
Self-Healing: Science, Engineering, and Fiction

[Position Paper]

Michael E. Locasto
Department of Computer Science

Columbia University
locasto@cs.columbia.edu

ABSTRACT
Most attacks on computing systems occur rapidly enough to frus-
trate manual defense or repair. It appears, therefore, that defense
systems must include some degree of autonomy. Recent advances
have led to an emerging interest in self–healing software as a so-
lution to this problem. It is not clear, however, if the effort to
create self–healing mechanisms is actually worth the cost in terms
of development effort, deployment complexity, or runtime supervi-
sion and monitoring. Furthermore, no general purpose self–healing
mechanisms have been shown to be achievable for general systems;
it is hard to know beforehand exactly what an application should
do in response to an arbitrary vulnerability. A number of very hard
problems remain for researchers to explore before self–healing can
be reliably applied to real computing systems. This paper provides
a critique of the current state of the art and offers the position that
self–healing as a concept should be relegated to the status of au-
tonomic computing: a goal worth aiming for as a way to push the
boundary of the possible rather than an achievable end in itself.
Along the way, we identify a number of important but unsolved
research problems in this space.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of Systems—
Reliability, availability, and serviceability; D.2.4 [Software Engi-
neering]: Software/Program Verification—Reliability

General Terms
Security

Keywords
self-healing, autonomic computing, self-* systems

1. INTRODUCTION
Research on self–healing, in the context of system security, orig-

inates from one key question: how do we go about building sys-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NSPW’07, September 18–21, 2007, North Conway, NH, USA.
Copyright 2007 ACM 978-1-60558-080-7/07/09 ...$5.00.

tems that react correctly to an arbitrary intrusion attempt?1 This
question is not only intellectually stimulating, but it is also of great
practical concern because most current computer security systems
are only geared to protecting against threats that we already know
about. In an ideal virtual world, or so the reasoning goes, systems
could anticipate the occurrence of unknown attacks and respond
appropriately without human supervision. This hope is the essence
of one facet of the concept of autonomic computing.

Current software protection techniques typically abort a process
after an intrusion attempt (e.g., a code injection attack). Although
this approach is considered “safe”, it is unappealing because it
leaves systems susceptible to the original fault upon restart and
risks losing accumulated state. In contrast, self–healing mecha-
nisms seek to mask or correct failures such that the protected appli-
cation maintains its availability [21, 22].

Recent advances in self–healing software techniques have paved
the way for autonomic intrusion reaction, but real world deploy-
ments of such systems have lagged behind research efforts. The
limits of detection technology have historically mandated that re-
searchers address the shortcomings of intrusion detection before re-
action mechanisms (i.e., self–healing mechanisms) are considered
– an attack must be detected before a response can be mounted.
In addition, many system administrators are reluctant to allow a
defense system to make unsupervised changes to the computing
environment, even though (and precisely because) a machine can
react much faster than a human. Furthermore, this speed may not
be matched by any type of precision or accuracy.

Automating a response strategy is difficult, as it is often unclear
what a program should do in response to an error or attack. It seems
that enabling systems to be “smarter” about security is a natural
research area to explore. It is difficult, however, to determine what
this combination actually means in technical terms, especially since
the expectations of self–healing virtual systems go far beyond the
capabilities for real computing systems.

1.1 Real & Virtual Self–Healing
Self-healing, in a larger physical sense, happens in very con-

strained and specific environments. Human skin heals remarkably
well, but humans are unable to regenerate entire limbs, as some
simpler species (e.g., crustaceans) are capable of doing. The laws
of thermodynamics suggest that self–renewal and regeneration al-
ways comes at a cost — it is not an intrinsic law of nature or capa-
bility of physical systems to correctly regenerate. Breakdowns of
regeneration systems can lead to massive failure — some types of

1In order to limit the scope of the paper, we refer to self–healing
in terms of protection from attacks rather than the general class
of failures, although the particular symptoms of an attack may not
differ greatly from such events.

43

cancer occur when the normal process of cell replacement breaks
down and cells mutate and reproduce in an unregulated fashion.

In time, all systems fail. Organisms age and die, and mechanical
systems and physical structures break down in a few months or
years. Even physical systems that exist on a massive timescale are
not immortal: stars run out of fuel. In contrast, humans imagine
systems that never fail. In particular, we conceive of information
systems as capable of dealing with errors and continuing operation
in the face of failure.

As computer scientists, we use abstraction to create the illusion
of a perfect world for our virtual systems. In this environment,
every process has enough memory space for its code and vari-
ables. Resources are always available and execution time is plen-
tiful. Many of the most difficult problems in computer science re-
search originate from the failure of this little fiction as it meets the
constraints of the physical machines that host it and the assump-
tions and expectations of the users that interact with the system.

Virtual systems, therefore, must fail, often in spectacular ways
and in response to seemingly small perturbations. Although we
may imagine perfect systems, we lack the ability to translate the vir-
tual ideal to a physical form while maintaining fidelity to the origi-
nal. Virtual systems are implemented, hosted, and run on physical
systems that have their own limitations and failure rates. Systems
contain design and implementation flaws precisely because they are
the product of an inherently human process. Unintentional flaws
and failures are bad enough, and such difficulties have been the fo-
cus of research in fault tolerance and dependable systems for the
past few decades. A skilled and determined attacker compounds
the problem by actively subverting a system to undermine the will,
desire, and ownership rights of the user, operator, or administrator.

1.2 Self–Healing
A major problem for security researchers has been to design and

implement mechanisms that automatically recover from these at-
tacks. This requirement raises the question: what mechanisms can
researchers design ahead of time (that is, before an application is
deployed) that can be woven into the execution of arbitrary appli-
cations that can handle attacks the researchers or system designers
may not have anticipated? In concrete terms, this is like deploying a
system with an empty exception handler that is generated and filled
in at runtime. Self–healing then becomes the question of how to de-
sign a code generator that assesses the current application’s control
flow, data flow, environment, identifies the vulnerability being ex-
ercised, and creates a set of instructions that ameliorate the effects
of the exploit and prevents the future exercise of said vulnerability.

Automatically identifying certain classes of vulnerabilities ap-
pears feasible; a large number of techniques can detect code injec-
tion attacks, and tainted dataflow analysis can help capture a precise
notion of a vulnerability as a conjunction of conditions on the target
addresses of branch instructions (i.e., the control flow path). Sys-
tems like VSEF [24] and Vigilante [9] do exactly this. Systems like
DART (Directed Automated Random Testing) or EXE [5] can help
identify attack inputs before a system is deployed. From there, the
next logical step is to find similar vulnerabilities in the codebase,
either at runtime or during compilation. Beyond this, however, it is
unclear what action is best, or how such actions can be evaluated.
We next review related work and enumerate a list of problems that
must be addressed so that self-healing can move from the realm of
science fiction to science and engineering.

2. RELATED WORK
Systems can self-heal in a variety of ways, and we briefly review

some of the recent research on these systems. Unfortunately, self-

healing is somewhat of an overloaded term, and it has traditionally
been used to describe distributed systems consisting of many iden-
tical or near identical components that can transparently fail over to
a backup or spare replica component. We are primarily concerned
with heterogeneous systems like common COTS (Commercial Off
The Shelf) software. These software systems must automatically
protect themselves from attacks delivered via previously unseen
inputs or for previously unknown vulnerabilities. Detecting such
attacks and vulnerabilities can make use of related work in both
host-based and network-based anomaly detection [18, 29, 16, 17,
14, 2, 23, 32].

2.1 Self-Healing
Intrusion defense mechanisms typically respond to an attack by

terminating the attacked process, although some also attempt to
generate either vulnerability [12] or exploit signatures [20, 34]. Ef-
fective remediation strategies remain a challenge, but some first ef-
forts include failure oblivious computing [27], error virtualization
[28], crash-only software [6], and data-structure repair [13]. Both
error virtualization and failure oblivious computing represent sig-
nificant performance overhead and have the potential to lead the
application down a semantically incorrect execution path.

Rx [26] checkpoints execution in anticipation of errors. When
an error is encountered, execution is rolled back and replayed with
the process’s environment changed in a manner consistent with the
semantics of the APIs the code uses – an attempt to avoid a seman-
tically incorrect response [27, 28]. Ganapathy et al. [15] attempt to
retrofit enforcement of security policies and illustrate this process
by inserting authorization checks into the X server.

2.2 Hardening Software
Methods to protect a process from subversion have typically fo-

cused on protecting the integrity of a process’s jump targets. For
example, StackGuard [10] and related approaches attempt to de-
tect changes to the return address (or surrounding data items) of a
stack frame. If the integrity of this value is violated, execution is
halted. Program shepherding [19] validates branch instructions in
IA-32 binaries to prevent transfer of control to injected code and to
ensure that calls into native libraries originate from valid sources.
Control flow is often corrupted because the system eventually in-
corporates input into part of an instruction’s opcode, a jump tar-
get, or an argument to a system call. Recent work has focused on
dataflow analysis of tainted data and ways to prevent such attacks
[31, 9]. Abadi et al. [1] propose formalizing the concept of Con-
trol Flow Integrity, observing that high-level programming often
assumes properties of control flow that remain unenforced at the
machine language level. CFI statically verifies that execution stays
within a control flow graph (the CFG serves as a policy).

2.3 Vulnerability Signatures
Recent work [33, 30] calls into question the ultimate utility of

exploit-based signatures, and Brumley et al. [4] supplies an initial
exploration of some of the theoretical foundations of vulnerability-
based signatures. Vulnerability signatures help classify an entire
set of exploit inputs rather than a particular exploit instance. Iden-
tifying the underlying vulnerability may help reason about the ap-
propriate action to take to heal or repair an attacked process.

As an illustration of the difficulty of creating vulnerability sig-
natures, Crandall et al. [11] discuss generating high quality vulner-
ability signatures via an empirical study of the behavior of poly-
morphic and metamorphic malcode. They outline the difficulty of
identifying enough features of an exploit to generalize about a spe-
cific vulnerability.

44

Cui et al. [12] discuss combining tainted dataflow analysis (sim-
ilar to that used in the Vigilante system [9]) and protocol or data
format parsing [3] to construct network or filesystem level “data
patches” to filter input instances related to a particular vulnerabil-
ity. The system, ShieldGen, uses a feedback loop to perform local
search of the exploit space. Newsome et al. [24] suggest generat-
ing and distributing vulnerability–specific execution filters (VSEF)
based on the identification of a particular control flow path derived
from taint analysis [25].

Bouncer [8] helps revive the notion that content filtering is a vi-
able way to defend systems even in the presence of polymorphic
exploit input. Bouncer (similar to ShieldGen) captures a sample
exploit instance and the effect it has on an instrumented application
(namely, the binary control flow path that the exploit input causes
the application to take). Bouncer then enters a feedback loop in-
tended to identify other control flow paths and, consequently, other
conditions on input that help identify other “legal” exploit forms.

While ShieldGen also uses a feedback loop, the purpose of Shield-
Gen’s feedback loop is to use a protocol parsing engine to generate
other inputs guided by the protocol grammar. In contrast, Bouncer
performs program slicing to identify actual control flow paths in
the application. This approach is more robust, as there is no guar-
antee that the published protocol specification matches the actual
application code. While no solution can be simultaneously sound
and complete, it is not clear that ShieldGen provably provides ei-
ther property. Bouncer filters are sound; it remains unclear at the
time of writing, however, if Bouncer extensively covers the space of
possible exploit inputs in a reasonable amount of time, as program
slicing is a potentially expensive form of analysis.

Bouncer offers a realistic way forward for intrusion defense; it
walks a fine line between simple content–based exploit filters and
more drastic self–healing approaches. The former can be defeated
by almost trivial polymorphic techniques, as we show in other work
[30], and the latter have a major problem sustaining application se-
mantics (a problem that this thesis, in part, addresses). Thus, sys-
tem defenders are faced with a bit of quandary: they would like
to use content filtering (it has fairly cheap runtime overhead, can
protect more than a single application at a time, and is easy to im-
plement), but it is almost trivial for a smart and determined attacker
to bypass. On the other hand, although more invasive (and compli-
cated) defense mechanisms can defeat a family or class of exploits,
these mechanisms often cause a self–induced DoS (i.e., application
crash) at best.

3. DISCUSSION ITEMS
The ability for a process to automatically repair itself in the face

of previously unseen attacks that exploit unknown vulnerabilities
remains a key open problem in information systems security. The
major difficulty stems from the fact that systems designers lack pre-
science: they cannot write code to handle vulnerable states they
cannot or have not yet conceived. Even though they may be able
to write code that detects well-known classes of attack, or that han-
dles anticipated faults (such as the failure to open a file), systems
can fail in unexpected ways, and it is non–obvious what actions
should be undertaken by the system to “self–heal.”

Furthermore, most current systems only seek to repair memory
corruption attacks. True self-healing systems have to anticipate and
fix unknown classes or types of attack. This requires high-level
reasoning: a repair system that forms some suspicion and is then
able to test those conjectures.

3.1 Attacker Intent
Attacks themselves may be symptoms of a larger effort aimed at

a nebulous (from the defender’s standpoint) goal. While individual
steps of an attack can be repeatedly frustrated or turned away by
a self–healing mechanism, understanding the root cause or intent
of an attacker’s actions based on a series of attack events may help
streamline repair efforts or otherwise improve the efficiency of de-
fense. A more nimble defense can help system defenders regain the
initiative from the attacker; the philosophy behind OODA decision
feedback loops are examples of this capability.

This challenge is perhaps the most difficult to surmount. Security
is, at its core, the imposition of one principal’s will on another.
Since this definition is morally neutral (it makes no judgment about
the motivation of the principals), it creates the difficulty faced by
any automated defense: inferring malicious intent. Determining the
intent of some action or event is hard for humans, and it is unlikely
that inferring intent is a concept that can be easily modeled by a
computational process. Nevertheless, understanding the root cause
of attacks requires making a judgment about the input and actions
of components in the system.

3.2 Automatic Repair Validation
System owners are understandably reluctant to permit automated

changes to their environment and applications in response to at-
tacks. The risks of doing so range from legal liability to severe
consequences like death or injury (in the case of automated fac-
tory machinery or medical equipment). Testing an automatic repair
helps raise the confidence level in self–healing systems, although it
can never prove a repair mechanism correct.

One critical part of such testing is the verification that the changes
made by the self–healing mechanism actually defeat the original
attack or close variations thereof. Another problem involves ensur-
ing that the changes or repairs do not introduce new vulnerabilities.
Automatically generated fixes must be subjected to rigorous testing
in an automated fashion. This problem is the essence of Automatic
Repair Validation (ARV), a new area of intrusion defense research.
ARV consists of automatically validating each step in the process
toward a newly healed configuration2. ARV encompasses the entire
spectrum of an automated response system’s functionality: attack
detection, repair accuracy, repair precision, and impact on normal
behavior:

1. Validation of detection — The system must verify that the
events causing an alert actually produce a compromise. In
the case where the sensor is an anomaly detector, the detec-
tor’s initial classification must be confirmed.

2. Validation of a repair’s accuracy — The system must test
and verify that the repair defeats at least the exploit input
that triggered the detection. Verifying accuracy requires the
identification and replay of the attack inputs. However, iden-
tifying these inputs is challenging, as they may not have been
captured correctly (or at all) by the defense instrumentation.
The challenge is greater if the input is contained in network

2A reader asked whether it would be enough to simply validate the
final configuration. For certain ARV problems (listed above), vali-
dating the final configuration is precisely the purpose of a solution
to each problem. For example, relaunching the input responsible
for the original attack against the healed configuration provides an
independent sanity check on the final configuration. We distinguish
between testing the final configuration and testing individual steps
(i.e., detection, diagnosis, repair, deployment, etc.) because each of
these steps may be prone to error or false positives themselves —
we certainly do not wish to enact a potentially costly repair stage
if it is not needed. In some cases, the complexity of the software
application under consideration may preclude the construction of
simple measurements of the final configuration.

45

traffic — data that most humans find difficult to rapidly ana-
lyze by hand.

3. Validation of a repair’s precision — The fix must be precise,
in the sense that it blocks malicious variants of the original
attack. For example, if the fix is an input filter, the system
must ensure that the signature generation does not fall prey
to an allergy attack [7].

4. Validation of a repair’s impact on application behavior —
Behavior exhibited by the application after self–healing should
be similar to the previous behavior profile of the application.
Researchers need to invent measures for bounding the se-
mantic correctness or behavior of an application. Control
flow graph distances may be one way to measure changes
due to self-healing repairs.

Some repairs are better than others. For self–healing systems
that perform some sort of state search, this implies that the search
mechanism needs an evaluation function to rate progress toward
a certain locally or globally optimal solution. Even if exhaustive
search is employed, the solution may not be sound: it may cause
a semantically incorrect response. The delay, or amount of time
taken to effect a repair, therefore, is probably not the best measure-
ment of the quality of the repair process.

The last ARV challenge depends greatly on quality behavior pro-
filing. Profiling the behavior of applications (especially when the
application is a black box or in situations where we lack source
code access) can assist efforts to detect deviations from normal op-
eration, repair aspects of the data and control flow, and validate
those repairs.

3.3 General Problems
Even the term “self–healing” is somewhat of a misnomer. Sys-

tems need some sort of external reference monitor built as part of
the execution environment to actually supervise an application’s ac-
tions and decide to “fix” the outcome. The reference monitor needs
some sort of insulation between itself and the attacked application
(clearly, they should not reside in the same memory space without
adequate protection). The reference monitor is needed to intercept
and filter execution. This is a well understood mechanism, but what
it does and when it does it are the research questions. The how is
usually a choice of engineering or implementation: a VMM, emu-
lation, dynamic binary rewriting, modified hardware, etc.

Determining just when a repair should occur is a straightfor-
ward but non-trivial decision that affects the architecture and de-
ployment of a self-healing system. It seems as if a repair should
be enacted immediately after an attack is detected. However, the
attack may have corrupted much of the system state for an indeter-
minate amount of time before detection. Therefore, a self-healing
implementation must provide some time interval to enact a repair.
It has three choices: (1) anticipate an attack by speculatively exe-
cuting a slice of an application, (2) attempt to vet and repair each
instruction in an application as it is executed, or (3) retroactively
replace and repair actions taken by the application from the time
the exploit first entered the system to the time it was detected.

Speculative, in-place, and retroactive approaches must all deal
with I/O (i.e., file or network I/O, interrupts, and other events)
that occurs during and before the repair period. Such communi-
cation changes the global state of the world, and illegal or attacker-
controlled messages cannot be taken back (e.g., if the exploit causes
financial information to be leaked, it is difficult to retrieve that data
from an uncooperative or malicious communications partner).

Currently, repairing a system after a successful intrusion is costly
because cleanup is largely a manual process, and the complexity of

modern information systems makes it difficult to conclusively trace
the extent of the corruption. When this process is automated, it
typically resets systems to some initial state, thus deleting valuable
data that may not have been backed up. Environments that cannot
afford comprehensive backup mechanisms would be better served
by a process that can work backward from an attack to undo the
specific damage caused.

/usr/src/cmd/cmd-inet/usr.sbin/in.telnetd.c
3198
3199 } else /* default, no auth. info available, \

login does it all */ {
3200 (void) execl(LOGIN_PROGRAM, "login",
3201 "-p", "-h", host, "-d", slavename,
3202 getenv("USER"), 0);
3203 }

/usr/src/cmd/login/login.c
1397 break;
1398
1399 case ’f’:
1400 /*
1401 * Must be root to bypass authentication
1402 * otherwise we exit() as punishment for trying.
1403 */
1404 if (getuid() != 0 || geteuid() != 0) {
1405 audit_error = ADT_FAIL_VALUE_AUTH_BYPASS;
1406
1407 login_exit(1); /* sigh */
1408 /*NOTREACHED*/
1409 }
1410 /* save fflag user name for future use */
1411 SCPYL(user_name, optarg);
1412 fflag = B_TRUE;

Figure 1: Solaris 10 telnet bug. The telnet code assumes that
login will perform appropriate authentication; login only
tests whether the daemon is running as root and, if so, allows
authentication to proceed with the supplied username (given
as the argument option value to the -f parameter). An attack
that leverages this coding mistake simply provides a valid input
sequence.

It’s not even clear what self-healing means in the context of bugs
like the Solaris 10 telnet bug (see Figure 1): no stack or heap cor-
ruption occurs, no code injection occurs, no crypto is broken, no
password is guessed. Rather, a “valid” input sequence is used to
provide more access than is “intended.” But how do we measure
intent? One can easily say that the developer’s intent was to cre-
ate such a valid control flow path. Only after a review is the input
path judged to be inconsistent with the intent and function of the
program in some environment (i.e., in other environments, it may
be acceptable for that sort of input path to exist) is a vulnerability
declared to exist.

3.4 Discussion Questions

1. How do we write and place calls to generic fault handlers in
arbitrary software? Can we package some automated rea-
soning solution into system libraries and train developers to
use them, much like developers should (in theory, at least)
remember to check the return values of function calls?

2. Does self–healing imply only restorative or stop–gap mea-
sures, or does it entail a learning response in which the sys-
tem is made more robust as a result of the attack? As one
reviewer put it, “The response to a cut is to repair the flesh,
not to make it cut-proof.”

46

3. Is “self–healing” an appropriate term, given that if the in-
tegrity of the system is violated, we cannot be sure that the
healing mechanism itself remains undisturbed?

4. Is a self–healing capability actually a desirable goal for com-
modity goods like cars and computer systems? Do designers
and manufacturers price themselves out of a market by offer-
ing a highly robust (and correspondingly high cost) product?
Is there an economic incentive to make perfect, self–healing
software? The system must supply a balance of “good enough”
to satisfy system owners without being exorbitantly costly to
design, develop, and maintain (arguably, servicing a system
after every instruction might achieve robust operation, but
the cost of such maintenance seems unreasonable for any re-
alistic application).

5. Current detection, defense, and self-healing systems are eval-
uated in an ad hoc fashion against a self–selected set of ex-
ploits. There is no community benchmark suite or collection
of vulnerabilities for evaluating such systems in a standard
manner. What would such a testbed look like?

4. WORKSHOP DISCUSSION
A number of issues were raised during the discussion of this

topic at the workshop. In particular, a distinction emerged that re-
flected the differing goals of biological self-healing (a very loose
definition of “correct”) and the implied requirements of informa-
tion systems healing. In particular, information systems healing
seems to require a root cause analysis whereas adaptations in bio-
logical systems simply need to be “good enough” to fulfill a primar-
ily reproductive purpose. While self-healing need not be perfect, it
can be difficult coming up with arbitrary and relative measures of
correctness or value for a self-healing response. If such measures
can be formulated, it may be enough to determine a threshold rather
than hold out for a perfect result.

There seems to exist a fundamental distinction between individ-
ual self-healing and population self-healing. The concept of sys-
tems evolution and self-healing in individuals and groups is differ-
ent: biological evolution has had a large amount of time to explore
a space with almost random perturbations; the search does not nec-
essarily need to be directed because it has time to cover the space.
In contrast, practical information systems must operate on a hu-
man timescale and must be far more directed. While we can view
a healed configuration as a state in a solution space, we may not
find such a solution through undirected knob-twiddling in a short
amount of time. Increased search time reduces the availability of a
system, directly contradicting the implied purpose of a self-healing
response: to keep the system available in the face of attack.

As one participant suggested, self-healing can be accomplished
by an exhaustive process of knob-twiddling, or by evolving a sys-
tem over a period of years or decades. The participant suggested
an example of such a robust system is the telephone switching net-
work. An observation was made that most code in the system was
supervisory code meant to support the availability of the system
rather than core code delivering the key functionality of the sys-
tem. Such a system has clear similarities to biological systems that
spend most of their time and energy on maintaining a homeostatic
environment, but the cost of doing so may not be acceptable for
current computing platforms. Perhaps as threats and attacks in-
crease in number and sophistication, computing platforms will be
driven to relinquish large amounts of performance in exchange for
security and self-healing measures.

5. CONCLUSIONS
Program designs will always lack a complete description of how

to handle all errors. System designers cannot remove all vulnera-
bilities before deployment, nor can the plethora of proactive protec-
tion techniques be used to protect any arbitrary application before
deployment against new classes of attacks, or higher-order attacks,
or events that can only currently be judged malicious post-hoc by a
human decision.

No system can be perfectly secure, but research to provide well-
formed, automatic recovery mechanisms seems like an attractive
possibility. Most recent research, however, has barely scratched
the surface by showing limited utility for a single mechanism on
a limited set of applications. Software self-healing, therefore, is a
mixture of science, engineering, and science fiction. It remains to
be seen whether the science can catch up with the fiction in a way
that our engineering knowledge supports.

Acknowledgments
The anonymous reviewers went a long way toward helping shape
the text, cut some extraneous or overwritten verbiage, and focus on
the core issues. We greatly appreciate their comments. We also
thank Matt Burnside for discussions and work on ARV.

6. REFERENCES
[1] ABADI, M., BUDIU, M., ERLINGSSON, U., AND LIGATTI,

J. Control-Flow Integrity: Principles, Implementations, and
Applications. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS) (2005).

[2] BHATKAR, S., CHATURVEDI, A., AND SEKAR., R.
Improving Attack Detection in Host-Based IDS by Learning
Properties of System Call Arguments. In Proceedings of the
IEEE Symposium on Security and Privacy (2006).

[3] BORISOV, N., BRUMLEY, D. J., WANG, H. J., DUNAGAN,
J., JOSHI, P., AND GUO, C. A Generic Application-Level
Protocol Analyzer and its Language. In Proceedings of the
14th Symposium on Network & Distributed System Security
(NDSS) (Feb 2007).

[4] BRUMLEY, D., NEWSOME, J., SONG, D., WANG, H., AND

JHA, S. Towards Automatic Generation of
Vulnerability-Based Signatures. In Proceedings of the IEEE
Symposium on Security and Privacy (2006).

[5] CADAR, C., GANESH, V., PAWLOWSKI, P. M., DILL,
D. L., AND ENGLER, D. R. EXE: A System for
Automatically Generating Inputs of Death Using Symbolic
Execution. In Proceedings of the 13th ACM Conference on
Computer and Communications Security (CCS) (2006).

[6] CANDEA, G., AND FOX, A. Crash-Only Software. In
Proceedings of the 9th Workshop on Hot Topics in Operating
Systems (HOTOS-IX) (May 2003).

[7] CHUNG, S. P., AND MOK, A. K. Allergy Attack Against
Automatic Signature Generation. In Proceedings of the 9th

International Symposium on Recent Advances in Intrusion
Detection (RAID) (2006).

[8] COSTA, M., CASTRO, M., ZHOU, L., ZHANG, L., AND

PEINADO, M. Bouncer: Securing Software By Blocking Bad
Input. In Proceedings of the ACM Symposium on Systems
and Operating Systems Principles (SOSP) (2007).

[9] COSTA, M., CROWCROFT, J., CASTRO, M., AND

ROWSTRON, A. Vigilante: End-to-End Containment of
Internet Worms. In Proceedings of the Symposium on
Systems and Operating Systems Principles (SOSP) (2005).

47

[10] COWAN, C., PU, C., MAIER, D., HINTON, H., WALPOLE,
J., BAKKE, P., BEATTIE, S., GRIER, A., WAGLE, P., AND

ZHANG, Q. Stackguard: Automatic Adaptive Detection and
Prevention of Buffer-Overflow Attacks. In Proceedings of
the USENIX Security Symposium (1998).

[11] CRANDALL, J. R., SU, Z., WU, S. F., AND CHONG, F. T.
On Deriving Unknown Vulnerabilities from Zero-Day
Polymorphic and Metamorphic Worm Exploits. In
Proceedings of the 12th ACM Conference on Computer and
Communications Security (CCS) (November 2005).

[12] CUI, W., PEINADO, M., WANG, H. J., AND LOCASTO,
M. E. ShieldGen: Automated Data Patch Generation for
Unknown Vulnerabilities with Informed Probing. In
Proceedings of the IEEE Symposium on Security and Privacy
(May 2007).

[13] DEMSKY, B., AND RINARD, M. C. Automatic Detection
and Repair of Errors in Data Structures. In Proceedings of
the 18th Annual ACM SIGPLAN Conference on Object
Oriented Programming, Systems, Languages, and
Applications (October 2003).

[14] FENG, H. H., KOLESNIKOV, O., FOGLA, P., LEE, W., AND

GONG, W. Anomaly Detection Using Call Stack
Information. In Proceedings of the 2003 IEEE Symposium on
Security and Privacy (May 2003).

[15] GANAPATHY, V., JAEGER, T., AND JHA, S. Retrofitting
Legacy Code for Authorization Policy Enforcement. In
Proceedings of the IEEE Symposium on Security and Privacy
(May 2006).

[16] GAO, D., REITER, M. K., AND SONG, D. Gray-Box
Extraction of Execution Graphs for Anomaly Detection. In
Proceedings of the ACM Conference on Computer and
Communications Security (CCS) (2004).

[17] GIFFIN, J. T., DAGON, D., JHA, S., LEE, W., AND

MILLER, B. P. Environment-Sensitive Intrusion Detection.
In Proceedings of the 8th International Symposium on
Recent Advances in Intrusion Detection (RAID) (September
2005).

[18] HOFMEYR, S. A., SOMAYAJI, A., AND FORREST, S.
Intrusion Detection System Using Sequences of System
Calls. Journal of Computer Security 6, 3 (1998), 151–180.

[19] KIRIANSKY, V., BRUENING, D., AND AMARASINGHE, S.
Secure Execution Via Program Shepherding. In Proceedings
of the 11th USENIX Security Symposium (August 2002).

[20] LIANG, Z., AND SEKAR, R. Fast and Automated
Generation of Attack Signatures: A Basis for Building
Self-Protecting Servers. In Proceedings of the 12th ACM
Conference on Computer and Communications Security
(CCS) (November 2005).

[21] LOCASTO, M. E., CRETU, G. F., STAVROU, A., AND

KEROMYTIS, A. D. A Model for Automatically Repairing
Execution Integrity. Tech. Rep. CUCS-005-07, Columbia
University, January 2007.

[22] LOCASTO, M. E., STAVROU, A., CRETU, G. F., AND

KEROMYTIS, A. D. From STEM to SEAD: Speculative
Execution for Automatic Defense. In Proceedings of the
USENIX Annual Technical Conference (June 2007),
pp. 219–232.

[23] MUTZ, D., VALEUR, F., VIGNA, G., AND KRUEGEL, C.
Anomalous System Call Detection. ACM Transactions on
Information and System Security 9, 1 (February 2006),
61–93.

[24] NEWSOME, J., BRUMLEY, D., AND SONG, D.
Vulnerability–Specific Execution Filtering for Exploit
Prevention on Commodity Software. In Proceedings of the
13th Symposium on Network and Distributed System
Security (NDSS 2006) (February 2006).

[25] NEWSOME, J., AND SONG, D. Dynamic Taint Analysis for
Automatic Detection, Analysis, and Signature Generation of
Exploits on Commodity Software. In Proceedings of the
12th Symposium on Network and Distributed System
Security (NDSS) (February 2005).

[26] QIN, F., TUCEK, J., SUNDARESAN, J., AND ZHOU, Y. Rx:
Treating Bugs as Allergies – A Safe Method to Survive
Software Failures. In Proceedings of the Symposium on
Systems and Operating Systems Principles (SOSP) (2005).

[27] RINARD, M., CADAR, C., DUMITRAN, D., ROY, D., LEU,
T., AND W BEEBEE, J. Enhancing Server Availability and
Security Through Failure-Oblivious Computing. In
Proceedings 6th Symposium on Operating Systems Design
and Implementation (OSDI) (December 2004).

[28] SIDIROGLOU, S., LOCASTO, M. E., BOYD, S. W., AND

KEROMYTIS, A. D. Building a Reactive Immune System for
Software Services. In Proceedings of the USENIX Annual
Technical Conference (April 2005), pp. 149–161.

[29] SOMAYAJI, A., AND FORREST, S. Automated Response
Using System-Call Delays. In Proceedings of the 9th

USENIX Security Symposium (August 2000).
[30] SONG, Y., LOCASTO, M. E., STAVROU, A., KEROMYTIS,

A. D., AND STOLFO, S. J. On the Infeasibility of Modeling
Polymorphic Shellcode. In Proceedings of the ACM
Conference on Computer and Communications Security
(CCS) (2007).

[31] SUH, G. E., LEE, J. W., ZHANG, D., AND DEVADAS, S.
Secure Program Execution via Dynamic Information Flow
Tracking. In Proceedings of the 11th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-XI) (October
2004).

[32] TAYLOR, C., AND GATES, C. Challenging the Anomaly
Detection Paradigm: A Provocative Discussion. In
Proceedings of the 15th New Security Paradigms Workshop
(NSPW) (September 2006), pp. 21–29.

[33] WANG, H. J., GUO, C., SIMON, D. R., AND

ZUGENMAIER, A. Shield: Vulnerability-Driven Network
Filters for Preventing Known Vulnerability Exploits. In
Proceedings of the ACM SIGCOMM (August 2004).

[34] XU, J., NING, P., KIL, C., ZHAI, Y., AND BOOKHOLT, C.
Automatic Diagnosis and Response to Memory Corruption
Vulnerabilities. In Proceedings of the 12th ACM Conference
on Computer and Communications Security (CCS)
(November 2005).

48

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

