
On Information Flow for Intrusion Detection:
What if Accurate Full-system Dynamic Information Flow

Tracking Was Possible?

Mohammed I. Al-Saleh
University of New Mexico

Department of Computer Science
Mail stop: MSC01 1130

1 University of New Mexico
Albuquerque, NM 87131
alsaleh@cs.unm.edu

Jedidiah R. Crandall
University of New Mexico

Department of Computer Science
Mail stop: MSC01 1130

1 University of New Mexico
Albuquerque, NM 87131

crandall@cs.unm.edu

ABSTRACT

Current intrusion detection systems (IDSes) fall into two very lim-
iting categories: appearance-based or behavior-based. These rely
on specifying good vs. bad behavior in terms of patterns in the ma-
licious input or in the trace of execution during the attack. Some
successful IDS systems have specified attacks in terms of informa-
tion flow and the influences data sources have on the system, but
only in very limited domains such as control data attacks, and typ-
ically using information flow tracking mechanisms customized to
their purpose. Intrusion detection based on a general method for in-
formation flow tracking would allow for very explicit and general
definitions of attacks that precluded entire categories of vulnerabil-
ities and exploits, but our current methods for dynamic information
flow tracking (DIFT) are inadequate to make this a reality.

DIFT works by tagging (or tainting) data and tracking it to mea-
sure the information flow throughout the system. Existing DIFT
systems have limited support for address and control dependencies,
and therefore cannot track information flow within a full system,
except in an ad-hoc, application-specific fashion. As a first step to-
ward making information flow a new paradigm for intrusion detec-
tion, we present a prototype DIFT system that supports address and
control dependencies in a general way. As a motivating example to
demonstrate this system, we define an attack by the amount of con-
trol that external network entities have over what a networked sys-
tem is doing. This coarse definition is not precise enough to detect
attacks but serves as a demonstration of our approach to DIFT. We
measure the amount of information flow between tainted sources
and the control path of the CPU for a variety of scenarios and show
that our prototype system gives intuitive, meaningful results.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection–Information

flow controls

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NSPW’10, September 21–23, 2010, Concord, Massachusetts, USA.
Copyright 2010 ACM 978-1-4503-0415-3/10/09 ...$10.00.

General Terms

Security

Keywords

dynamic information flow tracking, quantitative information flow,
intrusion detection

1. INTRODUCTION
In this paper, we present a new dynamic information flow track-

ing (DIFT) technique, but do so within the context of a thought ex-
periment: How would we design the IDS systems of the future if

we could assume that all of our wishes for dynamic information

flow tracking had come true? While our DIFT system is far from
ideal, it has enough support for challenging types of information
flow to enable us to define attacks in a very general way and then
demonstrate that our information flow measurements are meaning-
ful and intuitive. Our specific contributions are the following:

� We explore the idea of intrusion detection based on infor-
mation flow using a prototype DIFT system that can track
address and control dependencies.

� We identify two additional specific challenges that DIFT sys-
tems of the future will need to address: write-once-read-
many-times (WORM) memory locations and looping con-
structs.

� We provide measurement results characterizing how much
information flows from the network to the control path of the
CPU for different types of network attacks.

Information flow is one of the most well-studied topics in com-
puter security and privacy, and the idea of applying the ideas of in-
formation flow for intrusion detection applications is certainly not
new. Why revisit these issues? Our argument for reconsidering the
role of information flow in intrusion detection centers around the
following two assertions:

1. If information flow tracking is made more accurate and prac-
tical, there is the potential for a paradigm shift in the way we
think about and implement intrusion detection systems.

2. In the context of integrity as it is applied to intrusion detec-
tion, as opposed to confidentiality, information flow track-
ing can be much more accurate and practical than previously
thought.

17

The first assertion is based upon the second, because as informa-
tion flow tracking becomes more accurate and practical, intrusion
detection systems will use it. We discuss this more in Section 9.
Imagine that we had an oracle that gave completely accurate re-
sults about any information flow in any system we might be in-
terested in, at zero cost, so long as the threat model did not al-
low the attacker to execute arbitrary code with the express purpose
of removing the tags. Would be continue to define intrusions us-
ing appearance-based or behavior-based signatures and profiles, or
would we define them based on the changes in information flow
that they cause so that we could take advantage of the oracle?

The second assertion is what most of this paper, including the
results we present in Section 5, is about. While the prototype DIFT
system we have developed, in its current implementation, is neither
accurate nor practical enough to cause a paradigm shift, the differ-
ences between the DIFT technique we propose in this paper and
previous approaches illuminate many challenges. Some of these
challenges stretch our current understanding of how information
flows in real systems but all of the challenges are tractable and can
be addressed in future research.

In particular, we propose a relaxed static stability approach to
DIFT where data is tagged with a fixed point number indicating
a degree of taint, specifically the mutual information between the
tagged data item and some tainted source. More details are in Sec-
tions 2 and 3. The relaxed static stability approach allows for “best-
effort” tracking of information flow that relaxes the typical conser-
vative notion that information either flows or it does not. What our
results in Section 5 show is that all of the potential inaccuracies
in propagating taint come from two sources: equivocation caused
by operations and joint entropy between the inputs to operations.
The latter is particularly interesting because it creates dependencies
between operations that may span long periods of time. Joint en-
tropy between inputs manifested as two particular sources of insta-
bility in our experiments: looping structures and write-once-read-
many-times memory locations. What our results demonstrate is
that the path forward for accurate DIFT is to understand equivoca-
tion caused by operations and joint entropy between the inputs to
operations at a fundamental level and then to address these sources
of inaccuracy in a general fashion.

The historical influence of confidentiality applications on in-

formation flow research has hampered the application of in-

formation flow to integrity and availability applications, and

in particular intrusion detection systems. On what grounds do
we claim this? After all, quantitative information flow has been
the subject of study for several decades [53, 27, 5, 4, 6, 35, 13,
20, 40], and applying information flow ideas in integrity settings
to detect attacks is not new [47, 15, 17, 40]. Furthermore, from a
purely mathematical point of view integrity is the dual of confiden-
tiality so the results from one should carry over to the other, and
intrusion detection can entail confidentiality concerns, in addition
to integrity or availability. However, the differences between con-
fidentiality and integrity go well beyond the mathematical, as illus-
trated by the differences between Biba’s model for integrity [3] and
those of Lipner [33] or Clark and Wilson [9]. The latter models in-
clude notions such as separation of duty, separation of function, and
auditing specifically because integrity applications demand a more
practical definition of the trust relationships in the model than do
traditional confidentiality applications, such as multi-level secure
(MLS) applications. In a typical MLS system, full trust is placed in
the labels that data has, and no trust is placed in the source code that
the system is running. This leads to the necessity for a conservative
notion of information flow where either information flows or it does
not. For MLS systems a graduated notion of how much information

flows is useless given these trust relationships—unless the informa-
tion flow tracking is 100 percent accurate for all possible programs.
For many practical integrity scenarios such as intrusion detection,
however, some amount of trust can be placed in the source code
being executed, and this means that the labels for data items can
be approximations. How to make these approximations as accurate
as possible while still remaining practical has been the subject of
much less research than is warranted, we believe.

In this paper, we present a relaxed static stability system that is
based on an open loop control system and use it to measure in-
formation flow from various taint sources into the control path of
the CPU. The control path of the CPU includes what instructions
are executed, their operands, the data that conditional control flow
decisions are based on, and the addresses instructions are fetched
from—these basically encompass what the CPU is doing at any
given time. While such a system could be used for detecting at-
tacks, e.g., in a similar spirit to Newsome et al.’s concept of undue
influence [40], we make no claims in this paper in regards to sup-
porting or refuting a claim that measuring information flow into the
control path of the CPU dynamically is a viable detection technique
for remote network attacks with our current DIFT prototype. Our
aim is to shed light on new directions for DIFT research to support
a new paradigm in intrusion detection.

Our claims are the following:

� The relaxed static stability approach to DIFT that we present
in this paper offers a general and promising way to deal with
implicit information flows such as control dependencies and
address dependencies.

� Our results demonstrate that our current implementation
gives intuitive results for full-system information flow track-
ing that match intuitions about how much information actu-
ally flows.

� Our results demonstrate that address and control dependen-
cies are critical to track for full-system DIFT.

� Our results illuminate several specific challenges for future
DIFT research and suggest a path forward.

We do not claim any of the following:

� We do not claim that our current implementation for track-
ing information flow from the network into the control path
of the CPU is a viable intrusion detection technique without
further research. In particular we do not establish in this pa-
per that there are observable differences in the magnitude of
information flow between normal traffic and attacks in this
particular context.

� We do not claim that our current implementation of relaxed
static stability DIFT is accurate enough to cause a paradigm
shift in intrusion detection, only that further research into ac-
curate and practical DIFT has this potential.

This paper is organized as follows. First, Section 2 discusses the
limitations of current DIFT systems. Then, we describe our relaxed
static stability DIFT system implementation in Section 3. This is
followed by Section 4 that explains our evaluation methodology,
and then our results in Section 5. A discussion of performance is-
sues and applications of DIFT to intrusion detection is in Section 6,
followed by a description of the discussion at the workshop in Sec-
tion 7. Then we discuss related work, followed by the conclusion.

18

2. ON THE LIMITATIONS OF DIFT
Information flow is a fundamental concept in computer and net-

work security. Dynamic information flow tracking (DIFT) systems
could enable a wide variety of applications, but their applicability is
currently very limited because important information flow depen-
dencies are not tracked for stability reasons. We define stability of
a DIFT system to mean that the amount of taintedness in the system
should not increase unless the amount of information in the system
from a tainted source has increased. Without this property the entire
system quickly becomes tainted and nothing can be learned about
the actual information flow. We define accuracy to mean that the
measured information flow should be close to the real information
flow in the system.

In aircraft design, a technique called “relaxed static stability” al-
lows for the design of aircraft with advanced maneuverability and
stealth capabilities by relaxing the requirement of designing the air-
craft to have inherent positive stability during flight. Modern fighter
jets and stealth aircraft are designed with inherently negative stabil-
ity, then advanced digital “fly-by-wire” systems are incorporated
into the design to create a stable system that can actually fly. This
has opened up possibilities for aircraft design that were thought to
not be possible before. In this paper we apply this same general
principle to the design of DIFT systems, and demonstrate that this
makes it possible to track address and control dependencies in a
stable DIFT system, something that existing DIFT techniques have
not been able to achieve with a general method. While our cur-
rent DIFT system is based on an open-loop controller, i.e., there is
no feedback from the system output back into the control system,
approaching DIFT as a control problem and decoupling the com-
peting design requirements of stability and accuracy enables stable,
full-system dynamic information flow tracking.

Current DIFT systems that are stable achieve this only by ig-

noring large classes of information flow or treating them in an

application-specific manner. Existing DIFT systems [47, 15, 41,
12, 44] are based on the general notion of tracking “taint” marks.
A taint mark, which can be a single bit, is associated with every
byte or word in the memory. Data from some particular source is
“tainted” and these taint marks are propagated and used to approx-
imate information flow. For example, in the application of DIFT
to detecting control flow hijacking attacks based on memory cor-
ruption, all bytes that come from the network are tainted. These
taint marks are propagated so that as tainted data moves around in
the registers and memory of the system and new data is calculated
based on tainted inputs, any data based on the untrusted source (typ-
ically the network) is tainted. Then memory corruption attacks that
hijack control flow can be detected by checking all jumps, calls,
and returns to ensure that their destination addresses are not based
on tainted data [47, 15, 41, 12, 44].

Systems that measure information flow and do track address
and/or control dependencies are either unstable [22, 23, 50, 49] or
have limited, application-specific support for these dependencies.
Panorama [56], for example, demonstrates the power of full-system
information flow measurement, but handles address and control de-
pendencies in an application-specific manner (see Section 8 for de-
tails).

Suh et al. [47] divided information flow into five types of de-
pendencies that DIFT systems must track to be complete: copy
dependencies, computation dependencies, load-address dependen-
cies, store-address dependencies, and control dependencies. Copy
dependencies are movements of the data from register to register,
register to memory, or memory to register. The obvious way to
track these dependencies is to also copy the taint mark from source
to destination. Computation dependencies are operations on the

data such as, e.g., when two registers are added and the result is
stored in a destination register. Most DIFT systems are conserva-
tive and taint the result if either of the sources were tainted.

All existing practical DIFT systems, including those intended for
applications other than detecting memory corruption attacks, either
ignore or provide very limited support for the last three types of
dependencies. Address dependencies during loads or stores would
require that the destination of the load or store be tainted if the
address used is tainted. For example, consider the following C code
for converting an array of tainted input from one format to another
using a lookup table:

for (Loop = 0; Loop < Size; Loop++)
Converted[Loop] = LookupTable[Input[Loop]];

In terms of real information flow, the value stored in
Converted[Loop] should be tainted if the value loaded from
Input[Loop] is tainted. This will only be true for a given DIFT
system if the DIFT system checks the taintedness of the address
used for the load with LookupTable as its base and propagates
this taint. DIFT systems do not do this in the general case because
it causes instability in the DIFT system where everything in the
system quickly becomes tainted. Store address dependencies are a
related problem for stores instead of loads. One of the contributions
of this paper is a DIFT system that does track address dependencies
in a general way.

The DIFT system we present in this paper is also able to
track control dependencies, whereas previous DIFT systems have
not tracked control dependencies, except in limited, application-
specific ways. Control dependencies are related to the classic prob-
lem of implicit information flows, and arise from information flows
such as the following from x to y:

if (x == 1)
y = 1;

else
y = 0;

Address and control dependencies are practical concerns for all
DIFT systems [47, 46] and have prevented the application of DIFT
outside of very restricted domains. Many remote attacks, such as
script code injection or Trojans embedded in PDF documents, re-
quire both of these dependencies to be tracked in some way in order
to be detected. Thus DIFT-based honeypots have only been de-
ployed for detecting remote control flow hijacking attacks based on
overwriting control data [15, 16, 44]. Also, consider the applica-
tion of a practical data provenance system that keeps track of fine-
grained information flow within a system, where the threat model
is not an attacker who can write arbitrary code to leak information,
but rather the accidental leak of confidential information, e.g., when
a user cuts and pastes from a word processor file into a presentation
and then saves the file to external storage. If the external storage
is lost, the organization would like to have a detailed, fine-grained
record of what confidential information was on it. Because of for-
mat conversions (e.g., ASCII to UNICODE or object-oriented clip-
board format conversions) and other practical considerations there
will be many address and control dependencies that must be tracked
for the DIFT system to work as intended.

As mentioned previously, current DIFT systems cannot track
these dependencies in a general manner because tainting address
and control dependencies causes instability in the DIFT system. If
you simply propagate taint marks for either of these dependencies
conservatively, every object in the system quickly becomes tainted,
which tells us nothing about the information flow in the system.
Outputs of interest will be tainted whether or not there was real

19

information flow to them. This has been identified as a major lim-
itation for DIFT [47, 46], and is not solved by information flow
tracking systems designed for confidentiality, such as Fenton’s Data
Mark Machine [22, 23], RIFLE [50], or GLIFT [49], because they
also “overtaint” without static analysis, which is impractical for
most DIFT applications. As mentioned previously, the histori-

cal influence of confidentiality applications on information flow

research has hampered the application of information flow to

integrity and availability applications, and in particular intru-

sion detection systems. Many practical applications of DIFT have
very different requirements than those in which the foundation of
early information flow research was laid.

In this paper, we take a first step toward addressing this problem
by building a DIFT system that is not inherently stable because it
does track address and control dependencies, and then add an open-
loop control system that throttles how sensitive the DIFT tracking
is to these dependencies. In our prototype relaxed static stability
DIFT system, taint values are fixed point numbers rather than sin-
gle bits so that we can make approximations about the amount of
information flow (i.e., a byte can be tainted with 8:0 bit of tainted-
ness, or 0:125 bits of taintedness, etc.). The tags represent the mu-
tual information between the data object the tag is associated with
and the taint source. Relaxed static stability will enable new ap-

plications that are impossible with traditional information flow

controls or current DIFT systems. Other than the following two
assumptions, there are no limitations to the possible applications of
relaxed static stability DIFT:

1. The attacker cannot execute arbitrary code with the express
purpose of tampering with the DIFT system, either because
they or do not know about the DIFT tracking or do not yet
have that level of control over the system. We do not claim
that our DIFT system can track information flow if arbitrary
code is written with the express purpose of dropping the taint
marks. This is a very difficult problem, and many applica-
tions do not require such a strong threat model.

2. Approximations of the true information flow are good
enough so long as they capture the most important aspects
of the information flow. In other words, as long as the out-
put tells the user of the DIFT system something meaningful
about the true information flow in the system, perfect accu-
racy from an information-theoretic perspective, which is im-
possible to achieve in practice, is not a requirement.

3. IMPLEMENTATION
The first step in building our prototype was to generalize the no-

tion of a tag from a single taint bit to a fixed point number rep-
resenting how tainted a data object is. Specifically, this number
represents the mutual information between the data object the taint
tag is associated with and the taint source, which could be the net-
work, CD-ROM, or some other source. In our system, every byte
of the registers and memory has a 16-bit fixed point number associ-
ated with it, which represents how much tainted data is in that byte
(measured in bits of information in an information theoretic sense
from 0:0 to 32:0). We chose this range because in our DIFT sys-
tem the taintedness of a 16-bit or 32-bit word in memory is stored
and loaded from its least significant byte for 16-bit and 32-bit op-
erations. These tags constitute a 200% storage overhead, which
is also an issue for performance, but we discuss how this can be
ameliorated in future work in Section 6.

When every byte in the system is augmented with a tag in this
way, we can define taint propagation rules and a source and sink of

information flow and measure the amount of information flow over
time between the source and sink. Note that all of the tag propaga-
tion occurs at the architectural level in a virtual machine, based on
raw bytes and machine instructions. This means that full-system in-
formation flow measurement is possible and no modification to the
operating system or software being measured is necessary. Note
that, while 16-bit integers carry the same amount of information as
16-bit fixed point numbers, the multiplication operation—which is
critical in information-theoretic interpretations for our tags—is de-
fined differently for fixed point vs. integer representations of num-
bers. Rather than redefine the multiplication operation for integers,
we chose to interpret the tags as fixed point so that the existing
defined multiplication operation matches the information-theoretic
definition for the tags.

For our results in this paper, we define the source of tainted data
to be the network (i.e., data from the attacker), and the sink to be
the control path of the CPU (what instructions are executed, their
operands, the data that conditional control flow decisions are based
on, and the addresses instructions are fetched from). By measuring
the information flow over time between this source and sink we
can estimate how much control an attacker has over what the CPU
is doing, even if their inputs are high-level shell commands or script
code. In this paper we are only interested in if these measurements
match our intuitions, and make no attempt to detect attacks based
on the measurements.

To implement the source and sink, we taint all data that comes
from the network card of the virtual machine with 8:0 bits per byte.
Using a moving average filter, we plot the amount of tainted data
that is used in the control path of the CPU. Our implementation is
built on top of Argos [44], which is itself built on top of the QEMU
emulator for the x86 architecture. Our implementation handles the
five dependencies defined by Suh et al. [47], but before describ-
ing how each dependency type is handled we must define measure-
ment accuracy in terms of information theory, and also there are
two specific research challenges that we identified that place spe-
cial requirements on how taint propagation is handled.

3.1 Measurement accuracy
The fixed point tags in our DIFT system represent mutual infor-

mation between the data object the tag is associated with and the
taint source, not entropy. This distinction is important for defining
measurement accuracy.

Since QEMU turns the x86 instruction set into a load/store archi-
tecture we can consider computation dependencies and address de-
pendencies separately. Here we will define upper and lower bounds
for taint propagation for the five dependency types. I(x; y) denotes
the mutual information between variables x and y, and here y is the

destination so that I(y; �) is the destination tag we need to cal-
culate for taint propagation.
Copy dependency: If the value of a data object x is copied to
a data object y, e.g., in a register-to-register, register-to-memory,
or memory-to-register operation, then by definition x = y. Thus,
simply copying the tag is accurate from an information-theoretic
perspective. Note that this would not be true if the tag were in-
terpreted as entropy rather than mutual information with the taint
source. Define � to be the taint source. For copy dependencies, the
equality that must hold is:

I(x; �) = I(y; �)

Computation dependency: If a data object y is computed as a
function of one or more other data objects, e.g., w and x, its mutual
information with the taint source depends not only on the mutual in-
formation of the inputs with the taint source but also on the mutual

20

information between these inputs (I(w;x)). That is, if two inputs
are based on different source data we should add their taint values,
but if there is the minimum joint entropy between them we should
take the maximum value (maxfI(w; �); I(x; �)g) instead of addi-
tion. Furthermore, some operations destroy information, such as
y := w=x or y := x � x, which we can model as an additional
factor �1 where 0 � �1 � 1, since this leads to a formula that
captures the full range of conditional mutual information. Without
loss of generality for only one operand or more than two operands,
for a computation (such as an add, multiply, etc.) with two source
operands w and x, i.e., y = f(w; x), we should maintain the in-
equality:

�1(maxfI(w; �); I(x; �)g) � I(y; �) � �1(I(w; �) + I(x; �))

Note that the conditional mutual information I(X;Y jZ) is
bounded by 0 � I(X;Y jZ) � I(X;Y), so that any operation that
destroys information can be captured with the value 0 � �1 � 1.
While �1 models the equivocation, �1 can be defined to model the
range of possible mutual information values for the inputs that the
above inequality represents, where:

I(y; �) = �1(maxfI(w; �); I(x; �)g) + �1((�1(I(w; �)
+I(x; �))� �1(maxfI(w; �); I(x; �)g))

Thus, the range 0 � �1 � 1 captures the full range of the in-
equality for computation dependencies.
Load and store address dependencies: If the value of a data ob-
ject x is copied to a data object y and either of them is a memory
location that was accessed using address a, then the joint entropy
between a and x as well as the entropies H(a) and H(x) are rel-
evant to the taint propagation calculation. Unfortunately, it is not
practical to attempt to measure H(a) or H(x). For example, to
measure H(a) would require an aliasing analysis to know what
addresses a could have pointed to, and a calculation of the joint
entropies between all values that could have been loaded and the
taint source. In other words, equivocations for address dependen-
cies occur when there is not perfect entropy in the range of values
that could have been loaded or stored, due to limitations on the ad-
dress or redundancy in the values in memory. We can define the
inequality:

�2(maxfI(a; �); I(x; �)g) � I(y; �) � �2(I(a; �) + I(x; �))

Again, 0 � �2 � 1 models the equivocation, or destruction of
information, and �2 models the range of mutual information be-
tween the address a and the value x, with 0 � �2 � 1:

I(y; �) = �2(maxfI(a; �); I(x; �)g) + �2((�2(I(a; �)
+I(x; �))� �2(maxfI(a; �); I(x; �)g))

Control dependencies: If a data object y is set to a particular value
based on a conditional control flow transfer (such as an if state-
ment or a for loop) that was conditioned on the value of a data
object x, then the amount of information that flows from x to y
depends on all of the possible executions of the program that could

have happened, but will always be bounded by the inequality:

0 � I(y; �) � �3(I(x; �))

Again, 0 � �3 � 1models the equivocation, which occurs when
possible program executions give the same output for a particular
variable despite the control dependency. We define �3, where 0 �
�3 � 1, such that:

I(y; �) = �3((�3(I(x; �)))

�3 represents mutual information between x and the program
counter, particularly when there had already been a recent condition
check on x.

For the open-loop controller, we defined �1 = 1, �2 = 1,
�1 = 0, and �2 = 0. The quantity �3�3 was modeled as a pair of
decreasing geometric series’ to ensure that taint value assignments
that happened sooner after the conditional check were tainted more,
as well as to address instability problems that were due to loops. In
general, � values are associated with equivocation, or destruction
of information, and � values are associated with mutual informa-
tion between the inputs. Thus, for computation and address depen-
dencies our implementation basically assumes no equivocation but
the minimum amount of joint entropy (or maximum amount of mu-
tual information) between inputs. This means that the taintedness
is spread out over a larger amount of data. Basically, by making
conservative estimates of how much information is copied and ig-
noring equivocation of individual operations, we are able to taint
as much data in the system as possible while maintaining stability
by not tainting it as much. Through empirical measurement, we
found this approach to be the best tradeoff between accuracy and
stability for the purpose of this paper, which is to show information
flow measurements that match our intuitions about how informa-
tion flows for different attacks.

3.2 Specific challenges
During the early development and testing of our system, we iden-

tified two sources of instability: memory locations that are written
once and read many times, and looping constructs.

3.2.1 WORM memory locations

In our experiments many values are stored to memory once and
then read many times, becoming endless sources of taintedness. We
refer to this here as Write-once-read-many-times (WORM) mem-
ory locations. We found that forcing the taintedness of values that
sit in memory to decay over time is essential for DIFT system sta-
bility, thus every time a memory location is read its taint value is
multiplied by a constant factor of 0:99 and stored to both the source
and the destination. By having a high value for this constant, it only
affects these problematic values in a significant way and normal
data that has a shorter lifetime is not significantly affected.

3.2.2 Looping constructs

In building our prototype, we discovered the importance of loop
structures in building relaxed static stability DIFT systems. Con-
sider the example of a control dependency from Section 1:

if (x == 1)
y = 1;

else
y = 0;

As described later in this section, for our DIFT scheme, the taint
value of x will be copied to the program counter when the if con-
dition is checked, and then transferred from the program counter to
y when the value of y is set, with an appropriate amount of throt-
tling of the amount of taintedness. This has the desired effect from
an information flow perspective, and is similar in concept to Fen-
ton’s Data Mark Machine [22, 23]. Now consider the following
loop where Y is an array.

while (x > 0)
{

x = x - 1;
Y[x] = 1;

}

21

Ignoring the address dependencies, we can see why the condi-
tion check taint values need to be throttled. If x = 1000 and the
tag of x is tainted with 3:5 bits of taintedness, then without throt-
tling condition check taint values each element of the array Y will
be tainted with 3:5 bits. This means that from 3:5 bits of tainted-
ness we will have generated 3500 bits of taintedness. This is not
necessarily incorrect from an information-theoretic perspective be-
cause the taint tags represent mutual information, not entropy, but
we found this to be a source of instability. By throttling the taint
value of the condition flags for x each time they are checked by
multiplying by 0:99, we can ensure that, in this example, at most

1

1�0:99
� I(x;Taint Source) = 100 � I(x;Taint Source) (in this

case, 350) bits of taint is generated in Y by the conditions on x.
Thus looping constructs are bounded by a geometric series. Be-
cause of the many subtleties of information theory, any practical
DIFT system is an approximation, including ours. For future work
in accurate DIFT systems based on relaxed static stability we an-
ticipate that the information theory of looping constructs [34] will
be of critical importance.

3.2.3 Interpretation of instabilities

The write-once-read-many-times memory locations are an arti-
fact of our choices for �1, �2, �1, and �2. These choices are only
stable when data is not copied many times before being destroyed.
For write-once-read-many-times memory locations an additional
throttle is required to maintain stability.

The loop construct instability is associated with �3 in that, im-
plicitly, for a loop the conditions on the loop guards can be viewed
as making copies of the result through repeated, related compar-
isons. This is why we address loop construct instability by throt-
tling taintedness for checks on condition flags.

Both sources of instability are due to the fact that information is
often copied many times in a system before being destroyed.

3.3 Taint propagation
Now we describe how taint tags are propagated for the different

types of dependencies. Where multiple dependencies are involved,
we use the maximum operation max to determine the destination
taint value.

3.3.1 Copy dependencies

When data is copied from register to register, memory to regis-
ter, or register to memory its taint tag is also copied from source
to destination. For load instructions, a throttle constant of 0:99 is
multiplied by the loaded taint value and then stored in both the des-

tination and source, for reasons explained above having to do with
write-once-read-many-times memory locations. Note that address
and control dependencies can also affect copy operations.

3.3.2 Computation dependencies

When an operation is performed on one or more source operands
and stored in a destination, the maximum taint of the source
operands is stored in the destination taint tag. Note that control
dependencies can also affect computation operations, but address
dependencies cannot since QEMU instruction emulation uses a
load/store instruction set.

3.3.3 Load and store address dependencies

If the address of a load or store operation has a taint value that is
greater than the source (or maximum of the sources), then the taint
value of the address, instead of the taint value of the data, is copied
to the destination’s taint tag.

3.3.4 Control dependencies

When tainted data is used for conditional control flow decisions
(e.g., w and x in the C code “if (w == x)” that will be compiled
into a compare instruction followed a conditional jump in assem-
bly), the program counter is tainted with the maximum taint of the
values compared, i.e., maxfw; xg. This is implemented by taint-
ing condition flags for compare instructions, and checking the taint
of flags used in conditional control flow transfers. If the program
counter is currently tainted and its taint, when multiplied by a con-
stant factor of 0:5, is greater than that of the taint value of the source
of a copy or computation operation, the destination is tagged with
the higher taint value instead. This makes tracking of control de-
pendencies possible. If a tainted flag is used and its taint value is
copied to the program counter, the taint value of the flag is reduced
by multiplying it by the constant throttle factor of 0:99 for reasons
explained above having to do with instability due to looping con-
structs. For every instruction where the control flow is not based
on tainted data the program counter’s taint level is multiplied by
0:99. The amount of taintedness in the CPU control path is calcu-
lated for each instruction as a moving average m of the program
counter’s taintedness e, using the equation m0 = cm + (1 � c)e
with c = 0:999511719 = 2047

2048
. (This is the y-axis for all figures

in Section 5.)

3.4 Additional considerations
The above design decisions are the result of extensive testing to

develop a controller that is both stable and sensitive to the infor-
mation flow being measured. Also, address dependencies are only
enabled when the CPU is not in supervisory mode, i.e., these de-
pendencies are only applied in user space. This is satisfactory for
most applications, but with more advanced control systems track-
ing address dependencies in the kernel space will also be possi-
ble if necessary. Control, copy, and computation dependencies are
tracked throughout the entire system, including the kernel.

The constants (0:5 for the program counter throttle, 0:99 for
conditional control flow loop throttling, and 0:99 for the program
counter decay) were also the result of extensive testing to make the
system as sensitive as possible without becoming unstable. The
value of c = 0:999511719 was chosen as the highest value for c,
i.e., the one that keeps the most history in each iteration, that could
be represented in our fixed point format which uses 5 bits for the
whole part and 11 bits for the fractional part.

4. EXPERIMENTAL METHODOLOGY
We tested our system with a variety of attacks and in other sce-

narios involving high-level languages, and also using controlled
rates. Our experimental methodology was designed to answer the
following questions:

1. Are the measurement results of our DIFT system repeat-

able? Because of CPU scheduling, time dilation in the vir-
tual machine, and other factors measurements are not deter-
ministic. They should be repeatable in the sense that any
measurement result is representative of a ground truth, how-
ever. We repeated a particular attack (the Code Red worm)
ten times to ensure this.

2. Are address and control dependencies critical to measur-

ing information flow? We disabled address and control de-
pendency tracking in our DIFT system, both together and
individually, for all attacks to assess this for our motivating
application.

22

Vulnerability bugtraq ID [59]

ASN.1 Integer Overflow 9633
ASN.1 Heap Corruption 13300
DCOM RPC Buffer Overflow 8205
Nullsoft SHOUTcast Format String 12096
MS-SQL Resolution Service Heap Overflow 5310
MS-SQL Authentication Buffer Overflow 5411
LSASS Buffer Overflow 10108
NetDDE Buffer Overflow 11372
Internet Explorer MPEG2TuneRequest 35558
Firefox 3.5 TraceMonkey 35660
IIS Server ISAPI Buffer Overflow 2880

Table 1: Attacks we tested our DIFT system with.

3. Do the information flow measurements of our DIFT sys-

tem match intuitions about what the actual amount of in-

formation flow is? While defining a ground truth for the
actual amount of information flow based on information the-
ory to compare our measurements to is infeasible due to the
various subtleties of information flow, if the measurements
show what is going on in the system in a meaningful way
then the measurement results are accurate enough to be valu-
able in many applications. We tested attacks for this purpose,
and we also tested information flow in controlled situations.

4. Does tracking address and control dependencies allow us

to measure information flow into the CPU’s control path

even when the tainted code is in a high-level language? To
answer this question, we tainted Dhrystone binary or source
code in four formats: compiled binary code (from C), Java
byte code, Perl code, and Python code.

In Section 5, our results answer all of these questions in the af-
firmative. We also took the following steps to ensure that the inter-
pretation of our results was clear:

� We compare the information flow from source to sink (i.e.,
network to CPU control path) during attacks to the informa-
tion flow for the same exact network request against a non-
vulnerable version of the system. In other words, we repeat
the attack against a patched version of the system. This en-
sures that the differences between an attack and its baseline
are due to the attacker taking control of the system, and not
due to differences of protocol usage and other system factors.

� For repeatability reasons, we disabled automatic updates
when necessary, and performed all measurements against an
idle system.

Table 1 shows the eleven attacks that we tested our DIFT system
with. Though several of them were exploited by high-profile worms
(e.g., 8205 for Blaster, 5310 for Slammer, and 10108 for Sasser) we
tested all but one of them using publicly available exploits that sim-
ply spawn a remote shell that the attacker can subsequently connect
to. The exception is the Code Red worm, based on the IIS Server
ISAPI buffer overflow (2880), which we tested with the Code Red
worm itself.

Note that only a few of the attacks we tested are simple buffer
overflows where information flows directly from the network to
a piece of control data, which is the type of attack that tradi-
tional DIFT systems have been able to catch [47, 15, 41, 12, 44].
The ASN.1 heap corruption vulnerability and the IIS Server ISAPI
buffer overflow both have address dependencies because of format
conversions. The format string vulnerability in Nullsoft SHOUT-
cast has both address and control dependencies, as do all format

string vulnerabilities. The two web browser vulnerabilities are both
attacks that are initiated when the victim visits a web page con-
trolled by the attacker, and the first phase of the attack is JavaScript
code to spray the heap [52]. We purposely chose a diverse variety
of attacks for testing to demonstrate the power of relaxed static sta-
bility DIFT to measure information flow in general. Recall that we
make no claims about the application of these results to detection
with good false positive and false negative rates. Our aim is to show
the potential of information flow to revolutionize the way we think
about IDS and shed light on research directions that can make this
happen.

5. RESULTS
In this section we present results to support the two main claims

in regards to our DIFT prototype, that tracking address and control
dependencies is both: (1) necessary for meaningful measurements
of the information flow in a real system, and (2) made possible by
a relaxed static stability approach.

5.1 Graph legend and axes
All graphs in this section, unless otherwise noted, have the fol-

lowing axes and legend. The x-axis is time in increments of 50
milliseconds, i.e., 100 on the x-axis is equal to 5 seconds. Note
that time can be dilated by the performance overhead of the virtual
machine. The y-axis is equivalent to the rate of information flow
from source to sink (in something proportional to bits per second),
so can be interpreted as the amount of tainted information from the
network that is flowing into the control path of the CPU at that time.

Time dilation is a factor since our moving average is applied
on a per-instruction basis while the value itself is sampled (for the
graphs) based on time. Another caveat is that we have applied an
additional moving average filter of c = 0:99 to all of the graphs
in this section to make them more readable. Where more than one
line appears in a graph, the lines are independent tests plotted ap-
proximately on the same axis for comparison. Where one or more
lines are omitted from a graph, it is because they were effectively
zero and indistinguishable from the x-axis.

Results of tests against vulnerable versions of operating systems
and services follow the legend shown in Figure 1. Solid black lines
are tests where we utilize the full power of relaxed static stability
DIFT, and track all dependencies (including address and control
dependencies) as described in Section 3. We also sought to assess
the importance of address and control dependencies individually.
Solid grey lines are tests where control, copy, and computation de-
pendencies are tracked but address dependencies are disabled by
ignoring the taint of addresses for loads and stores (all other taints
propagate in the same way). Black dotted lines are tests where ad-
dress, copy, and computation dependencies are tracked but control
dependencies are disabled by setting the control dependency throt-
tle to 0:0 instead of 0:5.

Grey dots are tests where only copy and computation dependen-
cies are tracked, and both address and control dependencies are
disabled. Modulo two caveats, this can be viewed as how a typi-
cal standard DIFT system [47, 15, 41, 12, 44] would perform. The
two caveats are that we still apply a load throttle of 0:99 to loaded
values in this case, and the moving average filter has the effect of
smoothing out small bursts of measured information flow.

Figure 2 shows the legend for results of tests against invulnerable
(i.e., patched) versions of operating systems, while tracking all de-
pendencies including address and control. This means that the test
uses the same protocols as the tests against vulnerable versions, but
the exploit where control flow is taken over by the attacker does
not succeed. This serves as a baseline to compare an attack to that

23

Figure 1: Legend for vulnerability results.

Figure 2: Legend for invulnerable baseline results.

ensures that the differences are only related to the success of the
attack and not the protocols involved. These tests are represented
with a dashed black line.

5.2 Basic results
Figure 3 shows the result of the Code Red worm attacking our

DIFT system running a vulnerable version of IIS web server and
Windows 2000. Recall that for Code Red, unlike the other tests
in this section, the exploit we used is the actual worm itself rather
than an exploit that binds a shell to a port and goes to sleep. It is
clear that our DIFT system is able to measure the rapid increase in
information flow from the network to the control path of the CPU
when the worm takes control of the machine. The falloff at the end
occurs when all 100 threads that Code Red spawns complete their
initial TCP/IP requests and go into a sleep state waiting for remote
victims to respond with SYN/ACK packets. From this figure it is
also clear that both address and control dependencies, and in partic-
ular their interactions together, are a critical part of this. All three
of the other tests, where address or control dependencies or both
are disabled, are indistinguishable from the baseline invulnerable
case shown in Figure 4.

Figure 4 shows the same network traffic of a Code Red infection,
but directed at an invulnerable web server (patched by installing
service pack 4 for Windows 2000). The same initial bump, from
about x = 50 to x = 150, can be seen in both figures. This is
the initial HTTP protocol processing where the web server is pro-
cessing a request that contains malformed UNICODE encodings.
The difference between the two graphs is that in the invulnerable
version control flow is never hijacked by overwriting a structured
exception handler on the stack, meaning the web server returns a
404 page not found and closes the connection and the worm
never remotely gains control of the machine.

Figure 3: Code Red attacking a vulnerable version of Windows

2000 and IIS web server.

Figure 4: Code Red attacking an invulnerable version of Win-

dows 2000 and IIS web server.

5.3 Repeatability

Figure 5: Code Red attacking a vulnerable VM, repeated.

Figure 6: Code Red attacking an invulnerable VM, repeated.

Figures 5 and 6 show the same tests as Figures 3 and 4, respec-
tively, repeated ten times in each case. Due to time dilation of the
virtual machine and system nondeterminism due to process/thread
scheduling, we repeated these tests to demonstrate that the graphs
produced by our DIFT system are repeatable and representative of
the same ground truth for a given test. All of the results in this
section that we repeated had this property.

5.4 Importance of implicit dependencies
All of the tests for other exploits that we tested our DIFT system

with support our conclusions that address and control dependen-
cies are important and that relaxed static stability DIFT can track
these dependencies accurately. Each exploit proved to have unique
features as well.

Note that the graphs for the various exploits do not have the same
scale on the x- and y-axes. Our prototype DIFT system was built

24

Figure 7: 9633 (ASN.1 Integer Overflow).

Figure 8: 13300 (ASN.1 Heap Corruption).

to demonstrate the concept of relaxed static stability DIFT and the
importance of tracking address and control dependencies. To be
used for something like detection in a honeypot scenario, other
application-specific concerns would need to be accounted for, in
particular the difference of scale between various exploits. In this
paper we use the honeypot application as a vehicle for demonstrat-
ing relaxed static stability DIFT in an intuitive way, we make no
claims about being able to apply our current DIFT system as a hon-
eypot in a real environment with good false positive and false neg-
ative rates.

Figures 7 and 8 show the results for exploits for two different
vulnerabilities in the ASN.1 parser in Windows. It is interesting
that Figure 7 shows control dependencies as a major driver of the
information flow while Figure 8 shows the same for address depen-
dencies. ASN.1 is an XML-like format for binary data, so various
encodings and lookup tables are involved when decoding the raw
bytes that come from the network. Another interesting note is that
the exploit for 13300 is one that conventional DIFT systems aimed
at detecting control data attacks [47, 15, 41, 12, 44] will not de-
tect when control flow is hijacked because the exploit overwrites a
pointer to a function pointer, not the function pointer itself, mean-
ing that there is a 32-bit address dependency in the corruption of
the control data.

Figure 9 shows test results using the exploit that was used by
the Blaster worm. Without both address and control dependencies,
the measured information flow is actually less than that of the in-
vulnerable test, meaning that it might not be possible to detect this
attack without tracking both address and control dependencies, and
certainly would not be possible without tracking either. This also
shows that it is not just a matter of tracking both address and con-
trol dependencies, but the interdependencies between address and
control dependencies are important as well. Figure 10 shows the
same, and Figures 11 and 14 also show results where the vulnera-
ble and invulnerable tests are indistinguishable unless both address

Figure 9: 8205 (DCOM RPC Buffer Overflow).

Figure 10: 12096 (Nullsoft SHOUTcast Format String).

and control dependencies are tracked. Figure 12 is interesting in
that the information flow is driven almost entirely by address de-
pendencies.

There are two interesting aspects to Figure 13. This exploit is
the same exploit that was used by the Sasser worm. To exploit the
buffer overflow in Windows’ LSASS service, the attacker opens a
TCP/IP connection directly to the Windows kernel and sends var-
ious commands to open a named pipe, write some data into the
named pipe, etc. On an unpatched Windows XP machine with no
service packs, this is not in itself an attack but is actually a feature
that Windows allows. Thus, the attacker does have a large amount
of control over the control path of the CPU even before overflow-
ing the buffer, so it is not surprising that the vulnerable and in-
vulnerable tests are indistinguishable in terms of magnitude. One
distinguishing factor is that the vulnerable case shows two phases
(instructing the kernel to do various IPC operations, and then ex-
ecuting arbitrary code) whereas the invulnerable version has only
one phase (instructing the kernel to do various IPC operations). An-
other distinguishing feature is the extra increase in information flow
(i.e., the “bump” in the vulnerable test at about x = 550). Through
repeated tests we confirmed that this bump is when the attacker
connects to the shell that has been bound to a TCP/IP port, and rep-
resents an increase in control because the attacker has initiated a
command shell. If the attacker types any commands into this shell,
there is a significant increase in the measured information flow to
the control path of the CPU.

5.5 Controlled rates
We also tested our DIFT system’s measurements with controlled

rates to determine if the measurement outputs matched the rates
that we set. For these experiments we used the CD-ROM as the
taint source and repeatedly copied different compiled dhrystone bi-
naries (to avoid the effects of disk caching) from the CD-ROM to a
RAM disk and executed them. For the normal uncompressed case,

25

(a) Normal (b) Compressed

Figure 15: Measured information flow for controlled rates.

Figure 11: 5310 (MS-SQL Resolution Service Heap Overflow).

Figure 12: 5411 (MS-SQL Authentication Buffer Overflow).

we fixed the rate at which we did this at 0:8 repetitions of this per
second, 0:4 repetitions per second, and 0:2 repetitions per second,
corresponding to the “Full,” “Half,” and “Quarter” experiments in
Figure 15(a). Figure 15(b) is the compressed experiments that were
set at 2

3
per second for “Full.” The full rates were different because

the unzipping of the Dhrystone binary takes some extra time. We
modified the Dhrystone binary to perform fewer loops per execu-
tion so that each execution takes between 1 and 2 seconds.

For the first set of experiments, shown in Figure 15(a), we simply
copied each raw binary and executed it. For the second set of exper-
iments, shown in Figure 15(b), the binaries had been compressed
using gzip on the CD-ROM so they were copied, uncompressed
to introduce additional address and control dependencies, and then
executed. For both sets of experiments, the rates measured gener-
ally corresponded to the controlled rate in terms of relative mag-
nitudes. There was a small effect of time dilation that made the
measured values not exactly proportional. Table 15(a) shows the
integral rates over time, normalized to the full rate, which is closer

Figure 13: 10108 (LSASS Buffer Overflow).

Figure 14: 11372 (NetDDE Buffer Overflow).

to proportional. These results show that, although the measured
values of our DIFT system have no meaningful units without cal-
ibration, the measurements can be calibrated to the actual amount
of information flow in bits per second. Without tracking address
and control dependencies, Figures 15(a) and 15(b) show some in-
formation flow is measured in the simple case but the information
flow is barely perceptible without tracking the address and control
dependencies in gzip.

5.6 High-level languages
Another important question to answer is if relaxed static stability

DIFT can measure information flow from a tainted source into the
control path of the CPU for arbitrary code, even when that code is
in a high-level interpreted language. Any DIFT system that does
not track address and control dependencies will not detect this in-
formation flow because there are many table lookups and condi-
tional control flow transfers involved when any interpreter or just-
in-time compiler is parsing and executing a high level language.

26

(a) C on the left, Java on the right.

(b) Perl on the left, Python on the right.

Figure 16: High-level languages.

Actual Uncompressed Compressed

Rate Measurement Measurement

(Controlled) (Figure 15(a)) (Figure 15(b))

Full (1.0) 1.0 1.0

Half (0.50) 0.60 0.58

Quarter (0.25) 0.31 0.30

Table 2: Rate measurement integrals over time, normalized to

full rate.

Figures 16(a) and 16(b) show the results of tracking tainted Dhrys-
tone code in compiled binary format (from C), Java byte code, Perl,
and Python, respectively. Clearly, address and control dependen-
cies are important for high-level language execution, and relaxed
static stability DIFT performs well in all four cases.

5.6.1 Browser exploits

In July 2009, two browser vulnerabilities were announced: one
for Internet Explorer and one for Firefox. The Firefox vulnerabil-
ity was fixed in Firefox version 3.5.1, while the Internet Explorer
vulnerability existed in both Internet Explorer 6 and Internet Ex-
plorer 7. The results of testing these four browser versions against
their respective exploits, with Firefox 3.5.1 being invulnerable, are
shown in Figures 17(a) and 17(b). The interesting thing about these
graphs is that the information flow from the network into the con-
trol path of the CPU after the browser visits a web page with the
exploit is largely due to heap spraying [52] and not the exploitation
of the vulnerability itself. Thus it represents a high system load due
to Javascript that has been crafted by the attacker.

6. DISCUSSION AND FUTURE WORK
Here we discuss some issues related to the performance vs. ac-

curacy tradeoff and applications of DIFT to intrusion detection.

6.1 Performance vs. accuracy
We anticipate that relaxed static stability DIFT will open up new

research possibilities for security applications and benefit from fu-
ture advances in accuracy and performance due to the application
of more advanced control theory. The key to future work on re-
laxed static stability DIFT will be the accuracy vs. performance
tradeoff. More accurate information flow measurements for a vari-
ety of applications will be possible with dynamic feedback control
systems [25], but storing a fixed point number for every byte in
the system will be prohibitive for the performance of some appli-
cations.

Hardware support is one way to increase performance, which can
be integrated into the processor core [47, 15], and designed for flex-
ible policies [19, 45] or decoupled on a separate coprocessor [28].
Many of these systems perform some form of compression to re-
duce storage overhead and memory bandwidth usage. On-demand
emulation [26] has been shown to yield near-native performance
for some workloads, and performance improvements for DIFT on
commodity hardware have been demonstrated by parallelizing the
security checks on multicore systems [42]. Many of these perfor-
mance enhancements exploit the fact that large portions of memory
are untainted. It is not clear if this applies to relaxed static stabil-
ity DIFT systems, since the tag represents a degree of taintedness
and many objects in the system will be tainted, at least slightly,
by address and control dependencies. One possible approach to
achieving a form of compression for relaxed static stability DIFT
would be to perform a form of interpolation similar to that per-
formed by graphics processors, e.g., taint tags could be calculated
based on density fields rather than stored in and loaded from a large
tag memory. Another possibility is probabilistic tagging, where a

27

(a) Firefox 3.5 on the left, Firefox 3.5.1 on the right.

(b) Internet Explorer 6 on the left, Internet Explorer 7 on the right.

Figure 17: Heap-spraying browser exploits.

single tag bit or small number of tag bits is associated with each
byte, and probabilistic tag propagation is used to approximate the
information flow.

While we do not claim to have built a DIFT system that, in its
current form, detects a wide variety of attacks in a general way with
low false positives and false negatives, our results show that this
approach can be very promising if DIFT technology addresses a

few specific challenges in future research. The fact that we were
able to measure information flow in a manner that is both stable
and matches our intuitions about the attacks tested means that in-
trusion detection via information flow measurements is possible. If
the research community builds a new foundation for information
flow research that is focused on integrity, availability, and intru-
sion detection then we can succeed where confidentiality systems
of the past failed. This is because the precision that confidentiality
applications require is not necessarily required in other settings.

6.2 Intrusion detection applications
Most intrusion detection systems fall into one of two paradigms:

appearance-based or behavior-based. These terms come from Co-
hen [11], who also observed that “information only has meaning in
that it is subject to interpretation.” Attacks typically take the form
of malicious inputs that are interpreted in some way by the system
that leads to the attacker gaining increased control in order to vi-
olate security. Appearance-based detectors look for byte patterns
that will be interpreted in a way that leads to malicious operations,
behavior-based detectors look for artifacts of malicious behavior in
the trace of operations carried out by the system. Neither of these
paradigms has been able to handle obfuscation techniques in a way
that precludes new attacks. See, e.g., Szor [48] for a discussion of
the co-evolution of virus obfuscation and anti-virus techniques.

If information flow tracking were made more accurate and prac-
tical through further research, then defining intrusions in terms of
the flows of information that are considered malicious would offer
a more general definition that precluded whole classes of attacks
at a time. Such mechanisms have been successful even at a very
coarse definition of information flow, for example Tripwire [29].
The early applications of DIFT [47, 15, 41, 12] were very effec-
tive at catching remote memory corruption attacks, but offer no
guarantees in a stronger threat model where an attacker seeks to
evade detection due to address and control dependencies. In gen-
eral, from phreaking to memory corruption to web application at-
tacks, exploits always take that form of management information
being stored “in-band” by the system and the attacker causing their
inputs to be interpreted as management information [1]. This fact
has been exploited in past intrusion detection systems using infor-
mation flow tracking mechanisms designed for their specific pur-
poses, but what is needed for a paradigm shift is a general infor-

mation flow tracking mechanism that supports defenses against

any general class of attacks that can be defined in terms of in-

formation flow.

We see information flow for intrusion detection being applied
in two distinct ways: as a honeypot technique when the attacker
does not anticipate DIFT-based intrusion detection, and as a gen-
eral technique that detects attacks before the attacker has control
over what code a user’s machine is running. The definition of attack
we present in this paper falls into the former category (of course,
more research is needed to do the profiling and address false pos-
itives and false negatives). Examples of applications that fall in
the latter category might include DIFT systems that enforce sep-
aration in browsers or that ensure that PDF inputs affect only the
rendering of the displayed document and not any other aspects of
the PDF rendering process. A key research question will be how
much trust to place in the code being executed, since the code be-
ing executed may be interpreting high-level Javascript or PostScipt

28

from the attacker. Will the modern trend toward live content

lead information flow for intrusion detection applications into

the same traps as confidentiality and MLS systems, or are the

trust relationships still fundamentally different in a way that

researchers can exploit to our advantage? We leave this as an

open question for the discussion at NSPW.

7. DISCUSSION AT THE WORKSHOP
Discussion at the workshop had three major themes: (1) previous

work that, while not directly related to dynamic information flow
tracking, could provide some valuable insights in terms of quan-
titative approaches to information flow; (2) how the performance
and threat model aspects of our proposed approach may apply more
readily to data provenance than to intrusion detection; and, (3) ways
that our definition of taint could be modified to better model infor-
mation flow.

While there has not been a lot of work on quantitative, dynamic
information flow tracking, one NSPW attendee suggested that some
of the efforts to quantify covert channels [53, 24, 31, 37] may be in-
structive in this regard. It was pointed out that the basic tradeoff of
conservative approximation is similar to our approach. We plan to
investigate the connection between quantifying covert channels and
DIFT further. Also, another attendee pointed out generalized non-
interference [36] as another area of research where similar tradeoffs
were made. This could also be very instructive for future work on
dynamic information flow tracking.

Another topic of discussion was the performance overhead of
and the threat models that could be supported by our proposed
DIFT system. The general consensus was that areas such as foren-
sics and data provenance may be more promising goals for appli-
cation of relaxed static stability DIFT in the near future. Intrusion
detection often requires a stronger threat model and near-native per-
formance, so DIFT applications in this area may be limited until
advances in relaxed static stability DIFT’s performance and accu-
racy are made. We concur, and do plan to focus on forensics and
data provenance for the near future.

Another interesting part of the discussion at the workshop was
our definition of taint and what information is kept in the taint mark.
Currently, our taint marks are fixed-point numbers that represent
the mutual information between the data that is tagged and some
tainted source. As one attendee pointed out, this one-dimensional
taint mark makes it impossible to know the mutual information be-
tween two different taint marks, which is one of our major sources
of over-tainting. Having a vector of some kind or some additional
information in the taint mark is definitely something we plan to ex-
plore. It was also suggested that taint marks could be interpreted
as fuzzy logic instead of mutual information. This suggestion is
particularly interesting in light of something that one of the review-
ers of our NSPW submission pointed out, which is that the inter-
pretation of taint marks as mutual information gives a false sense
of accuracy which may hinder efforts for approximating the taint
mark. How important is it to have an information-theoretically cor-
rect way to combine two taint marks when those taint marks them-
selves are already approximations?

We are very grateful for these helpful comments and plan to ex-
plore all of these issues that were raised in future work.

8. RELATED WORK
DIFT in the context of detecting attacks was introduced by Suh

et al. [47]. TaintBochs [8] was another early application of tainting
that was applied to analyzing data lifetime in a full system. The
Minos project [15, 17] explored various policy tradeoffs for DIFT

schemes and higher-level systems issues such as virtual memory
swapping, TaintCheck [41] explored some of the issues of using
DIFT for end-to-end detection of exploits for vulnerabilities in
commodity software, and Vigilante [12] employed DIFT for au-
tomated worm defense. Argos [44] is a widely-deployed honey-
pot technology based on DIFT. DIFT has been applied to prob-
lems outside the domain of detecting control data attacks, such as
malware analysis [56, 55, 2], network protocol analysis [32, 54],
and dataflow tomography [39]. This shows that DIFT is a general
technique with a broad range of applications, but a relaxed static
stability approach to DIFT will greatly multiply the possible appli-
cations, since address and control dependencies are so prevalent in
so many applications.

The Panorama project [56] demonstrated the power of full-
system dynamic information flow tracking. However, the way that
address and control dependencies are handled in Panorama is ap-
plication specific. A control dependency in the UNICODE conver-
sion of keystrokes was handled via manual labeling. Also, all load
address dependencies are propagated in Panorama so that ASCII
to UNICODE conversions and other table lookups are handled ap-
propriately. This propagation rule was stable for the applications
Panorama was applied to, but is not stable in general [17, 46], es-
pecially when combined with store address dependencies.

The earliest DIFT papers [47, 15] identified the problems with
address and control dependencies. More details and analysis of
these issues followed [14, 7, 18, 43], including a recent quantita-
tive analysis of full-system pointer tainting [46]. Flexible tainting
schemes that allow taint policies to be specified [47, 41, 51, 45,
19, 10] often allow for address and control dependencies to be in-
corporated into the policy, but do not fundamentally address the
stability issue. Policies written for these systems that incorporate
address dependencies usually tradeoff accuracy for stability by ig-
noring other dependencies such as computation dependencies. Al-
though it is possible to specify policies that track all dependencies
in these schemes, the overtainting problem will lead to a system
where everything is tainted. Based on the empirical evidence of

five years of DIFT research, we believe that no stable, conven-

tional DIFT system can accurately track both address and con-

trol dependencies in a general way. This is our motivation for

proposing a relaxed static stability approach.

Dynamic information flow systems that have confidentiality as
their primary goal [22, 23, 50, 49] have the same overtainting prob-
lem. This is because they are based on a conservative notion of
confidentiality as a noninterference property. This is necessary for,
e.g., multi-level secure systems, but for many practical confiden-
tiality concerns such as data provenance and accidental leaks of
information noninterference is not necessary. Overtainting in con-
fidentiality systems is due to the fact that, within the context of
noninterference, information does flow throughout the system in a
pervasive manner. This is compounded by the fact that, without
some form

of static analysis, implicit flows must be handled conservatively
by tainting every object in the entire system.

Fenton’s Data Mark Machine [22, 23] requires a special instruc-
tion set to define when the program counter can be untainted, and
also requires that all registers in the system be statically assigned
as tainted or untainted. Thus, a practical compiler for Fenton’s sys-
tem would need to know the taint value of every piece of data at
every possible program point, which implies that the compiler has
already identified all control dependencies through static analysis.
RIFLE [50] was applied to the Itanium instruction set, but in the
absence of assertions about possible implicit flows (provided by
static analysis) RIFLE will basically taint every data object in the

29

system on a conditional control transfer. GLIFT [49] makes strong
guarantees of noninterference at the bit level, but translating this
into a practical information flow tracking system will not be possi-
ble without static analysis. For all of these systems, in the absence
of static analysis to make assertions about code that does not exe-
cute, every conditional control flow transfer must taint every piece
of data in the system.

Decentralized information flow control (DIFC) [38] is a concept
based on information flow that relaxes the requirement of noninter-
ference while still making confidentiality and integrity guarantees.
Several systems [21, 58, 30] have been based on DIFC or simi-
lar ideas. These full-system information flow tracking systems are
similar in spirit to DIFT, but the applications and implementations
of DIFC are fundamentally different from DIFT and are largely
based on manual declassification. DIFC systems work at a higher
level of abstraction than DIFT systems. While DIFC systems can
track information flow for a full system, they do not address the
problem that DIFT systems have of dealing with address and con-
trol dependencies.

Newsome et al. [40] present a method for detecting attacks that
is based on measuring information flow into the control path of
the CPU. Their approach is a purely static approach, for static ap-
proaches methods for dealing with address and control dependen-
cies are known. The only connection Newsome et al. has to DIFT
is that they use DIFT traces as a loop-free program for input to their
static analysis.

McCamant and Ernst [35] propose a technique for quantifying
information flow that is not based on tainting. It combines static
and dynamic analysis to observe one or more program executions
and calculate a network flow capacity. TightLip [57] is a related
approach, but is purely dynamic and only observes two program
executions to check for non-interference.

To summarize, all existing DIFT schemes can be categorized into
two extremes: either they are stable at the cost of missing important
information flows, or they are unstable to the point of being entirely
impractical without static analysis1. Relaxed static stability DIFT
moves the possible design constraints beyond this dilemma and will
enable new DIFT applications, in much the same way as the anal-
ogous approach in aircraft design has led to the design of aircraft
with advanced stealth and maneuverability capabilities.

9. CONCLUSION
We showed that information flow has the potential to revolu-

tionize intrusion detection systems and identified specific research
challenges for dynamic information flow tracking will help us to
achieve this. Our relaxed static stability DIFT system prototype
gave intuitive results at measuring the information flow between
the network and the control path of the CPU. This is something
that could be used in a general definition of intrusion that escapes
the limitations of current appearance- and behavior-based defini-
tions. Whereas signatures and sequences of system calls define
known bad behaviors, information flow can be used to define what
it means for an attacker to attack a system at a very fundamental
level. At NSPW we intend to foster a discussion centered around
the following thought experiment: How would we design the IDS

systems of the future if we could assume that all of our wishes

for dynamic information flow tracking had come true?

1Note that “static” in the sense of static analysis means something
different than in the context of stability. In the former case static
means that the code is not executed dynamically for analysis, in
the latter it means the system as designed, without its integrated
dynamic control system.

Why do we believe that if information flow tracking is made
more accurate and practical, there is the potential for a paradigm
shift in the way we think about and implement intrusion detection
systems? Our argument is the following. Appearance-based and
behavior-based intrusion detection techniques look for patterns in
data that is passed around a system or in the sequences of opera-
tions that occur at the system interfaces, such as APIs and system
call interfaces. This means that what is malicious behavior vs. what
is normal behavior has to be defined for one place in the system:
either a specific place where data will be stored or a specific in-
terface. Since malicious behavior is a global system property and
information only has meaning in that it is subject to interpretation,
this means that traditional intrusion detection signatures must cap-
ture a global property (how that data or sequence of operations will
be interpreted semantically) using limited local information. Prac-
tical, full-system dynamic information flow tracking will allow IDS
designers to define malicious vs. normal behavior using global in-
formation, so that the definition can be both precise and general.

As an illustrating example, consider a complex API that allows
a process to make modifications to the system configuration in a
practically innumerable variety of ways. Contrast the following
three approaches to defining what constitutes malicious modifica-
tions to system configuration:

1. Appearance-based: Inside a userspace process, the patterns
of executable machine code are defined to be malicious or
not as a property of the string.

2. Behavior-based: At the system call API, the patterns of sys-
tem calls are defined to be malicious or not as a property of
the sequence of operations.

3. Information-flow-based: Within the operating system ker-
nel and filesystem, where the system configuration is actu-
ally stored, flows of information are defined to be malicious
or not as a property of the information that flows between
objects.

We argue that the third approach is more powerful in terms of
precisely defining malicious behavior in a general way that pre-
cludes entires classes of behavior. Defining behaviors in terms
of information flows is fundamentally different from combining
patterns of operations from many different interfaces, since pat-
terns from multiple interfaces does not address the problem that the
semantically-equivalent ways to achieve something can be combi-
natorial. Also, the third approach could make it possible that the
threat model for information flow tracking is realistic, since dy-
namic information flow tracking could happen in the kernel, or
perhaps in a hypervisor, so that the relevant code that causes the in-
formation flows being tracked is existing system code known not to
be malicious. We will explore this idea further at NSPW, and hope
that the reader will propose their own ideas for what information-
flow-based intrusion detection systems might look like.

Acknowledgments
We would like to thank the NSPW reviewers for their insight-

ful comments. Also, our shepherd, Matt Bishop, provided very
valuable feedback which is reflected in the paper, and the NSPW
attendees were helpful and encouraging and raised some interest-
ing questions that require further research. Discussions with Rafael
Fierro about control theory were also very helpful. This work was
supported in part by the U.S. National Science Foundation (CNS-
0905177 and CNS-0844880). Crandall’s travel to the workshop

30

was supported by CNS-1017602. Any opinions, findings, conclu-
sions, or recommendations expressed in this publication are those
of the authors and do not necessarily reflect the views of the Na-
tional Science Foundation.

10. REFERENCES
[1] anonymous. Once Upon a free()..., Phrack 57.

[2] U. Bayer, C. Kruegel, and E. Kirda. TTAnalyze: A Tool for
Analyzing Malware. In EICAR, pages 180–192, 2006.

[3] K. J. Biba. Integrity Considerations for Secure Computer
Systems. In MITRE Technical Report TR-3153, Apr 1977.

[4] R. Browne. The turing test and non-information flow. In
IEEE Symposium on Security and Privacy, pages 373–388,
1991.

[5] R. Browne. An entropy conservation law for testing the
completeness of covert channel analysis. In CCS ’94:

Proceedings of the 2nd ACM Conference on Computer and

Communications Security, pages 270–281, New York, NY,
USA, 1994. ACM Press.

[6] R. Browne. Mode security: An infrastructure for covert
channel suppression. In IEEE Symposium on Security and

Privacy, pages 39–55, 1999.

[7] L. Cavallaro, P. Saxena, and R. Sekar. On the limits of
information flow techniques for malware analysis and
containment. In DIMVA ’08: Proceedings of the 5th

international conference on Detection of Intrusions and

Malware, and Vulnerability Assessment, pages 143–163,
Berlin, Heidelberg, 2008. Springer-Verlag.

[8] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and
M. Rosenblum. Understanding data lifetime via whole
system simulation. In Proc. 13th USENIX Security

Symposium, August 2004.

[9] D. D. Clark and D. R. Wilson. A comparison of commercial
and military computer security policies. In IEEE Symposium

on Security and Privacy, pages 184–193, 1987.

[10] J. Clause, W. Li, and A. Orso. Dytan: a generic dynamic taint
analysis framework. In ISSTA ’07: Proceedings of the 2007

international symposium on Software testing and analysis,
pages 196–206, New York, NY, USA, 2007. ACM.

[11] F. Cohen. Computer viruses: Theory and experiments. In 7th

DoD/NBS Computer Security Conference Proceedings,
pages 240–263, September 1984.

[12] M. Costa, J. Crowcroft, M. Castro, and A. Rowstron. Can we
contain internet worms? In HotNets III, 2005.

[13] J. R. Crandall, J. Brevik, S. Ye, G. Wasswerann, D. A.
de Oliveira, Z. Su, S. F. Wu, and F. T. Chong. Putting trojans
on the horns of a dilemma: Redundancy for information theft
detection. Special Issue on Security in Computing of the
Transactions on Computational Sciences Journal, Springer
Lecture Notes in Computer Science, 2009.

[14] J. R. Crandall and F. T. Chong. A Security Assessment of the
Minos Architecture. In Workshop on Architectural Support

for Security and Anti-Virus, Oct. 2004.

[15] J. R. Crandall and F. T. Chong. Minos: Control data attack
prevention orthogonal to memory model. In Proceedings of

the 37th International Symposium on Microarchitecture

(MICRO), December 2004.

[16] J. R. Crandall, S. F. Wu, and F. T. Chong. Experiences using
Minos as a tool for capturing and analyzing novel worms for
unknown vulnerabilities. In Proceedings of GI SIG SIDAR

Conference on Detection of Intrusions and Malware and

Vulnerability Assessment (DIMVA), 2005.

[17] J. R. Crandall, S. F. Wu, and F. T. Chong. Minos:
Architectural support for protecting control data. ACM

Trans. Archit. Code Optim., 3(4):359–389, 2006.

[18] M. Dalton, H. Kannan, and C. Kozyrakis. Deconstructing
hardware architectures for security. In Fifth Annual

Workshop on Duplicating, Deconstructing, and Debunking,
June 2006.

[19] M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: A
Flexible Information Flow Architecture for Software
Security. In International Symposium on Computer

Architecture (ISCA), 2007.

[20] D. Devriese and F. Piessens. Noninterference through secure
multi-execution. In Proceedings of the 2010 IEEE

Symposium on Security and Privacy, pages 109–124, 2010.

[21] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey,
D. Ziegler, E. Kohler, D. Mazières, F. Kaashoek, and
R. Morris. Labels and event processes in the Asbestos
operating system. In SOSP ’05: Proceedings of the twentieth

ACM symposium on Operating systems principles, pages
17–30, New York, NY, USA, 2005. ACM.

[22] J. S. Fenton. Information protection systems. In Ph.D.

Thesis, University of Cambridge, 1973.

[23] J. S. Fenton. Memoryless subsystems. The Computer

Journal, 17(2):143–147, 1974.

[24] J. W. Gray III. Toward a mathematical foundation for
information flow security. In IEEE Symposium on Security

and Privacy, pages 21–35, 1991.

[25] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury.
Feedback Control of Computing Systems. John Wiley &
Sons, 2004.

[26] A. Ho, M. Fetterman, C. Clark, A. Warfield, and S. Hand.
Practical taint-based protection using demand emulation. In
EuroSys ’06: Proceedings of the 1st ACM SIGOPS/EuroSys

European Conference on Computer Systems 2006, pages
29–41, New York, NY, USA, 2006. ACM.

[27] J. W. G. III. Toward a mathematical foundation for
information. Journal of Computer Security, 1(3-4):255–294,
1992.

[28] H. Kannan, M. Dalton, and C. Kozyrakis. Decoupling
dynamic information flow tracking with a dedicated
coprocessor. In DSN ’09: Proceedings of the International

Conference on Dependable Systems and Networks, pages
115–124. IEEE Computer Society, 2009.

[29] G. H. Kim and E. H. Spafford. The design and
implementation of Tripwire: a file system integrity checker.
In CCS ’94: Proceedings of the 2nd ACM Conference on

Computer and communications security, pages 18–29, New
York, NY, USA, 1994. ACM.

[30] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek,
E. Kohler, and R. Morris. Information flow control for
standard os abstractions. In SOSP ’07: Proceedings of

twenty-first ACM SIGOPS symposium on Operating systems

principles, pages 321–334, New York, NY, USA, 2007.
ACM.

31

[31] Light Pink Book. A guide to understanding covert channel
analysis of trusted systems, version 1. NCSC-TG-030,
Library No. S-240,572, November 1993. TCSEC Rainbow
Series Library.

[32] Z. Lin, X. Jiang, D. Xu, and X. Zhang. Automatic protocol
format reverse engineering through context-aware monitored
execution. In Proceedings of the 15th Annual Network and

Distributed System Security Symposium, San Diego, CA,
February 2008.

[33] S. B. Lipner. Non-discretionary controls for commercial
applications. In IEEE Symposium on Security and Privacy,
pages 2–10, 1982.

[34] P. Malacaria. Assessing security threats of looping
constructs. In POPL ’07: Proceedings of the 34th ACM

SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, New York, NY, USA, 2007. ACM
Press.

[35] S. McCamant and M. D. Ernst. Quantitative information flow
as network flow capacity. In Proceedings of the ACM

SIGPLAN 2008 Conference on Programming Language

Design and Implementation, Tucson, AZ, USA, June 9–11,
2008.

[36] D. McCullough. Noninterference and the composability of
security properties. In Proceedings of the 1988 IEEE

Symposium on Security and Privacy, page 177, 1988.

[37] J. McHugh. Covert channel analysis, 1995.

[38] A. C. Myers and B. Liskov. Protecting privacy using the
decentralized label model. ACM Trans. Softw. Eng.

Methodol., 9(4):410–442, 2000.

[39] S. Mysore, B. Mazloom, B. Agrawal, and T. Sherwood.
Understanding and visualizing full systems with data flow
tomography. SIGARCH Comput. Archit. News,
36(1):211–221, 2008.

[40] J. Newsome, S. McCamant, and D. Song. Measuring channel
capacity to distinguish undue influence. In PLAS ’09:

Proceedings of the ACM SIGPLAN Fourth Workshop on

Programming Languages and Analysis for Security, pages
73–85, New York, NY, USA, 2009. ACM.

[41] J. Newsome and D. Song. Dynamic taint analysis for
automatic detection, analysis, and signature generation of
exploits on commodity software. In Proceedings of the 12th

Annual Network and Distributed System Security Symposium

(NDSS ’05), Feb. 2005.

[42] E. B. Nightingale, D. Peek, P. M. Chen, and J. Flinn.
Parallelizing security checks on commodity hardware. In
ASPLOS XIII: Proceedings of the 13th international

conference on Architectural support for programming

languages and operating systems, pages 308–318, New
York, NY, USA, 2008. ACM.

[43] K. Piromsopa and R. J. Enbody. Defeating buffer-overflow
prevention hardware. In Fifth Annual Workshop on

Duplicating, Deconstructing, and Debunking, June 2006.

[44] G. Portokalidis, A. Slowinska, and H. Bos. Argos: an
emulator for fingerprinting zero-day attacks. In Proc. ACM

SIGOPS EUROSYS’2006, Leuven, Belgium, April 2006.

[45] F. Qin, C. Wang, Z. Li, H.-s. Kim, Y. Zhou, and Y. Wu. Lift:
A low-overhead practical information flow tracking system
for detecting security attacks. In MICRO 39: Proceedings of

the 39th Annual IEEE/ACM International Symposium on

Microarchitecture, pages 135–148, Washington, DC, USA,
2006. IEEE Computer Society.

[46] A. Slowinska and H. Bos. Pointless tainting? evaluating the
practicality of pointer tainting. In Proceedings of the 4th

EuroSys Conference, Nuremberg, Germany, Apr 2009.

[47] G. E. Suh, J. Lee, , and S. Devadas. Secure Program
Execution via Dynamic Information Flow Tracking. In
Proceedings of ASPLOS-XI, Oct. 2004.

[48] P. Szor. The Art of Computer Virus Research and Defense.
Symantec Press, 2005.

[49] M. Tiwari, H. M. Wassel, B. Mazloom, S. Mysore, F. T.
Chong, and T. Sherwood. Complete information flow
tracking from the gates up. SIGPLAN Not., 44(3):109–120,
2009.

[50] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan,
G. Ottoni, J. A. Blome, G. A. Reis, M. Vachharajani, and
D. I. August. RIFLE: An architectural framework for
user-centric information-flow security. In Proceedings of the

37th International Symposium on Microarchitecture

(MICRO), December 2004.

[51] G. Venkataramani, I. Doudalis, Y. Solihin, and M. Prvulovic.
Flexitaint: A programmable accelerator for dynamic taint
propagation. In 14th International Conference on

High-Performance Computer Architecture (HPCA-14 2008),

16-20 February 2008, Salt Lake City, UT, 2008.

[52] Wikipedia: Heap Spraying.
http://en.wikipedia.org/wiki/Heap_spraying.

[53] J. T. Wittbold and D. M. Johnson. Information flow in
nondeterministic systems. In IEEE Symposium on Security

and Privacy, pages 144–161, 1990.

[54] G. Wondracek, P. M. Comparetti, C. Krügel, and E. Kirda.
Automatic network protocol analysis. In Proceedings of the

Network and Distributed System Security Symposium, NDSS

2008, San Diego, California, 2008.

[55] H. Yin, Z. Liang, and D. Song. HookFinder: Identifying and
understanding malware hooking behaviors. In Proceedings of

the 15th Annual Network and Distributed System Security

Symposium (NDSS’08), February 2008.

[56] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda.
Panorama: capturing system-wide information flow for
malware detection and analysis. In CCS ’07: Proceedings of

the 14th ACM conference on Computer and communications

security, pages 116–127, New York, NY, USA, 2007. ACM.

[57] A. Yumerefendi, B. Mickle, and L. P. Cox. Tightlip: Keeping
applications from spilling the beans. In Networked Systems

Design and Implementation (NSDI), 2007.

[58] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières.
Making information flow explicit in histar. In OSDI ’06:

Proceedings of the 7th USENIX Symposium on Operating

Systems Design and Implementation, pages 19–19, Berkeley,
CA, USA, 2006. USENIX Association.

[59] Security Focus Vulnerability Notes,
(http://www.securityfocus.com), Bugtraq ID NNN.
http://www.securityfocus.com/bid/NNN/discussion/.

32

