

The User is Not the Enemy:
Fighting Malware by Tracking User Intentions

Jeffrey Shirley
University of Virginia

Charlottesville, Virginia

jshirley@cs.virginia.edu

David Evans
University of Virginia

Charlottesville, Virginia

evans@cs.virginia.edu

ABSTRACT
Current access control policies provide no mechanisms
for incorporating user behavior in access control
decisions, even though the way a user interacts with a
program often indicates what the user expects that
program to do. We develop a new approach to access
control, focusing on single-user systems, in which the
complete history of user and program actions can be
used to improve the precision and expressiveness of
access control policies. We describe mechanisms for
securely capturing user actions, mapping those actions
onto likely user intents, and a language for defining
access control policies that incorporate user intentions.
We implemented a prototype for capturing user
intentions, and present results from experiments on
malware mitigation using the prototype. Our results
show that a very simple MAC policy can prevent a
significant amount of system damage caused by
malware while not interfering with most benign
software.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection
– access controls, invasive software.

General Terms
Security

Keywords
User intent, access control, security policies.

1. INTRODUCTION
Access control mechanisms are a powerful tool for

controlling actions taken by software, but an effective
and usable means for securing desktop applications and
operating system software remains elusive. The
purpose of access control mechanisms in a single-user
desktop environment should not be primarily to place
restrictions on actions taken by users, but instead to
limit the permissions granted to particular processes at
specific times. Since the user of a single-user system is
its owner, security threats are not caused by malicious
users but instead by exploitable, flawed, or malicious
software. Hence, security mechanisms should be
designed from the perspective that the user is a useful
partner in making good security decisions, rather than
the more traditional perspective in which a possibly
malicious user is the enemy.

Existing policy-based access control implementations
have not been practical enough for widespread use in
single-user environments. As a result, applications tend
to either be run completely unsecured (beyond
operating system discretionary access control mechan-
isms) or in a sandboxed environment that significantly
limits the utility of the application. Restrictive
mandatory access control policies have generally been
seen as too limiting or completely unusable for use in
the single-user environment. Application-specific
policies often suffer because it is impractical to expect
users to create policies for individual applications and
because administrator or developer-deployed policies
may not be able to meet all user needs.

Current approaches fail to take advantage of a valuable
source of information, namely, the way the user
installs, launches, and interacts with programs.
Although user actions are inherently ambiguous, they
provide strong indications of how much a user trusts a
program and what a user believes a program should do.
We propose to augment the current approach where
access control decisions are made based on a static
system configuration and policy, with a new approach

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NSPW’08, September 22–25, 2008, Lake Tahoe, California, USA.
Copyright 2008 ACM 978-1-60558-341-9/08/09...$5.00.

33

where decisions can be made based on the entire
lifetime of a system, including user interactions and
program actions. Dynamic logs of user interactions and
program executions can provide information not
available to the author of a static policy such as
filenames, host names, and other data entered via the
user interface.

Contributions. In this paper, we present a design for
securely capturing and analyzing user and program
actions, and explore the possibility of taking advantage
of this valuable information to enable more secure
access control for desktop applications. Incorporating
user actions in policy rules enables mandatory access
control policies that are both simple and powerful.
When applied to all running programs, these policies
can prevent damage caused by malware by using user
intent information to identify benign program actions.
As an example, we provide a policy that allows
programs to access files based on the user's natural
interactions with the program's user interface. User
intent knowledge enables the policy to distinguish
between benign and malicious file access. We describe
a prototype implementation for Windows and present
results on using it to limit file access by malware and
benign program executions.

Previous work. Cui first proposed an intrusion detec-
tion mechanism combining information about user
intentions (from GUI events) with network intrusion
detection [8]. In the BINDER IDS, the presence of a
user input event, such as a mouse click, was correlated
to outgoing network traffic. The presence of network
traffic not connected temporally to GUI events was
used as a heuristic for the presence of malicious traffic
outgoing from a host. Cui’s results demonstrate that
user intent can increase the accuracy of network IDS.

The Polaris [33] access control system developed a
method of constraining Windows programs that can
indirectly take some user intent information into
account when making security decisions. Polaris runs
programs under a specially modified user account with
only a more limited set of permissions needed for the
program to function. Polaris also supports file
designation, meaning that users can implicitly
designate file permissions when using an application.
Polaris replaces the standard file chooser dialog box
with a special file chooser that can add specific file
permissions to the underlying set of application
permissions. The Polaris system illustrates the potential
value of using user interactions in access control, but
does not apply the idea more generally and does not
make user interactions available for use in explicitly

configurable security policies. We provide a general
mechanism for incorporating user interactions into
access control policies in ways that enable richer
security policies.

Roadmap. Section 2 discusses our system design and
prototype implementation of the policy engine.
Section 3 describes experiments analyzing the effect-
iveness of our intent-based anti-malware policies.
Section 4 describes the effects of applying intent-based
policies to benign programs. We describe other related
work in Section 5, and conclude with discussion in
Section 6.

2. DESIGN
A user-intent-based access control (UIBAC) system in-
volves three basic components, shown in Figure 1. The
first component collects and records user interface
events (Section 2.1). The log of user behavior is used
as input to the user intention inference component
(Section 2.2). Finally, inferred user intent concepts
generated by the inference component are used in
intent-based security policies in order to make enforce-
ment decisions (Section 2.3). Our focus is on
protecting file resources from damage caused by
malware or by exploits against vulnerable software.

2.1 Prototype
We built a prototype system incorporating three
components: a collection mechanism, an inference
engine, and policies and enforcement mechanisms. The
purpose of the prototype implementation is to evaluate
the potential for intent-based access control policies by
determining if policies can be found that allow benign
applications to (mostly) execute normally, while
blocking malicious activities.

Since our goal is to explore possible policies and
measure their effectiveness, the prototype was not
constructed to resist targeted attempts to circumvent or
corrupt the system, although the component designs in
the following sections suggest how a secure implemen-
tation could be built. We implemented event collection
for Win32 applications. Events describing user
interaction with the environment are fed into a
common logging system, along with system resource
events such as file, network, and registry accesses. The
intention inference component scans this common log
for patterns matching user intent concepts referenced in
the intent-based security policies themselves. The
policies control access to protected resources. For the
experiments described in this paper, we performed the
intention inference and policy checking components
using an offline analysis on the logs collected by the

34

event collection component. This is sufficient to
answer our main research question: does knowledge of
user intent enable MAC policies that protect against
malware without unacceptably disrupting benign
programs? In the following sections, we present a
secure design, and describe the actual prototype
implementation.

2.2 Event Collection
We need a trustworthy method for recording user
actions as well as program actions since this informa-
tion will be used to make access control decisions.
Activity information includes both concrete user
actions, such as mouse clicks or keystrokes entered,
and contextual information describing the state of the
user interface at the time the user activity took place,
such as active window and button text. A diverse
selection of user interface toolkits and libraries is
available to application developers, including some
with unique features. The ability to log events from
multiple toolkits may be required to capture some
forms of user intent, but most toolkits ultimately are
implemented using the native Windows API. All of
this information needs to be gathered in a secure way if
we are to derive trust from inferences made on the
recorded activity. It should not be possible for a mal-
icious application to inject fabricated events into the
collection mechanism in an undetected manner, to
interact with a user in a way that is not observed by the
collection mechanism, or to corrupt or obscure real
user interface events or context observed by the
collection mechanism.

One way to build a secure collection mechanism would

be to use a virtual machine, which can observe user
actions and program behaviors from outside the guest
OS. If virtual machines are used as part of the access
controller to isolate applications, the input events can
be compared at the level of the host OS to the input
events taking place within the isolated guest OS to
provide input validation without requiring a major
redesign of programs or operating systems. Assuming
the VM provides good isolation, this design ensures
that all user interactions with isolated applications are
observed by the collection component. In order to
protect the integrity of the context data, the VM would
also need to monitor certain files and user interface
resources. Such an approach might be built on top of
the Virtual Machine Communication Interface API
[42] for VMWare, for example. There are also
software-based solutions to this problem in
development by the major operating system vendors as
part of the push towards trusted computing [44].
Future operating systems may be designed to protect
the integrity of user interfaces, since their protection
has serious implications for security.

Prototype Implementation. For our prototype, we
developed a simple event collector and logger for Win32
applications. The logger also records program behavior
(as opposed to user behavior) when programs access
restricted resources (files, network resources, and the
Windows registry).

Building an event collector for Win32 is difficult since
events are visible only at a relatively low level. Our
prototype uses an API hooking technique (based on the
Detours system from Microsoft Research [18]) to obtain
various user interface and program behavior events.

User

(1)
User

Interface
Event

Collection

(2)
User Intention

Inference

User Input

Protected
Resouces

Application
(3)

Security
Policies

Allowed
Program
Behavior

User Input Program
Behavior

Intent

Logged UI
Events

Inferred User Intent

True Intent

Figure 1. User-Intent-Based Access Control

35

Hooks are inserted into monitored processes via a DLL
loaded into all running process’ respective address
spaces. The DLL contains a callback method that
watches for specific monitored user interface events
generated by the program’s user interface. The hook
callback has access to all of the monitored process’ state,
since it runs in-process. When a monitored event is
observed, the callback function gathers any ancillary
information (such as button identifiers and captions)
needed by the logger to record the context of the event,
either directly from the parameters of calls to a Win32
API function or by using the parameters (which often
include file and window handles, etc.) to query for the
necessary information. This information is then written
to a common log file along with a timestamp, the
process identifier, and the name of the program
generating the event.

Our Win32 prototype is suitable for conducting
experiments on the usefulness of UIBAC policies, even
though it has several limitations that would preclude its
use in a practical system. It is not designed to be difficult
to circumvent; a targeted attack could easily be designed
to interfere with the local hooks in memory. Some
potential concurrency issues also remain in the prototype
implementation. Events are recorded in the order in
which the hooked callback functions are executed, with
a recorded millisecond-granularity timestamp being
generated at that time. Although overlap is possible due
to the presence of separate buffers for each individual
process writing to the shared log file, this has not yet
been a problem in our testing and experiments. The
exact ordering of low-level program behaviors from
different programs seems to rarely be of critical
importance.

2.3 User Intent Inference
The second component needed by our intent-based
access controller is an algorithm for inferring user in-
tents from the log of user interface events. Intent con-
cepts provide an abstraction over the concrete user
behavior. We wish to express policies at the level of
intent concepts, not specific events, since most events
are at too low a level for understandable policies.
Further, there may be many different ways to convey the
same intent concept. For example, when a user selects
and opens a file in a file chooser dialog, a sequence of
events takes place as the dialog is created, the user
searches for a file, and finally opens the file by clicking
on a specific button or using the keyboard. The intent
inference algorithm interprets this series of events as the
concept “user intends to open file <pathname>”. We
formalize this concept as,

file_open(Filename f , Process p)
The user, interacting with process p, intends to open
file f.

The context information in this case is important in
understanding what file access permissions (e.g., read
or write) the user intended to grant to the program pre-
senting the dialog box. More than one pattern of
concrete user behavior may be mapped to a single user
intent concept. Users may express their intent to open
a file in a program in multiple ways, such as by
dragging and dropping file icons in Windows, using
dialog boxes, and using recent document menus. A
sophisticated intent inference engine would be able to
infer the same intent, regardless of the many different
ways a user may express a particular intention.

When a security decision needs to be made during pol-
icy enforcement, the inference engine may be called
upon by an intent-based security policy to check
whether a particular user intent concept is present and
applicable to the program attempting a restricted
action. The inference engine then checks to see
whether that intent concept is implied for the subject
process by the user behavior log. The log is kept
indefinitely, so the policy has the capability to infer
user intent dating back to the initial installation of the
system1. This opens up the possibility of inferring all
configuration changes made to the program via the user
interface, including those made during the installation
itself.

For example, if a security decision is needed for a
particular file that the program would not otherwise
have access to, an access controller enforcing an intent-
based policy will check the log to see if intent to open
that file can be inferred from the recorded events. This
intent could be expressed through the series of user
input events corresponding to creation of the file
chooser dialog and selection of the file. Although we
cannot know the actual user intent, we can infer that
intent to open the file is a possible interpretation of the
sequence of events. We infer an intent concept if a
particular intent can be expressed as the observed
sequence of events.

1 Machines may ship with a preloaded events log to reflect

programs installed by the vendor using a pre-built image. To
apply user-action based policies to those programs, it may be
useful to supply an initial log that contains the minimal actions
a user would have done to install the preloaded programs.

36

In addition to user intent concepts, the inference engine
also infers concepts based on program actions. For
example, if a new file is created by a given program,
the concept,

program_creates_file(Filename f, Executable e)

is inferred where e corresponds to the executable
whose instantiation created the file.

Appendix A provides a full list of the intention
concepts inferred by our prototype implementation.

Prototype implementation. Our prototype is
adequate for the simple concepts examined for this
paper. Future work will investigate whether a more
sophisticated algorithm is needed and useful for inferr-
ing other interesting intent concepts (for example,
concepts that cannot be expressed as regular express-
ions or concepts that depend on temporal notions).

Our prototype implementation maps concrete events
recorded in the log to user intent concepts. It does this
by looking for patterns in the sequence of user
interactions and program behavior that correspond to
regular expressions representing user intent concepts.
Concepts are inferred based on two components: the
general pattern being followed, such as file selection
(specified as part of the inference engine) and the
context (specified as part of the UIBAC policy).

The algorithm searches the log and looks for an event
matching the starting point of the regular expression
for a particular inference pattern. It continues through
the general inference pattern, checking against the log
to determine whether the pattern is satisfied. Context
information from the user interface can be bound to
variables in the general pattern. If the policy does not
specify a concrete value for a variable, it is bound
when it is first encountered in the log. The substitution
is performed using regular expressions with grouping.

Our prototype can also infer program behavior patterns
derived purely from the dynamic program behavior
recorded in the log. Such dynamic behavior inferences
can still be useful in a security policy.

2.4 User Intent-Based Security Policies
The third component of our system is the policy
enforcement mechanisms and the intent-based security
policies themselves. The intent-based policies provide
a mapping between inferred user intent concepts and
behavior patterns and permissions they imply. These
permissions are similar to those in traditional access
control work, and designed to mediate access to
resources such as files, network connections, and

execution permissions. Our system can observe many
system configuration changes by observing user
behavior and intent, and thus can create much more
flexible and durable policies than is possible under
many other access control systems.

In this work, we focus on finding policies capable of
enhancing security for typical desktop computers. We
seek a MAC policy that can suppress classes of
unwanted behavior without disrupting the function of
benign applications. Since such a MAC policy can be
applied to all processes, it can prevent undetected
malware from doing damage to the system. We
describe some experiments with various candidate
MAC policies in Section 4. A successful MAC policy
would prevent damage to system resources while still
allowing most programs to function normally.

Implementation. Our policy interpreter uses a policy
language based loosely on the Java security policy
language. Rules in the policies map user intent con-
cepts to changes to the set of permissions granted to
that process at any given time. Policy GRANT rules
add permissions to the active permissions possessed by
a process, which may be specified by executable image
name (e.g., firefox.exe) or PID (e.g., 4526). We may
also add additional flexibility in the future so that
permissions can be finer grained for dynamically
loaded program modules and interpreters executing at a
higher level within the application.

An access controller enforcing an intent-based policy
mediates attempts to access protected resources. If a
requested permission is implied by the set of
permissions for the process making the request, the ac-
tion is allowed; otherwise, it is denied. Our prototype
policy engine allows us to test various intent-based
policies against logs of user behavior collected during
experiments, but is not yet embedded into an access
controller. Instead, policy violations are simply flagged
for analysis, since our focus for this paper was to
evaluate intent-based anti-malware policies.

2.5 Policy Language
The general form of policy rules specifying intent-
based dynamic policies in our language is:

intent (context) GRANTS (subject) permission

The left side of a rule identifies an intention inferred
from user actions, as described in Section 2.3. The
name of the intention concept is intent (e.g.,
file_open), and the context can include bound and
unbound variables. Context variable types include
Filename, Process, Executable, and Host. Variables

37

are bound to values derived from the log information
and may be used as subjects or as part of a permission
grant.

The subject refers to the entity to which the permission
is being granted. We currently support the principals
Executable and Process. The Executable principal
grants the permission to all instances of a program,
while the Process principal applies the permission
only to a specific process.2 Since our logs may carry
information collected from many instances of the
program, this is an important distinction.

The permission indicates the access being granted,
such as Read or Write; permissions can use variables
that were bound in the context information.

As an example, this rule grants processes access to
write a file following a user intention to open the file:

file_open (Filename f, Process p) GRANTS
(Process p) Write (Filename f)

This rule uses the file_open intent concept. The two
context variables on the left-hand-side of the rule are
bound by the inference engine during evaluation of the
rule to a specific filename specified by the user in
process p’s user interface. These same variables are
then used on the right-hand-side to limit the scope of
the permission grant to only the same process and file.
A single policy rule such as this can match multiple
times with different variable bindings.

3. CANDIDATE RULES
In order to examine the effectiveness of intent-based
policies, we developed a set of candidate MAC policy
rules. These rules assume a system-wide default-deny
policy for writes to existing files, with a few exceptions
such as the Windows registry files and temporary
directory. The purpose of the policy rules is to loosen
this default MAC policy so that benign programs can
still function, but not so much that a large amount of
damage by malware can take place. We do not attempt
to provide any confidentiality protection against
malware (hence, there are no restrictions on file reads).
Each program is given control over files created by it
or installed with it, as well as files that the user directly
intended to allow the program to access. We do not
claim to provide comprehensive MAC policies at this
stage of development; our experiments were instead

2 In order to prevent name conflicts caused by process ID reuse,

the inference engine also logs whenever a new executable
process is started.

designed to explore some of the issues related to
designing such a policy using intent-based rules. Next,
we describe the intuition behind each of the candidate
policy rules.

The INSTALLED-FILES rule states that if a user intends to
install a program, then the program can write to any of
the files created by the installation:

INSTALLED-FILES:
program_installation (Filename f, Executable e)

GRANTS (Executable e) Write (Filename f)

The variable e is bound by the inference engine to all
executable files that are part of the installation itself
(not the installer program). The inference pattern in
question looks for a user-initiated installation process
by looking for the creation of dialog boxes character-
istic of installer programs, and binds any files written
to by the installation process to the variable f, until the
installation program ends.

The way we identify program installations is certainly
not secure against malicious programs; a secure
implementation would require additional controls on
the installation process, such as rules governing the
ability to initiate the install process. We are exploring
ways of integrating our installation rules more closely
with the operating system in order to make them more
secure and reliable.

This rule could be implemented as a static grant of
permission to files created during program installation,
but this would require manual creation of a policy
controlling the specific files as opposed to the
automated process that the intent-based policies allow.
The ability to recognize the specific user intention to
grant install privileges to the installation program
makes it unnecessary to manually designate which
programs are installers.

The CREATED-FILES rule is very similar to the
INSTALLED-FILES rule, except that it concerns files
created by the program itself:

CREATED-FILES:
program_creates_file (Filename f, Executable e)

GRANTS (Executable e) Write (Filename
f)

This rule allows programs to write to any files they
create; this is useful for allowing programs to create
temporary files and caches. This rule is not a user
intent rule but a program behavior rule. Files created
by a program remain associated with the program for
integrity purposes. Note that this rule permits

38

malicious file-dropping behavior; a more precise rule
would place limits on the types and locations of files
that an executable can create.

The final two rules grant a program permission to write
to files that the user specifies via the user interface:

SAVED-FILES:
file_save (Filename f, Process p) GRANTS

(Process p) Write (Filename f)

OPENED-FILES:
file_open (Filename f, Process p) GRANTS

(Process p) Write (Filename f)

The file_save and file_open intent concepts are inferred
from user interactions with the program’s user
interface. These candidate rules do not distinguish
between opening a file for writing and opening a file
for reading only; a more precise policy could take
advantage of these distinctions to provide finer-grain
control of permissions.

One might wonder why the SAVED-FILES rule is
necessary in light of the CREATED-FILES rule. The
reason is that sometimes users will specify that a saved
file replace an existing file created by another program.
Likewise, when a user intends to open a file created by
another program, the user will often need to save to it
using the new program later.

In the next section, we describe some preliminary
experiments we conducted to measure the effectiveness
of these rules and to determine what combination of
rules best allows benign programs to function properly
while still providing integrity protection against
malware.

4. PRELIMINARY EXPERIMENTS
To find MAC policies that achieve our goal of pro-
tecting file resources from damage caused by malware,
we conduct three kinds of experiments: malware
protection experiments where we run known malware
and evaluate how much of its malicious behaviors
would be detected by our candidate policy rules;
deployment experiments in which we test our candidate
policies on a Windows desktop system in normal use to
see how frequently a benign program violates
candidate rules; and benign program experiments, in
which we perform a series of artificial tests on
Windows software to check for false positive
violations of the policy.

All our policy rules grant permissions rather than
taking them away; thus, they loosen the permissions
applied to a program. Programs have no write

permissions for existing files until they are specifically
granted to them by a matched rule, but we allow all
programs read-only access to all files since our focus is
on protecting file integrity, rather than confidentiality.
The best MAC policy, in accordance with the principle
of least authority, is one that grants the least permission
while still allowing benign programs to function. We
intend to test policies designed to provide
confidentiality in the future; for these tests, we would
also use a default-deny policy for reads of existing
files.

4.1 Malware Detection Experiment
Our first experiment was intended to determine whet-
her the integrity of programs and files is still protected
from malware when various intent-based permission
loosening rules, described in Section 3, are in place
(note that a policy with no rules would not allow any
file writes, so would provide file integrity protection
against malware, but would also not allow any useful
file-modifying behaviors). For this experiment we did
not attempt to block malware from executing
altogether or to prevent it from residing in memory.
We were only concerned with file integrity and
whether it could still be preserved with various rules in
place.

Malware selection. We tested a set of malware pro-
grams taken from the offensivecomputing.net online
repository collection point, representing the most
prevalent reported malware as of early 2008 and a
number of well-known worms (sometimes with
multiple samples and variants of each tested). We also
included a set of unknown malware samples collected
on a honeypot by Christopher Kruegel. These were
samples found to have modified files on the honeypot.

We excluded samples that were not found to cause any
damage to file resources in the test environment. Poss-
ible causes of sample exclusion included malware
samples that failed to execute, malware that executed
but did not attempt to damage file resources due to the
short duration of the tests, and malware that executed
but did not attempt to damage file resources due to the
specific test environment used (for example, the
operating system version, installed programs, or the
presence of a virtual machine). Any malware that
altered or created new files was included.

Test procedure. Malware was executed on a
VMWare-based testbed. A Windows XP SP2 installa-
tion was set up in a virtual machine, with a number of
benign programs installed and the latest patches from
Microsoft. We used an automated script to inject

39

malware samples into the guest operating system and
execute them with our intent-based logging component
running. There was no human interaction with the VM
during the tests. Each malware sample was allowed to
execute for 8 minutes. At the conclusion of the test, the
VM was shut down, the log file was collected, and the
disk image was checked for evidence of damage to file
resources. This check was carried out using MD5
checksums of the files in the VM disk image; normal
file changes performed by the OS were excluded from
the definition of file damage. This left 28 samples,
which we used in our experiments.

For the malware samples confirmed to cause damage to
files on the VM, our policy checking tool was run on
the collected logs in order to determine whether the
damage would still have taken place each of the
permission granting rules describe in the previous
section (INSTALLED-FILES, CREATED-FILES, SAVED-FILES,
OPENED-FILES). Since malware often attempts to
damage multiple files, it is possible for a rule to
provide only partial protection by allowing some
damaging actions by not others. We have tested
malware with two slightly different default-deny
policies. The first of these default deny policies denied
all file modifications of existing files, but allowed the
creation of new files. The second denied all file writes,
including the creation of new files.

Results. All of the samples except for Bagle attempted
to write to an existing file. This would be disallowed
by the draconian default deny policy. All of the file
writes observed in our testing would also have been
disallowed with all of the permission-granting rules in
place. This is not a surprising result, since the virus is
installed surreptitiously (thus it never acquires any of
the installation privileges), and the user never interacts
explicitly with the virus process. One malware sample,
with an identity unknown to commercial virus
scanners, was able to modify files without being
stopped by the policies. It appears that this malware
used a kernel level rootkit combined with privilege
escalation to accomplish this. As we have not yet
attempted to harden our system against circumvention,
this is not a significant negative result. In any case, our
prototype implementation cannot provide access
control once the kernel is compromised.

Under the more restrictive default-deny-write policy,
prohibiting the creation of new files, we again
observed that intent-based policy rules did not allow
the malware to modify the filesystem significantly
more so than the default-deny policy. The one
exception was the same malware sample mentioned

above that was able to create files without being
detected.

Windows Registry settings used to execute code at a
later date are likely in use for some of this malware.
Our logger can observe registry activity but we are still
experimenting with the best possible intent-based
policies for controlling registry access and thus the
execution of this type of malware. Registry integrity
policies will likely be quite similar to file integrity
policies.

The intent-based rules do not seem to significantly
reduce the security provided by the two disallow all
policies as none of the malware samples attempted
operations that caused any of the intent-based rules to
be triggered. However, this test is limited in scope and
might not include enough samples or a broad enough
definition of damage. In addition, this policy could
easily be evaded by malware designed to evade it.
Nonetheless, these preliminary experiments provide
some support for the hypothesis that a restrictive file
modification policy can prevent some malicious
behaviors, and loosening it with the kinds of UIBAC
rules we propose does not diminish its effectiveness,
while allowing benign programs to perform more
actions, as discussed in the next section.

4.2 Deployment Experiment
In order to determine whether a useful MAC policy can
be devised, we also performed a test under presumably
benign conditions. The goal of this experiment was to
determine whether these policy rules would allow
benign programs to function normally. During this
experiment, the logger was allowed to run normally for
a day on the machines of two users (one technical and
one non-technical). A total of 60,541 file-related events
were recorded. An event was recorded whenever a
program opened a file for reading, writing, or deletion.
Policies composed of combinations of the rules tested
against malware in Section 3.1 were evaluated against
these logs to determine whether or not they would
interfere with the functioning of legitimate Windows
software.

A limitation of the test was that unlike in our intended
model of use, the logger was not in place and
collecting data throughout the entire installed history of
the users’ machine. This made the installation policy
rule and program creation rules more difficult to
evaluate. In order to simulate this part of the data, we
simply augmented the logs with a logged installation
and first execution of the programs of interest to
determine which files would have been allowed under

40

these rules. In general this amounted to only a few
directories (such as the program’s installation location
and sometimes a directory used to store state
information). However, there may be some mismatch
between directories in the augmented logs and the
actual installations under observation.

Results. Table 1 summarizes the results from our
deployment test. With a few notable exceptions, benign
programs generally still functioned with all of the
candidate rules in place, with a relatively small number
of false positives. Most of the writes allowed by our
rules were enabled by the CREATED-FILES, reflecting the
fact that most file writes occur to files created by the
programs themselves.

In our tests, the INSTALLED-FILES rule accounted for just
two of the file writes that would have otherwise been
denied. This is perhaps not too surprising if benign
programs only seldom write to their own installation
files. In our experiment, most of the files were created
by the programs themselves rather than the installers.
This could also be a limitation of our test procedures,
since only a few programs were observed to be in use
during the test.

The SAVED-FILES and OPENED-FILES rules allowed 16
additional file writes to occur. While this number
might seem small, this includes only files explicitly
opened by users in a user interface. Thus, it generally
only includes files that contain user-generated data.
While the number of writes to these files is lower,
these writes might be considered among the most
important. We would expect to observe more in a
longer deployment test.

False positives remaining included several situations
where a program wrote data to a file created by a
separate program. One of these concerned an external
program that is bundled as a plugin with many of the
Mozilla programs. This program was bundled with
some of the Mozilla programs, but not reinstalled when

a second Mozilla program was installed during our test
installation. Thus, the second program did not have
access under the installation rule to the external
program’s files. This might be addressed using a more
intelligent install rule, or by allowing policies to assign
permissions to plugin components separately from the
main program. A similar situation was observed in our
artificial benign program experiments with a
component designed to embed the Internet Explorer
web browser into other programs.

There were several other false positives that appear to
be the result of limitations in the test procedures (the
lack of a complete history of all the files created by a
program in the past) or engineering limitations of our
logging mechanism. In the latter category a number of
files that appear to have opened by users were missed
by the file open/file save rules. A possible explanation
for this is that the users used an unsupported means of
expressing their intent to open or save a file (such as
the Recent Documents menu). Because the inference
component is separate from the policy, we expect that
this problem can be solved with more complete support
for the Windows toolkit in the inference patterns.

4.3 Benign Program Experiment
Because we felt that the limited deployment
experiment described in Section 4.2 gave an
incomplete picture of the potential for false positives,
we also tested our policies in a series of contrived tests
on a collection of 46 benign programs. In these tests,
we installed and executed the benign programs for a
series of 8 minutes, with a script to select various menu
options at random. We then checked to see if any false
positives were observed for our policies during the
tests. The programs and the results of this testing are
listed in Appendix B.

Results. In our contrived tests, we observed that 34 of
the benign programs did not create any false positives.
Eleven of the sample programs created false positives
only in executing an embedded Internet Explorer
plugin component that modified the IE cookie database
and history files. Many programs use Internet Explorer
in order to add web functionality, and the embedding
of the plugin caused writes to the IE history and cookie
databases to appear to come from the containing
programs rather than IE itself. This problem could
potentially be resolved in a number of ways. We could
simply consider the IE database files a shared part of
the operating system and allow all programs to alter it;
this would probably be relatively safe, although some
potential would exist for programs to destroy data
stored in cookies by other programs. We might also

Table 1. Deployment Experiment Results. Policy violations
encountered over all 60541 file access events.

Policy Violations
Default-Deny-Existing Policy Only 11050
INSTALLED-FILES 11048
CREATED-FILES 49
INSTALLED-FILES+CREATED-FILES 47
SAVED-FILES+OPENED-FILES 11034
INSTALLED-FILES+CREATED-FILES+
SAVED-FILES+OPENED-FILES

31

41

add support for the IE user interface elements to our
inference patterns so that programs could be granted
permission to use the IE component by a policy
recognizing it as a standard Windows interface type.
Finally, we could add support for granting permissions
to specific modules or libraries loaded into programs in
addition to the programs themselves.

One additional program, a spyware scanner, deleted a
number of files in violation of the policy. We would
also expect virus scanners to exhibit similar behavior,
though we did not include one in our tests. Windows
does provide support for registering these security-
related programs in the Registry, and could exploit that
process to give special permission for file removal or
alteration in these cases. There is also some user
interaction before files are actually deleted, so more
sophisticated UIBAC policies could potentially
account for this situation.

5. RELATED WORK
We mentioned the most closely related work in the
introduction; here, we survey relevant work in several
related areas: usability and security, user intent, securi-
ty policies and access control, intrusion detection, and
threats posed by programs.

Making security mechanisms usable (from an HCI
perspective) has been a difficult task for the security
community, though it is frequently recognized as an
important goal [1, 7, 40]. Several authors have argued
that security mechanisms are inherently and
particularly difficult to make usable. Yee recognized
that user actions might implicitly designate security
decisions for an application [46]. Our work attempts to
leverage the effort put into application usability to
assist with security decision-making. Instead of
expecting users to explicitly define security policies or
deal with security interruptions, we aim to define
security policies implicitly based on the actions users
are taking normally.

User intention concepts provide an abstraction in our
system over policies based purely on user interaction
events, and provide a flexibility not present in systems
like BINDER or Polaris that use user behaviors
directly. Policy languages themselves typically fall into
two main types: those based on independent evaluation
of policy rules [35, 25, 28] and those incorporating
more complex and powerful constructs such as first-
order logic [30]. There are tradeoffs involved with each
approach, though the former has been more popular
because the policies are typically easier to write and

reason about [39]. Our prototype system uses a very
simple language of the former type.

Mandatory access control mechanisms, coupled with
strict security policies, have the potential to prevent
many security problems caused by malicious and
insecure programs. Several access control systems of
this type have been developed, including notably
SELinux [25] and AppArmor [27]. Our mechanism
differs in that it is not intended only to detect
application anomalies but also to prevent applications
from functioning in ways that deviate from user
intentions. This includes program anomalies caused by
attacks against software vulnerabilities, but also a
larger class of behavior that is simply unwanted by
users, such as when a program deletes files
unexpectedly. Much previous work has attempted to
detect or prevent security threats to desktop operating
systems and software by checking for attack behavior
or violations of security policies. Signature-based
systems [37] have attempted to detect attacks on
desktop security primarily by checking for exploitation
of known vulnerabilities, but suffer from the inability
to detect attacks against unknown vulnerabilities. Non-
signature-based or hybrid systems, such as those using
anomaly-based intrusion detection or behavioral
heuristics [5, 17, 19, 38, 29, 36] have often suffered
from a high false positive rate causing them to be
impractical for real-world use [14]. These systems may
also be vulnerable to mimicry attacks [43], while our
system can provide some measure of protection against
this threat if we can secure the input path. Our system
differs from purely behavioral systems in that it takes
advantage of the history of user and program actions.

6. CONCLUSION
Our approach potentially offers a number of
advantages over traditional access control. First, it
could allow for easier policy development. Since
intent-based policies reference higher-level
abstractions of intent rather than lower-level
application behavior, they can be more readily
comprehensible to humans and amenable to automated
policy development. Second, intent-based policies can
promote greater reusability of policies, since they do
not depend on the specific details of how individual
applications carry out that intent. Third, intent-based
policies align well with usability, since they do not
require extensive user configuration or decision-
making other than through normal application usage.
Finally, they offer a good opportunity to dynamically
track changes in application configuration over the
entire installed lifetime of a program. Many
configuration changes are observable via user

42

behavior, so policies can adapt over time to match
changes in application behavior associated with
program configuration changes.

Our experiments are not yet enough to demonstrate the
effectiveness of our approach against sophisticated
malware, but they indicate that adding support for
UIBAC rules enables stricter behavior restrictions
which can limit the damage malware can perform. Our
preliminary experiments with benign programs provide
some hope that policies can be designed that allow
nearly all well-designed desktop applications to
function normally.

ACKNOWLEDGEMENTS
The authors would like to thank Chris Kruegel for
generously providing us with a set of malware samples
for our experiments. We are also grateful for the
feedback provided by the anonymous reviewers and
attendees at NSPW.

This work was supported in part by funding from the
National Science Foundation (grants 0541123 and
0627527).

REFERENCES
[1] Anne Adams, and Martina Angela Sasse. Users

Are Not the Enemy. Communications of the
ACM, December 1999: 40-46.

[2] Paul Barham, Boris Dragovic, Keir Fraser,
Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen
and the Art of Virtualization. In Proc. Symposium
on Operating System Principles. 2003.

[3] D. Elliot Bell and Leonard J. LaPadula. Secure
Computer Systems: Mathematical Foundations.
Technical Report. The MITRE Corporation, 1973.

[4] Kenneth J. Biba. Integrity Considerations for
Secure Computer Systems. Technical Report. The
MITRE Corporation, 1977.

[5] Mihai Christodorescu, Somesh Jha, Sanjit A.
Seshia, Dawn Song, and Randal E. Bryant.
Semantics-Aware Malware Detection. In Proc.
IEEE Symposium on Security and Privacy. 2005.

[6] David D. Clark and David D. Wilson. A
Comparison of Commercial and Military
Computer Security Policies. In Proc. IEEE
Symposium on Security and Privacy. 1987.

[7] Lorrie Cranor, and Simson Garfinkel. Security
and Usability. O'Reilly, 2005.

[8] Weidong Cui, Randy H. Katz, and Wai-tian Tan.
BINDER: An Extrusion-based Break-In Detector
for Personal Computers. In Proc. USENIX
Security Symposium. 2005.

[9] T. Daboczi, I. Kollar, G. Simon, and T. Megyeri.
How to test graphical user interfaces. IEEE
Instrumentation & Measurement Magazine,
September 2003: 27-33.

[10] Dorothy E. Denning. A Lattice Model of Secure
Information Flow. Communications of the ACM,
May 1976: 236-243.

[11] Rachna Dhamija, J.D. Tygar, and Marti Hearst.
Why Phishing Works. In Proc. ACM SIGCHI.
2006.

[12] DoD Standard 5200.28-STD: Trusted Computer
System Evaluation Criteria. United States
Department of Defense, 1985.

[13] David Ferraiolo, and Richard Kuhn. Role-based
Access Control. In Proc. National Computer
Security Conference. 1992.

[14] Carrie Gates and Carol Taylor. Challenging the
Anomaly Detection Paradigm: A Provocative
Discussion. In Proc. New Security Paradigms
Workshop. 2006.

[15] Joseph Halpern, and Vicky Weissman. Using
first-order logic to reason about policies. In
Computer Security Foundations Workshop. 2003.

[16] Steven B. Hirsch. Secure Keyboard Input
Terminal. U.S. Patent 4,333,090. 1980.

[17] Steven A. Hofmeyr, Stephanie Forrest, and Anil
Somayaji. Intrusion Detection Using Sequences of
System Calls. Journal of Computer Security,
1998: 151-180.

[18] Galen Hunt and Doug Brubacher. Detours: Binary
Interception of Win32 Functions. In
Proc.USENIX Windows NT Symposium.1999.

[19] Engin Kirda, Christopher Kruegel, Greg Banks,
Giovanni Vigna, and Richard A. Kemmerer.
Behavior-based Spyware Detection. In Proc.
USENIX Security Symposium. 2006.

[20] Christopher Kruegel, William Robertson, and
Giovanni Vigna. Detecting Kernel-Level Rootkits
Through Binary Analysis. In Proc. Annual
Computer Security Applications Conference.
2004.

[21] Henry M. Levy. Capability-based Computer
Systems. Digital Press, 1984.

[22] Peter A. Loscocco, Stephen D. Smalley, Patrick
A. Muckelbauer, and Ruth C. Taylor. The
Inevitability of Failure: The Flawed Assumption
of Security in Modern Computer Systems. In
Proc. National Information Systems Security
Conference. 1998.

[23] Microsoft Corporation. Microsoft Virtual PC.
2007.
http://www.microsoft.com/windowsxp/virtualpc/

43

[24] Microsoft Corporation. Windows Vista: User
Account Control. 2006.

[25] National Security Administration. Security-
Enhanced Linux. 2007.
http://www.nsa.gov/selinux/.

[26] Donald A. Norman. The Design of Everyday
Things. Doubleday, 1988.

[27] Novell Corporation. AppArmor.
http://www.novell.com/linux/security/apparmor/.

[28] OASIS. eXtensible Access Control Markup
Language (XACML) version 2.0. 2006.

[29] Vern Paxson. Bro: A System for Detecting
Network Intruders in Real-Time. In Proc.
USENIX Security Symposium. 1998.

[30] C. Powers and M. Schunter. Enterprise Privacy
Authorization Language (EPAL 1.2). W3C
Member Submission, 2003.

[31] Sysinternals. Rootkit Revealer. 2006.
http://www.sysinternals.com/Utilities/RootkitRev
ealer.

[32] Ray Spencer, Stephen Smalley, Peter Loscocco,
Mike Hibler, David Andersen, and Jay Lepreau.
The FLASK Security Architecture: System
Support for Diverse Security Policies. In Proc.
USENIX Security Symposium. 1999.

[33] Marc Stiegler, Alan H. Karp, Ka-Ping Yee, and
Mark Miller. Polaris: Virus-safe Computing.
Technical Report. Hewlett-Packard, 2004.

[34] Sun Microsystems. HotJava: The Security Story.
1995.

[35] Sun Microsystems. Java Security Overview. 2007.
http://java.sun.com/javase/6/docs/technotes/guide
s.

[36] Symantec Corporation. Symantec Norton
Antivirus. 2006. http://www.symantec.com.

[37] The Snort Project. Snort, The Open Source
Network Intrusion Detection System. 2006.
http://www.snort.org/.

[38] The Tripwire Project. Tripwire host-based IDS.
2007. http://sourceforge.net/projects/tripwire/.

[39] Michael C. Tschantz and Shriram Krishnamurthi.
Towards Reasonability Properties for Access
Control Policy Languages. In Proc. ACM
SACMAT. 2006.

[40] J.D. Tygar and Alma Whitten. Why Johnny Can't
Encrypt. In Proc. USENIX Security Symposium.
1999.

[41] VMWare Corporation. VMWare. 2007.
http://www.vmware.com.

[42] VMWare Corporation. Virtual Machine
Communication Interface. 2007.
http://pubs.vmware.com/vmci-
sdk/VMCI_intro.html.

[43] David Wagner and Paulo Soto. Mimicry Attacks
on Host-Based Intrusion Detection Systems. In
Proc. ACM Conference on Computer and
Communications Security. 2002.

[44] David R. Wooten. Securing the User Input Path
On NGSCB Systems. In Microsoft WinHEC.
2004.
http://download.microsoft.com/download/1/8/f/18
f8cee2-0b64-
41f2893da6f2295b40c8/TW04055_WINHEC200
4.ppt.

[45] Wei Xu, Sandeep Bhatkar, and R. Sekar. Taint-
enhanced Policy Enforcement: A Practical
Approach to Defeat a Wide Range of Attacks. In
Proc. USENIX Security Symposium. 2006.

[46] Ka-Ping Yee. Aligning Security and Usability.
IEEE Security and Privacy Magazine, September
2004: 48 – 55.

[47] Doug Beck, Binh Vo, and Chad Verbowski.
Detecting Stealth Software with Strider
GhostBuster. In Proc. Int. Conf. on Dependable
Systems and Networks. 2005.

APPENDIX A. USER INTENT CONCEPTS
This lists the intent concepts inferred by our prototype
implementation. While we have implemented all of
these concepts in our inference module, we have not
yet performed experiments on policies making use of
them all, nor have we comprehensively covered all
ways that they might be expressed via the Windows
user interface.

file_open(Filename f , Process p)

The user, interacting with process p, intends to open
file f. This concept is inferred when a user selects a
file or set of files in a file open dialog box.

file_save(Filename f, Process p)

The user, interacting with process p, intends to save
file f. This concept is similar to the file open
concept, and is inferred when users indicate their
intent to save a file or set of files (through a save
dialog). The inference engine distinguishes between
open and save dialogs based on the text displayed in
their title bars and the API calls used to create them.

file_rename(Filename f1, Filename f2, Process p)
The user, interacting with process p, intends to
rename file f1 to file f2. This concept is inferred
when a user changes the name of the file within a
program’ user interface (currently, in a file selector
dialog).

44

file_move(Filename f1, Filename f2, Process p)
The user, interacting with process p, intended to
move file f1 to file f2. This concept is similar to file
renaming, and is inferred when a user moves a file
within the user interface.

execute(Executable e)
The user intended to execute program e. This
concept is inferred when a user activates a program
for execution within the user interface.

program_install(Filename f, Executable e)
The user intends to install file f so that it is
associated with program e. This concept is inferred
when an installation dialog is detected, via name or
text (an imperfect solution for the time being). It
indicates that a user intends to install a particular set
of files and executable programs as a related group.
We developed this concept in order to make our
candidate policies capable of understanding the
implicit relationship between files and programs
installed by the same installer program.

APPENDIX B. BENIGN PROGRAMS
This lists the programs used in our contrived benign
program testing, as described in section 4.3.
Programs were tested using a script that randomly
selected elements of their user interface over an 8
minute period in order to exercise the application. In
particular, the script was designed to open files if
such a menu option was available.

Application Name Integrity Policy
Violations (# in
8 min)

acrord32.exe 0
ad-aware2007.exe 9†
calc.exe 0
csdiff.exe 0
devenv.exe (2003) 2*
devenv.exe (2008) 3*
dkicon.exe 0
eclipse.exe 0
excel.exe 0
firefox.exe 0
gimp-2.4.exe 0
googleearth.exe 3*
gvim.exe 0
hypertrm.exe 0
iexplore.exe 0
itunes.exe 0
msaccess.exe 0
mshearts.exe 0
mspaint.exe 0

mspub.exe 0
notepad.exe 0
outlook.exe 0
picasa2.exe 3*
pictureviewer.exe 0
pinball.exe 0
poweriso.exe 0
powerpnt.exe 0
quicktimeplayer.exe 0
qw.exe 3*
realplay.exe 0
smartftp.exe 3
sol.exe 0
steam.exe 3*
thunderbird.exe 0
tomcat6w.exe 0
truecrypt.exe 0
ttkvwr.exe 0
visio.exe 0
vlc.exe 3*
vmware.exe 0
windbg.exe 0
windlg.exe 2*
winmine.exe 0
winword.exe 3*
wmplayer.exe 3*
wordpad.exe 0

Remarks:
†: Deleted spyware-associated files in violation of
policy.
*: Embedded Internet Explorer browser modified IE
history/cookies.

45

