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ABSTRACT
For over 30 years, system software has been bound by com-
patibility with legacy applications. The system software
base, whether proprietary or open source, is dominated by
the programming language C and the POSIX operating sys-
tem specification. Even when commercial operating systems
stray from this model, they don’t go very far.

Unfortunately, the POSIX/C base was constructed in a
more benign environment than today and before many se-
curity issues were widely understood. Rather than fix these
issues, compatibility has been deemed more important than
security, and so this base has been kept intact with all
its flaws. As a result, programmers routinely create soft-
ware with security holes—even in the most security critical
software—and today’s systems are easily attacked.

We propose a new paradigm of system discontinuity which
emphasizes security over compatibility by removing those
constructs in our system software which lead to security
holes in applications. Of course, removing parts of the in-
terface will break applications, and hence the discontinuity.
To deal with this situation, we advocate the use of virtual
machines to enable multiple operating systems to run con-
currently. Thus high security OSs can be used for the most
security sensitive applications. Compatibility is maintained
for less security sensitive applications using legacy operat-
ing systems. Over time, legacy applications can migrate to a
more secure OS, thus raising the security of all applications.

Categories and Subject Descriptors
D.4.0 [Operating Systems]: General; D.4.6 [Operating
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Systems]: Security and Protection; D.4.7 [Operating Sys-
tems]: Organization and Design; D.3.0 [Programming
Languages]: General; D.2.11 [Software Engineering]:
Software Architecture
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1. INTRODUCTION
All of computer security rests on a foundation of correct-

ness. If critical components of a computer system—such
as authentication and authorization (access controls)—are
not correctly implemented there is very little assurance that
the system will work securely. The Trusted Computing Base
(TCB) captures the notion of software components in which
correctness is critical to system security.

The Orange Book [27] requires minimizing the vulnera-
bility of the TCB in systems with high security ratings. At
the highest level, A1, techniques are used both to reduce
the size of the TCB and to minimize its flaws. For exam-
ple, security kernels are mandated to reduce that part of
the operating system kernel in which errors could result in
critical vulnerabilities. In addition, automatic verification
techniques must be used to validate the TCB, thus going to
substantial lengths to reduce errors1. Other TCB require-
ments reduce the susceptibility to attack, for example by
logging of software changes.

The Orange Book concentrates on the issue of confiden-
tiality. Strict confidentiality is very well suited to a TCB
approach: To maintain confidentiality, processes are (1) sim-
ply prevented from reading information for which there is no
“need to know” and (2) once having read that information
are prevented from writing to certain objects [4]. The issue
of covert channels [23, 12, 11], although a thorny problem,
can in principle be addressed within the TCB.

The issue of integrity is more subtle. A security kernel
cannot enforce integrity. It can prohibit processes from writ-
ing files unnecessarily and it can ensure information flow

1In theory, validation should result in removing, not just
reducing, vulnerabilities. But there are inherent limits to
validation which prevents this from occurring.
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integrity [5] is maintained. But it cannot ensure that pro-
cesses write the correct values2 into files to which they have
write privileges—and hence cannot ensure that integrity is
maintained. And thus integrity, unlike confidentiality, in-
herently depends on the applications. In fact, the Orange
Book says: “It must be understood that the completion of a
formal product evaluation does not constitute certification or
accreditation for the system to be used in any specific appli-
cation environment.” But the applications are the purpose
for the system.

For many systems, integrity is more important than con-
fidentiality. Today, it is often the system integrity which is
attacked, for example, converting a system into a bot or ap-
propriating a bank account. Moreover, integrity attacks are
often the first stage of large-scale attacks such as Distributed
Denial of Service and SPAM. Oddly enough, current popular
Operating System (OS) authorization models do relatively
little to protect system integrity [24].

Hence, the correctness of integrity sensitive applications
is essential. But correctness assurance of a non-trivial set
of applications is a formidable problem. To be able to do
so would mean that there is a formal specification for what
those applications must do. (Otherwise, application correct-
ness would not even be defined.) But the formal specifica-
tion of an entire set of applications would be complex, and
its correctness difficult to determine. Therefore, it is only
possible to deal with at most some correctness issues. Like
the validation of a security kernel, a way must be found to
make systems more correct in ways that significantly im-
prove their security, but with the knowledge that failures
will still occur [24].

Fortunately, not every failure is equally damaging. We
have long known that damage in the TCB can be fatal to
system security, like an injury to vital organs can be fatal
to humans. But injury outside the vital organs can also
be fatal. It is thus essential to remove vulnerabilities in
security-critical applications.

Integrity attacks against sensitive applications are there-
fore a deep concern. The most damaging of these include
code injection attacks, which dynamically substitute un-
trusted code for trusted code, for example by buffer overflow.
Other integrity attacks exploit memory corruption errors,
race conditions, Time-Of-Check To Time-Of-Use (TOCT-
TOU) inconsistencies, and error prone constructs. These
bugs are (primarily) in applications, but the pitfalls which
enable these bugs are in systems. Many of these pitfalls can
be avoided by a careful system design. But since compat-
ibility has been paramount, these pitfalls are almost never
removed from systems. Instead, it is up to application pro-
grammers to avoid them.

The practice of expecting programmers to work around
these pitfalls has failed: “experience has shown that only a
hand full of programmers have the right mindset to write se-
cure code” [50]. These security holes regularly show up in
security critical code and in major products from the top
(and richest) companies in high tech. Paradoxically, despite
being difficult for defenders to avoid, attackers regularly ex-
ploit them3. Attacks are increasingly being discovered on

2The correct values depend on the computations of applica-
tions and are inherently unknown by the operating system.
3For example, Slashdot had a story http://it.slashdot.
org/article.pl?sid=04/12/15/2113202 about a course
taught by Daniel J. Bernstein at UIC on Security Holes in

the same day that the code containing a vulnerability be-
comes available—zero day exploits.

It is long past time when the IT community should have
discontinued its error prone practices which can be exploited
to cause extreme damage. It is amazing that programs are
still written in type unsafe languages such as C/C++ de-
spite our extensive experience that it is dangerous to do
so. It is perhaps a sign of a lack of professionalism in our
discipline, that we do not deal with our failures and take
appropriate corrective action. In other fields, for example,
aerospace engineering, each accident is examined and the
lessons learned; these lessons are incorporated into future
designs and advisories are created to mitigate the problem
with current aircraft. Of course, aircraft accidents often
entail loss of life, and so such care is essential. But do ac-
countants, whose miscalculations are not normally assumed
to be life threatening, ignore the impact of their errors?

We believe that the number of extremely dangerous bugs
in fielded systems can be dramatically reduced—by at least
a decimal order of magnitude. It is only possible to do this
by carefully selecting the types of bugs we seek to eradicate.

Some of the techniques which prevent such problem-prone
constructs do not necessarily reduce the number of bugs in
the system. For example, buffer overflows can be eliminated
by having the program abort rather than buffer overflow:
but this is still a bug and can result in a security vulnera-
bility, denial of service. However, it does prevent a hacker
from gaining control of the system. Moreover, this loss of
functionality is much more likely to be visible to the system’s
owner and thus is easier to identify and correct. Hence, such
techniques reduce, on average, the damage that bugs do.

We draw inspiration from reliable systems. Perhaps the
most widely used model is fail fast [14], in which errors are
detected and then immediately cause a system restart before
system state can be corrupted. An example of this technique
is an OS panic-induced reboot, in which the OS code detects
an anomaly and then reboots itself. Fail fast works because
it reduces the complexity of systems by restarting from a
valid state rather than attempting to repair a faulty state. It
avoids the much higher complexity of failed systems (which
have many more states than good systems) and relies instead
on a smaller recovery mechanism which is, in any event,
needed.

Of course, in a safety critical function, such as the control
of an airplane, denial of service may have very serious conse-
quences. Even so, the integrity threat is usually worse. If an
attacker exploits a buffer overflow, it may trigger a denial of
service (by triggering an abort); it may also perform numer-
ous other attacks. Detecting the errors which can create a
denial of service is expensive, and requires extensive testing.
For this reason, it is impractical to expect that denial-of-
service testing will be universally performed. Furthermore
there is no practical way for a system owner to determine
that such testing has been done (or done effectively) on soft-
ware obtained from other parties. At any rate, experience
has shown that it is undesirable to assume that the quality
of application code will always be high.

Authorization and authentication can play a significant
role in preventing the exploitation of application vulnerabil-
ities. Unfortunately, given current mainline OS authoriza-
tion systems, an attacker can gain control of the system in

which 20 students found some 44 exploits in publicly dis-
tributed software. (One student found 10 exploits).
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at most two stages. First a user–level process is broken into
and second, a root–level process is broken into from the in-
side. This two stage attack is possible because the OS does
not enforce least privilege [33], particularly in regard to the
privileges of an executable. Reducing a process’s privileges
increases the number of steps on average, and hence the
number of exploits, needed to gain system privileges.

The new paradigm proposed here is called system discon-
tinuity ; its purpose is to improve systems and especially
the applications built on top of them. This discontinuity is
caused by changing those interfaces—both of programming
languages and operating systems—which have proven to en-
gender the greatest number of security holes. In particular,
we focus on those interfaces that lead to a non-trivial number
of integrity or confidentiality failures. Changing existing in-
terfaces will break applications which depend on them, and
hence the term system discontinuity. But once these applica-
tions are ported, they will be more secure and less expensive
to maintain since they will have fewer of the most danger-
ous flaws. These techniques will also make our systems more
reliable.

This strategy is a departure from decades of emphasizing
compatibility over reliability and security, but we believe it
is necessary as our current computing base is failing (see
Section 2). For this strategy to be successful, it is essential
to minimize the dislocations from system discontinuity. In
particular, we need to avoid a fundamental chicken-and-egg
problem in new systems design, which we dub the appli-
cation trap: No one uses new systems because there are no
applications for them and there are no applications for them
because no one uses the system. If this (vicious) cycle can
be broken, then a self sustaining economy can be created for
a new system.

We believe that the escape from the application trap is
made possible by Virtual Machines (VMs). VMs can play
a pivotal role, by enabling many different versions of oper-
ating systems to be concurrently executed on a computer.
The most security sensitive applications will, of course, be
ported first to the most secure OS. New applications will
bypass older OSs and be built on the most secure OS avail-
able. Application compatibility with older OSs is no longer
necessary in the age of VMs.

We have been pursuing this approach, in a small way, by
replacing the authorization model (access controls) in Linux
with an alternative one with far stronger semantics [29, 30].
The change consists of about a half dozen system calls, such
as chown and chmod. While these system calls are seman-
tically important, they are not very heavily used. In one
semester, two students ported 3 programs (xpdf, bash, and
thunderbird) to use the new system calls; the last of these
programs contained over a million lines of code. The stu-
dents had no prior experience with these applications. We
conclude from this exercise that porting such applications is
quite manageable and may further benefit from the devel-
opment of tools.

But incremental change will not be sufficient to reach the
far more secure systems envisioned here. Many problems
have accumulated over 30 years of maintaining backward
compatibility, and substantial change is now necessary. We
advocate one big change, called here the “great leap” (see
Section 3), to address this long neglect. After that, incre-
mental changes can be made, and applications ported with
the help of tools.

Pursuing this strategy will be expensive. The size of the

problem and some of the cost measures are examined in
the next section. Despite the costs, we believe that system
discontinuity is necessary, as we can see no other way to
achieve sufficiently secure systems given the current threat
environment. To paraphrase Sherlock Holmes when all the
other options have been eliminated, the remaining option,
no mater how unlikely, must be embraced4.

2. ECONOMICS
Economics plays an important role since what we propose—

the wholesale replacement of the current infrastructure with
a much more reliable one—will be a very expensive under-
taking. It will also take significant time, so it is important
to begin work on it soon.

The computing base is extremely vulnerable. For exam-
ple, the annual occurrences of vulnerabilities, as reported
to CERT5, are shown in Table 1. The number of reported
vulnerabilities has grown from 171 in 1995 to 8,064 in 2006.
This is an alarming trend. We believe that the results indi-
cate that (existing) bugs are being discovered at an ever in-
creasing rate. But software also keeps changing, and there is
anecdotal evidence that the change itself is a primary source
of security holes. And hence, there are an increasing number
of zero day exploits, even in security “fixes”. The computing
base is riddled with security holes.

There is no magic bullet, now or visible on the horizon,
to automatically remove these holes. These attacks elude
authentication and authorization by directly attacking the
correctness of applications. And yet authentication and au-
thorization cannot be discounted as defensive mechanisms,
as they remove avenues from attack and increase the work
required by an attacker to breach a system. Hence, new
system designs must remove the pitfalls which lead to se-
curity holes, improve the quality of authentication, and use
authorization to increase the number of exploits an attacker
needs to compromise system security. We believe that sys-
tems built on such principles could have a profound effect
on the entire software base.

It is necessary to replace the software because of the steadily
increasing level of attacks aimed at our computing base.
These attacks are, in large part, financially motivated. The
attackers are professional, with some gangs estimated to be
pulling in over $1 million/day. They are using their illicit
profits to hire security experts to craft automated attacks,
to keep ahead of the defenders, and to increase their income.

Far from being centralized, the high tech attack-software
industry is highly distributed. It consists of many different
specialties, with boutique organizations catering to various
segments such as phishing software, botnet renters, and sell-
ers of keystroke logs and credit card numbers, etc. The key
metric is the number of bots since this measures compro-
mised desktops; estimates range from 1.5 million to 150 mil-
lion computers—somewhere between .25% and 25% of the
installed base6,7. The attacker base is decentralized (and
thus hard to thwart), has an economically sustainable model,

4Sherlock Holmes “When you have eliminated all which is
impossible, then whatever remains, however improbable,
must be the truth.”
5http://www.cert.org/stats/cert_stats.html
6http://www.avertlabs.com/research/blog/?p=185
7Such a wide range of estimates, 100:1, makes it impossible
to appropriately allocate resources to defend against this
problem.
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1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
171 345 311 262 417 1,090 2,437 4,129 3,784 3,780 5,990 8,064

Table 1: Vulnerability reports to CERT from 1995-2006

is organized along the lines of traditional high tech industries
(and hence is very flexible), and is located overseas (beyond
the reach of law enforcement of the victims). To date, our
response has been totally inadequate.

The attacks are aimed primarily at the weakest link, the
desktop. It may give comfort that the high value servers are
not the direct target. But it is not possible to protect the
servers when the desktops are compromised, as the servers
are accessed through the desktops. While a given bank may
be able to escape blame—and financial responsibility—for
their customer accounts being raided, this in no way lessens
the damage inflicted. And ultimately, the whole banking
industry is at risk. These attacks show a dramatic increase
in level starting in 2002-3 as the number of desktops with
high speed Internet connections increased dramatically.

The central question is: How big is the problem? We don’t
know. The costs includes the losses due to theft, espionage,
and extortion; remediation of compromised systems; and the
loss of utility from systems which are not fielded because it
is too difficult to secure them.

One Secret Service agent estimated that credit card fraud
alone was running at $100 Billion/year8. Other financial
frauds are against bank accounts and brokerage accounts.
Espionage is aimed at national governments and at indus-
try, particularly for intellectual property. Extortion is the
preferred method for those who commit Distributed Denial
of Service—there were recently 3 individuals convicted in
Russia for attacks on Great Britain gambling sites result-
ing in millions of dollars in losses9. The FBI has estimated
US losses to cybercrime at $67 Billion/year, it is likely that
the true cost is even higher as many organizations have in-
centive to underreport these problems10. These attackers
are appropriating our bank accounts and investments, our
infrastructure is increasingly under their control, and our
intellectual property and privacy lost. The stakes are very
large and the threat is growing.

What would be the cost to fix the problem? The cost of a
new operating system has been estimated at over $1 Billion;
the cost of porting applications to it will likely be orders of
magnitude more. But the cost of getting started is far less.
It is estimated that it takes five years to build an operat-
ing system and an additional five years to make it stable.
Such an effort would require a small team, costing $10 mil-
lion for the first stage and $10 million for the second stage
per operating system11. Clearly there would be more first
stage operating system designs than second stage fundings,
since only the best ideas would move forward. After this 10
year effort, the pump would be primed, and the larger com-
munity and economy for these operating systems and their
applications could develop organically. Such an approach is

8CCS’06 panel on phishing and botnets.
9http://www.informationweek.com/news/showArticle.
jhtml?articleID=193104471&subSection=Breaking+News

10http://news.com.com/Computer+crime+costs+67+
billion,+FBI+says/2100-7349_3-6028946.html

11These estimates were made by Tom Anderson of University
of Washington.

only feasible using VMs, which would enable these new sys-
tems to be fielded along side of existing ones and enable a
gradual transition to the more secure systems.

We note that the above estimates of time, and especially
cost, assume a traditional model of OS development. It
is highly desirable to lower the costs and decrease the de-
velopment time, attaining earlier critical mass in which a
self-sustaining economy is established for the software. If
development could be specialized for the need of building
security enhanced interfaces, significant speed (and cost sav-
ings) might be achieved during the first phase, so that the
right ideas could be found much more quickly.

We are currently exploring techniques by which this might
be possible. Our goal is to once again leverage the VM
infrastructure, this time by sharing I/O devices from other
Operating Systems running within the same hypervisor. We
will describe this technique in a forthcoming paper.

At any rate, we believe that the current threat environ-
ment and the relatively low cost of investigating alternatives
justifies a substantial effort.

3. THE GREAT LEAP
We believe that a new generation of security-aware sys-

tems must be developed. They will, of necessity, be incom-
patible with the existing systems which are a major cause
of insecurity. A reasonable goal is that these new systems
be at least an order of magnitude more secure than existing
systems. Thereafter, more incremental improvements can
be made. The focus in this section, is on the “great leap”
to more secure systems, which will provide the largest im-
provements in security and the greatest discontinuity in the
Application Programming Interface (API).

What’s not being proposed.
Before describing what we believe should be done, we

want to be explicit about what we are not proposing to
do. Computer security cannot be provided totally at the
OS/programming language level. For example, today the
web is the largest source of reported vulnerabilities [8]. Web
issues include how to deal with pluggable architectures which
enable code to be included from disparate sources and segre-
gation between different sites (e.g. XSS). These are the same
issues, in different guises, as those encountered in an OS. It
may be possible to better support the needs of the web by
relying on improved OS facilities, resulting in a more inte-
grated security framework. Examples of this interplay be-
tween pluggable platforms and OSs include the use of VMs
[9, 3, 48], SubOS [17], and Sandboxing [47, 13, 20] to sig-
nificantly improve the security of browsers. In addition, be-
cause security is a matter of the weakest link, an integrated
framework is important as it prevents gaps from occurring
in the protections. In any event, the lessons learned when
applying system discontinuity to an OS can be also applied
to the web.

Other vulnerabilities due to insufficiently checked inputs,
monolithic programs, etc. will continue to plague us. Ad-
ditional vulnerabilities arise from economic externalities, in
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which the entity which causes a security problem does not
bear the cost of the resultant security breaches and hence
appropriate expenditures for security are not made [2]. Eco-
nomic externalities argue that control of system security
should return to system owners. The owners can and should
be provided with simple tradeoffs by which they can secure
their systems.

Semantics for new systems.
The big question is: What should the semantics be for

these new systems? Clearly, the errors of the last 30 years
should be avoided. Hence, it is crucial to understand the
source of past security holes. In particular, for each security
hole it is desirable to understand the:

error which is the (initially latent) bug,

environment which is the semantics enabling the bug,

fault which is how the bug is triggered, and

failure which is the types of security breaches that could
result.

Unfortunately, the error-environment-fault-failure informa-
tion is often not available in the security vulnerability databases.
It is important that such information be collected in the fu-
ture, and to the extent possible, derived by analysis from
past reports. Because of the lack of sufficient data, the is-
sues focused on below are, to a certain degree, guesswork
and will need refinement. Our goal is to deal with the en-
vironmental issues which lead to integrity or confidentiality
critical bugs.

This is a much broader approach than taken by the tra-
ditional secure operating systems community, which has fo-
cused on writing operating systems which (1) have lower
rates of security failures and (2) stronger authorization mod-
els, for example [41, 10]. As far as we know, we are the first
to look at system design through this more holistic prism.
The closest to our OS approach is Microsoft’s Singularity
project which is focusing on building a reliable and secure
OS at the expense of compatibility [16], although it appears
to be inwardly centered around a microkernel approach.

Several techniques have been proposed for partitioning OS
service (both for intra OS and inter OS interaction) and
connecting them securely together. For example, separation
kernels do so on the basis of information flow [31]. SHype
controls the interaction of operating systems on a VM (Xen)
[32]. L4/Nizza [15] has focused on how to partition an oper-
ating system (and user services) into security sensitive and
security insensitive components, to allow more general secu-
rity services to be provided by one OS to another.

The new systems interfaces should ensure that security
vulnerabilities either cannot occur or are far less likely to
occur. Of course, we prefer the former to the latter, but we
believe both will be necessary to achieve the very substantial
improvements sought. This is analagous to a highway sys-
tem; a highway is designed to be safe at high speed, not just
for the best drivers but also for poorer drivers, distracted
drivers, poor weather conditions, etc [42]. Currently, our
systems are unsafe at any speed12.

12“Unsafe at any speed” was the title of the 1965 book on the
car industry by consumer advocate Ralph Nader.

To understand the types of changes which might be neces-
sary in the great leap, we describe an initial set of fundamen-
tal interface changes summarized in Table 2. The issues will
be explored in more detail in Sections 3.1–3.8. The first five
items in the table are to prevent security holes from uninten-
tionally being inserted into programs13. These changes are
at the programming language and operating system level.
The remaining items are designed to prevent security holes
from being exploited, as well as to provide tighter controls
on who can do what.

The 8 items in the table can be grouped according to their
impact on application bugs.

improve testing effectiveness by decreasing the variabil-
ity of how programs execute. For example, a buffer
overflow or a race condition can have very surprising
behavior and are difficult to find by testing. Items
under this category include 1, 2, 3, and 4.

reduced complexity by removing constructs whose secu-
rity implications are difficult to understand. In partic-
ular, those constructs that require determining whether
there exists a sequence of operations that can result
in an exploit are routinely sources of serious security
holes. Items 1, 2, 3, 4, and 5 reduce complexity which
affects the security properties of the system.

security by default by making it easier to build applica-
tions which provide isolation, authentication, and au-
thorization than to build applications without these
properties. Items 6, 7, and 8 address this issue.

fault isolation mechanisms keep the attackers at bay. They
are items 6, 7 and 8. They are necessary even when
there are no security holes. When there are security
holes, they serve to keep attackers away from vulner-
abilities, and thus render it much harder to exploit
security holes.

Structural enforcement.
An important advantage of this approach is that these re-

strictions can be enforced by the structure of a system. For
example, type safety can be ensured by requiring the source
code for executables be limited to specified programming
languages. This is easy to do for open source, and can also
be done for closed source by relying on guarantees from suit-
able parties. The operating system based interfaces are even
simpler to ensure, since it is impossible for the application
to use systems calls which do not exist.

The approach advocated is easy for an organization to
verify. In contrast, mechanisms such as model checkers for
verifying that existing codes do not have latent security holes
are much more difficult to use, since these mechanisms are
subject to false positives (or even worse, false negatives) [7,
38, 26]. The false positives require manual checking which is
impractical for almost all organizations, and false negatives
mean that there are remaining holes. Verification remains
an important mechanism for the creators of software, but is
less appropriate for the users of software.

13They may also prevent some types of intentional attack.
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Item Issue Problem eliminated

1 Strong type system code injection attacks/memory corruption
2 Sequential semantics race conditions, synchronization errors
3 Atomicity TOCTTOU errors.
4 Well defined semantics implementation dependent behavior.
5 Error prone constructs the ability of untrusted processes to modify the environment of

more trusted processes.
6 Network security by default confidentiality, integrity, and authentication attacks against net-

works.
7 Authorization the ability of newly installed programs to pose problems to existing

programs, propagation of attack.
8 Strong authentication anonymous attacks.

Table 2: Issues which need addressing

Minimizing discontinuity.
Discontinuity is inherent in our scheme, but to the degree

possible, it is desirable to minimize it. New code will obvi-
ously use the new APIs. But how can existing applications
be ported to newer systems?

We obviously cannot switch the programming language
employed overnight. However, applications can gradually be
ported to new programming languages—by introducing new
programming languages into the application while retaining
existing ones.

However, eliminating APIs from the operating system will
break existing applications. An incremental scheme will be
useful here as well. As mentioned previously, VMs allow
a gradual migration of applications, as the old, less secure
operating system is run at the same time as the more secure
one. System security will be improved to the extent that
the most security-sensitive applications have migrated to the
more secure OS. (This migration process can be repeated
for more incremental changes after the great leap, so that
multiple generations of secure OSs and their applications
can run concurrently on the same hardware.)

This is a new paradigm since it goes against the last 30
years of OS design, in which compatibility has been paramount—
both for UNIX and Windows—while security is treated as an
add on. But compatibility above security is a broken model;
rather than catering to the least common denominator, it is
necessary to raise the level of our systems.

Of course, we will need to verify that operating system’s
and compiler’s intended properties hold. Nevertheless, a
combination of much stronger authorization, authentication,
and elimination of the largest application vulnerabilities will
make systems and their applications much safer.

Space and the early stage of this work preclude present-
ing an operating system design at this point. Instead, we
examine next the items from Table 2 in more detail which,
we believe, are central to solve for the great leap.

3.1 The type system
Languages which are not strongly typed, such as C/C++,

have been the greatest source of system security holes and
have enabled the most damaging of attacks. The most com-
mon exploit is a buffer overflow, which is a code injection
attack. Another hole in the type system results from explicit
deallocation of memory, resulting in bad pointers.

These types of bugs are difficult to find because they break
the programming language abstraction. That is, the seman-
tics of the programming language do not specify what will

happen; instead, the underlying implementation must be ex-
amined to determine what is possible.

Type safe language, such as Java, C#, Cyclone, and bitC,
enable the elimination of almost all type system errors [19,
39]. The few remaining sources of type errors are due to
errors in the compiler or programming language’s runtime
support—these issues can best be addressed with validation
approaches (similar to verification in A1 systems).

It is sometimes argued that the run-time overhead of type
safe languages—which is estimated at between 50-100%—is
too high for systems programming [40], because of power-
limited machines such as servers and handhelds. Perhaps.
But we are primarily concerned with the desktop, which
is not typically running at capacity—far from it. And these
are exactly the systems most easily attacked because of their
large variety of software and lack of sophisticated adminis-
tration.

We are not the first to make the argument for type safe
languages. But type safety, while necessary, is not sufficient.
Given current vulnerability reporting, it is difficult to know
what percentage of bugs are due to type safety issues [8].
Although buffer overflow shows up in the top few entries,
there are other issues which appear related, such as integer
overflow/underflow and format string vulnerabilities. But
even if one looks at the top 10 bug categories, they account
for only 32% of open source and 42% of closed source re-
ported bugs. Hence, dealing only with unsafe programming
languages seem unlikely to make our systems ten times more
secure. It is necessary, therefore, to consider other parts of
the system which contribute to the occurrence of security
holes.

3.2 Sequential semantics
In its purest form, the process model in operating systems

is a sequential model; its non-determinism (if any) arises
only from interactions with the world outside the process.
In such a model, what a web server does given a particular
HTTP request depends only on what requests were previ-
ously processed. Requests may come from different clients
and hence their (arrival and) execution order is determined
outside the process. This pure process model leads to max-
imum repeatability of execution, enabling bugs to be effec-
tively isolated and erroneous code to be identified and re-
paired.

On the other hand, explicit concurrency leads to prob-
lems of synchronization errors, deadlock, starvation, and
race conditions. As in the case of type system errors, these
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problems pierce the high-level abstractions since race con-
ditions can only be fully understood at the implementation
level14.

Concurrency bugs can be extraordinarily difficult to find
by reading the code. They can also be extraordinarily diffi-
cult to debug, as the executions which trigger the bug may
be based on an unusual confluence of events and hence oc-
cur rarely. They are called heisenbugs because they are
non-repeatable [14]. The heisenbug effectively disappears
once observed, and for that reason they are very difficult to
debug. In addition, latent concurrency bugs may lurk for
decades in code but only become exploitable with changes
in hardware; for example, newer dual core processors mean
that interleaving is increasingly fine grained, exposing bugs
which were previously latent [49].

Race conditions can occur at the programming language,
operating system, or application levels:

Programming languages may have semantics such as threads,
which allow an enormous number of possible execu-
tions to arise, even when executing a program on a
fixed input.

Operating systems have constructs such as threads, shared
memory, and signal handlers which introduce concur-
rency into a process.

Applications may be implemented with multiple processes.

The removal of this explicit concurrency reduces the com-
plexity of programs, thus making their semantics clearer.

Explicit concurrency within a process, whether implemented
in the programming language or operating system is unnec-
essary. Implicit concurrency, on the other hand, comes from
parallelizing sequential code [43]. Since the code is sequen-
tial, its semantics is sequential, and hence has none of the
problems of explicit concurrency. Consider two sequential
statements s1; s2, meaning that s2 begins execution only
after s1 completes. However, s1 and s2 can be executed
concurrently (written s1||s2) with the same result as a se-
quential execution if neither of s1 or s2 writes a location
that the other statement accesses.

We do not rule out concurrent execution, only concur-
rent semantics; there are many models of concurrent exe-
cution with sequential semantics including in architecture
(e.g., scoreboarding [45] and the Tomasulo algorithm [46])
and databases (in the form of transactions [14]). Without
explicit concurrent semantics, systems would be significantly
less complex and have fewer bugs.

Even in the case of applications composed of multiple pro-
cesses, in which concurrency is inherent, the issues of con-
currency are reduced through the careful selection of inte-
grated communication and synchronization primitives (e.g.,
message passing or pipes).

3.3 Atomicity
A set of operations is atomic if they are either all executed

(without other intervening operations) or none of them are
executed. Atomicity can make the concurrent semantics
of applications better behaved by preventing TOCTTOU

14The execution of a machine instruction is atomic in a com-
puter system, the execution of a programming language
statement is not.

errors. TOCTTOU errors have turned up in many differ-
ent types of security sensitive software, including Kerberos,
OpenSSL, Apache, and Samba [49].

To eliminate almost all forms of TOCTTOU errors, mul-
tiple system calls by a process could be made atomic, by
providing general purpose transactions to processes. In ad-
dition to addressing TOCTTOU errors, transactions are a
robust base which enable clean recovery from crashes and
hence lead to more reliable systems. (One of the Orange
Book requirements for higher rated systems is for security
to be robust over crashes).

3.4 Well defined semantics
Programming languages and operating system semantics

have typically been only partially specified; many details are
implementation dependent. For example, in C/C++ the size
of primitive types and the order of expression evaluation are
implementation dependent. Java, on the other hand, spec-
ifies more of the semantics, including, the primitive types
and expression evaluation order. However, Java’s threads
execute differently on different architectures (even without
any external triggering events) and hence Java has gained
the reputation of “Write once, test everywhere”.

The issue of well defined semantics exists not only at the
programming language level but also at the OS level. Many
of the OS APIs are defined by POSIX [1] (for both UNIX
and Windows). Some POSIX features are optional, others
implementation defined, and others have defined variants.
Furthermore, the error messages that can be returned by
POSIX APIs are also implementation dependent and hence
code must take into account all of the possibilities.

Such partially defined semantics mean that testing must
be inadequate, severely limiting the ability of programmers
to uncover incorrect semantic assumptions.

3.5 Error prone constructs
Constructs which place the onus on the application pro-

grammer to reason about complex attack patterns are prob-
lematic. For example, the ability to remove a file under Unix
depends only on whether one has write access to the direc-
tory containing it, but not whether the user owns the file
being removed. This can result in substitution attacks, in
which one file is substituted for another.

Indirection can also be a problem, as in soft links. A soft
link is a directory entry which points indirectly to another
file. Changing the link may result in a different file being
read/modified, as an attacker may have sufficient permission
to change the link but not the file itself.

To test designs for the presence of error prone constructs,
model checking could be useful to determine whether there
is an attack sequence using the constructs [49].

3.6 Network security by default
Network mechanisms were designed without any security,

as networking was initially used to connect a limited number
of homogeneous sites. Now, of course, networking is world-
wide and extremely heterogeneous.

OS mechanisms are needed which, by default, use cryp-
tographic protections and strong network authentication.
(The current use of passwords over a network for perform-
ing network authentication allows password guessing attacks
from anywhere in the world.) Examples of mechanisms
which can be used for this purpose are distributed firewalls
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[18] and organization-based network authentication (e.g.,
[25]).

This will make it easier to implement network security in
applications (since it would merely involve using the right
OS primitives), and would make network security far more
robust.

3.7 Authorization
Authorization limits an attacker’s access, thus prevents

exploiting vulnerabilities and restricts the actions of users.
Role-Based Access Control (RBAC) have proven very ef-
fective at controlling access at the enterprise level [36, 35].
Strong and easy to use mechanisms, incorporating RBAC
protections, are needed which effectively protect at the sys-
tem level.

There are two central integrity issues for authorization.
The first is to implement least privilege, so that when a pro-
cess is compromised it yields as few permissions as possible
to the attacker (and hence is the least harmful). This means
limiting the privilege of a process based not only on the user
who invokes it but also on the executable. Least privilege
increases the average number of steps to attack a system,
and thus increases the work load of the attacker. The sec-
ond, is to prevent untrusted objects (e.g., email attachment)
from getting close to critical applications [5, 30, 50].

3.8 Authentication
Authentication mechanisms are weak, thus providing too

many opportunities for flaws in one application to spread
into attacks on the system, and ultimately to obtain the
root privileges. For example, a recent ssh attack used simple
password guessing to break into many accounts15.

Using mechanisms such as Kerberos [44] or public-key
based authentication [34], it is not necessary to ever au-
thenticate via a password transmitted over the network. An
attack on this scheme would require an attacker to com-
promise a system which has the needed secret keys, a sig-
nificantly more difficult task than a brute force password
guessing attack.

4. HISTORY
Oddly enough, rather than security getting better over

time, its gotten worse. Not because the attackers have got-
ten more skilled—although they have—but because systems
have often been weakened with the introduction of new fea-
tures. These features have been deemed desirable because
performance has been placed over reliability. The weakening
of system reliability was enabled by historical forces which
made it possible for systems to evolve to their current state.

First, systems in the 1970s were relatively small and hard-
ware was far less reliable than it is today. Techniques such
as segmentation, error detecting and correcting codes, and
processes were designed to limit the repercussions of hard-
ware failures, by preventing the propagation of errors.

With increasing integrated circuit integration, hardware
became steadily more reliable. Segmentation gave way to
large, flat address spaces. Many techniques were added to
operating systems including multi-threading in processes,
shared memory, and an ever growing complexity. These
techniques would not have been possible on earlier hard-

15http://www.securityfocus.com/infocus/1876

ware, not only because of lack of resources but because they
would have resulted in noticeably less reliable systems.

As memory became cheaper, very large processes were
constructed, sometimes performing only loosely related com-
putations. But these amalgamated processes require the
union of the privileges of their components—and hence are
more lucrative targets. Simultaneously, they also provide
more attack points and hence are easier to compromise. We
are beginning to see the reversal of this trend with privilege
separation [28, 6].

The fundamental problems of security were well known in
the 1970s [21]. What has changed is the diversity of appli-
cations and the accessibility of computer systems.

The attack profile started to change with the Internet
Worm [37]. Hardware failure rates and attacks on software
are different, but they share a common propagation model.
As previously described, commonly a two step attack is suf-
ficient to gain system-level privileges. Hence, security hole
exploitation would be made more difficult if it is harder to
propagate the attack towards an important target. As er-
ror propagation becomes more difficult, systems will be both
more reliable and more secure.

We believe that it is therefore necessary to remove many
of the“enhancements” to systems which have served to make
them more vulnerable to attack. On the other hand, new
mechanisms are needed such as better network security, au-
thorization, and authentication to control access to these
systems. Most of all we need a virtuous cycle which will
continue to weed out the pitfalls in the most effective ways
and to enable us to get the greatest value from our software
base.

5. WILL THIS REALLY ACCOMPLISH ANY-
THING?

The class of bugs that will be severely curtailed by the
system discontinuity paradigm are particularly nettlesome.
It is difficult to test for their existence and/or difficult to
debug them. They are a notorious source of security reports.

We would like to quantify the impact on system security,
but it is difficult to do so for several reasons.

1. The data about security issues is sparse, in part due
to commercial sensitivities. For example, the raw data
is unavailable for the one recent extensive study that
we have access to [8].

2. It is difficult to map current security vulnerability re-
ports into environmental causes (the pitfall) and effects—
whether the resultant failures are of confidentiality, in-
tegrity, or availability.

3. A substantial number of the bugs in the aggregated
reports are either unknown or from a category other
than those listed.

unknown other
open source software 10.1% 39.4%
closed source software 45.0% 12.4%

In addition, information is not sufficiently specific. That
is, it is not available by operating system, by distribu-
tion, etc. The information is also incomplete.

4. Even if all of the vulnerability types commonly ex-
ploited were removed from systems, these represent
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only the low lying fruit. Attackers would move onto
the next level of more difficult to exploit vulnerabili-
ties. Given the stakes involved, the need for continual
improvement in systems seems unavoidable.

Hence, we don’t know how much more secure these sys-
tems will be or even if the changes we propose address the
main problems. But at the heart of this new paradigm is
the application of engineering disciplines to the building of
software. Thus, first and foremost, we believe it is necessary
to start a virtuous cycle of improvement of the system soft-
ware interface, based on experience (error reports), so that
our systems empirically incorporate best practices. Atten-
tion to process is essential, but it is far from sufficient. It will
be necessary to build better applications, to use authoriza-
tion and authentication effectively, and to reflect the history
of our discipline in best practices education and standards.
Most of all, we believe in a process that eliminates those is-
sues which have proved to be problematic while emphasizing
simplicity of good design.

But will these vulnerabilities be replaced by a new class
of yet more subtle bugs? No doubt, new exploits will be
found. But the removal of large classes of bugs will signifi-
cant improve our systems. Our goal is to increase the cost in
both time and money to attackers who wish to compromise
systems.

We will also need to carry on the following activities: Re-
search is needed in the semantics and implementation of
highly reliable operating systems—both how to construct
them and most importantly, the design of their interfaces to
support secure applications. Finally, techniques are needed
to transition to new, more secure, systems. Innovative uses
of VMs, program analysis and transformation techniques,
etc., are needed to reduce the size of the discontinuities and
smooth the transitions.

Most of all, we need to become very conservative in our
fundamental platforms, whether they are operating systems,
browsers, or scripting languages. There is a saying about
pilots: “there are old pilots, and there are bold pilots, but
there are no old bold pilots”. It may be necessary from
time to time to deal with tricky programming issues, but
programmers should not seek them out. While we cannot
force programmers to write good code, we can eliminate the
system interfaces to write bad code. And best of all, we can
do this with a relatively small and highly skilled part of the
programming community.

It would be good, too, if the ideas here of leveraging more
highly skilled parts of the community to affect the entire
programming ecosystem could be extended to other groups
besides system developers. Perhaps it would be possible to
do so for application packagers, but that is an issue of future
research.

6. CONCLUSION
We are proposing to reorient the traditional system de-

velopment environment from maximizing compatibility to
increasing system security and reliability. This is a method-
ology to be adapted from other disciplines, especially en-
gineering ones, in which past errors are studied and their
lessons incorporated into future systems. We call it system
discontinuity since it involves breaking software in order to
make it better.

This new paradigm of system discontinuity is enabled by
the availability of Virtual Machines which allow multiple
OSs to coexist on a given computer. Hence, application-
poor but security-rich OSs can coexist with application-rich
but security-poor OSs. This increases security to the extent
that the security-rich OSs contain the most security critical
applications. VMs have been used before to provide security
using different domains (authorization environments) for the
same system software [22], but we believe we are the first to
advocate using VMs over different system software bases to
improve security.

There will be considerable dislocations from a shift to sys-
tem discontinuity, and considerable cost. However, attackers
are doing extensive damage to our computing base, thereby
degrading its value. The damage seems to be increasing in
terms of the number of systems compromised. Moreover,
the attackers are growing in wealth and sophistication; in
short, they have a sustainable economic model. Defenders,
however, seem to be complacent about the current situa-
tion, attempting to apply patchwork solutions. But as is
well known, security is a matter of the weakest link. Hence,
a patchwork approach results in substantial number of vul-
nerabilities which can be exploited with disastrous effect.

The “weakest link” poses significant challenges for defend-
ers. To deal with this challenge, we have identified a limited
number of places—programming languages and operating
system interfaces—where changes can have very broad effect
across the whole spectrum of computer software. By build-
ing a better environment, many of the pitfalls which plague
even experienced programmers can be eliminated, and our
systems can fail much more gracefully. In addition, we need
to provide new, highly usable mechanisms which dramati-
cally simplify the building of highly secure applications, so
that security is provided from the start.

Of course, it is not possible to fix all bugs and so we must
be selective. We propose to fix what we believe are the
most egregious of these problems, those that effect the con-
fidentiality and integrity of our systems. (We really don’t
have a very good handle on the statistics here, more needs
to be done to better understand them.) A shift away from
problematic operating system APIs and programming lan-
guages will reduce the errors that unwary programmers fall
into, thus making the vast majority of programmers far less
prone to create system vulnerabilities.
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