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Abstract

In this paper we propose the new paradigm of applying
diffusion and graph spectral methods for network forensic
analysis. Based on an evidence graph model built from col-
lected evidence, graph spectral methods show potential in
identifying key components and patterns of attack by ex-
tracting important graph structures. We also present the
novel view that the propagation of suspicion in an attack
scene could be modelled in analogy with heat diffusion in
physics systems. In this paradigm, the evidence graph be-
comes the basis for a physical construct, which derives its
properties such as conductivity and heat generation from ev-
idence features. We argue that diffusion and graph spectral
methods not only provide a mathematically well grounded
approach to network forensic analysis, but also open up
the opportunity for applying structured parameter refine-
ment and high performance computation methods to foren-
sic analysis field.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Informa-
tion Systems]: Security and Protection
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Security,Management
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1. Introduction

Networks today are plagued by the increasing scale and
impact of cyber attacks. In addition to detection and pre-
vention of intrusions, it is important to have post hoc in-
vestigation mechanisms that hold attackers responsible for
their malicious actions. Similar to its physical world coun-
terpart, network forensic analysis aims to identify suspi-
cious entities in the scene of attack and reconstruct stepwise
actions of the attacker by reasoning with evidence captured
from networked environments. In contrast to sophisticated
multi-stage attacks and huge amount of available sensor
data, current practices in network forensic analysis are still
mainly done by manual ad-hoc methods, a time-consuming
and error prone process[6]. The analysis process remains
challenging due to the lack of scientifically well-founded and
systematic methods.

In this paper we present a novel view to address the lim-
itations of current ad-hoc analysis methods. Based on our
previous work in forensic analysis with the evidence graph
model, we propose a graph theoretic approach with diffu-
sion and spectral methods. Graph-spectral and related ker-
nel based methods show potential in attack scenario extrac-
tion and attack case profiling with their ability to efficiently
extract structure characteristics of the evidence graph. The
propagation of suspicion in the attack scene is modelled in
analogy with heat diffusion in physics terms. In addition,
our approach provides well a structured framework for pa-
rameter refinement and high performance computation.

The remainder of the paper is organized as follows. A
brief review of our background work in evidence graph model
and hierarchical reasoning framework is presented in sec-
tion 2. Section 3 describes the supporting theoretical back-
ground for proposed diffusion and graph-spectral methods
and their applications in forensic analysis. Section 4 dis-
cusses practical considerations for model refinement and
high performance computation. Finally, section 5 presents
related work and section 6 concludes this paper.
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In this section, we give a brief introduction to the ev-
idence graph model and hierarchical reasoning framework
as the basis of our proposed methods. In our previous work
[18], an extensible graph model has been developed to in-
tegrate collected evidence from heterogenous sources. The
resulting graph structure captures entities, events and func-
tional states in the attack scenario for analysis.

2.1 The Evidence Graph Model
An evidence graph is a quadruple G = (N, E, LN , LE),

where N is the set of nodes, E is the set of edges, LN is
the set of labels for attributes of nodes and LE is the set of
labels for attributes of edges.

In our host-centric evidence graph, each node ni repre-
sents a host level entity of forensic investigation interest and
each edge ei represents a piece of observed forensic evidence.
Each node is characterized by a set of fuzzy functional states
for attack scenario analysis. For example, a limited set
of fuzzy states could be S={Attacker, V ictim, Stepping
Stone, Affiliated}, which describes possible roles of hosts
in the attack scenario. This set of functional classification
could clearly be refined, but we believe it is adequate as an
illustrative start.

Each edge in the evidence graph is characterized by a set
of numerical attributes weight, relevancy and context impor-
tance. These attributes are instantiated based on domain
knowledge. Weight of the edge is a fuzzy value h ∈ [0, 1]
that represents impact of the attack represented with higher
value indicates more serious impact. Relevancy r ∈ [0, 1]
represents the belief that the underlying attack indicated by
the evidence would successfully achieve its expected impact.
Currently we apply a static evaluation approach that com-
pares the prerequisites of an attack with target host’s con-
figuration. If all prerequisites are completely satisfied, its
relevancy value is assigned as 1. If one or more contradict-
ing configurations are found, its relevancy value is assigned
as 0; otherwise we are unable to determine the relevancy
value is assigned as 0.5. Context importance h ∈ [0, 1] is
used to relate significance of evidence with value of the hosts
involved, which is predefined from site specific knowledge
of the network under investigation. Finally, we calculate
priority score for an edge as the product of its weight, rel-
evancy and context importance to indicate overall priority
of the evidence.

2.2 Building the Evidence Graph

With the evidence graph model, we transform foren-
sic evidence from heterogeneous information sources into
a weighted digraph which may include multi-edges. This
graph structure lays the basis for our proposed diffusion
and spectral analysis methods. To construct the evidence
graph, the sequence of intrusion evidence is processed in
time order, starting from the first evidence record and mov-
ing towards the latest evidence record. Evidence with in-
terval time stamps is added to the graph in order of the
start time in their interval and ties are broken arbitrarily.

input : Stream of evidence records in time order
output: Evidence graph G
begin

G ← φ;
foreach evidence E in stream do

foreach host V as subject or object of E do
if V does not exist in G then

CreateNode (G, V );
end

end
CreateEdge (G, E);
foreach host V as subject or object of E do

UpdateNode (E, V );
end

end

end
Algorithm 1: Building an evidence graph

As shown in algorithm 1, we evaluate its subject and
object node of each evidence record in the first step. The
CreateNode and CreateEdge functions add nodes and edges
to the evidence graph. The UpdateNode function performs
fuzzy inference to determine states of the subject and object
nodes, which corresponds to the local reasoning procedure
in our hierarchical reasoning framework.

2.3 Hierarchical Reasoning Framework

We perform forensic analysis with a hierarchical reason-
ing framework of two levels: local reasoning and global
reasoning. The objective of local reasoning is to evaluate
functional states for hosts from local observations. In the
evidence graph context, ”local” means reasoning is solely
based on the node’s incident edges and states of its neigh-
bors. A fuzzy inference approach based on Rule-Based
Fuzzy Cognitive Maps (RBFCM) has been developed to
model the set of node states S described in model defini-
tion. The local reasoning process is regarded as part of the
model generation stage described in the next section. The
fuzzy states inferred could be used to evaluate suspicion
generation in the diffusion model.

The global reasoning process aims to extract the set of
entities tightly connected in the foreground attack scene
and infer their relationships. Based on the evidence graph,
our former approach to the global reasoning process was
as a group detection problem that works in two different
phases: (1) creating new attack groups by generating seeds
for a group and (2) extending the existing group by discov-
ering more hidden members.

As described in previous work [18], we start with a seed
host empirically chosen from its context or network central-
ity metrics. Following that a greedy iterative algorithm is
used to extend the attack group by adding nodes with cor-
relation strength above a predefined threshold as new seeds.
The attack scenario is reconstructed from the extracted
subgraph of correlated nodes and corresponding functional
states from local reasoning results.

2. Preliminaries
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The limitation of this approach is that the reasoning
process remains ad-hoc and is intractable for large scale
analysis. Metrics for seed generation and thresholds in
group expansion process are determined to a large degree
by analyst expertise. The iterative group expanding process
is computationally expensive for massive graphs. Diffusion
and graph spectral methods will provide more systematic
and efficient solutions for both phases of the global reason-
ing process.

• The seed generation phase aims to discover important
suspicious entities as initial seeds of attack group. In
the evidence graph space, the problem can be trans-
formed into identifying clusters of certain important
structure characteristics. In recent graph theory [13,
19] and link analysis [7] work, graph spectral and ker-
nel methods have been well studied to evaluate struc-
ture of large complex graphs.

• The group expansion phase is based on the invariant
that entities belong to the attack scenario of interest
should be strongly correlated through certain suspi-
cious relations. In essence, group expansion can be
regarded as tracking the flow of suspicion across the
evidence graph, which could be explored in analogy
with the diffusion model in classical physics [8].

3. Forensic Analysis with Diffusion and
Graph-Spectral Methods

Based on the evidence graph model, we foresee the po-
tential of diffusion and graph spectral methods in two major
applications of network forensics analysis: attack scenario
extraction and attack case profiling.

• Attack Scenario Extraction is the process of inferring
the set of entities and events associated with the at-
tacker. In our approach, scenario extraction can be
seen as identifying suspicious nodes, extracting clus-
ters in which the constituent nodes are tightly corre-
lated and tracking the flow of suspicion among them.

• Attack Case Profiling is based on the promise that at-
tackers tend to repeat certain behavioral patterns or
strategies. Given a new extracted scenario, the nat-
ural question to ask is whether it is similar to patterns
seen in the past or elsewhere. Knowing the recurrence
of attack scenarios would help the investigator form
appropriate responses. As our evidence graph model
presents a graph based description of attack patterns,
this is similar to the problem of subgraph isomor-
phism, a known NP-complete decision problem [5].
Our goal is to develop efficient graph spectra charac-
terizations for encoding and matching of attack cases.

In the following, we will describe the supportive back-
ground of diffusion and graph spectral methods as well as
their potentials in the above forensic analysis applications.

3.1 Analysis Model Overview

Figure 1 shows the major stages of our network forensics
analysis process.

Figure 1. Overview of network forensic analy-
sis process

• In Evidence Preprocessing phase, intrusion evidence
from heterogeneous information sources such as IDS
alerts, flow records and host logs are normalized into
a unified conceivable format. Abstraction and aggre-
gation are performed to reduce the redundancy in raw
evidence.

• In Model Generation phase, the preprocessed foren-
sic evidence are transformed into evidence graphs. In
this stage attributes of the evidence graph are instan-
tiated based on information retrieved from evidence
depository and knowledge bases. Fuzzy based local
reasoning is also performed to determine each node’s
functional states.

• In Model Analysis phase, we apply diffusion and graph
spectral methods to extract information such as clus-
ter importance and flow of suspicion from the evidence
graph structure, which corresponds to global reason-
ing in our hierarchical reasoning framework.

• In Scenario Interpretation phase, results of diffusion
and graph spectral methods are interpreted and fil-
tered with domain specific knowledge to produce final
analysis report.

3.2 The Laplacian Spectrum and Kernel Based
Methods

Our first approach is to use the Laplacian spectrum of
evidence graphs for scenario extraction. It is known that
many principal properties of a graph are closely related to
its graph spectrum [13, 20]. To characterize the properties
of a graph and extract information from its structure, we
compute the graph spectrum using its Laplacian matrix
representation. Let the graph denoted by G = (V, E) where
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V is the set of nodes and E ⊆ V × V is the set of edges.
The square adjacency matrix A of G is defined as:

A(u, v) =

(
1, if (u,v) ∈ E

0 otherwise.
(1)

where u and v are nodes in the graph. The diagonal
degree matrix D is constructed as D(u, u) = Σv∈V A(u, v).
Then the Laplacian matrix representation of G is given by
L = D − A. The normalized Laplacian is defined as L̂ =

D− 1
2 LD− 1

2 . For a weighted multigraph like our evidence
graph, we can easily deduce its normalized Laplacian as
follows:

L̂(u, v) =

8
><
>:

1− w(u,u)
du

, if u = v and du 6= 0

−w(u,v)√
dudv

, if u and v are adjacent

0 otherwise.

(2)

To simplify eigendecomposition, we ignore the directness
of edges in the evidence graph G to avoid complex eigenval-
ues for nonsymmetric matrix. In equation 2, w(u, v) repre-
sents the sum of priority scores for all edges between node
u and v in the evidence graph. Degree of node u is defined
as du =

P
v w(u, v). Rows and columns of the Laplacian

matrix L̂(G) are indexed by vertices of the evidence graph
G.

Given the Laplacian representation L̂, spectrum of the
evidence graph is obtained by the eigendecomposition L̂ =
ΦΛΦT where Λ = diag(λ1, λ2, ..., λ|V |) is a diagonal ma-
trix of eigenvalues and Φ = (φ1, φ2, ..., φ|V |) is the ma-
trix composed with eigenvectors as columns. The Lapla-
cian spectrum of graph G refers to the set of eigen values
(λ1, λ2, ..., λ|V |).

We observe that structure of the evidence graph offers a
first approximation of attack patterns, though much irrele-
vant noise is included. Therefore we are currently investi-
gating several graph spectral measures to extract the attack
scene from large complex evidence graphs. The Laplacian
spectrum has been extensively explored in graph theory to
characterize graph level structure properties such as connec-
tivity, diameter and path length distribution [13, 1]. Specif-
ically we are investigating spectral metrics that extract two
types of information from the evidence graph: (1) Spectral
features that represent important individual nodes, i.e. the
”key player” in the attack scenario (2) natural clusters of
highly correlated suspicious nodes, i.e. the extended attack
group in the scenario.

As an initial experiment, we perform graph spectrum
analysis on the Lincoln lab LLDOS 2.0 dataset. The LL-
DOS 2.0 dataset contains a multi stage attack scenario that
include the following sessions:

1. The attacker probes the target network using a valid

DNS HINFO query;

2. The attacker compromises the DNS server by exploit-
ing the Solaris Sadmind vulnerability.

3. The attacker uploads exploit scripts and mstream DDoS
agent/master to the compromised DNS server by FTP.

4. The attacker telnet to the compromised DNS server
and repeats the probing and Sadmind attack process
towards hosts in the same domain. After successful
attack against a Solaris host, the attacker uploads
mstream agents by FTP.

5. The attacker access the compromised hosts by telnet
and initiates DDoS attack towards an external web
server.

We us Snort as the IDS sensor to detect intrusions in the
traffic dump. Flow records are also extracted and stored
into a MySQL database. In the preprocessing phase, raw
alerts are aggregated to reduce redundancy. File trans-
fer(ftp) and remote access(ssh,rlogin,telnet) flows associ-
ated with hosts that have Attacker, V ictim or Stepping
Stone states activated in selected time frames are incorpo-
rated to build the evidence graph.

Figure 2. Graph Laplacian spectrum for LL-
DOS 2.0 dataset

In the next step, we perform spectral analysis on the
evidence graph. Figure 2 shows eigenvalues of the graph’s
normalized Laplacian. We truncate the graph spectrum by
picking leading eigenvectors corresponding to the n largest
eigenvalues v1, v2, ..., vn as the largest eigenvalues are more
informative of graph structure. Distribution of eigenvec-
tors v1, v2, v3, v4 is shown in figure 3. In each eigenvector
we identify the significant components and find the corre-
sponding subgraph in the evidence graph for examination.
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• For principal eigenvector v1, the corresponding sub-
graph is shown in figure 4(a). The largest magnitude
component in v(1) locates host 131.84.1.31, which is
target of the DDOS attack. An isolated cluster caused
by background attack is also extracted.

• Figure 4(b) shows the subgraph corresponding to sig-
nificant components in eigenvector v2. We observe
that it represents a subset of the components repre-
sented in dominant eigenvector v1.

• As can be seen in figure 4(c), components of signif-
icant magnitude in eigenvector v3 map to a cluster
of routers and service hosts in the DMZ, which are
brought up by background traffic artifacts.

• In eigenvector v4, we observe that components of most
significant magnitudes maps to the two DDOS agent
hosts 172.16.115.20 and 172.16.112.50. The other nodes
shown in figure 4(d) are caused by background arti-
facts.

V1 V2 V3 V4

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

Distribution of major eigenvectors

Eigenvector

Figure 3. Distribution of major eigenvectors
from LLDOS 2.0 graph

It is interesting to see that we can extract important
components in the attack scenario and identify clustering
patterns from the leading eigenvectors. Eigenvectors with
lower magnitude of eigenvalues exhibit a random pattern
and mostly correspond to trivial entities in the attack sce-
nario. To reduce the amount of irrelevant clusters in the
extracted subgraph, we could build a history profile for fil-
tering purpose. The failed break-in attempt against inside
host 172.16.112.207 is not extracted, which indicates that
better spectra metrics and model refinement need to be in-
vestigated. Moreover, due to the deficiency in background
traffic and attack generation of LLDOS 2.0 dataset [11, 12],
possible correlation between the scale of background traffic
and attack activity may lead to biased results.

In addition to Laplacian spectrum analysis, we are also
investigating closed related kernel based methods to ana-
lyze the evidence graph. In machine learning works, kernel
methods have been used to capture correlations between
data points represented in a graph structure. In essence
kernel methods can be viewed as an implicit mapping from
data space to some feature space that better captures in-
herent structure of the data.

Specifically, we are interested in a class of kernels de-
noted as heat kernels for their suitability in discrete graph
space. The heat kernel is defined by the heat equation asso-
ciated with the graph Laplacian, i.e. ∂ht

∂t
= −L̂ht, where ht

is the heat kernel and t is time. The solution is found by ex-
ponentiating the Laplacian spectrum, i.e. ht = Φe−ΛtΦT .
The resulting heat kernel for the graph is a |V |×|V | matrix,
where ht(u, v) =

Pn
i=1 e−λitφi(u)φi(v).

We believe kernel based methods have potential in our
graph based network forensic analysis. It has been shown
that short time behavior of the heat kernel is determined by
local topology of the graph while its long time behavior is
determined by the global structure of the graph [19]. Thus
by varying t we are able to extract attack patterns at mul-
tiple scales from the underlying evidence graph structure.
Consequently the heat kernel has been explored to charac-
terize and compare graphs [20, 19], which leads to applica-
tion in attack case profiling. As attack patterns are repre-
sented by extracted graph structure and the kernel function
maps graph structure into a vector space, we can evaluate
similarity between attack patterns by making comparisons
between corresponding point distributions. Here a major
challenge is to develop appropriate kernel parameters that
minimize the cospectrality effect of graphs and provide an
effective spectral characterization. Adequate abstraction of
the evidence graph might be needed prior to encoding and
matching. Moreover, information such as functional states
of nodes need to be considered together with the spectral
signature for profile building.

3.3 Diffusion Model

Our second approach is to transform evidence graph
analysis into approximations of steady state energy diffu-
sion problems. In classical physics, the heat diffusion equa-
tion is used to describe the diffusion of heat through con-
tinuous media:

∇2T =
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2
=

c

k

∂T

∂t
−Q(x, y, z) (3)

where ∇ is the continuous Laplacian operator. In the
equation, Q represents the effects of an internal source of
heat while c and k are constants representing the heat ca-
pacity and conductivity of the material.

The diffusion model is closely related to the spectral
methods described above. For a graph G = (V, E), if
we consider each node as |V | independent physical items
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(a) Subgraph for significant components in v1 (b) Subgraph for significant components in v2

(c) Subgraph for significant components in v3 (d) Subgraph for significant components in v4

Figure 4. Sub evidence graphs extracted from eigenanalysis

where diffusion of heat can occur across the edges in E,

then ∂2T (u)

∂v2 is analogous to L̂(u, v)~T where ~T is a vector of
temperatures defined at all V .

As described in the previous section, the heat kernel of
a graph can be exponentiated to generate time step solu-
tions to a diffusion problem. However, extracting all eigen-
pairs by eigendecomposition may be impractical for large
directed graphs. On the other hand, the steady state diffu-
sion model can be solved by more direct numerical methods
as they do not require extraction of eigenvalues and eigen-
vectors. With the steady state diffusion model we are able
to handle massive directed evidence graphs for more effec-
tive scenario extraction.

Diffusion problems in the steady state are often solved
by means of a finite element analysis (FEA) as well as the
closely related finite difference analysis. FEA attempts to
approximate the solutions of a set of partial differential
equations at a finite set of elements subject to a set of
boundary conditions. The general approach in FEA is to
make a first order Taylor series approximation of the dif-
ferential equation at each point (element) in the material
based on its neighbor elements and the associated bound-
ary conditions. These approximations typically lead to n
equations in n unknowns which can then be solved using
straightforward Gaussian elimination, iterative methods, or
even multi-resolution techniques [3].

Our fundamental motivation for exploring the diffusion
model is that the attack process can be regarded as the
propagation of suspicion in the network, which could be
modelled in analogy with heat diffusion in the evidence
graph. To model properties of the diffusion model, we
explicitly utilize the concept of suspicion in that each en-
tity and piece of evidence are regarded as the container or
carrier of certain amount of suspicion. In this paradigm,
the evidence graph becomes the basis for a physical con-

struct. Heat represents suspicion and temperature indicates
the level of suspicion. Based on local reasoning results in
the model generation stage, the inferred fuzzy states are
used to emulate suspicion injected into the graph. Each
node with certain activated states propagates suspicion to
its neighborhood. On the other hand, each edge acts as
an insulated conductor connecting nodes. Conductivity of
the edge could be modelled based on features of evidence,
such as duration, classification and traffic rate. Additional
parameters include the boundary conditions that models
suspicion radiating and entering nodes at some rate. The
resulting suspicion flow map would present a quantitative
measure of attack propagation and help the investigator fo-
cus on ”hot” areas for further investigation. The flow map
would also help us identify hosts and connections that are
involved in the attack scenario but are not directly associ-
ated with security alerts.

4. Practical Issues

In this section we discuss important issues in the prac-
tical application of our proposed diffusion and graph spec-
tral methods. We argue that our approach has significant
advantages in model refinement and computation perfor-
mance.

4.1 Model Refinement

As shown in figure 1, effectiveness of network forensic
analysis is affected by parameters assigned in various stages.
In the model generation stage, appropriate weights should
be decided for different types of evidence. In the model
analysis phase, it is important to find appropriate parame-
ters for kernels and diffusion models such as decay factor
and conductivity. In current forensic analysis process, pa-
rameters are just chosen by expert knowledge, which in-
evitability lead to the question that these values are some-

104



what arbitrary. Moreover, it is difficult to evaluate the
quality of parameters and their impact on analysis results.

One significant advantage of our proposed diffusion and
graph spectral methods is that it provides a mathematically
well-grounded approach to refine models by reverse solving
analysis results. The initial arbitrary designed model is
refined by algebraically and then numerically back solving
for parameters in an iterative process. First, analysis is
performed on the labelled training datasets with a para-
meter set initialized manually. Second, the analysis results
are evaluated with the ground truth. We go back to the
model and attempt to find an assignment of parameters
that achieves the most desirable results. An intuitive ap-
proach is to create an over determined system that we will
solve using simplex or gradient descent methods. Finally,
the revised set of parameters will then be used against new
scenarios in a forward analysis to evaluate its performance.
Here a big challenge is to develop training datasets that are
representative of real world attack scenarios.

4.2 Computation for Large Scale Analysis

The increasing scale of cyber attacks and huge amount of
evidence necessitates efficient computational forensic analy-
sis. To our knowledge, most work in intrusion analysis field
such as alert correlation methods follow a serial computa-
tion model and little has been done in using high perfor-
mance computing for security data analysis.

One advantage of our approach is that we can utilize well
established computational methods and software packages
for large scale network forensic analysis. The computational
building blocks of diffusion and graph spectral methods in-
cluding eigenanalysis and solution of linear systems have
been studied for over 60 years in electronic digital comput-
ers. This has lead to a wealth of computational methods
and software that accommodates huge problem sets in high
performance, parallel and distributed computing environ-
ments.

Eigenanalysis, the process of solving problems by finding
eigenvalues and eigenvectors, has been explored in a variety
of fields. Efficient algorithms and software for eigenanaly-
sis of systems with 106 variables have been developed [10].
This would easily handle an evidence graph containing the
same number of hosts. From the perspective of available
solutions for linear system equations supporting finite ele-
ment simulations and eigenanalysis, we foresee several ex-
citing possibilities. The first is to use computer clusters for
analysis of network datasets larger than any considered fea-
sible before. Second, by using problem decomposition and
multilevel solution techniques [3], it is possible to perform
online intrusion analysis with cooperating agents distrib-
uted across networks. For example, each monitor would
utilize iterative methods derive solutions from its own view
and share solutions between each other. The performance is
related to iterative solution techniques and the level of cou-
pling between evidence observed by the distributed moni-
tors.

5. Related Work

Our approach is stemmed from the evidence graph model
and reasoning framework proposed in [18]. To our knowl-
edge, no similar techniques have been used in the network
forensic analysis field. Most past work such as alert cor-
relation techniques [17, 2, 15] focus on a specific type of
evidence instead of forming big picture incident reconstruc-
tions. Network forensic tools like eTrust [4] and NetDetec-
tor[14] have been widely used to capture evidence and in-
vestigate security breaches, however the analysis procedures
are mostly ad-hoc or based on hard coded knowledge.

Important properties of the Laplacian graph spectrum
are summarized in [13, 1]. In [20], a wide variety of spec-
trums based on different graph representations are explored
as metrics for graph matching. It has been shown that
the heat kernel performs well in characterizing structure of
graphs [19]. In computer vision work, spectral character-
izations has been developed to capture hierarchical graph
structures into a low-dimensional vector space [16].

Heat kernels on discrete graph space are first defined in
[8]. There are studies that explore the application of ker-
nel methods to link analysis [7, 9]. In [7], kernels based
on the graph Laplacian are used to yield link analysis mea-
sures such as importance and relatedness. Property of the
kernel based measures is evaluated with a network of biblio-
graphic citations. These kernel measures could be extended
to deal with more complex relationships represented by our
evidence graph model.

6. Conclusion

In this paper we have presented a novel paradigm that
applies diffusion and graph spectral methods to network
forensic analysis. Our approach has potential to transform
the current ad-hoc forensic investigation process into a sys-
tematic framework with well grounded mathematical meth-
ods. We show that diffusion and graph spectral methods
have promise for attack scenario extraction and attack case
profiling.

This work is the starting point towards an entirely new
paradigm of network forensic analysis. We are currently
in the process of investigating appropriate graph spectral
measures and steady state diffusion model. An important
concern is how our proposed approach would perform in a
realistic noisy network environment where most of the ev-
idence are false positives or irrelevant background attacks.
With the development of diffusion and graph spectral mea-
sures, more experiments will be conducted to evaluate their
performance under different scenarios and signal-noise ra-
tios.
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