
 

 

The User is Not the Enemy:  
Fighting Malware by Tracking User Intentions 

 

Jeffrey Shirley 
University of Virginia 

Charlottesville, Virginia 

jshirley@cs.virginia.edu 

David Evans 
University of Virginia 

Charlottesville, Virginia  

evans@cs.virginia.edu 
 
 

 

ABSTRACT 
Current access control policies provide no mechanisms 
for incorporating user behavior in access control 
decisions, even though the way a user interacts with a 
program often indicates what the user expects that 
program to do.  We develop a new approach to access 
control, focusing on single-user systems, in which the 
complete history of user and program actions can be 
used to improve the precision and expressiveness of 
access control policies.  We describe mechanisms for 
securely capturing user actions, mapping those actions 
onto likely user intents, and a language for defining 
access control policies that incorporate user intentions.  
We implemented a prototype for capturing user 
intentions, and present results from experiments on 
malware mitigation using the prototype. Our results 
show that a very simple MAC policy can prevent a 
significant amount of system damage caused by 
malware while not interfering with most benign 
software.   

Categories and Subject Descriptors 
D.4.6 [Operating Systems]: Security and Protection 
– access controls, invasive software. 

General Terms 
Security 

Keywords 
User intent, access control, security policies. 

1. INTRODUCTION 
Access control mechanisms are a powerful tool for 

controlling actions taken by software, but an effective 
and usable means for securing desktop applications and 
operating system software remains elusive. The 
purpose of access control mechanisms in a single-user 
desktop environment should not be primarily to place 
restrictions on actions taken by users, but instead to 
limit the permissions granted to particular processes at 
specific times. Since the user of a single-user system is 
its owner, security threats are not caused by malicious 
users but instead by exploitable, flawed, or malicious 
software.  Hence, security mechanisms should be 
designed from the perspective that the user is a useful 
partner in making good security decisions, rather than 
the more traditional perspective in which a possibly 
malicious user is the enemy.  

Existing policy-based access control implementations 
have not been practical enough for widespread use in 
single-user environments. As a result, applications tend 
to either be run completely unsecured (beyond 
operating system discretionary access control mechan-
isms) or in a sandboxed environment that significantly 
limits the utility of the application. Restrictive 
mandatory access control policies have generally been 
seen as too limiting or completely unusable for use in 
the single-user environment. Application-specific 
policies often suffer because it is impractical to expect 
users to create policies for individual applications and 
because administrator or developer-deployed policies 
may not be able to meet all user needs. 

Current approaches fail to take advantage of a valuable 
source of information, namely, the way the user 
installs, launches, and interacts with programs.  
Although user actions are inherently ambiguous, they 
provide strong indications of how much a user trusts a 
program and what a user believes a program should do.  
We propose to augment the current approach where 
access control decisions are made based on a static 
system configuration and policy, with a new approach 
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where decisions can be made based on the entire 
lifetime of a system, including user interactions and 
program actions. Dynamic logs of user interactions and 
program executions can provide information not 
available to the author of a static policy such as 
filenames, host names, and other data entered via the 
user interface.   

Contributions. In this paper, we present a design for 
securely capturing and analyzing user and program 
actions, and explore the possibility of taking advantage 
of this valuable information to enable more secure 
access control for desktop applications.  Incorporating 
user actions in policy rules enables mandatory access 
control policies that are both simple and powerful. 
When applied to all running programs, these policies 
can prevent damage caused by malware by using user 
intent information to identify benign program actions. 
As an example, we provide a policy that allows 
programs to access files based on the user's natural 
interactions with the program's user interface. User 
intent knowledge enables the policy to distinguish 
between benign and malicious file access. We describe 
a prototype implementation for Windows and present 
results on using it to limit file access by malware and 
benign program executions. 

Previous work. Cui first proposed an intrusion detec-
tion mechanism combining information about user 
intentions (from GUI events) with network intrusion 
detection [8]. In the BINDER IDS, the presence of a 
user input event, such as a mouse click, was correlated 
to outgoing network traffic. The presence of network 
traffic not connected temporally to GUI events was 
used as a heuristic for the presence of malicious traffic 
outgoing from a host. Cui’s results demonstrate that 
user intent can increase the accuracy of network IDS. 

The Polaris [33] access control system developed a 
method of constraining Windows programs that can 
indirectly take some user intent information into 
account when making security decisions. Polaris runs 
programs under a specially modified user account with 
only a more limited set of permissions needed for the 
program to function. Polaris also supports file 
designation, meaning that users can implicitly 
designate file permissions when using an application.  
Polaris replaces the standard file chooser dialog box 
with a special file chooser that can add specific file 
permissions to the underlying set of application 
permissions. The Polaris system illustrates the potential 
value of using user interactions in access control, but 
does not apply the idea more generally and does not 
make user interactions available for use in explicitly 

configurable security policies. We provide a general 
mechanism for incorporating user interactions into 
access control policies in ways that enable richer 
security policies.  

Roadmap. Section 2 discusses our system design and 
prototype implementation of the policy engine.  
Section 3 describes experiments analyzing the effect-
iveness of our intent-based anti-malware policies. 
Section 4 describes the effects of applying intent-based 
policies to benign programs. We describe other related 
work in Section 5, and conclude with discussion in 
Section 6. 

2. DESIGN 
A user-intent-based access control (UIBAC) system in-
volves three basic components, shown in Figure 1. The 
first component collects and records user interface 
events (Section 2.1). The log of user behavior is used 
as input to the user intention inference component 
(Section 2.2). Finally, inferred user intent concepts 
generated by the inference component are used in 
intent-based security policies in order to make enforce-
ment decisions (Section 2.3).  Our focus is on 
protecting file resources from damage caused by 
malware or by exploits against vulnerable software. 

2.1 Prototype 
We built a prototype system incorporating three 
components: a collection mechanism, an inference 
engine, and policies and enforcement mechanisms. The 
purpose of the prototype implementation is to evaluate 
the potential for intent-based access control policies by 
determining if policies can be found that allow benign 
applications to (mostly) execute normally, while 
blocking malicious activities.  

Since our goal is to explore possible policies and 
measure their effectiveness, the prototype was not 
constructed to resist targeted attempts to circumvent or 
corrupt the system, although the component designs in 
the following sections suggest how a secure implemen-
tation could be built. We implemented event collection 
for Win32 applications. Events describing user 
interaction with the environment are fed into a 
common logging system, along with system resource 
events such as file, network, and registry accesses. The 
intention inference component scans this common log 
for patterns matching user intent concepts referenced in 
the intent-based security policies themselves. The 
policies control access to protected resources. For the 
experiments described in this paper, we performed the 
intention inference and policy checking components 
using an offline analysis on the logs collected by the 
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event collection component.  This is sufficient to 
answer our main research question: does knowledge of 
user intent enable MAC policies that protect against 
malware without unacceptably disrupting benign 
programs? In the following sections, we present a 
secure design, and describe the actual prototype 
implementation. 

2.2 Event Collection 
We need a trustworthy method for recording user 
actions as well as program actions since this informa-
tion will be used to make access control decisions. 
Activity information includes both concrete user 
actions, such as mouse clicks or keystrokes entered, 
and contextual information describing the state of the 
user interface at the time the user activity took place, 
such as active window and button text. A diverse 
selection of user interface toolkits and libraries is 
available to application developers, including some 
with unique features. The ability to log events from 
multiple toolkits may be required to capture some 
forms of user intent, but most toolkits ultimately are 
implemented using the native Windows API. All of 
this information needs to be gathered in a secure way if 
we are to derive trust from inferences made on the 
recorded activity.  It should not be possible for a mal-
icious application to inject fabricated events into the 
collection mechanism in an undetected manner, to 
interact with a user in a way that is not observed by the 
collection mechanism, or to corrupt or obscure real 
user interface events or context observed by the 
collection mechanism.  

One way to build a secure collection mechanism would 

be to use a virtual machine, which can observe user 
actions and program behaviors from outside the guest 
OS. If virtual machines are used as part of the access 
controller to isolate applications, the input events can 
be compared at the level of the host OS to the input 
events taking place within the isolated guest OS to 
provide input validation without requiring a major 
redesign of programs or operating systems. Assuming 
the VM provides good isolation, this design ensures 
that all user interactions with isolated applications are 
observed by the collection component. In order to 
protect the integrity of the context data, the VM would 
also need to monitor certain files and user interface 
resources. Such an approach might be built on top of 
the Virtual Machine Communication Interface API 
[42] for VMWare, for example. There are also 
software-based solutions to this problem in 
development by the major operating system vendors as 
part of the push towards trusted computing [44].  
Future operating systems may be designed to protect 
the integrity of user interfaces, since their protection 
has serious implications for security. 

Prototype Implementation. For our prototype, we 
developed a simple event collector and logger for Win32 
applications. The logger also records program behavior 
(as opposed to user behavior) when programs access 
restricted resources (files, network resources, and the 
Windows registry).   

Building an event collector for Win32 is difficult since 
events are visible only at a relatively low level. Our 
prototype uses an API hooking technique (based on the 
Detours system from Microsoft Research [18]) to obtain 
various user interface and program behavior events. 
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Figure 1. User-Intent-Based Access Control 
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Hooks are inserted into monitored processes via a DLL 
loaded into all running process’ respective address 
spaces.  The DLL contains a callback method that 
watches for specific monitored user interface events 
generated by the program’s user interface. The hook 
callback has access to all of the monitored process’ state, 
since it runs in-process. When a monitored event is 
observed, the callback function gathers any ancillary 
information (such as button identifiers and captions) 
needed by the logger to record the context of the event, 
either directly from the parameters of calls to a Win32 
API function or by using the parameters (which often 
include file and window handles, etc.) to query for the 
necessary information.  This information is then written 
to a common log file along with a timestamp, the 
process identifier, and the name of the program 
generating the event. 

Our Win32 prototype is suitable for conducting 
experiments on the usefulness of UIBAC policies, even 
though it has several limitations that would preclude its 
use in a practical system. It is not designed to be difficult 
to circumvent; a targeted attack could easily be designed 
to interfere with the local hooks in memory. Some 
potential concurrency issues also remain in the prototype 
implementation. Events are recorded in the order in 
which the hooked callback functions are executed, with 
a recorded millisecond-granularity timestamp being 
generated at that time. Although overlap is possible due 
to the presence of separate buffers for each individual 
process writing to the shared log file, this has not yet 
been a problem in our testing and experiments. The 
exact ordering of low-level program behaviors from 
different programs seems to rarely be of critical 
importance. 

2.3 User Intent Inference 
The second component needed by our intent-based 
access controller is an algorithm for inferring user in-
tents from the log of user interface events.  Intent con-
cepts provide an abstraction over the concrete user 
behavior. We wish to express policies at the level of 
intent concepts, not specific events, since most events 
are at too low a level for understandable policies.  
Further, there may be many different ways to convey the 
same intent concept. For example, when a user selects 
and opens a file in a file chooser dialog, a sequence of 
events takes place as the dialog is created, the user 
searches for a file, and finally opens the file by clicking 
on a specific button or using the keyboard.  The intent 
inference algorithm interprets this series of events as the 
concept “user intends to open file <pathname>”.  We 
formalize this concept as,  

file_open(Filename f , Process p)  
The user, interacting with process p, intends to open 
file f.  

The context information in this case is important in 
understanding what file access permissions (e.g., read 
or write) the user intended to grant to the program pre-
senting the dialog box.  More than one pattern of 
concrete user behavior may be mapped to a single user 
intent concept.  Users may express their intent to open 
a file in a program in multiple ways, such as by 
dragging and dropping file icons in Windows, using 
dialog boxes, and using recent document menus. A 
sophisticated intent inference engine would be able to 
infer the same intent, regardless of the many different 
ways a user may express a particular intention.  

When a security decision needs to be made during pol-
icy enforcement, the inference engine may be called 
upon by an intent-based security policy to check 
whether a particular user intent concept is present and 
applicable to the program attempting a restricted 
action. The inference engine then checks to see 
whether that intent concept is implied for the subject 
process by the user behavior log. The log is kept 
indefinitely, so the policy has the capability to infer 
user intent dating back to the initial installation of the 
system1. This opens up the possibility of inferring all 
configuration changes made to the program via the user 
interface, including those made during the installation 
itself. 

For example, if a security decision is needed for a 
particular file that the program would not otherwise 
have access to, an access controller enforcing an intent-
based policy will check the log to see if intent to open 
that file can be inferred from the recorded events.  This 
intent could be expressed through the series of user 
input events corresponding to creation of the file 
chooser dialog and selection of the file. Although we 
cannot know the actual user intent, we can infer that 
intent to open the file is a possible interpretation of the 
sequence of events. We infer an intent concept if a 
particular intent can be expressed as the observed 
sequence of events. 

                                                      
1 Machines may ship with a preloaded events log to reflect 

programs installed by the vendor using a pre-built image.  To 
apply user-action based policies to those programs, it may be 
useful to supply an initial log that contains the minimal actions 
a user would have done to install the preloaded programs. 
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In addition to user intent concepts, the inference engine 
also infers concepts based on program actions.  For 
example, if a new file is created by a given program, 
the concept,  

program_creates_file(Filename f, Executable e) 

is inferred where e corresponds to the executable 
whose instantiation created the file.   

Appendix A provides a full list of the intention 
concepts inferred by our prototype implementation. 

Prototype implementation.  Our prototype is 
adequate for the simple concepts examined for this 
paper. Future work will investigate whether a more 
sophisticated algorithm is needed and useful for inferr-
ing other interesting intent concepts (for example, 
concepts that cannot be expressed as regular express-
ions or concepts that depend on temporal notions). 

Our prototype implementation maps concrete events 
recorded in the log to user intent concepts. It does this 
by looking for patterns in the sequence of user 
interactions and program behavior that correspond to 
regular expressions representing user intent concepts. 
Concepts are inferred based on two components: the 
general pattern being followed, such as file selection 
(specified as part of the inference engine) and the 
context (specified as part of the UIBAC policy).  

The algorithm searches the log and looks for an event 
matching the starting point of the regular expression 
for a particular inference pattern. It continues through 
the general inference pattern, checking against the log 
to determine whether the pattern is satisfied. Context 
information from the user interface can be bound to 
variables in the general pattern. If the policy does not 
specify a concrete value for a variable, it is bound 
when it is first encountered in the log. The substitution 
is performed using regular expressions with grouping.  

Our prototype can also infer program behavior patterns 
derived purely from the dynamic program behavior 
recorded in the log. Such dynamic behavior inferences 
can still be useful in a security policy.  

2.4 User Intent-Based Security Policies 
The third component of our system is the policy 
enforcement mechanisms and the intent-based security 
policies themselves. The intent-based policies provide 
a mapping between inferred user intent concepts and 
behavior patterns and permissions they imply. These 
permissions are similar to those in traditional access 
control work, and designed to mediate access to 
resources such as files, network connections, and 

execution permissions. Our system can observe many 
system configuration changes by observing user 
behavior and intent, and thus can create much more 
flexible and durable policies than is possible under 
many other access control systems.  

In this work, we focus on finding policies capable of 
enhancing security for typical desktop computers.  We 
seek a MAC policy that can suppress classes of 
unwanted behavior without disrupting the function of 
benign applications. Since such a MAC policy can be 
applied to all processes, it can prevent undetected 
malware from doing damage to the system. We 
describe some experiments with various candidate 
MAC policies in Section 4. A successful MAC policy 
would prevent damage to system resources while still 
allowing most programs to function normally.  

Implementation.  Our policy interpreter uses a policy 
language based loosely on the Java security policy 
language. Rules in the policies map user intent con-
cepts to changes to the set of permissions granted to 
that process at any given time. Policy GRANT rules 
add permissions to the active permissions possessed by 
a process, which may be specified by executable image 
name (e.g., firefox.exe) or PID (e.g., 4526). We may 
also add additional flexibility in the future so that 
permissions can be finer grained for dynamically 
loaded program modules and interpreters executing at a 
higher level within the application. 

An access controller enforcing an intent-based policy 
mediates attempts to access protected resources. If a 
requested permission is implied by the set of 
permissions for the process making the request, the ac-
tion is allowed; otherwise, it is denied. Our prototype 
policy engine allows us to test various intent-based 
policies against logs of user behavior collected during 
experiments, but is not yet embedded into an access 
controller. Instead, policy violations are simply flagged 
for analysis, since our focus for this paper was to 
evaluate intent-based anti-malware policies. 

2.5 Policy Language  
The general form of policy rules specifying intent-
based dynamic policies in our language is:  

intent (context) GRANTS (subject) permission 

The left side of a rule identifies an intention inferred 
from user actions, as described in Section 2.3.  The 
name of the intention concept is intent (e.g., 
file_open), and the context can include bound and 
unbound variables.  Context variable types include 
Filename, Process, Executable, and Host. Variables 
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are bound to values derived from the log information 
and may be used as subjects or as part of a permission 
grant. 

The subject refers to the entity to which the permission 
is being granted. We currently support the principals 
Executable and Process. The Executable principal 
grants the permission to all instances of a program, 
while the Process principal applies the permission 
only to a specific process.2 Since our logs may carry 
information collected from many instances of the 
program, this is an important distinction. 

The permission indicates the access being granted, 
such as Read or Write; permissions can use variables 
that were bound in the context information. 

As an example, this rule grants processes access to 
write a file following a user intention to open the file: 

file_open (Filename f, Process p) GRANTS     
(Process p) Write (Filename f) 

This rule uses the file_open intent concept. The two 
context variables on the left-hand-side of the rule are 
bound by the inference engine during evaluation of the 
rule to a specific filename specified by the user in 
process p’s user interface. These same variables are 
then used on the right-hand-side to limit the scope of 
the permission grant to only the same process and file. 
A single policy rule such as this can match multiple 
times with different variable bindings. 

3. CANDIDATE RULES 
In order to examine the effectiveness of intent-based 
policies, we developed a set of candidate MAC policy 
rules. These rules assume a system-wide default-deny 
policy for writes to existing files, with a few exceptions 
such as the Windows registry files and temporary 
directory. The purpose of the policy rules is to loosen 
this default MAC policy so that benign programs can 
still function, but not so much that a large amount of 
damage by malware can take place. We do not attempt 
to provide any confidentiality protection against 
malware (hence, there are no restrictions on file reads). 
Each program is given control over files created by it 
or installed with it, as well as files that the user directly 
intended to allow the program to access. We do not 
claim to provide comprehensive MAC policies at this 
stage of development; our experiments were instead 

                                                      
2 In order to prevent name conflicts caused by process ID reuse, 

the inference engine also logs whenever a new executable 
process is started. 

designed to explore some of the issues related to 
designing such a policy using intent-based rules. Next, 
we describe the intuition behind each of the candidate 
policy rules. 

The INSTALLED-FILES rule states that if a user intends to 
install a program, then the program can write to any of 
the files created by the installation: 

INSTALLED-FILES:  
program_installation (Filename f, Executable e) 

GRANTS (Executable e) Write (Filename f) 

The variable e is bound by the inference engine to all 
executable files that are part of the installation itself 
(not the installer program). The inference pattern in 
question looks for a user-initiated installation process 
by looking for the creation of dialog boxes character-
istic of installer programs, and binds any files written 
to by the installation process to the variable f, until the 
installation program ends.  

The way we identify program installations is certainly 
not secure against malicious programs; a secure 
implementation would require additional controls on 
the installation process, such as rules governing the 
ability to initiate the install process. We are exploring 
ways of integrating our installation rules more closely 
with the operating system in order to make them more 
secure and reliable. 

This rule could be implemented as a static grant of 
permission to files created during program installation, 
but this would require manual creation of a policy 
controlling the specific files as opposed to the 
automated process that the intent-based policies allow. 
The ability to recognize the specific user intention to 
grant install privileges to the installation program 
makes it unnecessary to manually designate which 
programs are installers. 

The CREATED-FILES rule is very similar to the 
INSTALLED-FILES rule, except that it concerns files 
created by the program itself: 

CREATED-FILES:  
program_creates_file (Filename f, Executable e) 

GRANTS (Executable e) Write (Filename 
f) 

This rule allows programs to write to any files they 
create; this is useful for allowing programs to create 
temporary files and caches. This rule is not a user 
intent rule but a program behavior rule. Files created 
by a program remain associated with the program for 
integrity purposes.  Note that this rule permits 
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malicious file-dropping behavior; a more precise rule 
would place limits on the types and locations of files 
that an executable can create. 

The final two rules grant a program permission to write 
to files that the user specifies via the user interface: 

SAVED-FILES:  
file_save (Filename f, Process p) GRANTS 

(Process p) Write (Filename f) 

OPENED-FILES:  
file_open (Filename f, Process p) GRANTS 

(Process p) Write (Filename f) 

The file_save and file_open intent concepts are inferred 
from user interactions with the program’s user 
interface. These candidate rules do not distinguish 
between opening a file for writing and opening a file 
for reading only; a more precise policy could take 
advantage of these distinctions to provide finer-grain 
control of permissions. 

One might wonder why the SAVED-FILES rule is 
necessary in light of the CREATED-FILES rule. The 
reason is that sometimes users will specify that a saved 
file replace an existing file created by another program. 
Likewise, when a user intends to open a file created by 
another program, the user will often need to save to it 
using the new program later. 

In the next section, we describe some preliminary 
experiments we conducted to measure the effectiveness 
of these rules and to determine what combination of 
rules best allows benign programs to function properly 
while still providing integrity protection against 
malware. 

4. PRELIMINARY EXPERIMENTS 
To find MAC policies that achieve our goal of pro-
tecting file resources from damage caused by malware, 
we conduct three kinds of experiments: malware 
protection experiments where we run known malware 
and evaluate how much of its malicious behaviors 
would be detected by our candidate policy rules; 
deployment experiments in which we test our candidate 
policies on a Windows desktop system in normal use to 
see how frequently a benign program violates 
candidate rules; and benign program experiments, in 
which we perform a series of artificial tests on 
Windows software  to check for false positive 
violations of the policy.  

All our policy rules grant permissions rather than 
taking them away; thus, they loosen the permissions 
applied to a program. Programs have no write 

permissions for existing files until they are specifically 
granted to them by a matched rule, but we allow all 
programs read-only access to all files since our focus is 
on protecting file integrity, rather than confidentiality. 
The best MAC policy, in accordance with the principle 
of least authority, is one that grants the least permission 
while still allowing benign programs to function. We 
intend to test policies designed to provide 
confidentiality in the future; for these tests, we would 
also use a default-deny policy for reads of existing 
files. 

4.1 Malware Detection Experiment 
Our first experiment was intended to determine whet-
her the integrity of programs and files is still protected 
from malware when various intent-based permission 
loosening rules, described in Section 3, are in place 
(note that a policy with no rules would not allow any 
file writes, so would provide file integrity protection 
against malware, but would also not allow any useful 
file-modifying behaviors). For this experiment we did 
not attempt to block malware from executing 
altogether or to prevent it from residing in memory. 
We were only concerned with file integrity and 
whether it could still be preserved with various rules in 
place. 

Malware selection. We tested a set of malware pro-
grams taken from the offensivecomputing.net online 
repository collection point, representing the most 
prevalent reported malware as of early 2008 and a 
number of well-known worms (sometimes with 
multiple samples and variants of each tested). We also 
included a set of unknown malware samples collected 
on a honeypot by Christopher Kruegel. These were 
samples found to have modified files on the honeypot. 

We excluded samples that were not found to cause any 
damage to file resources in the test environment. Poss-
ible causes of sample exclusion included malware 
samples that failed to execute, malware that executed 
but did not attempt to damage file resources due to the 
short duration of the tests, and malware that executed 
but did not attempt to damage file resources due to the 
specific test environment used (for example, the 
operating system version, installed programs, or the 
presence of a virtual machine). Any malware that 
altered or created new files was included. 

Test procedure. Malware was executed on a 
VMWare-based testbed. A Windows XP SP2 installa-
tion was set up in a virtual machine, with a number of 
benign programs installed and the latest patches from 
Microsoft. We used an automated script to inject 
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malware samples into the guest operating system and 
execute them with our intent-based logging component 
running. There was no human interaction with the VM 
during the tests. Each malware sample was allowed to 
execute for 8 minutes. At the conclusion of the test, the 
VM was shut down, the log file was collected, and the 
disk image was checked for evidence of damage to file 
resources. This check was carried out using MD5 
checksums of the files in the VM disk image; normal 
file changes performed by the OS were excluded from 
the definition of file damage.  This left 28 samples, 
which we used in our experiments.   

For the malware samples confirmed to cause damage to 
files on the VM, our policy checking tool was run on 
the collected logs in order to determine whether the 
damage would still have taken place each of the 
permission granting rules describe in the previous 
section (INSTALLED-FILES, CREATED-FILES, SAVED-FILES, 
OPENED-FILES). Since malware often attempts to 
damage multiple files, it is possible for a rule to 
provide only partial protection by allowing some 
damaging actions by not others. We have tested 
malware with two slightly different default-deny 
policies. The first of these default deny policies denied 
all file modifications of existing files, but allowed the 
creation of new files. The second denied all file writes, 
including the creation of new files.  

Results. All of the samples except for Bagle attempted 
to write to an existing file.  This would be disallowed 
by the draconian default deny policy.  All of the file 
writes observed in our testing would also have been 
disallowed with all of the permission-granting rules in 
place.  This is not a surprising result, since the virus is 
installed surreptitiously (thus it never acquires any of 
the installation privileges), and the user never interacts 
explicitly with the virus process. One malware sample, 
with an identity unknown to commercial virus 
scanners, was able to modify files without being 
stopped by the policies. It appears that this malware 
used a kernel level rootkit combined with privilege 
escalation to accomplish this. As we have not yet 
attempted to harden our system against circumvention, 
this is not a significant negative result. In any case, our 
prototype implementation cannot provide access 
control once the kernel is compromised.    

Under the more restrictive default-deny-write policy, 
prohibiting the creation of new files, we again 
observed that intent-based policy rules did not allow 
the malware to modify the filesystem significantly 
more so than the default-deny policy. The one 
exception was the same malware sample mentioned 

above that was able to create files without being 
detected. 

Windows Registry settings used to execute code at a 
later date are likely in use for some of this malware. 
Our logger can observe registry activity but we are still 
experimenting with the best possible intent-based 
policies for controlling registry access and thus the 
execution of this type of malware. Registry integrity 
policies will likely be quite similar to file integrity 
policies. 
 
The intent-based rules do not seem to significantly 
reduce the security provided by the two disallow all 
policies as none of the malware samples attempted 
operations that caused any of the intent-based rules to 
be triggered. However, this test is limited in scope and 
might not include enough samples or a broad enough 
definition of damage. In addition, this policy could 
easily be evaded by malware designed to evade it.  
Nonetheless, these preliminary experiments provide 
some support for the hypothesis that a restrictive file 
modification policy can prevent some malicious 
behaviors, and loosening it with the kinds of UIBAC 
rules we propose does not diminish its effectiveness, 
while allowing benign programs to perform more 
actions, as discussed in the next section. 

4.2 Deployment Experiment 
In order to determine whether a useful MAC policy can 
be devised, we also performed a test under presumably 
benign conditions. The goal of this experiment was to 
determine whether these policy rules would allow 
benign programs to function normally. During this 
experiment, the logger was allowed to run normally for 
a day on the machines of two users (one technical and 
one non-technical). A total of 60,541 file-related events 
were recorded. An event was recorded whenever a 
program opened a file for reading, writing, or deletion. 
Policies composed of combinations of the rules tested 
against malware in Section 3.1 were evaluated against 
these logs to determine whether or not they would 
interfere with the functioning of legitimate Windows 
software.   

A limitation of the test was that unlike in our intended 
model of use, the logger was not in place and 
collecting data throughout the entire installed history of 
the users’ machine. This made the installation policy 
rule and program creation rules more difficult to 
evaluate. In order to simulate this part of the data, we 
simply augmented the logs with a logged installation 
and first execution of the programs of interest to 
determine which files would have been allowed under 
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these rules. In general this amounted to only a few 
directories (such as the program’s installation location 
and sometimes a directory used to store state 
information). However, there may be some mismatch 
between directories in the augmented logs and the 
actual installations under observation. 

Results. Table 1 summarizes the results from our 
deployment test. With a few notable exceptions, benign 
programs generally still functioned with all of the 
candidate rules in place, with a relatively small number 
of false positives. Most of the writes allowed by our 
rules were enabled by the CREATED-FILES, reflecting the 
fact that most file writes occur to files created by the 
programs themselves. 

In our tests, the INSTALLED-FILES rule accounted for just 
two of the file writes that would have otherwise been 
denied. This is perhaps not too surprising if benign 
programs only seldom write to their own installation 
files. In our experiment, most of the files were created 
by the programs themselves rather than the installers. 
This could also be a limitation of our test procedures, 
since only a few programs were observed to be in use 
during the test. 

The SAVED-FILES and OPENED-FILES rules allowed 16 
additional file writes to occur. While this number 
might seem small, this includes only files explicitly 
opened by users in a user interface. Thus, it generally 
only includes files that contain user-generated data. 
While the number of writes to these files is lower, 
these writes might be considered among the most 
important. We would expect to observe more in a 
longer deployment test. 

False positives remaining included several situations 
where a program wrote data to a file created by a 
separate program. One of these concerned an external 
program that is bundled as a plugin with many of the 
Mozilla programs. This program was bundled with 
some of the Mozilla programs, but not reinstalled when 

a second Mozilla program was installed during our test 
installation. Thus, the second program did not have 
access under the installation rule to the external 
program’s files. This might be addressed using a more 
intelligent install rule, or by allowing policies to assign 
permissions to plugin components separately from the 
main program. A similar situation was observed in our 
artificial benign program experiments with a 
component designed to embed the Internet Explorer 
web browser into other programs. 

There were several other false positives that appear to 
be the result of limitations in the test procedures (the 
lack of a complete history of all the files created by a 
program in the past) or engineering limitations of our 
logging mechanism. In the latter category a number of 
files that appear to have opened by users were missed 
by the file open/file save rules. A possible explanation 
for this is that the users used an unsupported means of 
expressing their intent to open or save a file (such as 
the Recent Documents menu). Because the inference 
component is separate from the policy, we expect that 
this problem can be solved with more complete support 
for the Windows toolkit in the inference patterns.  

4.3 Benign Program Experiment 
Because we felt that the limited deployment 
experiment described in Section 4.2 gave an 
incomplete picture of the potential for false positives, 
we also tested our policies in a series of contrived tests 
on a collection of 46 benign programs. In these tests, 
we installed and executed the benign programs for a 
series of 8 minutes, with a script to select various menu 
options at random. We then checked to see if any false 
positives were observed for our policies during the 
tests. The programs and the results of this testing are 
listed in Appendix B. 
 
Results.  In our contrived tests, we observed that 34 of 
the benign programs did not create any false positives. 
Eleven of the sample programs created false positives 
only in executing an embedded Internet Explorer 
plugin component that modified the IE cookie database 
and history files. Many programs use Internet Explorer 
in order to add web functionality, and the embedding 
of the plugin caused writes to the IE history and cookie 
databases to appear to come from the containing 
programs rather than IE itself. This problem could 
potentially be resolved in a number of ways. We could 
simply consider the IE database files a shared part of 
the operating system and allow all programs to alter it; 
this would probably be relatively safe, although some 
potential would exist for programs to destroy data 
stored in cookies by other programs. We might also 

Table 1. Deployment Experiment Results.  Policy violations 
encountered over all 60541 file access events. 

Policy Violations 
Default-Deny-Existing Policy Only 11050
INSTALLED-FILES 11048
CREATED-FILES 49
INSTALLED-FILES+CREATED-FILES 47
SAVED-FILES+OPENED-FILES 11034
INSTALLED-FILES+CREATED-FILES+ 
SAVED-FILES+OPENED-FILES 

31
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add support for the IE user interface elements to our 
inference patterns so that programs could be granted 
permission to use the IE component by a policy 
recognizing it as a standard Windows interface type. 
Finally, we could add support for granting permissions 
to specific modules or libraries loaded into programs in 
addition to the programs themselves.  
   
One additional program, a spyware scanner, deleted a 
number of files in violation of the policy. We would 
also expect virus scanners to exhibit similar behavior, 
though we did not include one in our tests. Windows 
does provide support for registering these security-
related programs in the Registry, and could exploit that 
process to give special permission for file removal or 
alteration in these cases. There is also some user 
interaction before files are actually deleted, so more 
sophisticated UIBAC policies could potentially 
account for this situation. 
 
5. RELATED WORK 
We mentioned the most closely related work in the 
introduction; here, we survey relevant work in several 
related areas: usability and security, user intent, securi-
ty policies and access control, intrusion detection, and 
threats posed by programs. 

Making security mechanisms usable (from an HCI 
perspective) has been a difficult task for the security 
community, though it is frequently recognized as an 
important goal [1, 7, 40]. Several authors have argued 
that security mechanisms are inherently and 
particularly difficult to make usable. Yee recognized 
that user actions might implicitly designate security 
decisions for an application [46].  Our work attempts to 
leverage the effort put into application usability to 
assist with security decision-making.  Instead of 
expecting users to explicitly define security policies or 
deal with security interruptions, we aim to define 
security policies implicitly based on the actions users 
are taking normally. 

User intention concepts provide an abstraction in our 
system over policies based purely on user interaction 
events, and provide a flexibility not present in systems 
like BINDER or Polaris that use user behaviors 
directly. Policy languages themselves typically fall into 
two main types: those based on independent evaluation 
of policy rules [35, 25, 28] and those incorporating 
more complex and powerful constructs such as first-
order logic [30]. There are tradeoffs involved with each 
approach, though the former has been more popular 
because the policies are typically easier to write and 

reason about [39]. Our prototype system uses a very 
simple language of the former type. 

Mandatory access control mechanisms, coupled with 
strict security policies, have the potential to prevent 
many security problems caused by malicious and 
insecure programs. Several access control systems of 
this type have been developed, including notably 
SELinux [25] and AppArmor [27]. Our mechanism 
differs in that it is not intended only to detect 
application anomalies but also to prevent applications 
from functioning in ways that deviate from user 
intentions. This includes program anomalies caused by 
attacks against software vulnerabilities, but also a 
larger class of behavior that is simply unwanted by 
users, such as when a program deletes files 
unexpectedly.  Much previous work has attempted to 
detect or prevent security threats to desktop operating 
systems and software by checking for attack behavior 
or violations of security policies. Signature-based 
systems [37] have attempted to detect attacks on 
desktop security primarily by checking for exploitation 
of known vulnerabilities, but suffer from the inability 
to detect attacks against unknown vulnerabilities. Non-
signature-based or hybrid systems, such as those using 
anomaly-based intrusion detection or behavioral 
heuristics [5, 17, 19, 38, 29, 36] have often suffered 
from a high false positive rate causing them to be 
impractical for real-world use [14]. These systems may 
also be vulnerable to mimicry attacks [43], while our 
system can provide some measure of protection against 
this threat if we can secure the input path. Our system 
differs from purely behavioral systems in that it takes 
advantage of the history of user and program actions.  

6. CONCLUSION 
Our approach potentially offers a number of 
advantages over traditional access control. First, it 
could allow for easier policy development. Since 
intent-based policies reference higher-level 
abstractions of intent rather than lower-level 
application behavior, they can be more readily 
comprehensible to humans and amenable to automated 
policy development. Second, intent-based policies can 
promote greater reusability of policies, since they do 
not depend on the specific details of how individual 
applications carry out that intent. Third, intent-based 
policies align well with usability, since they do not 
require extensive user configuration or decision-
making other than through normal application usage. 
Finally, they offer a good opportunity to dynamically 
track changes in application configuration over the 
entire installed lifetime of a program. Many 
configuration changes are observable via user 
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behavior, so policies can adapt over time to match 
changes in application behavior associated with 
program configuration changes.   

Our experiments are not yet enough to demonstrate the 
effectiveness of our approach against sophisticated 
malware, but they indicate that adding support for 
UIBAC rules enables stricter behavior restrictions 
which can limit the damage malware can perform. Our 
preliminary experiments with benign programs provide 
some hope that policies can be designed that allow 
nearly all well-designed desktop applications to 
function normally.   
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APPENDIX A. USER INTENT CONCEPTS 
This lists the intent concepts inferred by our prototype 
implementation. While we have implemented all of 
these concepts in our inference module, we have not 
yet performed experiments on policies making use of 
them all, nor have we comprehensively covered all 
ways that they might be expressed via the Windows 
user interface. 
 
file_open(Filename f , Process p)  

The user, interacting with process p, intends to open 
file f. This concept is inferred when a user selects a 
file or set of files in a file open dialog box.  

 
file_save(Filename f, Process p)  

The user, interacting with process p, intends to save 
file f. This concept is similar to the file open 
concept, and is inferred when users indicate their 
intent to save a file or set of files (through a save 
dialog). The inference engine distinguishes between 
open and save dialogs based on the text displayed in 
their title bars and the API calls used to create them. 

file_rename(Filename f1, Filename f2, Process p)  
The user, interacting with process p, intends to 
rename file f1 to file f2. This concept is inferred 
when a user changes the name of the file within a 
program’ user interface (currently, in a file selector 
dialog). 
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file_move(Filename f1, Filename f2, Process p) 
The user, interacting with process p, intended to 
move file f1 to file f2. This concept is similar to file 
renaming, and is inferred when a user moves a file 
within the user interface. 

execute(Executable e)  
The user intended to execute program e. This 
concept is inferred when a user activates a program 
for execution within the user interface. 

program_install(Filename f, Executable e) 
The user intends to install file f so that it is 
associated with program e. This concept is inferred 
when an installation dialog is detected, via name or 
text (an imperfect solution for the time being). It 
indicates that a user intends to install a particular set 
of files and executable programs as a related group. 
We developed this concept in order to make our 
candidate policies capable of understanding the 
implicit relationship between files and programs 
installed by the same installer program. 

APPENDIX B. BENIGN PROGRAMS 
This lists the programs used in our contrived benign 
program testing, as described in section 4.3. 
Programs were tested using a script that randomly 
selected elements of their user interface over an 8 
minute period in order to exercise the application. In 
particular, the script was designed to open files if 
such a menu option was available. 

Application Name Integrity Policy 
Violations (# in 
8 min) 

acrord32.exe 0 
ad-aware2007.exe 9† 
calc.exe 0 
csdiff.exe 0 
devenv.exe (2003) 2* 
devenv.exe (2008) 3* 
dkicon.exe 0 
eclipse.exe 0 
excel.exe 0 
firefox.exe 0 
gimp-2.4.exe 0 
googleearth.exe 3* 
gvim.exe 0 
hypertrm.exe 0 
iexplore.exe 0 
itunes.exe 0 
msaccess.exe 0 
mshearts.exe 0 
mspaint.exe 0 

mspub.exe 0 
notepad.exe 0 
outlook.exe 0 
picasa2.exe 3* 
pictureviewer.exe 0 
pinball.exe 0 
poweriso.exe 0 
powerpnt.exe 0 
quicktimeplayer.exe 0 
qw.exe 3* 
realplay.exe 0 
smartftp.exe 3 
sol.exe 0 
steam.exe 3* 
thunderbird.exe 0 
tomcat6w.exe 0 
truecrypt.exe 0 
ttkvwr.exe 0 
visio.exe 0 
vlc.exe 3* 
vmware.exe 0 
windbg.exe 0 
windlg.exe 2* 
winmine.exe 0 
winword.exe 3* 
wmplayer.exe 3* 
wordpad.exe 0 

 
Remarks: 
†:  Deleted spyware-associated files in violation of 
policy. 
*: Embedded Internet Explorer  browser modified IE 
history/cookies. 
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