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ABSTRACT
The fight against malicious software (or malware, which includes
everything from worms to viruses to botnets) is often viewed as
an “arms race.” Conventional wisdom is that we must continu-
ally “raise the bar” for the malware creators. However, the mul-
titude of malware has itself evolved into a complex environment,
and properties not unlike those of ecological systems have begun
to emerge. This may include competition between malware, fa-
cilitation, parasitism, predation, and density-dependent population
regulation. Ecological principles will likely be useful for under-
standing the effects of these ecological interactions, for example,
carrying capacity, species-time and species-area relationships, the
unified neutral theory of biodiversity, and the theory of island bio-
geography. The emerging malware ecology can be viewed as a crit-
ical challenge to all aspects of malware defense, including collec-
tion, triage, analysis, intelligence estimates, detection, mitigation,
and forensics. It can also be viewed as an opportunity.

In this position paper, we argue that taking an ecological ap-
proach to malware defense will suggest new defenses. In particular,
we can exploit the fact that interactions of malware with its envi-
ronment, and with other malware, are neither fully predictable nor
fully controllable by the malware author—yet the emergent behav-
ior will follow general ecological principles that can be exploited
for malware defense.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection–invasive soft-
ware
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1. INTRODUCTION
Modern malware defense involves a variety of activities and is

quickly becoming unsustainable. So many malware samples are
collected from the wild each day that triaging is necessary to deter-
mine which samples warrant further analysis. Much of the analysis
framework is consumed by creating new signatures for new vari-
ants of well-known attacks, but simply releasing a signature for ev-
ery threat that is currently in the wild is only part of what defenders
must do. They must also aggregate the results of multiple analyses
to mitigate threats that have already spread, develop intelligence
estimates of what the attackers are doing and are likely to do next,
and conduct forensic analysis of attacks that have occurred.

The study of how ecological principles can be applied to these
defense activities is important for two reasons. First, the emerg-
ing malware ecology is straining defenses at every stage. Exactly
identifying every distinct instance of malicious code that is in the
wild, something that most malware defense relies on, is no longer
possible. For example, it is now common for targeted attacks, e.g.,
phishing attacks against local credit unions where e-mails are sent
only to e-mail accounts in a particular city, to be constructed us-
ing tools for building advanced Trojan horses using a point-and-
click interface, such as Shark 2 [14]. As a second example, Song
et al. [32] documented both experimentally and with information
theory arguments that the diversity of a single component (the de-
coder) of a botnet greatly exceeds the capacity of any signature-
based detection algorithm.

The second reason to study malware ecology is that it has the
potential of leading to defenses that give fundamental advantages
to the defender. Current approaches are aimed primarily at known
attacks or known types of attack. In the current landscape, these
approaches at best consume some time of the attacker, who must
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create new malware to evade the defenses. Before the malware
landscape became so ecologically diverse, it might have taken 30
minutes to roll out a new defense in response to the latest attack,
and two days for a new attack to appear in response to that defense
(these amounts of time are estimates for the purpose of example
only). However, with the advent of “malware 2.0” [4], malware is
supported on the back end by large amounts of resources and coor-
dination, and it might take a couple of hours to roll out a new de-
fense but only minutes for a new attack to appear. With the possible
exception of automated diversity techniques, anti-malware tech-
niques are so predictable that there is little defenders can to do to
prevent sophisticated attackers from gaining this advantage. This is
because the game between attacker and defender is circumscribed
within the limits of the controlled environments in which analy-
sis and defense are carried out. We posit that there is an impor-
tant difference between the richly diverse interactions that malware
has with its real environment in the wild, and the more restricted
behaviors of malware in clean and controlled laboratory environ-
ments. Studying malware ecology has the potential to bring the
complexity of the environment, something that the attacker cannot
predict or control, within the scope of novel analysis and defense
techniques.

1.1 Today’s analysis environments
Malware analysis is typically conducted in carefully controlled

environments. A typical malware defense pipeline must sift
through tens of thousands of unique malware samples every day to
find the few that are truly novel and warrant further analysis. As a
rule, these selected samples are traded among experts and analyzed
thoroughly only if their behavior can be demonstrated in a repro-
ducible way on a clean, freshly installed copy of the vulnerable
system. This prevents wasted effort, when one malware analyzer
passes malware off to another. If a sample “misbehaves” in some
way, the malware analyzer will sift through all similar samples to
find one that behaves more predictably (the behavior can be repro-
duced). Subsequent efforts at forensics and threat estimation take
these manual analyses as their starting point. At every stage valu-
able information is lost because we do not know how to use this
information effectively. In the wild, malware that behaves exactly
as its author intended is the exception, not the rule [20].

Suppose that ecologists studied only healthy organisms in iso-
lation, in pristine caged environments tailored to those organisms.
All of their efforts to estimate the impacts of introduced species,
to predict populations of pests, and to explain changes in the wild
populations of endangered species would be hampered. Malware
analysis professionals are aware of this problem but lack alterna-
tives. For example, Peter Szor, one of the most respected malware
practitioners in the industry, describes [34, Section 9.8] the large
number of interactions, both accidental and intentional, between
various malware instances. He describes how worms that spread
over the Internet by copying a *.exe file from machine to ma-
chine often carry three or four file infector viruses “on their back.”
This can cause “mutant” worms whose signature changes polymor-
phically even though the worm itself is not polymorphic. It can also
cause large resurgences of virulent file infector viruses that are no
longer on the threat list. As Szor states, “anti-virus programs need
to address this issue.” Many file infector viruses, such as the infa-
mous Chernobyl virus, were important only because of their ability
to spread on the backs of e-mail worms. To date such malware-
malware synergies have been mostly accidental, although there are
intentional examples as well, such as the CTX virus’ strategy of
piggybacking on the Cholera worm. However, it is only a matter of
time before malware authors realize the potential of this technique.

1.2 The emerging malware ecology
In addition to interactions with each other, today’s malware in-

teracts with its environment in unprecedented ways. The Trojan
programs installed by advanced botnets, dubbed “malware 2.0” by
some researchers [4], use techniques such as combining public-key
cryptography with existing peer-to-peer networks to create custom
name resolution mechanisms. There is also a growing trend of cor-
rupting the existing Domain Name Service (DNS) system for com-
mand and control [12], creating the rise of a “second secret author-
ity.” Additionally, botnets such as Storm cannot be described as a
single instance of malicious code, they are really a system of differ-
ent Trojans, amorphous and heterogeneous command and control,
drive-by downloaders, droppers, waves of malicious e-mails that
recruit new victims, and any number of other components that are
nothing new in isolation but taken together represent a new level
of threat on the Internet. Obtaining a “sample” of the Storm botnet
and analyzing it in a laboratory is thus complicated in fundamental
ways. Unless the laboratory environment contains unwitting peer-
to-peer users and corrupted DNS resolution paths, it is incomplete.

Even the relatively simple malware of the past was notoriously
fragile, and it was difficult to execute in a virtual machine be-
cause of the many environmental dependencies. Most simple e-
mail worms, for example, exit abnormally when executed in an iso-
lated virtual machine because, e.g., the system date is not set within
the right range, DNS queries go unanswered, or no SMTP server is
configured. As early as 2003 researchers reported that running vul-
nerable programs under an emulator was sufficient to disrupt some
attacks, even without patching the vulnerability [3, 5, 21]. This is
a serious problem because it requires malware analyzers to fully
recreate every detail of the malware’s natural environment before
analysis can be performed, and the complexity of malware envi-
ronments continues to rise.

1.3 Opportunities
The emerging malware ecology is also troublesome from the at-

tacker’s point of view. In fact, it always has been. Suppose an
attacker wants to write a worm to install a backdoor on every ma-
chine it infects. They develop a zero-day exploit, use their own
custom polymorphic engine, and throw all of their newest and best
tricks into the code to slow the antivirus analysis down. They also
use stealth techniques that they know will allow it to spread unfet-
tered for at least a day or two. It is the Perfect Worm.

After they release it, within a couple of days a dozen “script kid-
dies” have grabbed samples of it and made slight changes to the
code, mostly to install their own backdoor, and then released their
variants into the wild. Thus, the original author’s variant is rele-
gated to the name PerfectWorm.D (if by chance it was the fourth
variant to be found in the wild). Furthermore, when they log into
infected machines through their backdoor, they find that these un-
patched machines typically are rebooted every so often by an old
worm that is still making the rounds, the NotSoElegant Worm,
which makes its presence conspicuous in other ways, too. Then
somebody releases the PerfectWormKiller Worm, which exploits
a buffer overflow they accidentally coded in their backdoor to get
into infected machines and remove the PerfectWorm.

None of this is uncommon. For example, consider the variants of
major worms, most of which are just trivial changes to, for exam-
ple, the date of the payload and the URL used for a DoS attack. The
Cabir worm, the first worm for cell phones to be seen in the wild,
became Cabir.A, Cabir.AA, Cabir.AB, Cabir.AC, Cabir.AD, and so
on, Cabir.B, Cabir.BA, Cabir.C, Cabir.D, and so on to Cabir.Z. The
Creeper worm was possibly the first computer worm ever, appear-
ing in the early 70’s, and was immediately targeted for removal by
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the Reaper worm which followed in its tracks. Code Red was at-
tacked by Code Green, and Blaster was attacked by Welchia. Sasser
was both attacked by Gaobot.AJS, which came in through the same
vulnerability as Sasser and then used a vampire attack1 to disable
it, and targetted by Dabber, which exploited a buffer overflow in
Sasser’s crude FTP server to spread. Doomjuice spread using My-
Doom’s backdoor. (For details about all of these examples, see
symantec.com and Szor’s book [34]).

1.4 Structure of the paper
The next section, Section 2, gives examples of how ecological

principles can be applied to malware defense, and lists some re-
lated works. Section 3 presents some initial results that demon-
strate that the distribution of malware in a honeypot network trace
is affected by competition between malware. This is followed by
Section 4 where we discuss how an ecologically inspired approach
to computer security can give defenders an inherent advantage in
the “arms race,” and contrast our proposed approach with biolog-
ically inspired approaches. Then we describe the discussion that
occurred at the NSPW workshop along with our reflections on it in
Section 5, and conclude.

2. EXPLOITING ECOLOGICAL
PRINCIPLES

This section gives some examples of how ecological principles
can be applied to malware defense, and discusses some related
work in computer science.

2.1 Malware defense using ecological
principles

First, consider malware detection of known threats (e.g., such as
those detected by an antivirus scanner, although these ideas could
apply to anomaly detection as well). A key question is: What is the
most efficient detection scheme? The malware defense community
uses the concept of a “wild list” to refer to the set of viruses that
are currently prevalent in production computers and networks and
therefore are worth scanning for. Scanning for only the viruses on
the wild list is an optimization that avoids the overhead of search-
ing for every possible threat that has ever been observed. Principles
of ecology could be used to generalize this idea by introducing the
notion of indicator species [15] to distill the wild list down to a
small list of indicator viruses. An indicator species is a species that
is known to be correlated with the presence of one or more other
species. An example of why this might occur is nestedness [1],
where the least common species are observed to almost always oc-
cur on the same islands as common species, creating a nested struc-
ture of occurrence frequencies.

Ideas such as nestedness and indicator species also apply to mal-
ware collection and mitigation. To achieve this, it is critical to know
where malware can be found, which means we must know how
malware distributes itself over space and time. Island biogeogra-
phy [27] and related ideas, such as the species-area relationship [9]
and species-time relationship [30], can provide quantitative analy-
sis tools for this purpose. Ecologists have many tools for under-
standing these phenomena and routinely exploit them to benefit the
biodiversity. As one example of questions ecologists might pose
and then answer, consider the problem of taking a habitat and find-
ing the optimal subset of the habitat that should be set aside to
preserve the biodiversity (e.g., if only a certain amount of acreage
can be dedicated to preservation efforts). A similar question could
1Vampire attack is a technical term referring to an attack that hi-
jacks control flow by placing jumps throughout memory.

be posed for malware ecologies, except that the goal would be to
eliminate as many species as possible using only limited resources
for defense.

Triage and analysis are important components of the malware de-
fense pipeline. Here, an understanding of ecological principles will
not only be beneficial in the near future, but absolutely necessary.
Triaging is the process of sifting through a large amount of col-
lected samples to decide which warrant further analysis, and analy-
sis is the process of detailing what a particular sample does and pos-
sibly generating a signature for it. Complex interactions between
malware in the wild, including parasitism, predation, facilitation,
and commensalism, will be even more prevalent in the future. We
need to understand these important interactions. Commensalism,
for example, could mean that a file infector virus spreads by attach-
ing itself to a circulating e-mail worm. If such unclean samples are
routinely removed from the analysis pipeline, then analyzing the
virus in isolation may not reveal important behaviors of the virus
when combined with the worm. As an example, the worm might
set a registry entry to load a copy of itself every time the host ma-
chine is rebooted, therefore putting the virus in the same machine
startup path. If the worm and virus are separated during analysis
then, in later stages of analysis, potentially important diurnal pat-
terns in the virus’ actual behavior might be missed. Many of the
underlying principles for such interactions are well understood in
the field of community ecology [29].

Each of these ecological principles becomes important if the ul-
timate goal is to understand malware ecology as a whole rather
than as a single instance. This is relevant for intelligence estimates
about the state of malware in the wild and forensics for law en-
forcement or other purposes. When combining data from several
telescopes and honeypots, for example, many factors play a role in
the way that the data should be aggregated, including competition,
habitat filtering, predator-prey dynamics [35], and all of the afore-
mentioned principles from biogeography and community ecology.

2.2 Related work
Although no coordinated effort exists to promote the inclusion

of ecological principles throughout the malware defense pipeline,
a few related works are worth mentioning here. Dancho Danchev
has discussed the “malware ecology” in white papers [13] and on
his blog [14]. In this paper, we take “malware ecology” to mean
malware’s interactions with its environment and with other mal-
ware, Danchev also includes social processes and other factors into
the environment when using the term. An interesting application
of ecological methods and principles to a computer science prob-
lem was Weaver and Collins’ use of capture-recapture models to
estimate the extent of phishing activity on the Internet [36]. Also
of interest is the general idea of combining analysis of a malware
sample with analysis of its environment for powerful approaches to
analysis [10] and forensics [24]. The dynamics of direct competi-
tion between worms has been explored [7]. Interesting examples
about how malware interacts with its environment and with other
malware in unexpected ways can be found in Szor’s book [34]. Fi-
nally, the difference between how malware is meant to behave by
its authors and how it actually behaves in the wild [20] is enlight-
ening.

3. EXAMPLE: COMPETITION
In this section, we present some initial results demonstrating

competition between different “species” of malware in the wild.
To assess these effects, we use a null modeling approach developed
in ecology.
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3.1 Constructing a presence-absence matrix
We used network trace data from the Minos project [11]. This is

honeypot data collected over a period of two years at a single hon-
eypot location. Many null models used by ecologists take as input
a binary presence-absence matrix that has species as its rows and
sites as its columns, with a 1 indicating the presence of a species
at that site and a 0 otherwise. Additionally, for the method that we
used, which is due to Ladau and Schwager [26], the species must
be grouped into “units” (e.g., genera, families, functional groups)
reflecting ecological similarity. This is because Ladau and Schwa-
ger’s method is based on a sampling process that models compe-
tition as a reduction in the co-occurrence of ecologically similar
species. This requires an a priori definition of which species are
ecologically similar and therefore likely to compete, but has the
benefit of not depending on unjustifiable parametric assumptions.

For the initial results presented here, we consider the destination
port number of an observed attack to indicate species. A probe on
a particular port from a remote IP address implies that the remote
IP address is infected with a worm that spreads using that partic-
ular port. For example, an observed SYN packet from IP address
w:x:y:z on port 135 in the Minos network trace data is taken to
mean that w:x:y:z is infected with the species corresponding to
port 135, i.e., the Blaster worm.

The power (or sensitivity) of the analysis in Ladau and Schwa-
ger’s method requires an ample number of species per site. We
consider a site to be a =16 subnetwork, so a distinct site covers any
of the 65; 536 IP addresses in w:x:?:?. Using =16 subnetworks
is necessary because if sites are defined as single IP addresses or
=24 subnetworks, then individual sites have too few species for the
analysis to have power. For example, for =24 subnetworks with 256
IP addresses to each site, only 20 sites have four or more species.
Thus, our choice of =16 subnetworks is largely due to the charac-
teristics of the Minos dataset. As for larger sites, we did not use
=8 subnetworks because there are only a small handful of Class A
networks where considering them as one administrative entity is
meaningful.

Using =16 subnetworks also removes concerns about network
address translation, because a site is no longer a single machine.
Our results show that competition occurs even at this higher level
of abstraction, for reasons explained in Section 3.3. We filtered
out any obvious port scanning and fingerprinting traffic before con-
structing the presence-absence matrix, because this traffic does not
indicate the presence of any particular malware. The end result is
that there are 1; 453 distinct sites in our presence-absence matrix.

The eight “species” are grouped into the following units: Ports
135 and 445 are grouped into the “consumes unpatched Windows
machines using remote memory corruption” unit; ports 137 and
139 are grouped into the “consumes unpatched Windows machines
using unprotected file shares” unit; ports 80 and 443 are grouped
into the “targets web servers” unit; and ports 1433 and 1434 are
grouped into the “targets SQL servers” unit.

Port 135 probes typically indicate a Blaster variant. Note that
Welchia, a predator of Blaster that used the same vulnerability as
Blaster to spread on port 135, was programmed to self-terminate
on 1 July 2004, so is not prevalent in the Minos data except in early
traces where it is indistinguishable from Blaster due to our defi-
nition of species. Port 445 indicates either variants of the Sasser
worm or botnet activity. Ports 137 and 139 indicate a variety
of worms that spread through network shares including Sadmind,
Chode, and Qaz. Port 443 probably indicates an unpatched Win-
dows machine in a botnet that is scanning for web servers, while
port 80 can either indicate the same or could be a worm such as
Code Red that spreads from web server to web server. The same

is true of ports 1433 and 1434, with the former probably indicat-
ing botnet activity and the latter being overwhelmingly due to the
Slammer worm.

One possible concern is that the content filtering performed by
certain ISPs to reduce traffic from particular worms would intro-
duce biases into our measurements. Since we consider only SYN
probes this effect applies only to the slammer worm which spread
as a single UDP packet.

3.2 Hypothesis tests for competition,
facilitation, and habitat filtering

After constructing the presence-absence matrix, we used null
model tests [26] to check for effects of competition, facilitation
(i.e., positive interactions between species), and habitat filtering
(i.e., differences in site accessibility and habitability) on the co-
occurrence patterns of the malware. Hypothesis testing allows us
to postulate a null hypothesis, i.e., that effects of a particular pro-
cess (e.g., competition) are not present in the data, and then test
that hypothesis. If we reject the null hypothesis, then it is unlikely
that data generated from the null model (i.e., without the effect in
question) could have generated the data, modulo a false positive
rate that can be calculated as a test diagnostic. If we fail to reject
the null hypothesis, then the test is considered inconclusive. In this
case, another test diagnostic, the power of the test (which is 1 mi-
nus the false negative rate), gives some indication of the meaning
of the result.

Many null model tests for competition, facilitation, and habitat
filtering have been developed in ecology [8,17,18,33], but they of-
ten require assumptions that each species is equally likely to occur
at all sites, or that at each site every species is equally likely to oc-
cur [25]. These assumptions are not satisfied in the Minos honeypot
data set.

The fact that every =16 subnetwork has a different make-up of
Windows machines, web servers, and SQL servers, combined with
the fact that each machine is vulnerable to a distinct set of species,
violates both assumptions. For example, if one subnetwork has
many SQL servers and only a single HTTP server, and another sub-
network has only one SQL server and many HTTP servers, then: 1)
Slammer is much more likely to occur at the former site than at the
latter (and conversely for Code Red); and 2) At the latter site Code
Red is more likely to occur than Slammer (and conversely for the
former site). Note that the presence of a particular type of server
does not necessarily imply a 100% probability that the server is vul-
nerable, so it is not necessarily the case that any servers at all of a
given type implies that that subnetwork will eventually be infected
with the corresponding worm.

Recently developed tests [26] require only one parametric as-
sumption, which is met by the Minos data. Let i and j denote the
ith and jth species of malware to arrive at a site (a site is a =16
subnetwork for our present purposes), respectively, and hi; ji the
event that i and j belong to the same unit (see above). The tests re-
quire the assumption that P (hi; ji) > 0 for all i and j. Since there
is nothing about worms in either unit that precludes worms of the
same unit also entering an infected subnetwork this assumption is
sound for the Minos data. Another key assumption is site indepen-
dence (i.e., the species observed at a given site do not affect which
species are observed at another site), which is met by the Minos
data. While random IP address scanning worms and botnets tend
to prefer closer subnets by using random IP probing strategies that
prefer the =16 and =8 subnetworks close to them (by mostly stick-
ing to their own =24 or =16 ranges), over time this effect averages
out. Thus, independence between sites is maintained if the time
scale is long enough.
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The tests check for independence during the colonization pro-
cess: at a given site, if malware interact, then the presence of cer-
tain species should make other species less (competition) or more
(facilitation) likely to occur. We employed two tests [26]: a test that
can detect effects of competition (the “competition test”), and a test
that can detect effects of facilitation and habitat filtering (the “fa-
cilitation test”). For further details, see Ladau and Schwager [26].

Figure 1: Diagnostic criteria for the null model tests used here.
This shows that both of our conclusions, about the existence
of competition and the lack of habitat filtering in the Minos
dataset, are based on statistical methods with low false positive
and false negative rates. The interaction factor is a parameter
in a model of community assembly which reflects the strength
and type of interactions between species (Ladau and Schwager,
in preparation). The null hypotheses for the competition and
facilitation null model tests state that the interaction factor is
less than and greater than 1, respectively. For the competition
test, a false positive occurs when the interaction factor is 1 or
less (left of the vertical line) and the test rejects the null hy-
pothesis. A false negative occurs when the interaction factor
is greater than 1 (right of the vertical line) and the test fails
to reject the null hypothesis. Thus, the fact that the curve for
the facilitation test is low over the interval [0; 1] indicates con-
trolled false positive rates, and the fact that it is relatively high
over the interval (1; 3] indicates low false negative rates. For
the facilitation test, the respective intervals are reversed.

The results of hypothesis testing on the Minos dataset are as fol-
lows. The competition test had a p-value (labeled Pr(Reject Null
Hypothesis) on the y-axis of Figure 1) of less than 0:0001, provid-
ing strong evidence of competition (the p-value is the probability
that the null model could have produced data at least as extreme
as the observed data). Test diagnostics showed a Type I error rate
(or false positive rate) of 0:055. This indicates that the significant
result was likely indeed due to competition affecting community
assembly, rather than a false positive result. By contrast, the fa-
cilitation test had a high p-value (� 1), indicating that there was
no evidence for inferring effects of habitat filtering or facilitation.
In addition, the facilitation test had high power (i.e., sensitivity),
shown in Figure 1, with a maximum of 0:802, indicating that had
there been such effects the test would likely have detected them.

Overall, these results suggest that the distribution of the malware
is affected by competition, but unaffected by habitat filtering and
facilitation.

Since it is well-known that web server worms tend to inhabit web
server sites, and SQL server worms tend to inhabit SQL server sites,
why was no habitat filtering observed? Habitat filtering means that
the presence of one member of a unit makes it more likely that
another member of the same unit will appear in that habitat, be-
cause something about the habitat is more conducive to species in
that unit. The null hypothesis was not rejected for the habitat fil-
tering/facilitation test because infected machines scanning on ports
443 or 1443 are likely to not be actual web or SQL servers, but
simply infected Windows machines in a botnet that are scanning
for servers. This fact does not significantly affect the result that
competition is present, the null hypothesis for the competition test
is rejected without including web servers or SQL servers in the data
(data not shown).

3.3 Explanation for observed competition
The competition observed in the Minos data set is largely be-

tween port 135 and port 445 (this can be determined by excluding
particular species and re-executing the tests). Here we give two
plausible explanations for this. Both explanations stem from the
fact that the Blaster worm uses an exploit that conspicuously re-
boots the machine upon infection. The Blaster worm also makes it
possible for reinfection, by either itself or another worm, to occur
using the same exploit. Thus a machine vulnerable to the Blaster
worm will be rebooted repeatedly, often several times a day. Re-
call that the observed competition is at the =16 subnetwork level
of abstraction, which captures both single-machine effects, such as
installing patches, and higher-level effects, such as testing a system
administrator’s patience to the point that they decide to, e.g., fire-
wall all Windows file sharing ports or install an intrusion detection
system.

One explanation for competition between these two species is
that bot herders (attackers who control the bots in a botnet) com-
monly install a patch for the port 135-accessible vulnerability that
Blaster variants use. They do this to make the machine more sta-
ble and its infected state less conspicuous to the machine’s owner.
Since the majority of botnets during the time-period in which the
Minos network traces were recorded used the same exploit as the
Sasser worm, on port 445, to spread, it would be expected that
machines vulnerable on this port would eventually become invul-
nerable on port 135.

Another explanation is that the system administrators of net-
works where many Windows machines are vulnerable to Blaster
(on port 135) were alerted to the vulnerability of their networks be-
cause of the conspicuous nature of Blaster and its variants. Thus
they firewalled all Windows file sharing ports, installed intrusion
detection, became more vigilant about installing patches, etc. In
making machines invulnerable to port 135 attacks, they also made
them invulnerable to port 445 attacks. This can also go the other
way when botnet-infected machines are used in denial-of-service
attacks and SPAM campaigns, making port 445 attacks the con-
spicuous species in this case. In other words, the resource that both
port 135 and port 445 species consume that leads to competition
between these two species is the patience of the people that control
machines on the subnetwork.

4. ECOLOGY AND THE “ARMS RACE”
How can ecology ideas and techniques give us as the defend-

ers an advantage in our arms race with attackers? In this section
we compare the proposed ecologically inspired approach for com-
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puter security research with biologically inspired approaches, dis-
cuss how exploiting emergent patterns of malware can give us as
the defenders a natural advantage, and give a hypothetical example
to illustrate this.

4.1 Ecologically inspired vs. biologically
inspired approaches

Our ecological approach to computer security research is biolog-
ically inspired in that it highlights certain biological properties of
software installations. It differs from most earlier work in the fol-
lowing ways: 1) rather than mimicking the architecture and mecha-
nisms of natural systems and devising algorithms with similar prop-
erties, it studies the organizational structure and interactions among
components using quantitative analysis methods that were devel-
oped for studying biological systems; 2) It focuses on all aspects
of malware defense, including collection, triage, analysis, intelli-
gence estimates, detection, mitigation, and forensics, whereas most
earlier work employing biological approaches has emphasized de-
tection and mitigation. It is important to consider the entire process
for developing effective malware defenses.

Biologically inspired approaches typically borrow analogies
from the methods that biological systems use to achieve certain
properties (such as detecting intrusions or failing gracefully), and
then translate these analogies into computational methods. Re-
gardless of whether we have learned all we should from biology,
have only just begun to scratch the surface, or have borrowed too
much (see last year’s NSPW panel [31]), the emphasis has been
on translating biological systems into computational mechanisms.
Ecology is different from biology in that it examines how various
organisms and their environment interrelate. We posit that the in-
terrelations between biological systems and the interrelations be-
tween computational systems are relatively similar when compared
to the similarity of the inner workings of these two kinds of sys-
tems. Since ecology focuses on interrelations and biology focuses
on inner workings, the former is more directly applicable than the
latter. In other words, the statistical methods and underlying ideas
that ecologists have developed can be directly applied to malware
defense.

The NSPW panel last year classified biologically inspired efforts
into three broad categories: computer immune systems, diversity,
and autonomic computing. All three of these categories focus on
detection, mitigation, or both. Throughout this paper we have given
examples of how ecologically inspired approaches could apply to
all of the aspects of malware defense that we identify. It is worth
noting that an important area of previous work which does not fall
into the three categories identified by the panel is the extensive
work on epidemiology of computer viruses [2, 19, 22, 23, 28]. This
work is relevant to the malware ecology approach because it uses
quantitative analysis methods and it considers properties of an en-
tire system.

4.2 Exploiting emergent patterns
In other defense scenarios, e.g., military strategy, defenders

sometimes place their defenses in certain positions to take advan-
tage of physical characteristics, such as mountains or rivers. The
placements are designed to to put the enemy at a disadvantage dur-
ing an attack. This is how we envision ecological approaches to
computer security: because of their uncertainty about how their
malware will interact with the environment and other malware, eco-
logical patterns will emerge that the attacker can neither predict nor
control. Our longterm goal is to use ideas and statistical techniques
from ecology to identify and exploit such patterns.

4.3 A hypothetical example
Consider, as an example, turnover rates in insular biogeogra-

phy [6]. Ecologists have observed that the number of species on any
given island stays relatively constant, but the rate at which species
go extinct and are replaced by new species, called the turnover rate,
depends on several factors including the distance from the source
of immigration. This is because distance has an effect on both the
immigration rate and extinction rate of the island. If this emergent
behavior were also observed among malware such as botnets on the
Internet, then measuring the turnover rate for some definition of is-
land (e.g., a subnetwork) could be used to identify the sources of
immigration (i.e., where the bot Trojans are first appearing). This
would be useful for collection, intelligence estimates, mitigation,
and forensics.

5. DISCUSSION AT NSPW
The discussion at the NSPW workshop centered around two re-

lated themes: low-level analogies between ecology and malware
that will allow us to directly apply methods from the latter to the
former, and higher-level analogies between these two fields that
would provide fundamental insights.

We argued that because both malware and ecology would be
termed “organized complexity” in Gerald Weinberg’s General Sys-
tems Thinking [37], a lot of the analysis methods that ecologists
have developed over the years could be directly applied to malware
defense (see Section 2.1 for examples). In the small group discus-
sion it was pointed out that many other fields, e.g., economics and
theoretical physics, have problem domains that are too organized
for purely statistical analysis and too complex for mechanical anal-
ysis. It was also pointed out that these basic ideas could be ap-
plied to software engineering in general and not just to malware.
We gratefully acknowledge these points, but chose to preserve the
scope of this paper as insights from ecology applied to malware
defense because of the compelling analogies between living organ-
isms and malicious code.

Much of the plenary discussion centered around how to define
“randomness” in describing a system as being organized complex-
ity. The main idea is that certain events are unpredictable to an
observer, which we colloquially termed “randomness” as in Wein-
berg’s famous graph [37, Page 18]. As an example, in thermo-
dynamics the observer’s lack of knowledge about the locations of
individual gas particles can be quantified eloquently as entropy to
give concise equations for analysis [16, Chapter 5], and in classi-
cal physics forces, inertia, angles, and so forth can be quantified
directly into mechanical equations. Our point was that for systems
with organized complexity neither of these techniques, the purely
statistical or the purely mechanical, allow us to fully analyze a sys-
tem. Because ecologists have a long history of analyzing these
types of systems, and because malware has certain analogies with
ecology, malware analysis can borrow many powerful techniques
from ecology. The exact definition of “randomness” is orthogo-
nal to this point, but perhaps “unpredictability” would have been a
better word to use.

Another discussion, which we only scratched the surface of at
this year’s NSPW, was whether the analogy between ecological
systems and malware ran deeper than just techniques that could
be borrowed from one field and applied to another. In analogies
between the immune system and computer security, fundamental
insights such as the importance of diversity and the distinction be-
tween self and non-self have had transformative effects on com-
puter security research. We believe that if the analogy between
malware and ecology is to provide these kinds of deeper insights
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then a fundamental question about the analogy must be addressed:
what is is that malware consumes and metabolizes? Metabolism is
a key concept in ecology, and is viewed by some as a unifying prin-
ciple [38]. An analogous concept for malicious code could lead to
fundamental insights, but what is it that malware consumes? Re-
sources such as CPU cycles and network bandwidth? The attention
of the human beings that use the computers? Dollars? We leave
this question for future work.

6. CONCLUSION
This position paper argued that the ecology of malware is an im-

portant area for the research community to study and will lead to
more effective defenses. Two major points in our argument were
that: 1) Ecologically-inspired defense techniques can give defend-
ers an inherent advantage in the “arms race” with attackers; and
2) Ideas and statistical techniques from ecology can be directly ap-
plied to all aspects of malware defense, rather than simply serve as
analogies for detection and mitigation. We gave examples of how
ecological principles could be applied to malware defense, and pre-
sented evidence of competition between malware as a preliminary
result. It is our hope that this position paper will engender discus-
sion about malware ecology.
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