
We Have Met the Enemy and He Is Us

Matt Bishop, Sophie Engle,
Sean Peisert, Sean Whalen

University of California, Davis
Davis, CA

{bishop,engle,peisert,whalen}@cs.ucdavis.edu

Carrie Gates
CA Labs

Islandia, NY
carrie.gates@ca.com

ABSTRACT
The insider threat has long been considered one of the most
serious threats in computer security, and one of the most
difficult to combat. But the problem has never been de-
fined precisely, and that lack of precise definition inhibits
solutions. This paper presents a precise definition of insider
threat, and shows how the definition enables an analysis of
the set of problems traditionally lumped into “the insider
threat”. It introduces a hierarchy of policy abstractions,
and argues that the discrepancies between the different lay-
ers of abstraction expose the potential for insider threat. It
also presents a methodology for analyzing the threat based
upon our definitions. In the process, we introduce Attribute-
Based Group Access Control, a generalization of the Role-
Based Access Control model that allows any attributes to
define a group. We apply this to the insider threat by defin-
ing groups based on access capabilities, and using that to
identify users with a high level of threat with respect to
high-risk resources.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection; D.4.6 [Operating Sys-
tems]: Security and Protection; H.1 [Information Sys-
tems]: Models and Principles

General Terms
Security,Management

Keywords
Access control, Insider threat, Security policy

1. INTRODUCTION
The insider threat identifies a serious threat to computer

security. It describes a breach of trust by people within an
organization or system, as contrasted to external entities for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NSPW’08, September 22–25, 2008, Lake Tahoe, California, USA.
Copyright 2008 ACM 978-1-60558-341-9/08/09 ...$5.00.

whom firewalls and other mechanisms can deny access. In-
siders are different. They require access to perform their
jobs, and denying this access is tantamount to a denial of
service attack. But traditional methods of preventing or de-
tecting attacks from outsiders such as intrusion detection
and access control may be infeasible. Further, the inabil-
ity to restrict this access to a desired level of granularity
due to technical, administrative, or other reasons creates a
“gap” between the least level of access needed for a task to
be performed, and the least level of access that can actually
be specified and maintained. This constant struggle of re-
quirements creates the potential for insiders to abuse their
privileges, a problem both of critical significance and exten-
sive study (see Section 5).

Insider threat is ill-defined in the literature today, and is
often based on a narrow or ambiguous definition of an in-
sider. For example,“insider”connotes a binary classification—
an entity either is an insider, or is not. Additionally, insider
definitions assume that security policies define this distinc-
tion. We challenge both of these assumptions.

We present a definition of insider threat that does not de-
pend on a binary definition of an “insider”, but reflects a
nuanced notion that there are degrees of “insiderness” and
different types of insider threats. What is appropriate to de-
tect insider threat of one type may well be inappropriate to
detect threats of a different type. Our definition extends into
domains that include physical, social, and cyber security in-
fluences; indeed, our definition is based upon discrepancies
between policy abstractions that capture each of these do-
mains.

From our definition of insider threat, we derive an ap-
proach to examine an organization to determine the resources
that are placed at risk, and the entities that place those re-
sources at risk. This approach combines the resources in
question with the access required to be considered a threat
within a particular domain. These access control domains
can be mapped to the degree of potential damage and, in
combination with the probability of attack, also map to the
level of threat [14]. The result indicates both where detec-
tion should focus and the degree of insider threat any one
person presents.

We begin by using the security policy as the basis for
our definition of insider threat. We then present ABGAC
(Attribute-Based Group Access Control)—a generalization
of RBAC capable of identifying “insiderness” with respect
to a resource. Finally, we illustrate how to use ABGAC
to analyze the threat posed to high-risk resources with an
example application.

1

2. WHAT IS THE INSIDER THREAT?
In order to understand insider threat, we need to turn first

to the cornerstone of all definitions of “security”, namely the
security policy. Examining the assumptions underlying that
statement of security requirements will provide the back-
ground necessary to define the insider threat in a useful way.

2.1 Security Policy Layering
Ideally, a security policy states what actions are autho-

rized for a specific user and purpose. For example, a security
policy might state that “Yasmin is authorized to read med-
ical records for the purpose of treating patients”. If Yasmin
deletes the medical records, she is violating the security pol-
icy. She is also violating the security policy if she reads the
medical records for the purpose of selling the information
in them to insurance companies. Additionally, the security
policy is violated if anyone else uses Yasmin’s user account
to read medical records.

This example exposes a key limitation in security policies:
they may state rules that are not feasible to implement.1

Computer systems only understand user accounts and ac-
tions, not people and purpose. Restricting the actions of
an individual on a system requires that the individual be
mapped to a user account and the action in the security pol-
icy be mapped to actions on the computer, and vice versa.
Suppose that the user Yasmin is authorized to use the user
account yasmin on the system. The system is unable to de-
termine if someone other than Yasmin is using her account
(or whether Yasmin is using anyone else’s account). Addi-
tionally, the system is unable to discern the intent of a user;
it can only discern actions. If the account yasmin accesses
medical records, the system has no way to determine why
the user is accessing those records—so the system cannot
determine whether to allow access (because the user wants
to treat patients) or to deny access (because the user wants
to sell the information in them).

Of course, a security policy would indicate that Yasmin
is the only person authorized to use the account yasmin. It
might also indicate that the account yasmin can only access
records for the purpose of treating patients. However, these
are procedural requirements that the computer cannot en-
force. Thus, the security policy as implemented on the com-
puter is not “Yasmin is authorized to read medical records
for the purpose of treating patients”. It is “user yasmin is
authorized to read medical records”. Such a policy does not
refer to a real person or that person’s purpose. This lim-
itation of the implemented security policy gives a user the
ability to misuse her privileges.

In short, a security policy is really not a single, abstract
statement of requirements. It is instead an instantiation of
such requirements in a particular environment. This sug-
gests viewing a security policy not as a single prescription
but as a set of layers, in which the top layer (abstraction) is
refined by constraints in the environment and system(s) in
successive layers until the layer corresponding to the instan-
tiated policy is reached. This idea of “layers of abstraction”
is a common concept in computer science. Two obvious
examples are the ISO/OSI network layers, and operating
system layers such as in Dijkstra’s THE system [6]. In any

1Policies suffer from other limitations, too; for example, they
may be incomplete or evolving. For purposes of the following
analysis, we assume the policy components that define access
are fixed.

such layering, successive layers refine aspects of the previ-
ous layers. This refinement will create discrepancies. These
discrepancies are the key to uncovering the insider threat.

Carlson’s Unifying Policy Hierarchy captures this notion
of layering security policies [4]. This hierarchy distinguishes
what is ideal, feasible, practical, and possible. By examining
when there are policy violations across levels in this hierar-
chy, we are able to define broad categories of insider threat
problems.

Figure 1 shows the four layers of abstraction of Carlson’s
hierarchy. The highest layer is the Ideal Oracle, which can
respond to a policy query for any subject, object, action, and
environment (which includes intent) tuple. For each query,
the oracle2 will state whether the policy allows or disallows
the subject to take the action on the object in the given
environment. The response captures the notion of an “ideal
policy”. For example, given the privilege “Yasmin (subject),
medical records (object), read (action)”and the environment
(intent)“treating patients”, the oracle will state the privilege
is authorized for the given environment.

The next layer is the Feasible Policy, which represents
what can in practice be captured on an actual system. This
distinction captures the notion that a system cannot distin-
guish between the person Xander who logged in with Yas-
min’s username and password, and Yasmin herself logging
in with her credentials. Additionally, the Feasible Policy
discards the notion of purpose entirely. The Ideal Oracle, as
an all-knowing idealized abstraction, can make such distinc-
tions when responding to policy queries. The Feasible Policy
is similar to what Schneider, et al., refer to as a enforceable
policy [18].

From the space of all feasible policies on a system, a single
policy will be selected and configured. This is the Configured
Policy. As the size and complexity of the policy configura-
tion increase, the number and complexity of issues related to
the administration or management of that configuration also
increase. A mismatch between the Feasible Policy and Con-
figured Policy levels rises from these issues. The departure
of an employee from a company without prompt removal of
their privileges from the system is one example.

Finally, the Instantiated Oracle represents the actual con-
ditions on a system. While a machine may be configured
with a specific policy in mind, policy violations may occur
due to intended or unintended exploits or attacks which may
elevate the privileges of users such as exploiting buffer over-
flow or race condition vulnerabilities.

2.2 Defining the Insider Threat
Carlson’s hierarchy allows us to characterize the notion of

insider threat. The insider threat exists whenever someone
has more authorized privileges at a lower policy level than at
a higher policy level. These mismatches indicate an unau-
thorized increase in privilege, which exposes where there is
a potential for abuse. For example, a mismatch between the
Ideal Oracle and the Feasible Policy can occur due to so-
cial engineering. In our previous example, the Ideal Oracle
knows that Xander is forbidden to log in as Yasmin, but the
Feasible Policy cannot know that Xander found Yasmin’s
password scribbled on a piece of paper taped to her moni-
tor. Thus, the set of privileges Xander has at the Feasible
Policy level may be greater than he has at the Ideal Ora-

2We use the term oracle similarly to how a “random oracle”
is used in cryptography.

2

Unifying Policy Hierarchy

Level Domain Description

Ideal Oracle all possible
(s, o, a, e) tuples

Captures notion of an ideal policy even
if such a policy isn’t explicitly defined.

Feasible Policy system-definable
(s, o, a) tuples

Represents what in practice can be cap-
tured on an actual system.

Configured Policy system-defined
(s, o, a) tuples

Represents the policy as configured on
an actual system.

Instantiated Oracle all possible
(s, o, a) tuples

Captures what is possible on an actual
system.

s: subject o: object a: action e: environment/intent

Figure 1: Four levels of Carlson’s Unifying Policy Hierarchy.

Policy Level

Action Ideal Feasible Configured Instantiated Violation∗

Xander authenticates as xander. allow undefined undefined possible ID 6= FP

Account xander accesses website†... disallow allow allow possible ID 6= FP

...to check the weather. allow undefined undefined possible ID 6= FP

...to expose system to vulnerability. disallow undefined undefined possible ID 6= IN

Web browser leaks user password‡. disallow disallow disallow possible CP 6= IN

Yasmin authenticates as xander. disallow undefined undefined possible ID 6= IN

ID: Ideal Oracle FP: Feasible Policy CP: Configured Policy IN: Instantiated Oracle

∗ Only some of the more “severe” violation are given. † Assume the Ideal Oracle disallows web browsing for
no purpose (waste of company time), or for any purpose other than checking the current weather. ‡ Assume
the vulnerable web browser was exploited by Yasmin to reveal the user password.

Figure 2: Web Surfing Example: Possible Policy Violations.

cle level should he exploit this social aspect of the Feasible
Policy-Ideal Oracle semantic gap. These gaps exist between
any two levels of the hierarchy and define different types of
insider threats.

These differing problems can be related to several real
world examples. A mismatch between the Ideal Oracle and
Feasible Policy, where a user3 elevates her privilege at the
feasible level by exploiting the social or intent gap, captures
the notions of social engineering and covert channels. Mis-
matches between Feasible Policy and Configured Policy are
demonstrated by administrative issues such as out-of-sync
policies retaining privileges of former employees, for which a
solution may be impractical on certain time scales for large
companies with high turnover. The Instantiated Oracle and
Configured Policy differences are shown by attacks on a sys-
tem such as buffer overflows or race conditions.

In addition to describing different types of insider threat,
the policy hierarchy also captures the notion of intent. Con-
sider Xander surfing the web with a browser vulnerable to a
remote exploit. He unknowingly surfs to a site that exploits
this vulnerability. If the attacker, Yasmin, gains access to
Xander’s account, she then obtains the rights of an autho-
rized user by inheriting the privileges of Xander. If Xander
is unaware, he lacks intent to violate the policy. In this case,
Yasmin would pose an insider threat because of a discrep-
ancy between the Configured Policy (only Xander can access

3We use the term “user” very broadly to include anyone that
has cyber, social, or physical access to a resource.

the system using his account) and the Instantiated Oracle
(because of the exploit, Yasmin can now access the system
using Xander’s account). That is, the Instantiated Oracle
allows the event because the Configured Policy is not suffi-
ciently expressive. Alternately, Xander could intentionally
surf to the site and allow his account to be compromised,
claiming a lack of intent if his actions are detected. In this
case, Xander poses an insider threat because of a discrep-
ancy between the Ideal Oracle (which, as an all-knowing en-
tity can make policy decisions that include the intent of the
user) and the Feasible Policy (which cannot restrict access
based on intent). That is, though the Ideal Oracle prohibits
the event, the Feasible Policy allows it because it is insuffi-
ciently expressive. Figure 2 illustrates this in more detail.

In what follows, we focus on the insider threat related to
the gap between an Ideal Oracle and a Configured Policy.
For purposes of exposition, we assume that the system is
configured correctly. Hence the Feasible Policy is the same
as the Configured Policy. If we did not make this assump-
tion, then errors in configuration would result in discrepan-
cies between these two policy layers. The security policy at
the Configured Policy level is represented by the access con-
trol rules employed by an organization. The insider threat
can thus be defined with regard to two primitive actions:

1. violation of the Ideal Oracle abusing access granted by
the Configured Policy, and

2. violation of the Configured Policy by abusing access
present in the Instantiated Oracle.

3

In the first case, the attacker uses her legitimate access to
perform some action that is contrary to the Ideal Oracle,
such as leaking sensitive data to some third party. Here
the attacker has legitimate access to the data or resources,
but uses that access to provide the information to someone
who does not have access. While the attacker has “legiti-
mate” privileges at the Configured Policy level, she is only
authorized to execute those privileges for the purpose of per-
forming their authorized task at the Ideal Oracle level—and
leaking information is not such a task.

In the second case, the attacker uses her access to extend
their privileges in a manner that breaks both the access con-
trol and security policies. An example of such a breach oc-
curs when a user might have a legitimate capability to log
into a particular system, but then abuses that privilege to
gain illegitimate root-level access to the system (e.g., by ex-
ploiting some system vulnerability such as a buffer overflow
or race condition). The user is misusing her privileges to
log on the system for an unauthorized purpose. As before,
this action violates the Ideal Oracle, but not the Configured
Policy, because the Ideal Oracle is more expressive. The
attacker is also taking advantage of the disconnect between
the Configured Policy and Instantiated Oracle levels. By
exploiting a vulnerability on the system, the Instantiated
Oracle grants more access than the Configured Policy.

Bishop’s definition [1]—“a trusted entity that is given the
power to violate one or more rules in a given security pol-
icy... the insider threat occurs when a trusted entity abuses
that power”—suggests that an insider must be defined with
respect to some set of rules that is part of a security pol-
icy. In our model, these policy rules are defined at different
levels of the policy hierarchy. Our previous example would
say that Xander is an insider with respect to physical access
to Yasmin’s monitor because he has that access, and thus is
able to exploit it to gain additional access that he is not au-
thorized to have (specifically, access to Yasmin’s account).4

More generally, in this situation an “insider” can be any in-
dividual person identified by the Ideal Oracle who has access
to the accounts defined by the Feasible Policy.

Previous definitions give rules or descriptions intended to
allow the reader to determine who is an “insider.” This re-
sulted in a binary distinction: an entity was either an insider
or not an insider. The above analysis produces a partial
ordering of degrees of “insiderness”, and the access control
rules for an organization can be used to develop these de-
grees. For example, Xander and Yasmin might both have
privileges within an organization, and thus both represent
“insiders” in the binary sense. However, for some resources
Yasmin might have more privileges than Xander, and so
therefore poses a greater insider threat than Xander with
respect to those resources. At the same time, Xander may
pose a greater insider threat than Bob with respect to other
resources. This definition extends to physical as well as cy-
ber security. For example, if there is a concern that printed
documents might leave a building, then the rules used to de-
fine an “insider” would include access to paper printouts. A
janitor is therefore an “insider”, while Xander and Yasmin,
both of whom work remotely, are not.

By using this definition, both researchers and security per-
sonnel can focus their efforts on detecting those attackers

4This is not the only rule with respect to which Xander is
an insider; it is a simple one, though. Other possible rules
are left to the reader’s imagination.

who are likely to cause the most damage to an organization
by focusing on those resources of greatest value. We now
present one such approach of identifying the potential at-
tackers and the resources that are at risk with respect to
those attackers.

3. HOW DO WE IDENTIFY THE INSIDER
THREAT?

The above characterization of the insider threat suggests
that we can determine the“insider threats”by examining the
differences in access abilities of entities between successive
policy abstraction layers. In our example of Xander’s ac-
cessing Yasmin’s account, the discrepancy of interest is the
difference in access of the individual Yasmin (at the Ideal Or-
acle abstraction level5) and the access of the account yasmin
(at all lower policy abstraction levels). The difference means
that whoever has access to Yasmin’s account has the ac-
cesses that Yasmin has. So the above characterization bases
“insiderness” on access at the Instantiated Oracle level.

In order to capture this notion of insiderness as a function
of access to data or resources, we propose the Attribute-
Based Group Access Control (ABGAC) model. This model
is a generalization of role-based access control (RBAC) [7,
17]. Unlike that model, ABGAC assigns rights based on
general attributes that may or may not be included in a
person’s job function, rather than on the specific job func-
tions a person has within an organization. For example, one
“group” might be the set of people who come to work after
5:00PM. A second “group” might be the set of all system
administrators (in which case this group is also a role). An
insider attack may arise from attributes other than job func-
tion (such as being in the building after 5:00PM). ABGAC
can capture entities with the same attributes. RBAC would
require the attributes to be job functions to do so. Figure 3
illustrates this in more detail.

Several features of RBAC generalize naturally to ABGAC.
In particular, the notion of “role containment” now becomes
“group containment”, and separation of duty generalizes to
avoiding conflicts not arising from jobs but from other fac-
tors. For example, if Sam and Robin are married, and Sam
owns a company the worth of which he knows will increase
drastically, then if Sam advises Robin to invest in the com-
pany, there exists a clear conflict of interest. However, as
no jobs are involved, and no separation of duty is involved,
RBAC does not easily capture this situation.6 In ABGAC,
one can simply define two groups, the first containing those
who know about the company’s increase in value, and the
second those who are related to members of the first. Then
the“conflict of interest”simply says that members of the sec-
ond group cannot perform an action forbidden to the mem-
bers of the first, which is the straightforward generalization
from RBAC’s separation of duty rule.

We next construct the model from its “building blocks”,
and then show how to apply it. The goal of the model is
to define groups of resources and, for each group, to define
a set of users who have access to that group. The access,
as will be noted, need not be authorized by the lowest level

5Under different (implicit) assumptions about identification,
a lower layer would apply.
6One could make being married to Sam a job, and then use
the mutual exclusion rule; but that stretches the notion of
“job” quite far.

4

security policy (in the sense of Carlson’s hierarchy); the ac-
cess may be an artifact of the policy’s inability to express
a higher-level requirement precisely. An example of this is
the restriction of access to an individual, Yasmin, that is
instantiated at the lowest level by restricting access to the
corresponding account yasmin.

3.1 Groups of Concern
For our purposes, the attributes of interest are descrip-

tions of the protection domain of entities. Here, we mean
“protection domain” in its broadest sense, not simply a tech-
nological listing of rights from capability lists (C-Lists) or
access control lists (ACLs). So, the protection domain can
include access rights to resources (systems, printers), doc-
uments, buildings, and generally any other object to which
a user can have access. The protection domain can also in-
clude procedural access rights such as physical presence, or
the ability to block access.

We begin by defining the building blocks of our model.
Definition. A resource pair is a pair consisting of a re-

source (entity) and an access mode describing one way in
which that entity can be accessed. For example, a pair might
be (printer, write), which indicates the ability to write to
a printer. The “access” need not be computer-based. For
example, someone physically carrying the printer out of a
building does not require read, write, modify, or create ac-
cess to the printer. While it might seem to require delete
access, the printer in fact is not destroyed; it is moved else-
where, and is unavailable to the owners, but the people who
remove it can still read the data on its hard drive.

Definition. A resource domain is a set of resource pairs.
This describes a domain similar to the usual notion of pro-
tection domain, but includes physical and procedural access
as well as cyber access. It is oriented towards the resource
(object), not the process (subject). For example, if the abil-
ity to read and write a directory system enables a covert
channel, an appropriate resource domain would consist of
one resource pair for reading the channel and a second for
manipulating the channel.

Once defined, the resource domains need to be ordered.
This enables the organization to analyze the cost of restrict-
ing access to a particular resource and the benefit of re-
stricting access to that resource, and balance the two. The
ordering might be total, such as a linear ordering, or par-
tial, using a vector of measurements taken over different
axes. The value of resource domains should not be defined
solely by a systems administrator, but rather as a joint effort
between the senior executives and the security administra-
tors. Note that, once ordered, the resource domains can be
combined into groups (containing a contiguous set of access
control settings so that the order is maintained), where the
group indicates the threat level a particular set of attributes
represents.

Definition. An rd-group is a set of resource domains.
Different resource domains may be related for the purposes
of analysis, although singleton rd-groups (groups consisting
of exactly one resource domain) will also prove useful. This
definition is motivated by attacks that need access to mul-
tiple resource domains, for example an attacker who has
access to one domain in order to read information, and can
then exploit access to a second in order to transmit the in-
formation to an unauthorized party.

It is easy to create the ordering of resource domains and

define the rd-groups based on them. The set of all resources
is clearly the most valuable; following that, a partial order-
ing based on the subset relation defines relative values of
some of the groups. For those related by the ordering, the
values should reflect the ordering. For those unrelated by
the ordering, the organization may choose to impose a total
ordering by placing a linear value on each rd-group.

Each rd-group induces a set of subjects that have all ele-
ments of the rd-group as subsets of the subject’s protection
domain:

Definition. A user group is the set of all subjects whose
protection domains are a (possibly improper) superset of the
associated rd-group.

User groups are created based on the protection domains
of the associated users rather than on the job functions of
the associated users (as in a role-based system). The users
with access to the rd-groups with the highest value then
represent those users who pose the greatest risk for insider
threat. There is a natural ordering of user groups based on
set containment.

It is tempting to assert that all this information can be
obtained by an examination of the computer system. The
resources are connected to the computer or network, and
the access controls resident on the system (ACLs, C-Lists,
authorization and authentication controls, etc.) define re-
source domains. A threat analysis then gives the rd-groups
of interest, from which user groups can be derived. This
only works if the sole avenues of attack are cyber. Unfortu-
nately, that is rarely true, and we suggest that it is incorrect
for most insider attacks. Examples include attacks that re-
quire social engineering, physical access, procedural gaffes,
and other non-cyber access to the system or resources un-
der attack. Hence the inclusion of non-cyber accesses in the
definition of resource pairs. This is central to our approach
to the insider threat.

Consider an Ideal Oracle that restricts access to electronic
voting machines to election officials, including poll work-
ers. In theory, this is easy to implement: keep the machines
under lock and key until they are used. In practice, this
is quite difficult in many counties. For example, in San
Diego County in the June 2006 election, some poll worker
supervisors took electronic voting machines home in order
to be able to bring them to the polling stations when those
opened. Some of these “sleepovers” lasted more than a week,
during which time a family member or burglar had effec-
tively unrestricted access to the system [21].7 Thus, the
user group associated with physical access to the e-voting
system would include everyone who had access to those sys-
tems at the home where the machine was kept during the
sleepover. It is infeasible to deny family members and oth-
ers access to the home where the machine is being kept, so
the Feasible Policy (that which can be implemented) would
recognize that family members, at least, would have phys-
ical access to the system. This means the family members
have privileges (physical access) they should not have, and
the discrepancy—the fact that the lower layer policy can-

7The attackers would have to bypass physical seals, but as
reported in the California Top-to-Bottom review of elec-
tronic voting systems, “the testers were able to compromise
the AccuVote TSx completely by bypassing the locks and
other aspects of physical security using ordinary objects.”
They also “found numerous ways to overwrite the firmware
in the AccuVote TSx.” ([2], p. 10).

5

Attribute

Name Job Function Building Access Server Access

Wilma System Administrator Before 5pm Physical, Remote

Xander Help Desk After 5pm Remote

Yasmin Janitor Before 5pm Physical

Zane Janitor After 5pm Physical

Group Members

ABGAC Group Attribute W X Y Z RBAC Role

Job: System Administrator • System Administrator

Job: Help Desk • Help Desk

Job: Janitor • • Janitor

Building: Before 5pm • • Unclear†

Building: After 5pm • • Unclear

Server: Physical Access • • • Unclear

Server: Remote Access • • Unclear

† Using ABGAC, we are able to use attributes directly to create groups. It is unclear how some of these
groups would be created in RBAC. For example, it is unclear how to create a role based on job function that
includes both Wilma, a system administrator, and Yasmin, a janitor.

Figure 3: Differences between ABGAC and RBAC.

not enforce the policy with the same level of detail as the
higher layer policy—makes them insiders” for the purpose of
analyzing insider threats.

In this paper, we do not confine our definition of “user
group” to cyber access. Suppose Xander’s account allows
him to read confidential data. Being a person newly intro-
duced to security, he has moved the Post-It note that has his
password written on it from his monitor (where he thinks
anyone can see it) to underneath his keyboard (where he
thinks no-one will ever look). Yasmin, the janitor, notices
it while cleaning Xander’s desk. She can now log in as him,
and the system will be unable to differentiate them. This ef-
fectively makes her an insider. Similarly, an attacker, Zoros,
who can install (or persuade Xander to install) a keyboard
sniffer gains exactly the same type of access. Here, Yasmin
and Zoros are blocked by the Ideal Oracle (because writ-
ing passwords on Post-It notes and downloading anything
over the web are forbidden), but in this site, the systems
cannot be configured to prevent these compromises—hence,
the Configured Policy effectively grants Yasmin and Zoros
access that the Ideal Oracle denies them.

3.2 Analyzing the Insider Threat
As with all defenses, determining how to defend against

insider attacks involves a cost/benefit analysis. Defending
against these attacks are more difficult because security and
usability are so much more closely in opposition. Fundamen-
tally, some attackers will always be able to breach security.
When the attackers define the Feasible Policy (for example,
controlling the decision as to which system will be procured),
the discrepancy between it and the Ideal Oracle cannot be
resolved and corrected. For example, if the President of the
United States were to read a classified memo on television
that supported his or her policy, declassifying it only for the
reading, the Ideal Oracle is clearly breached because the in-
formation in classified memos is supposed to be secret. But
it is infeasible to prosecute a President for this type of viola-

tion, so the Feasible Policy allows the President to perform
the momentary declassification.

Our question is how to determine the cost of the insider
attack succeeding. The defenders can then analyze the ben-
efits of not defending against that attack (cost savings, etc.)
taking into account the likelihood of the attack.

We begin with the rd-groups. Define a set of rd-groups
that contain the domains (sets of resource pairs) that are
to be protected. These induce user groups, as noted earlier.
Let U be the set of all user groups and D the set of all
rd-groups. Then define c : U × D → Rn, where Rn is the
real-valued vector describing the cost of a compromise.

This leads to two minimizations of the insider threat. Ei-
ther approach is valid depending on the goals of the defend-
ers.

Consider the goal to be to minimize the impact of the
attack. The function c induces a partial order over the vector
elements of its range (if n = 1, of course, this is a total
ordering). In fact, this partial ordering constitutes a lattice.
The goal is to minimize each entry in the vector result. In
some cases, where two potential outcomes are incomparable,
management must decide which is preferable.

An alternate goal is to minimize the number of users who
pose an insider threat. In some sense, this is quixotic, be-
cause identifying all the potential users requires prying into
the life and habits of known users (including janitors and
others with physical access, etc.). This is infeasible in most
realistic situations. But if we minimize the number of known
users posing an insider threat, we may reduce the number
of unidentified users drastically. We do this by placing a
special requirement on c, specifically that c(u, d) ≤ c(u′, d′)
if and only if u ⊆ u′. That is, given two user groups as-
sociated with a resource group, then the cost of defending
against the threat is smaller for the smaller of the groups.

Next comes developing the resource groups and user groups.
The first step is to determine what are the important compo-

6

nents of the resource domain relevant to some privilege (in-
cluding physical access, or lack thereof). It is not necessary
to provide all components and privileges, but rather only
those that are relevant to the well-being of the organization
and therefore those which at risk due to insider threat. For
example, access to a particular printer or computer system
might not be important, but the ability to print a particular
document on that system might have value. A quick initial
approach to determining the relevant parts of the resource
domains for a system are to ask what resources are needed,
and how they would be used, to compromise the system.

Identification of all users must be done concurrently with
determining the resource domains for the lattice. As noted
above, the initial users include not only direct employees,
but also all contractors and out-sourcers (technical, clerical,
janitorial, etc.), as well as any “special case” access (such as
facility visitors or guest logins). The gathering of users then
proceeds as would computing a transitive closure, adding in
those users with indirect access through existing users.

Two observations make this daunting task more tractable.
First, one can define proxy users, much as is done with
RBAC roles acting as proxies for users. For example, it is
infeasible to identify the particular users who may use mali-
cious code downloaded via a web site, but one could create
a “download malicious user” to represent any of those real
people. In some sense, this is ascribing a function (although
one not recognized as a legitimate job function) to the sus-
pect users, and then conditioning membership based on the
proxy user.

The second is the existence of trust in humans to cor-
rectly implement in the procedures used to enforce policies.
If these procedures are implemented correctly, they will dras-
tically limit the users to be added to the set. But trust in
humans to correctly implement the procedures requires that
the procedures be appropriate, enforceable, and effective.
The first two attributes are the most difficult to ensure. For
example, if the resources are medical records, then should
the unauthorized action be to reveal the records to an in-
surance company, firing the employee is not an appropriate
procedure to protect the records because it does not prevent
the record from being leaked (though it is entirely appropri-
ate to do so after the leak). Similarly, a requirement that
no family member touch the electronic voting system during
a sleepover (as described above) is appropriate, because if
it happens the system can simply not be used, but not en-
forceable, unless the machine is subject to round-the-clock
monitoring.

Once the resource domains and users have been identified,
the second stage is to map the two together based on the
access the users have. This can take either (or both) of two
approaches:

1. Determine what a person can do. This thought pro-
cess is similar in nature to that used when creating
capabilities.

2. Determine who has access to a resource. This thought
process is equivalent to that used in creating an access
control list.

The result from these actions is to determine the user group
associated with each rd-group. From this, one can define a
simple cost function c that produces a lattice as described
above. This enables an initial lattice to be constructed for

any system that uses an existing access control list or ca-
pability list mechanism. From that point, one can iterate,
adding in other types of accesses not captured by the ACLs
or C-Lists.

4. EXAMPLE APPLICATION
Consider a company that is developing a system to do elec-

tronic recordation of real estate. As the true infrastructure
of many countries such as the United States lies in ownership
of property, if such a system could be compromised, the re-
sults would be exceptionally destabilizing because one could
no longer prove ownership of real property. Hence any such
system must preserve integrity and accountability [22]. The
company developing this software is a multinational com-
pany, with developers in Russia, Nicaragua, and the United
States. All work from home, using a virtual private network
to access the company’s servers located in Iowa. Given that
this software is mission-critical, the problem is to identify
the potential attackers in its development who could create
“trap doors” in the software to allow data to be modified
after all parties believe it to be signed properly. We begin
by identifying the relevant resources.

Developers create and edit software on their home sys-
tems. They download and upload the software over a virtual
private network (VPN) that they use to connect to a set of
servers on which the code resides. The servers are located
in Iowa, and the corporate office makes daily backups. So,
for this (simplified) corporation, the resources are:

1. developer systems

2. VPN

3. servers

4. backup media

A more complete enumeration would distinguish between
the systems and the software on the systems, and include
any dongles or other hardware devices. For simplicity’s sake,
we omit these details.

After considerable analysis, management has concluded
the insider threat that they will deal with is illicit mod-
ification of the software—a reasonable decision, given the
financial constraints they operate under and given the mis-
sion of the software. The resource groups describe the types
of access to the resources, which in light of the above in-
volve some form of modification, and any rights needed in
support of that goal. As an example, the backup media
may be altered, removed from the premises, or destroyed,
so prior versions of the software cannot be recovered. Thus,
the resource group for the backup media would be:

{(backups, write), (backups, remove), (backups, destroyed)}

Similarly, the resource group for the servers would be

{(servers, write), (servers, connect), (servers, login)}

the last two resource pairs being necessary to perform the
action in the first pair. Misconfiguring the VPN can enable
a man-in-the-middle attack, so the resource group for the
VPN would be

{(V PN, configure)}

Finally, accessing the developer system allows the user to
modify the software directly (by writing it) or indirectly (by

7

implanting malicious software that captures key strokes and
gives them to the attacker, who can then impersonate the
developer). So the relevant resource groups are

{(developerstation, login), (developerstation, modify)}

and

{(developerstation, download)}

The rd-groups of interest coincide with the resource groups,
because access to only one resource is required. Again, in
a full expansion of the analysis, additional rd-groups would
link the resources that must be used to modify the software
when multiple resources must be accessed, but for our ex-
ample we confine ourselves to single resources.

Next, the user groups must be populated. Consider the
user group induced by the rd-group for the developer work-
stations. The developers have access to those systems; they
can login and modify software on the workstation. Further,
they can download software, applets, and/or email with at-
tachments. So they make up an obvious user group, one
that reflects job function—just as RBAC would indicate.

But there are other relevant members of the group. Con-
sider first the developers in Russia. They work from home,
so when they work they must use some computer to log
in. For our purposes, assume accessing the VPN requires
special hardware (such as a dongle). Then the developer
must access the VPN and development servers from home.
Then everyone who has access to the system at home is in
some sense an “insider” because, if the developer ever leaves
the system connected to the VPN, anyone can access the
developer servers. Similarly, those who have access to the
computer could modify it to inject malicious logic to cor-
rupt the data (programs being developed or programs used
in the development). This includes friends who visit, and
computer repair technicians. Finally, if the developer surfs
to web sites, or receives email, or uses the computer to inter-
act with other systems or people, those sites and people can
compromise the system by exploiting vulnerabilities. This
defines several classes of members of that group:

1. The developer’s family, or others who live in the same
home, form a group with unrestricted access to the
computer.

2. Those who have access to the home (such as house-
keepers, maintenance people, assistants, and so forth)
have appropriate access, depending on their duties and
whether they are under observation.

3. The computer system repair people have unrestricted
access to the system but only during restricted periods
of time.

4. Those who have electronic contact with the computer
have enough access to try to compromise it by exploit-
ing configuration or program vulnerabilities.

All these are defined by level of access, which may or may
not be a product of job function. Note in particular the
second and fourth groups above. These people have tran-
sient access because they are not permanently resident in
the home, but their level of access while in the home ranges
from very limited (if they are busy or the computer is under
observation) to unrestricted for limited periods of time (if
they enter the home when no-one is present).

A similar analyses shows that the user group induced by
the backup media include the system administrators who
make it, the senior executives who decide where they are to
be stored, the people involved in the transfer, and the man-
agers of the storage facility—as well as anyone with access
to the areas where the backup media is kept during its cre-
ation, transportation, and storage. Note that the last set of
people (those with physical access) are determined not by
job function, but by their ability to reach the backup media.

The user groups induced by the other rd-groups are de-
rived in a similar fashion.

These groups can be placed into the policy-based frame-
work for the insider threat described above. For example,
the Ideal Oracle states that developers can access the VPN
to develop code, and that repair people can physically access
the VPN equipment only in order to conduct repairs. This
is infeasible. In particular, the VPN equipment is unable
to determine the purpose of those who access it, nor is it
able to detect or prevent physical access itself. Depending
on the home life of the developer, the family and others in
the home may, too—it is unrealistic to require a computer
in a home to be kept in a locked room, accessible only to the
developer. Hence the access of people at the Feasible Policy,
Configured Policy, or Instantiated Oracle levels are greater
than at the Ideal Oracle level.

We now consider the risk analysis. Two measurements
are of interest: the value of the programs developed and
the value of the particular employee. The senior executives
have decided that protecting the programs requires that,
above all, the backup media be protected because all ver-
sions of the code reside on them, so any prior version can be
reconstructed; next, the servers containing the current ver-
sion; and last, any computers used by the developers. They
also believe that senior managers and system administra-
tors are the most valuable personnel, followed by developers,
followed by physical maintenance people (such as janitors).
People are partitioned into groups based on the set of re-
sources they have access to. The cost function c is therefore
a vector of two elements, (effect of person attacking, value
of resource).

Consider Tom, a system administrator working at the
main office. He has access to the servers and the backup
media. So the measurement for him is

(SA, {backups, servers})

Now, Kolya is a developer living in Moscow. He has access to
a developer machine and the servers (to read and write code
components), but not to the backups. So his measurement
is

(D, {developerstation, servers})
Judy is the president of the company. She has access to the
backup media but not to the servers nor to the developer
systems. Her measurement is

(SE, {backups})

Finally, Angie is a janitor who sweeps out the machine room
every night. Her measurement is

(PM, {servers})

and Natalya is Kolya’s spouse, so her measurement is the
same as Kolya’s, or

(D, {developerstation, servers})

8

The set of resources defined here are the elements of the
power set of

{backups, servers, developerstation}

Associated with each resource is its resource group, made up
of resource pairs. As we consider only the effect of the access
to the resource, we can give the resource group a single value.
Because the rd-groups correspond to the resource groups in
our example, the value of each rd-group is the same as the
associated resource group. Identify each rd-group by the
resource it refers to. Then let the values be assigned as
follows:

100 → {backups, servers, developerstation}
75 → {backups, servers}
60 → {servers, developerstation}
70 → {backups}
50 → {servers}

The values reflect, on a scale of 0 to 100, the seriousness of
unauthorized modifications to the relevant rd-group. This
imposes a linear ordering on the rd-groups.

In the above case, for example, the values and positions
indicate that corrupted system administrators pose more of
a risk to the integrity of the programs than corrupted senior
management, which makes sense as senior management does
not maintain, or have access to, the servers.8

The cost function used in this example is not realistic for
several reasons. First, real cost analysis would take into ac-
count an attacker requiring multiple resources. Second, the
cost would likely depend on the action taken with the re-
source, which we elided in the interests of simplicity. Third,
the cost vector proposed here excludes intangibles such as
reputation, appearance of integrity, and so forth. The cost
of these is very difficult to evaluate but they are essential
to a proper risk analysis, especially for a problem like the
insider threat.

5. PRIOR WORK
Many researchers have investigated the problem of insider

threat. However, most papers have either not precisely de-
fined an insider, instead assuming that the user inherently
understands the term, or have provided a definition too nar-
row, too broad, or too domain-specific to be useful. Without
a consistent definition of an insider, each researcher devel-
ops her own definition that is particular to her own data set,
situation, biases and assumptions.

As a result, research into the detection of insider threats
can not necessarily be applied from one domain to another
as the underlying model does not necessarily translate be-
tween the domains. Several definitions exist, and these can
even be contradictory. For example, a RAND Corp. report
defines an insider as “an already trusted person with ac-
cess to sensitive information and information systems” ([3],
p. xi). Elsewhere it defines an insider as “someone with
access, privilege, or knowledge of information systems and

8Note that the metric equates the system administrators and
senior management. In practice, a more nuanced measure
would need to take into account the ability of senior man-
agement to hire and fire system administrators, and a host
of other issues that are ignored here to keep the example as
simple as possible.

services” ([3], p. 10), omitting the need for that person to be
trusted. A paper on database security defines it as “a sub-
ject of the database [who] thereby has personal knowledge of
information in the confidential field” [8]. A different report
implicitly defines the insider as anyone operating inside the
security perimeter ([12], p. 3), again ignoring trust and also
knowledge of the systems. This reflects many non-computer
situations. Even in insider trading, something that the U.S.
Securities and Exchange Commission, the courts, and other
government organizations have spent a significant amount
of time investigating and prosecuting, there is a large grey
area making it difficult to be certain whether a particular
trade by an insider is legal or illegal without seeing a large,
heavy suitcase full of $100 bills.

These (sometimes implicit) definitions are based on a no-
tion of “trust”, encapsulated in rules to identify those who
are “trusted”. Those who were not trusted are by definition
not insiders. In some cases, a mechanism such as seniority in
an organization may distinguish outsiders from insiders, but
ultimately those mechanisms classify people based on rules.
Thus, in any case, a set of rules distinguishes “insiders” from
“outsiders”. This results in a binary distinction: an entity is
either an insider or not an insider. Our work eschews this,
focusing instead on a graduated notion of “insiderness”.

The problem of defining an insider is further complicated
by the assumption of a perimeter that can be defined, such
that someone inside the perimeter is an insider. However,
the concept of distinct borders around an organization are
blurring with the increased usage of mobile computing, out-
sourcing and contracting. Even in those cases where a dis-
tinct border can be defined, many definitions focus on tech-
nology borders and fail to consider physical borders and the
ability to circumvent borders (for example, by social engi-
neering). Again, our work in identifying insiderness ignores
the concept of “perimeter” entirely, focusing instead on the
concept underlying the notion of perimeter: access.

Many papers focus on handling the insiders rather than
trying to define the problem. Two examples will suffice to
make this point. Hu et al. [10] discuss using algorithms
based on the role-based access control (RBAC) model to de-
fine insider threats and construct rules for intrusion detec-
tion systems to detect such attacks. However, they tacitly
assume that an insider is defined by job function, and do
not take into account physical or social insiders. Hasan et
al. [9] discuss a threat model for storage systems that in-
cludes a brief analysis of insider attacks. They do not define
insiders explicitly, beyond the phrase “insiders with privi-
leged access”, but they do observe that “a masquerader can
launch insider attacks”, suggesting that some insider attacks
are social (masquerade) rather than cyber (using authorized
privileges illicitly). Chinchani et al. [5] present a theory of
assessment for the insider, defining insiders as “legitimate
users who abuse their privileges, and given their familiarity
and proximity to the computational environment, can easily
cause significant damage or losses.” This theory then models
the user’s view of the organization and of key information
and capabilities. The focus is on the cyber insiders, and
does not take into account those who are insiders because of
physical or social reasons.

Others focus on the profile of the insider or the magnitude
of the problem. Schultz [20] surveys many of the papers in
this area, all of which focus on the classic triad of means,
motive, and opportunity. Randazzo et al. [15] discuss the

9

problem in the banking community. The 2007 Computer
Security Institute (CSI) Computer Crime and Security Sur-
vey reported that “[i]nsider abuse of network access or email
... edged out virus incidents as the most prevalent secu-
rity problem” ([16], p. 2) and that “37 percent of respon-
dents attribute a percentage of their organization’s losses
greater than 20 percent to insiders” (ibid., p. 12). Our ap-
proach captures “opportunity”, namely who has access, and
“means”, namely what kind of access do they have, in rd-
groups and user groups. Motive being a human subject, we
must leave that to non-technical investigation.

6. FUTURE WORK
In practical terms, what can we do with this method? Re-

turning to our original statement: our purpose is to enable
legitimate users to do legitimate work, while seeking a way
to defend against any user from taking illegitimate actions.
For example, if an exploit is known, there are two possible
defenses: prevent against the exploit, or allow it to happen
but log it because knowledge of the action occurring (and
the cause and effect of the action) is sufficient to undo (in
whatever way) the present damage and attempt to amelio-
rate future damage [14]. When deciding which of these two
options to pursue, it is clear that sometimes preventing the
exploit is possible. However, at other times, the threat is
low enough (or the opportunity cost of lost productivity is
high enough) that actions must simply be allowed to occur,
and they must be logged, instead of being prevented.

Any method of logging, of sufficient granularity [13], can
be used to address this issue. However a systematic ap-
proach, using a model tailored to the levels of abstraction
that we have indicated, would have the greatest possibility
of success at the lowest cost. For example, one method of
implementing such a solution is to identify the goals of at-
tackers and compare those goals to the actual capabilities of
those attackers. Those reference points, and knowledge of
the deterministic operation of the system could be used to
design “attack trees” of sorts [19], which can then be used to
guide the forensic data to be logged [14]. That data, when
overlaid on top of the attack graphs, can help guide the
understanding of the actions of the attackers without nec-
essarily interfering in legitimate actions of users, and thus
generating false positives where they can be least afforded
(this technique has also been used successfully to correlate
network intrusion detection alerts [23]).

The notion of a hierarchy of policy abstractions suggests
many avenues for future work. For example, we have defined
the insider threat in terms of discrepancies between the lev-
els (specifically, where a lower level gives a user more access
than does the higher level). Can we broaden the use of these
layers to capture notions of vulnerabilities? For example, a
configuration vulnerability arises when the Configured Pol-
icy disagrees with the Feasible Policy. This suggests that
some systems may have inherent vulnerabilities for specific
types of policies, such as the Linux system without ACLs
described above. This area needs more exploration, because
the study of vulnerabilities lacks a firm theoretical founda-
tion.

Another interesting question arises from the issue of “in-
siders by omission”, in which a user is denied privileges at
one level that a higher level authorizes her to have. First,
how serious is this problem? All the studies and surveys of
the insider threat focus on insiders who have too much ac-

cess. What problems arise when a responsible party has too
little access? This can also be seen as an insider attack by
the developers of the Feasible Policy, Configured Policy, and
the Instantiated Oracle that deny the defender adequate ac-
cess to defend. The nature of this problem is unclear, and
merits study.

7. CONCLUSION
We have presented an initial approach to defining the in-

sider threat problem. While the majority of existing research
implicitly defines an insider as a binary condition (one is ei-
ther an insider or not), this paper takes the approach of
defining insiderness based on access attributes. More specif-
ically, we have defined a lattice consisting of rd-groups on
one axis and users (not roles) on the other axis. By ordering
resources based on their value, we can then group them by
their value. By then grouping users according to their ability
to access resources, we can provide a continuum of insider-
ness. This allows researchers and security personnel to focus
on those who pose the greatest threat to an organization.

Finally, the ABGAC model introduces a notion of gener-
alized groupings, mimicking the idea of computer “group”.
The focus on ABGAC using access as a defining mechanism
for groups, including non-cyber types of access such as phys-
ical or social (i.e., social engineering) raises issues that other
models using access control mechanisms do not deal with.
The difference is between what is authorized (by the access
control mechanisms) and what is possible (for example, by
circumventing those mechanisms). The introduction of the
possible, rather than the allowed, seems useful as security
deals with what“is”, rather than with what is “meant to be”.

Acknowledgements. Sophie Engle was supported by
grant H98230-07-1-0234 from the Department of Defense to
the University of California at Davis. Matt Bishop was sup-
ported by grant CND-0716827 from the National Science
Foundation to the University of California at Davis. The
views and conclusions expressed in this paper are those of
the author, and not necessarily those of any funding agency.

Sean Peisert was supported by grant 2006-CS-001-000001
from the U. S. Department of Homeland Security, under the
auspices of the Institute for Information Infrastructure Pro-
tection & I3P research program. The I3P is managed by
Dartmouth College. The views and conclusions contained
in this document are those of the authors and should not
be interpreted as necessarily representing the official poli-
cies, either expressed or implied, of the U.S. Department of
Homeland Security, the I3P, or Dartmouth College.

The title of this paper is from a comic character named
Pogo, drawn by Walt Kelly [11].

8. REFERENCES
[1] Matt Bishop. Position: “Insider” is Relative. In

Proceedings of the 2005 New Security Paradigms
Workshop (NSPW), pages 77–78, Lake Arrowhead,
CA, October 20–23, 2005.

[2] Matt Bishop. Overview of red team reports. Technical
report, Office of the California Secretary of State,
Sacramento, CA, July 2008.

[3] R. Brackney and R. Anderson. Understanding the
Insider Threat: Proceedings of a March 2004
Workshop. Technical report, RAND Corporation,
Santa Monica, CA, March 2004.

10

[4] Adam Carlson. The Unifying Policy Hierarchy Model.
Master’s thesis, Dept. of Computer Science, University
of California at Davis, June 2006.

[5] R. Chinchani, A. Iyer, H.Q. Ngo, and S. Upadhyaya.
Towards a Theory of Insider Threat Assessment. In
Proceedings of the International Conference on
Dependable Systems and Networks (DSN), pages
108–117, June 28–July 1, 2005.

[6] E. W. Dijkstra. The Structure of the THE
Multiprogramming System. Communications of the
ACM (CACM), 11(5):341–346, May 1968.

[7] D. F. Ferraiolo and D. R. Kuhn. Role Based Access
Control. In Proceedings of the Fifteenth National
Computer Security Conference, pages 554–563,
October 1992.

[8] Robert Garfinkel, Ram Gopal, and Paulo Goes.
Privacy Protection of Binary Confidential Data
Against Deterministic, Stochastic, and Insider Threat.
Management Science, 48(6):749–764, Jun 2002.

[9] Ragib Hasan, Suvda Myagmar, Adam J. Lee, and
William Yurcik. Toward a Threat Model for Storage
Systems. In Proceedings of the 2005 ACM Workshop
on Storage Security and Survivability (StorageSS),
pages 94–102, New York, NY, USA, 2005. ACM.

[10] Ning Hu, Phillip G. Bradford, and Jun Liu. Applying
Role Based Access Control and Genetic Algorithms to
Insider Threat Detection. In Proceedings of the 44th
Annual ACM Southeast Regional Conference
(ACM-SE), pages 790–791, New York, NY, USA,
2006. ACM.

[11] Walt Kelly. Zeroing In On Those Polluters: We Have
Met the Enemy and He Is Us. The Best of Pogo, 1982.

[12] J. Patzakis. New Incident Response Best Practices:
Patch and Proceed is No Longer Acceptable Incident
Response. Technical report, Guidance Software,
Pasadena, CA, September 2003.

[13] Sean Peisert, Matt Bishop, Sidney Karin, and Keith
Marzullo. Analysis of Computer Intrusions Using
Sequences of Function Calls. IEEE Transactions on
Dependable and Secure Computing (TDSC),
4(2):137–150, April–June 2007.

[14] Sean Philip Peisert. A Model of Forensic Analysis
Using Goal-Oriented Logging. PhD thesis, Department
of Computer Science and Engineering, University of
California, San Diego, March 2007.

[15] M.R. Randazzo, M. Keeney, E. Kowalski, D. Cappelli,
and A. Moore. Insider Threat Study: Illicit Cyber
Activity in the Banking and Finance Sector. US Secret
Service and CERT Coordination Center, 2004.

[16] Robert Richardson. 2007 Computer Crime and
Security Survey. Computer Security Institute, 2007.

[17] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Yoman. Role-Based Access Control Models. IEEE
Computer, 29(2):38–47, February 1996.

[18] Fred B. Schneider. Enforceable Security Policies. ACM
Transactions on Information and System Security
(TISSEC), 3(1):30–50, February 2000.

[19] Bruce Schneier. Attack Trees: Modeling Security
Threats. Dr. Dobb’s Journal, 24(12):21–29, December
1999.

[20] E. E. Schultz. A Framework for Understanding and
Predicting Insider Attacks. Computers and Security,
21(6):526–531, 2002.

[21] Marc Songini. E-voting security under fire in San
Diego lawsuit. Computerworld, August 4, 2006.

[22] Thomas Walcott and Matt Bishop. Traducement: A
Model for Record Security. ACM Transactions on
Information and System Security, 7(4):576–590, Nov.
2004.

[23] Jingmin Zhou, Mark Heckman, Brennan Reynolds,
Adam Carlson, and Matt Bishop. Modelling Network
Intrusion Detection Alerts for Correlation. ACM
Transactions on Information and System Security
(TISSEC), 10(1), February 2007.

11

