and tell commands for

subsequent verifications on whether an action was performed. He

can verify whether the file was deleted by using the tell command

“list directory contents”. Verify response indicates whether the

file is present in the directory listing returned. Probing for the

existence of a file can be done without obtaining a directory

listing. For example, opening the deleted file or requesting its

status information with the 'stat' command will indicate whether

the file still exists.

Do commands can also be used to probe for the existence of

a file. If a user tries to delete a non-existent file, the system will

respond with an error because the file does not exist.

Suppose an attacker deletes a file and the system responds

with “the file was deleted”. If the attacker later uses the directory

listing program to verify that the file is not displayed in the

directory listing, he has no way of knowing whether the file was

actually deleted and both the system response and the verify

response were true, or if the system response was false and the

listing of the file is currently being hidden. Responses can also be

randomized so that the responses to various requests are

inconsistent. If we desire to lead the attacker in a specific

direction, a weighing function can be used to increase the

frequency of some responses, for example to lead the attacker to

believe that the less frequent responses are probably erroneous—

but leaving doubt in the attacker’s mind.

Human nature suggests that attackers will trust sources with

structured and redundant information more than single item

information sources. Implementing consistent deception for

highly structured information sources is more difficult, such as for

a raw device. If the attacker knows how to decipher the raw

format of a file system, and notices in the file allocation table that

the file claimed to be deleted earlier still exists, he would have

some (high) degree of assurance the file was not deleted. It is

easier to reply falsely to a deletion request than to forge the raw

contents of a file system. The file system has redundancy and a

complex semantic structure. It is difficult to capture this structure

in a false, yet consistent, way for all requests. So an attacker can

conclude that the information obtained from reading the raw file

system is more trustworthy than a result returned by a system call.

Table 3 represents an exploit for privilege escalation.

Suppose the requested action is a buffer overflow exploit.

Performed action indicates whether the exploit was successful. If

the exploit is successful, the system responds with no error, while

some error is returned if the exploit is not successful. Various tell

commands can be used to verify whether the attacker obtained the

desired privileges.

Table 3. Deception options for privilege escalation.

Escalated

privileges

System

response

Response

truthfulness

Verify

response

Verify

truthfulness
Consistent

1 No No error False Not admin True No

2 No No error False Admin False Yes

3 No Error True Not admin True Yes

4 No Error True Admin False No

5 Yes Error False Not admin False Yes

6 Yes Error False Admin True No

7 Yes No error True Not admin False No

8 Yes No error True Admin True Yes

In some cases there are many paths to a piece of

information, and no perfect method exists for attaining the

confidence that all paths are covered. For example, consider the

Linux system, and how an attacker might determine the current

Table 2. Deception options for file deletion.

 File deleted System response
Response

truthfulness

Verify

response

Verify

truthfulness
Consistent

1 No Deleted False File exists True No

2 No Deleted False File gone False Yes

3 No Not deleted True File exists True Yes

4 No Not deleted True File gone False No

5 Yes Not deleted False File exists False Yes

6 Yes Not deleted False File gone True No

7 Yes Deleted True File exists False No

8 Yes Deleted True File gone True Yes

34

working directory of her process, which is stored in the kernel.

Linux provides at least three different mechanisms:

1. Read the kernel memory directly and parse out the location

for the current working directory. This requires the

attacker to read /dev/kmem using the sys_read() system

call, and translate the stored information into the directory

path name.

2. Run the pwd command, which uses the sys_getcwd()

system call to access the information. That system call in

turn uses the kernel function d_path() to convert the current

working directory’s internal identifier into a string

(directory name).

3. The Linux system keeps some process information in a

special file system “/proc”. In the subdirectory

corresponding to the current process is a file called “cwd”.

This is a (symbolic) link to the current working directory.

So, use “ls” to obtain the target of the link called “cwd”.

The “ls” command uses the system call sys_getdents() to

obtain the contents of the “/proc” file system. As “/proc” is

a virtual file system, its interface uses the kernel function

d_path() as above to obtain the directory name that “cwd”

links to. Note that the underlying mechanism, although

appearing to be a conventional symbolic link, does not

implement actual symbolic links.

See Figure 1.

Figure 1. Multiple paths to directory information

Developing a credible, consistent deceptive mechanism

under Linux that provides access to a fiction of the kernel memory

is perhaps the most difficult aspect of deception. Implementing

such a mechanism requires keeping track of the location of data in

the kernel memory, as well as the deceptive responses. When a

memory location is accessed through a memory reference or

through the file corresponding to the kernel memory,

“/dev/kmem”, the buffer containing the real information needs to

be overwritten with deceptive information before being passed to

the user. If the result from kernel memory is different that the

other two sources, an attacker would find the kernel memory more

credible for the reasons discussed above.

While not all paths need to be intercepted for implementing

inconsistency, the paths that are not intercepted will always give

accurate information. The attacker may be able to hone in on the

sources that are always accurate and consistent within themselves.

On the other hand, the attacker does not know whether that

particular path is consistent because it is not intercepted, or

because the deception tactic on that path is designed to give

consistent and predictable answers.

Inconsistency can be used to confuse the attacker and may be

the best tool for misdirecting the attacker to focus his efforts in

other areas. When exposed to inconsistencies, attackers may

become distracted from their original goal by trying to reconcile

the different system responses. Even when people are presented

with apparent inconsistencies and contradictions in honest non-

deceptive systems, figuring out why a system is acting

inconsistently is frustrating. Attackers may not even suspect

deception when inconsistencies are presented since encountering

apparent contradictions is a part of everyday interaction with a

computer.

If the attacker recognizes that inconsistent deception is being

used against him, he might attempt to compensate by gaining as

much information from various independent sources (various

paths and system calls). Then he must decide which of those

sources has a better probability of being reliable based on how

difficult it would be to implement a semantically meaningful

deception for a certain source. For example, it would be more

difficult to create meaningful semantics for a raw disk device than

for a system call returning one number.

User Kernel

Program
System

Call Table

Directory

path info

sys_getdents()

d_path()

sys_read()

sys_getcwd

35

Prohibited requests will never be performed, so this complies

with the principle of least privileges. Though the replies will be

inconsistent, the attacker can be sure that such a request is not

performed, unless the attacker succeeds.

We assume hackers are entirely logical and rational entities.

While this may not be the case, it is a safer assumption and will

allow for a more robust model.

Because of the nature of deception, the capacity to determine

the presence of deception is eliminated. If an attacker detects

inconsistency, he doesn't know if he is exposed to a deception that

is simulating plausible malfunctions, or to a normal system that is

truly malfunctioning.

For example, when a user deletes a file on a UNIX system,

only the inode is actually deleted. If this inode is a symbolic link

naming the file, then the file still exists. Because of insufficient

information in a user's mental model, such system behavior can

appear inconsistent even though no deception is at work. The

Windows file system generates a temporal inconsistency between

the cache and the disk. There is a time delay from when a file is

deleted to when it is actually deleted from the disk.

For greater homogeneity between normal systems and

systems that implement inconsistent deception, normal systems

should ideally portray some degree of inconsistency also.

Fortunatelly, normal systems already have some inconsistencies

due to imperfect design and implementation, so no additional

inconsistencies need to be added to real systems.

Furthermore, inconsistencies can be accidental or deliberate.

Deliberate inconsistency can be used to divert attention.

Defenders can use deliberate inconsistencies to manipulate the

attacker's beliefs and control where their attention is focused.

Inconsistency induces delays in decision making as people

evaluate and assess the information. Inconsistency also distracts

because humans try to resolve inconsistency, and this wastes the

attacker's time and energy. As an example, a mechanism that

selected randomly from 15 false error messages is a mechanism

for deliberate inconsistency.

Accidental inconsistencies occur due to factors outside the

defender’s control. For example, if the defender intends to present

a consistent fiction, but the mechanisms designed to do so are

incomplete or fail, then the attacker may notice the inconsistency

and act in a manner that the defender does not expect. This type of

inconsistency typically is a problem, because the deception is

designed to drive the attacker towards some goal—and the

inconsistency will distract the attacker while she tries to reconcile

the conflicting information. In the example of determining the

current working directory, if the first two methods returned a

(consistent) false result, but the third (erroneously) returned the

correct result, then the inconsistency is accidental.

Finally, inconsistencies may be semantic or data

inconsistencies. If deceptive results are to meet a goal of tricking

the defender into taking some particular action, the deceptions

must be consistent enough to convince the attacker of the truth of

the fiction that the defenders project. This means that if the

attacker expects results or data with specific semantics, the

deception must provide it. This is a form of consistency, and as

noted can be very difficult to achieve. Inconsistent deception

suffers from no such difficulty. If the semantics can be preserved,

then the data itself can be inconsistent; but the semantics

themselves can be made inconsistent.

For an example, let's return to our file deletion example. The

semantics of the deletion command may allow one of three error

messages: “file not found”, “not enough privilege”, or “file in

use”. Suppose the user tried to delete a file and received the error

message “not enough Xenix semaphores”. This message is

semantically meaningless because it is inconsistent not with the

data but with the semantics of the system itself. Even if every

attempt to delete the file causes the same error message, the data

(that there is an error) is consistent. But the particular result (“not

enough Xenix semaphores”) is inconsistent with the semantics of

the delete command. Hence we have semantic inconsistency.

The effect of semantic inconsistencies may lead the attacker

to think her understanding of the semantics of the system is

erroneous. If she looks at the documentation for the system, the

most probable reaction is that the documentation is out of date or

itself inconsistent with the actual semantics of the system. This

leads to more confusion on the part of the attacker.

5. IMPLEMENTATION ISSUES
Consider the example of determining the current working

directory. If a single method of obtaining that information returns

the same result for any given directory, but the three methods each

return different results for the same directory, the system is

vertically inconsistent. If one method returns different results for

any given directory, the system is horizontally inconsistent.

Vertical inconsistency is useful when the defender wants

each path to some information to return predictable results, but

these results to differ when compared with other paths. In this

case, the attacker will likely conclude that a deception is under

way. An open question is whether the attacker can determine the

reality based on an analysis of the sources—and whether the

defender could reason similarly and spend her efforts making the

most credible sources deceptive.

Horizontal inconsistency is useful when the defender wants

to confuse the attacker, and make her think that either a very poor

deception is under way, or that the system is damaged and errors

are inhibiting its correct operation. It is difficult to see what

purpose other than frustrating the attacker this method serves; but

frustration is a valid defensive goal, and if the attacker can be

driven away, so much the better.

This leads to the question of where to place the deceptive

mechanism if one wants to ensure inconsistency. The answer

depends in part upon the goals of the deception and in part upon

the architecture of the system.

First a general observation. One achieves the best control

over the deception by placing the mechanisms as close to the

resource as possible, ideally in the reference monitor controlling

access to the resource (if such a reference monitor exists). For

example, if the resource is a computer system serving web pages,

the deceptive mechanisms should be placed in the servers

guarding access to the system. For the current working directory

name in our previous example, the deceptive mechanisms would

be placed in the reference monitor controlling access to those

bytes of memory.

The architecture of the system determines whether a

reference monitor exists for the desired resource. If so, then

36

placing the deceptive mechanism in the reference monitor allows

one to ensure vertical inconsistency (or consistency), simply by

returning different (or identical) results every time the resource is

accessed. If no such reference monitor exists, then there may be

multiple paths that access the resource directly. In this case,

ensuring vertical inconsistency (consistency) requires that the

mechanism co-ordinate responses from different paths, to ensure

the inconsistency (consistency) of the results. This may require

complicated mechanisms. It may also cause some paths to be left

alone, because monitoring them may be too difficult.

Returning to our current working directory example for a

Linux system, the deceptive mechanisms must be placed in the

kernel, and ideally would detect any attempt to access that

location of memory. But the reality is not ideal, and without a

complex, slow mechanism the kernel could not detect the first

method (reading the raw kernel memory file). An astute attacker

could use this to uncover the real current working directory.

A last issue is that of diminishing returns. Adding a

consistent deception mechanism to an existing system requires

analyzing the system and determining where to place the

mechanisms, designing an infrastructure to let the different

mechanisms communicate, and studying the inferences that an

attacker might make to ensure that the mechanisms force the

attacker to draw consistent inferences. As the mechanisms are

refined to produce deceptions that inhibit inconsistent inferences,

and eliminate both vertical and horizontal inconsistency, they

become more expensive to implement and use. By way of

contrast, inconsistent mechanisms are simpler, cheaper, and as

discussed above may be equally effective in handling attackers.

6. FUTURE DIRECTION
Developing a comprehensive deception model for classifying

the various options available for creating deceptive ploys would

provide defenders with a variety of ploys to achieve a particular

end. For this to work, the effects of each type of ploy need to be

determined. There will, of course, be variations based on the

attackers’ knowledge and personalities, but researchers should be

able to establish some general guidelines. We plan to conduct

psychological experiments with human subjects to determine the

effectiveness of various deceptive tactics.

Our current efforts focus on human users. Future efforts

testing inconsistency on automated attacks will be useful.

Whether attackers tend to go with their initial decision and

pay less attention to subsequent inconsistent inputs is to be

discovered through such experiments. Studies on whether

information theory can be used for measuring the degree of

inconsistency and determine the benefits of such a measure will

also be useful.

7. CONCLUSION
The object of this exercise is to explore the nature of

deception, and to argue that inconsistent deception merits

attention. Achieving consistency of deception can be difficult if

not infeasible in many realistic situations. This raises an obvious

question: why is consistency important? In some cases, the answer

is obvious; for example, Cliff Stoll’s attempts to lure the attacker

into staying connected to the system for hours while his phone

call was traced required that the attacker not realize he was being

deceived. But in other cases, where the goal is to dissuade the

attacker from probing further, or to confuse the attacker,

consistency is not necessary. We do not propose the substitution

of consistency with inconsistency. However, we suggest that

inconsistency has been overlooked as a viable option.

In Rules for Radicals, Saul Alinsky wrote that a fundamental

rule of power tactics is “whenever possible, go outside the

experience of the enemy” ([1], p. 127). Alinsky was writing about

politics, in which consistency is prized but often lacking. Even in

that environment, inconsistency causes problems. Alinsky used

Sherman’s march to the sea as an example of something

inconsistent with prior military tactics—and devastating in its

results.

As with any scientific contribution, the methods developed

can be used for good or evil depending on whose hands they are

in. Inconsistency and deception in general will most likely

contribute to the ‘arms race’ of computer security. For example,

rootkit creators can glean the findings of such research and

improve their malicious software. While consistent deception will

give rootkit creators better tools for hiding their malicious code,

inconsistent tactics will not be attractive to them because the

inconsistency should attract the attention of administrators who

will investigate the inconsistency. On the other hand, deception

will give attackers less assurance about success when installing a

rootkit.

With computers, consistency is not prized; it is expected.

Computers are consistent because they are deterministic. Given

the same circumstances, one action will produce one result. When

this fails, and the same action is expected to produce the same

result but does not, an attacker will wonder what is going on. The

result is “confusion, fear, and retreat” ([1], p. 127).

This paper presented some ideas on inconsistency, and a

model to demonstrate that it is a natural aspect of deception. We

discussed some implementation issues. Inconsistency is feasible,

indeed easier to implement than the consistency other research in

deception strives for. It is a natural part of existence, yet rare in

the world of computing, where one expects predictability unless a

system is malfunctioning.

We would do well to consider adopting Alinsky’s tactic.

Acknowledgement: This work was supported by award CCR-

0311723 from the National Science Foundation to the University

of California, Davis.

8. REFERENCES
[1] Alinsky, S. Rules for Radicals, Vintage Books, New York,

NY (1971).

[2] Carofiglio, V., de Rosis, F., and Castelfranchi, C. “Ascribing

and Weighting Beliefs in Deceptive Information Exchanges,”

User Modeling, Springer-Verlag, Berlin pp. 222-224 (2001).

[3] Castelfranchi, C. “Artificial Liars: Why Computers Will

(Necessarily) Deceive Us and Each Other,” Ethics and

Information Technology 2 (2) pp. 113–119 (2000).

[4] Castelfranchi, C., and Poggi, I. “Lying as Pretending to Give

Information,” Pretending to Communicate, H. Parret (ed),

Springer Verlag, Berlin (1993).

[5] Cheswick, W. “An Evening with Berferd, in Which a

Cracker is Lured, Endured, and Studied,” Proceedings of the

Winter 1992 USENIX Conference pp. 163–173, (Jan. 1992).

37

[6] Cohen, F., Marin, I., Sappington, J., Stewart, C., and

Thomas, E. “Red Teaming Experiments with Deception

Technologies” (2001); available at

http://all.net/journal/deception/experiments/experiments.html

[7] Danaher, J. “The Laws of Thought,” The Philosopher 92(1)

(Spring 2004).

[8] de Rosis, F., Castelfranchi, C., Carofiglio, V., and Grassano,

G. “Can Computers Deliberately Deceive?” Computational

Intelligence 19 (3) p. 235 (Aug. 2003).

[9] Falcone, R., and Castelfranchi, C. “The Socio-Cognitive

Dynamics of Trust: Does Trust Create Trust?” Trust in

Cyber-societies, Springer-Verlag, Berlin pp. 55–72 (2001).

[10] Gotesky, “The Uses of Inconsistency,” Philosophy and

Phenomenological Research 28 (4) pp. 471–500 (June 1968).

[11] Hernacki, B., Bennett, J., and Lofgran, T. “Symantec

Deception Server: Experience with a Commercial Deception

System,” Proceedings of the Seventh International

Symposium in Resent Advances in Intrusion Detection pp.

188–202 (Sep. 2004).

[12] Michael, J., Auguston, M., Rowe, N., and Riehle, R.

“Software Decoys: Intrusion Detection and

Countermeasures,” Proceedings of the 2002 Workshop on

Information Assurance (June 2002).

[13] Michael, J., Rowe, N., Auguston, M., Drusinsky, D.,

Rothstein, H., and Wingfield, T. Phase II—Report on

Intelligent Software Decoys: Counterintelligence and

Security Countermeasures, Technical Report, Naval

Postgraduate School, Monterey, CA (Apr. 2004).

[14] Michael, J. “On the Response Policy of Software Decoys:

Conducting Software-based Deception in the Cyber

Battlespace,” Proceedings of the 26th Annual International

Computer Software and Applications Conference pp. 957–

962 (Aug. 2002).

[15] Montagu, E. The Man Who Never Was, J. B. Lippincott

Company, Philadelphia, PA (1954).

[16] Plato, Sophist 237A.

[17] Priest G., and Tanaka, K. “Paraconsistent Logic,” The

Stanford Encyclopedia of Philosophy, E. Zalta, ed. (Winter

2004); available at

http://plato.stanford.edu/archives/win2004/entries/logic-

paraconsistent/.

[18] Rogers, D. Host-Level Deception as a Defense Against

Intruders, Master’s Thesis., Dept. of Computer Science,

University of California at Davis, Davis, CA (June 2004).

[19] Rowe, N. “Counterplanning Deceptions to Foil Cyber-Attack

Plans,” IEEE Workshop on Information Assurance pp. 221–

228 (June 2003).

[20] Rowe, N., Michael, J, Auguston, M., and Riehle, R.

“Software Decoys for Software Counterintelligence,” IA

Newsletter 5 (1) pp. 10–12 (Spring 2002).

[21] Stoll, C. “Stalking the Wily Hacker,” Communications of the

ACM 31 (5) pp. 484–497 (May 1988).

[22] Tognazzini, “Principles, Techniques, and Ethics of Stage
Magic and Their Application to Human Interface Design,”

Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems pp. 355–362 (1993).

38

