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ABSTRACT
As the Web has become more and more ubiquitous, the
number of attacks on web applications have increased sub-
stantially. According to a recent report, over 80 percent of
web applications have had at least one serious vulnerabil-
ity. This percentage is alarmingly higher than traditional
applications. Something must be fundamentally wrong in
the web infrastructure.

Based on our research, we have formulated the follow-
ing position: when choosing the stateless framework for the
Web, we ignored a number of security properties that are
essential to applications. As a result, the Trusted Com-
puting Base (TCB) of the Web has significant weaknesses.
To build secure stateful applications on top of a weakened
TCB, developers have to implement extra protection logic
in their web applications, making development difficult and
error prone, and thereby causing a number of security prob-
lems in web applications. In this paper, we will present
evidence, justification, and in-depth analysis to support this
position.
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K.6.5 [Management of Computing and Information
Systems]: Security and Protection—Authentication, Unau-
thorized access
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1. INTRODUCTION
In recent years, we have observed a proliferation of vul-

nerabilities in the web. Although the Web has only become
widespread within the last ten years, the number of some
particular vulnerabilities on the web has already exceeded
those in traditional applications. According to a recent re-
port [30], over 80 percent of websites have had at least one
serious vulnerability, and the average number of serious vul-
nerabilities per website is 16.7.

The phenomenon of such a proliferation of vulnerabili-
ties is hard to understand. Many may attribute this to
the number of applications in the Web. That can explain
why web vulnerabilities outnumber traditional vulnerabili-
ties, but it cannot explain why such a high percentage of
web applications are vulnerable. This percentage seems
to be significantly higher than that of traditional applica-
tions. Moreover, because of the similarity to traditional
client/server computing (browsers are the client, and web
servers and application programs—such as PHP programs—
are the server), we might expect to see vulnerabilities that
mimic those in traditional applications, both in proportion
and nature. Instead, we are seeing vulnerabilities that are
quite unique.

If web applications are like traditional client/server ap-
plications, what has caused those unique vulnerabilities,
and in such a high quantity? There must be some funda-
mental difference between these two types of applications,
and that may be the root cause of these unique vulner-
abilities. This question has been pondered by many re-
searchers, as evidenced by the published work in the litera-
ture [1,2,9–13,19–21]. Most studies have focused on specific
problems, and there is no work in current literature that tries
to explain the fundamental reasons for the many vulnerabil-
ities in web applications. In this paper, we would like to
make such an attempt. Our goal is to find the fundamental
causes of the unique vulnerabilities in web applications.

Over the course of this pursuit, we have identified many
causes, because when you change an angle or look at the
problem at a different level, you see a different cause. Pro-
viding a laundry list of all possible causes is unlikely to pro-
vide useful insights to the problem. The cause must be fun-
damental, meaning the cause should be found among the
points of convergence of many vulnerabilities in web appli-
cations. We are not necessarily looking for a single point of
convergence; there may be several of them.

Based on our research, we have identified one convergence;
many vulnerabilities in web application can be traced to this
point. This is the stateless nature of the Web, i.e., many
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security problems found in web applications are caused by
building stateful applications on this stateless infrastructure.
Although it is well-known from the literature that the state-
less nature of the Web has caused many problems, there has
been a lack of in-depth study to answer why statelessness
causes so many problems. This position paper answers such
a fundamental question. In the rest of this section, we first
review the stateless feature of the Web, and then give a brief
summary of our main positions.

The Stateless Nature & Sessions. Web servers are de-
signed to be stateless, namely, each HTTP request is pro-
cessed by an independent server-side process or thread, even
if two requests are related. This is in stark contrast to tradi-
tional client/server applications, which are mostly stateful.
In stateful applications, the same server-side process/thread
will be dedicated to a client, until the client terminates (e.g.
telnet, ftp, and ssh). The main reasons for the Web’s
stateless property are performance and scalability. Web
servers usually serve a much larger client base than tradi-
tional client/server applications do, so performance and scal-
ability are very important. Being stateless, the web server
(e.g. Apache) does not need to keep track of state informa-
tion when processing an incoming request, not only saving
the computation cost, but also making load balancing—and
thus scalability—much easier to achieve, because there is no
need to synchronize state data among computers. Moreover,
being stateless supports deep linking among web pages: any
web page or resource inside a web site can be identified by
an URI, and be accessed independently, without depending
on pre-conditions, as what stateful applications usually do.

However, most web applications are stateful. A client’s
HTTP requests do indeed exhibit dependencies; this depen-
dency relationship must be recognized by the server. For ex-
ample, in a shopping-cart application, the products picked
by a user need to be remembered when the user traverses
from one page to another. This demands support for state-
fulness at the server, which is stateless by nature. Sessions
allow stateful web applications to run on stateless infrastruc-
ture. When a user browses a web site, the server provides
the user with a session ID, which is stored in the user’s
browser as a cookie. When the user sends other HTTP re-
quests to the same server (within the lifetime of the session),
the session cookie will be attached; therefore, the server can
recognize these requests as being related (i.e., tying them to
the same session), and thus provide support for statefulness.

To carry session-related data from one request to another
request of the same session, web servers store these data
in non-volatile memory, such as files and databases. After
identifying the session of a request, the web server retrieves
all the session data from these repositories. Session infor-
mation, including session ID and session data, has a typical
lifespan of minutes to hours, and expires after certain goals
are achieved.

Our Discoveries and Positions. It seems that sessions
have “emulated” the need for statefulness quite well from
the functionality perspective, because they do a good job
in preserving relevant state information. The question is
whether this is sufficient for other purposes. To answer this
question, we need to look at this emulation from another
angle, the non-functional angle. If such an emulation is suf-
ficient, it should also emulate the non-functional properties

that are intrinsic to stateful programs. Unfortunately, this
is not true.

There are four security properties that sessions do not
emulate: preservation of trust state, data integrity, code in-
tegrity, and session integrity. These four properties are part
of the Trusted Computing Base (TCB) in a stateful frame-
work. Therefore, choosing a stateless framework without
preserving these security properties, the Web has chosen a
TCB that is severely weakened. An immediate consequence
is that preserving those security properties now falls upon
developers’ shoulders. Namely, web application develop-
ers have to implement application-specific logic to maintain
those security properties. It was mistakes in, or a lack of,
the developers’ implementations of these security properties
that has caused the abnormally large number of vulnerabili-
ties on the Web. In response, most existing work has focused
on developing attack-specific methods to prevent those mis-
takes; we believe that the right approach should focus on
enhancing TCB, providing systematic support for those se-
curity properties.

Organization of the Paper. In Sections 2, 3, 4, and 5, we
explain in great detail why the stateless nature of the Web
has led to failure to maintain the aforementioned security
properties, what impact this failure has caused, and how
web applications have struggled to battle with this failure.
In Section 6, we summarize our discoveries, which lead to the
main position of this paper. We then present our position
on what we should do to improve the situation.

2. PRESERVING TRUST STATE
The first security property that we will look at is the trust

state, the trustworthiness of the data on which an applica-
tion operates. In a typical stateful application, the appli-
cation can, if it chooses to, track and make access control
decisions based on such a trust state. Unfortunately, pre-
serving trust states becomes impossible in the current Web
infrastructure. We will show how trust state information
gets lost within a single session. For the sake of simplic-
ity, we use an example in our discussion. The example is
depicted in Figure 1.

Initially, server-side programs (e.g. F1.php in Figure 1),
know how trustworthy their data are, because they know
where the data come from. However, when F1.php puts all
the data together into one HTML page, and presents it to
the client-side browsers, there is no systematic mechanism
for the server to convey the data’s trust state to browsers,
so the trust state gets lost in the process.

Even if the above problem is fixed 1, when control returns
to the server, the trust state information gets lost again.
Program control returns to the server when the browser in-
vokes a server-side script. For example, in Figure 1, F2.php
is invoked when a user clicks a submit button on the web
page. Many things can trigger such an invocation. The fig-
ure only shows one scenario; other scenarios include clicking
a URL, event-triggered invocation, invocation directly from
JavaScript code, etc. When the control returns back to the
server, the server can only tell whether the invocation be-
longs to the same session or not, not whether the invocation
is triggered by trusted or untrusted contents.

1One of our earlier papers fixed this problem [10].
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Figure 1: Loss of trust state in web applications

2.1 Impact on Security & Access Control
Failure to preserve trust states means that access con-

trol in web applications cannot be based on accurate and
fine-grained trust states. This has an immediate impact on
security. On the client side, the inability to receive the trust
state from the server forces browsers to use a much more
coarse granularity, origin, in its access control, trusting all
data from the same origin equally and giving them the same
privileges. This is the so-called same-origin policy (SOP).
On the server side, the inability to discern the trust state
of invocations means servers can only use sessions as the
finest granularity in their access control, giving all invoca-
tions from the same session the same privileges. We refer
to this as the same-session policy (SSP). The inadequacy of
these access control models has been pointed out by various
studies [9, 12,13,20,21].

Such coarse granularity may have been sufficient for the
nascent Web ten to fifteen years ago, when a typical HTML
page’s contents were usually homogeneous, i.e., they came
from the same–usually trusted–resource. However, through
the evolution of the last decade, the landscape of the Web
has changed significantly. Nowadays, contents in web appli-
cations come from diverse sources. We describe three repre-
sentative scenarios:

Untrusted contents: Many web pages contain user-
provided content such as blogs, comments, feedbacks, user
profiles, etc. These contents are less trustworthy than the
content generated by the server. Servers know this fact,
but due to the lack of a trust-preservation mechanism, once
a server integrates these diverse contents into a single web
page, all contents share the same privileges, regardless of
the trustworthiness of the sources. If these contents are just
passive data, we will not see much of a problem. However,
the contents can also be active contents, such as Javascript
code or action-invoking HTML tags; if these actions are ma-
licious, we have a problem that can lead to a cross-site script-
ing (XSS) attack, the No. 2 ranked attack on the OWASP
Top Ten list [23]. Since the active contents are executed on
the browser side, if browsers do not know how trustworthy
the contents are, they cannot conduct appropriate access
control on the actions.

Client-side extension: Many web applications allow
client-side extension, i.e., they include links to third-party
programs in their pages, and run those programs in the
browser. A common example is web advertisements, which
usually contain code (JavaScript, Flash, etc) from advertis-
ing networks. Facebook applications are another example of

client-side extension. In Facebook, third-party applications
can be embedded into a user’s Facebook page; these appli-
cations contain code from a third-party application server.
iGoogle’s gadgets are another examples of client-side exten-
sion.

Servers know that third-party content is not as trustwor-
thy as that generated by the server itself, but unfortunately,
there is no easy way for servers to tell browsers that these
contents as untrustworthy; the trust state of the contents is
not preserved once the data leave the server.

In this situation, web applications have to assume that the
third party will not provide them with malicious contents.
Such an assumption is very fragile. For example, in a recent
event (September 2009), an unknown person or group, pos-
ing as an advertiser, snuck a rogue advertisement into the
New York Times’ pages, and successfully compromised the
integrity of the publisher’s web application using a malicious
JavaScript program [27].

Server-side extension: Some web applications include
server-side code that are developed by a third party. For
example, Elgg is an open-source social network application.
It was designed as an open framework, allowing others to ex-
tend its functionality. There are already hundreds of third-
party extensions. To use these extensions, administrators
of Elgg need to install them on the server side. Once these
extensions are installed, they have the same privileges as the
native code of Elgg.

There are two problems in this architecture: first, there is
no mechanism for the web server to label how trustworthy
an extension is; second, even if we could perform such a
labeling, the stateless nature of the Web does not allow us
to preserve such a trust state throughout the lifetime of a
session. As a result, the actions initiated by extensions share
the same privileges as the native server-side code.

Although no malicious extensions have been reported so
far for Elgg, vulnerable extensions have been discovered.
When a vulnerable server-side extension is installed on the
server, any security problem (such as an XSS problems) will
affect the entire web application because of the privileges
they receive. Although Elgg has spent a lot of effort secur-
ing its own core code, they do not have an effective method
to contain the security breaches caused by vulnerable exten-
sions.

2.2 Further Impact: on Access Control Model
The inability to differentiate trustworthiness levels of data

and code has led to the incorrect design of the Web’s access
control models (i.e. the same-origin and same-session poli-
cies), which clearly violate some of the vetted design princi-
ples summarized by Saltzer and Schroeder [25]:

1. Separation of Privilege: If possible, privileges in a
system should be divided into less powerful privileges,
such that no single accident or breach of trust is suffi-
cient to compromise the protected information.

2. Least Privilege: The protection model should be
able to limit the interactions of principals based on
their trustworthiness. Essentially, a principal should
not have more privileges than required for its legiti-
mate purpose.

Browsers and servers fail to follow either of the above prin-
ciples. This is not because of the designers’ ignorance of the
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trust state of the action initiators; instead, this is caused by
the web infrastructure’ failure to preserve trust states. We
believe that the current access control models of the Web
infrastructure are fundamentally inadequate to address the
protection needs of today’s Web; they need to be redesigned.
In the new design, the trustworthiness of data needs to be
used as one of the bases for access control. This allows
us to provide a finer granularity in access control. A well-
designed access control model can simplify application devel-
opers’ tasks by enforcing much of the access control within
the model, freeing developers from such a complicated and
error-prone task.

2.3 Extra Efforts for Preserving Trust State
Because of the inadequate access control on the browser

side, when including third-party programs in a web page,
web applications have to ensure that these programs are not
malicious; otherwise, once reaching browsers, these third-
party programs will have the same privileges as those first-
party programs, putting web applications in great danger.
To reduce risk, applications have to verify those programs
before integrating them into web pages. Facebook took
this approach before including a third-party application into
its site. Advertising networks also conduct code verifica-
tion on JavaScript advertisement programs before accept-
ing them [8]. These verification strategies are expensive to
use and are not fool-proof: numerous security breaches have
been reported [27].

Cross-Site Scripting (XSS) and Cross-Site Request
Forgery (CSRF) attacks are the inevitable consequence of
the Web’s inappropriate access control models. Existing
work has proposed solutions to protect against these attacks.
Approaches to XSS include taint-tracking [9, 21, 24], pure
client-side solutions [17,29], pure server-side approaches [4],
and co-operating defenses [12]. Similarly, cross-site-request
forgery solutions can be categorized into client-side meth-
ods [13], HTTP referrer header validation [15], proposals for
new headers [3], and secret-token validation techniques [14].
All these solutions are attack-specific patches to the appli-
cation, framework, or browser. None of them tries to fix
the root cause, i.e., the failure of the web infrastructure to
preserve trust states and the resulting inappropriate design
of the access control model.

3. PRESERVING CODE INTEGRITY
Being able to preserve code integrity is essential for secu-

rity. In this section, we compare the stateless web infras-
tructure with the traditional stateful framework, in terms of
how they preserve code integrity.

In the traditional client/server framework, servers use
both synchronous and asynchronous modes to to get clients’
input. In synchronous mode, the server stops at a point to
wait for input from the client. In asynchronous mode, the
server does not wait for input; instead, when input comes,
a callback function on the server side is invoked to process
the input. These two different modes are used for different
scenarios.

Synchronous mode is used when functions can only be
triggered if certain conditions are met or states are reached.
For example, if the server needs to get the client’s credit
card information before going to the next step—sending a
mail order to the warehouse—the server needs to wait for
the credit card information, i.e. synchronize with the client

F1()

Get inputs from the user
at the client side

F2()

Get inputs from the user
at the client side

F3() F4()

(a) Traditional Appli-
cation

F1.php
Output HTML PageOutput:     HTML Page

F2

Input

Output:     HTML Page

F2.php

F4F3

Input1 Input2

F3.php F4.php

(b) Web Application

Figure 2: Difference in Control Flow

at the waiting point. Asynchronous mode is mostly used
in scenarios when a function invocation does not depend on
a pre-condition; as long as the inputs come, the function
can be triggered. Synchronous mode can only be used by
stateful applications, because of the need for client-server
synchronization, while asynchronous mode can be used by
both stateful and stateless applications.

Web applications, because of their stateless nature, can
only use asynchronous mode, regardless of whether synchro-
nization is needed or not. When a web server receives an
HTTP request, it spawns a process (or gets an idle process
from the pool) for this request. For example, in Figure 2(b),
F1.php is executed in a process, and during execution, the
process will not request any user input. If user input is in-
deed needed, the process will create an HTML page, send it
to the client’s browser, and then terminate; it does not wait
for the return of the client’s input. When the client returns
his/her input, a new process will be triggered to process the
input. This is a purely asynchronous mode.

In asynchronous mode, the server needs to register a call-
back function, such that when input is returned, the function
can be triggered to process the input. In web applications,
callback functions, in the form of the names of server-side
programs (e.g. F2.php in Figure 2(b)), are embedded in the
HTML page sent to the client. The function names are usu-
ally put in the action field of a form as a URL. After a client
fills out the form, and clicks the submit button, the callback
function will be invoked on the server side. Figure 2(b) gives
an example. In the example, F2.php registers two callback
functions, F3.php and F4.php in its generated HTML page.
Clients can choose which one to invoke, depending on which
button they click.

3.1 Impact on Security
In terms of security, the major difference between these

two modes is how convenient it is to maintain the code in-
tegrity: using synchronous mode, it is much easier to pre-
serve code integrity than using asynchronous mode. Using
synchronous mode, server-side programs can encode their
state transitions (i.e. control flow) within their code (see
Figure 2(a)); the integrity of the control flow is protected
by the server. Although clients can affect the control flow
via their input, they cannot directly change the control
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flow of the server program without changing the server-side
code (difficult for attacks).

On the contrary, in asynchronous mode, the invocation of
the callback function—one form of state transition—is de-
cided by clients, who can decide which callback function to
invoke, when to invoke them, and in what order. For in-
stance, in the example illustrated in Figure 2(b), although
the server intends the client to trigger a particular func-
tion (e.g. F2), and only embeds that function in the first
HTML page, there is no guarantee this will, in fact, occur:
the client can instead trigger F3, bypassing F2. All he/she
needs is to know the name of F3 (not a secret in web appli-
cations) and construct an HTTP request with F3 being the
target URL.

Many web applications are better implemented using the
synchronous mode, if possible, because ensuring the in-
tegrity of the state transitions is essential. Unfortunately,
the stateless web infrastructure only provides asynchronous
operation, making the development very unnatural. Let us
look at a typical web application example. In the online
shopping web application, a typical flow of control has three
steps: the customer selects products (G1), he/she then fills
out the payment information (G2), and after verifying the
payment, the server sends an order to its warehouse, request-
ing the selected products to be mailed to the customer (G3).
The control sequence is G1→ G2→ G3. Using synchronous
mode, this control flow can be easily enforced by invoking
the functions in a sequence, ensuring that the advancing to
the next step is only possible if the previous step is finished.
Such an enforcement is automatically (i.e. implicitly) car-
ried out as long as the execution order is specified in the
code.

Unfortunately, enforcing such sequences using asyn-
chronous mode is quite hard, because the client controls
the order of callbacks to the server. For example, in Fig-
ure 2(b), the order of execution is indeed specified by the
programmers (F2 first, and then F3 or F4), but there is no
automatic mechanism to prevent the client from invoking F3
first, skipping F2.

3.2 Extra Efforts to Achieve Code Integrity
To preserve the integrity of control flow, web applications

have to resort to extra help: this is done either by extra
program logic in web applications or by using specialized
frameworks. Developers commonly use two methods to en-
force control flow, namely interface hiding and validation.
In the case of interface hiding, the basic idea is to control
the display of URLs in the web page. Whenever the appli-
cation prepares a web page for the user, it only displays the
URLs that the user is entitled to access. As long as the user
issues requests by interacting with web pages, this method
will enforce control flow. The directed session design pat-
tern [16] describes the same idea. Unfortunately, a user may
still issue arbitrary requests violating the control flow and
interface hiding will not work under such scenarios.

In the case of validation, the server side of the applica-
tion accurately models the state of the client side of the
application using session variables. The values of the ses-
sion variables determine what further request the applica-
tion can process. For example, most web applications re-
quire users to be authenticated first, before being able to
use services. These web applications usually use a variable
to record whether the user has logged in or not; if not, users

will be directed to the login page. This is how they enforce
the simple “login → service” sequence.

Construction frameworks such as the Spring framework [5]
provide support for separating page navigation from busi-
ness logic. However, the enforcement of control flow should
still be done inside server-side scripts using validation meth-
ods. Bayawak [11] is a server-side method that transparently
enforces control-flow integrity in the application based on a
security policy that describes valid request sequences. The
basic idea is to diversify the application for each session,
making it infeasible for attackers to predict how to form a
valid request sequence. Ripley [28] is a server-side method
for verifying the correctness of client-side behaviors in web
applications. This is done by running a redundant copy of
the client on the server, and comparing their behaviors.

4. PRESERVING DATA INTEGRITY
Being able to preserve data integrity is essential for secu-

rity. In this section, we compare the stateless web infras-
tructure with the traditional stateful framework, in terms of
how they preserve data integrity.

Just like any traditional applications, web applications
have two types of data: global data and local data. Global
data are usually stored in global variables, and they are ac-
cessible within the session by code at all scopes. Local data
are usually stored in local variables, and they can only be
accessible within a particular scope, e.g., within a function.
During execution, global variables are usually stored in the
heap area, while local variables are stored in the stack area.
As long as the process is still alive, the data are still there,
and accessible. For applications running in a stateful frame-
work, a process usually lasts throughout the entire session,
so data are always available. Unfortunately, for web appli-
cations, there is a problem: requests, even if they belong to
the same session, are processed by different processes, mak-
ing passing data via internal memory infeasible. To make
data available for subsequent requests, web applications use
two primary methods to store data for later access:

Through files or database. The first process can save
data in a file or database. When the second process starts,
it can fetch the data from there. To make this a transpar-
ent process, PHP introduces the session variables concept.
The first process stores the data in session variables, which
will be dumped into a file or database (depending on the
configuration) before the process exits; the next process can
automatically reconstruct those variables from the file or
database, when it calls session_start(). An illustration is
given in Figure 3.

Through browsers. The first process can embed data in
its generated HTML page, making them available for the
subsequent requests from this page (see Figure 3). There
are several ways to embed data. One is to embed data into
hidden fields of a form; when users submit the form, the
values in the hidden fields will be automatically attached to
the HTTP request [7]. A second method is to embed data
directly in the URL of the target function, so when the invo-
cation is sent to the target function through HTTP requests,
the data is appended in the request. Another method is to
send data to browsers as cookies, which will be attached to
all subsequent HTTP requests.
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Figure 3: Data Flow in Web Applications

The above two approaches are actually common in tradi-
tional stateful programs. The first method is like passing
data via global variables, because session variables are ba-
sically global variables in web applications. The second
method is like passing data via arguments. The hidden fields
and data appended to URLs in HTML pages are very much
like the arguments passed to the target function in the tra-
ditional programs.

4.1 Impact on Security
The second method (passing data through browsers)

clearly has a security risk for web applications. The data
passed between functions are now exposed to the clients,
who can make arbitrary changes to the data. For exam-
ple, in the example shown in Figure 3, both the product_id

and price values will be returned back to the server as an
HTTP GET request when the clients click the submit but-
ton. Unfortunately, the clients can easily modify the values
of these two parameters before the HTTP request is sent
from their browsers; or they can write a program to craft an
HTTP request with any values they like. This is impossible
in traditional programs, as data passed between functions
are stored in the internal server memory, not exposed to
users. Many web developers do not realize this fundamental
difference between passing data in web applications and that
in traditional applications, they end up introducing vulner-
abilities in their applications. The A4 vulnerability, No. 4
ranked in the OWASP Top Ten list, is mainly caused by this
type of mistake [23].

4.2 Extra Efforts to Achieve Data Integrity
There are two primary solutions to counter the aforemen-

tioned security risks. The first method is to use integrity ver-
ification, which can be done by attaching a MAC (Message
Authentication Code) to the data, making data tampering
easily detectable. The current web infrastructure does not
provide such a mechanism. Until this systematic support
is integrated in the web infrastructure, developers have to
write their own program logic to secure data.

The other solution is to avoid passing data through
browsers; instead, one can use global variables (i.e. session
variables) to pass data between functions. This way, data
always stay at the protected server side, never exposed to
the clients. This method is indeed secure; however, by doing
so, we are against a common software engineering principle,
i.e., minimizing the use of global variables. Although the
security problem is fixed, we pay the price by increasing the

multiple TCP
connections

single TCP
connection

Usually
single

connections

Usually
single

connection
processprocess

( ) d l l / l (b) b l

Client Server Browser(s) Web App Server
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complexity of our programs, an inevitable consequence of
using more global variables.

There is another problem if we use global variables to re-
place local variables. If a function can be called multiple
times simultaneously (e.g. due to recursion or parallelism),
the use of global variables makes it non-reentrant. In tradi-
tional applications, stacks, which are used for passing data,
are good at handling the above situations, because each in-
vocation of a function is going to get its own stack frame
(and thus its own copy of the arguments), while using global
variables, there is only one copy. Recursion may not be com-
mon in web applications, at least so far, but parallelism is
inherent in the nature of the Web: users may simultaneously
send multiple HTTP requests within the same session. To
handle such a condition, the complexity of web applications
will be inevitably increased.

5. PRESERVING SESSION INTEGRITY
In this section, we look at the design of the session mecha-

nism itself, and compare sessions in both the web framework
and the traditional stateful client/server framework. The
differences between the sessions in these two frameworks,
although subtle in behavior, are quite significant in security.

In the stateful client/server framework, a typical session
usually comprises a client-side process, a server-side process,
and a TCP connection between them (see Figure 4(a)). The
TCP connection is identified by the source/destination IP
addresses and port numbers, as well as by the TCP sequence
numbers. When a server receives data from the client at
different times, the data are considered as belonging to the
same session if they come from the same TCP connection,
i.e., the IPs and port numbers match accordingly, and the
TCP sequence numbers fall into the current TCP window.
We call the collection of these pieces of information the ses-
sion identifier.

In the web framework, a session is not bound to a single
process on the client or server sides, nor is it bound to a
single TCP connection; instead, a session is only bound to
a unique number called a session ID. Requests in the same
session can come from different client-side processes or dif-
ferent computers, through different TCP connections, served
by different server-side processes, as long as they carry the
same session ID (see 4(b)). In other words, the only session
identifier provided by the underlying web infrastructure is
session ID.

From the behavior perspective, what is achieved by the
session ID in the web framework is similar to that in the
stateful client/server framework (see Figure 4). However,
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the ways sessions are implemented in these two different
frameworks cause significant differences in security. We an-
alyze the differences in depth in this section, organizing the
discussions based on the attacks that are related to sessions.

5.1 Session Hijacking
Session hijacking is an attack in which an attacker suc-

cessfully injects data into an existing session between the
victim and the server. To fool the server into treating
the injected data as belonging to the victim’s ongoing ses-
sion, the attacker needs to use the correct session identi-
fiers. For the stateful client/server framework, the attacker
needs to discover the source/destination IP addresses, the
source/destination port numbers, and the TCP sequence
number. For the web framework, the attacker needs only
to steal the victim’s session ID. Although what attackers
need to do looks similar in both frameworks, there are sig-
nificant differences, mostly in how difficult it is to launch
the attack.

Binding or Non-binding. In the stateful client/server
framework, sessions are bound to two processes on two com-
puters (one at the client side and the other at the server
side); only these two processes can legitimately use the ses-
sion. This is not true for web applications, in which only one
end (the server end) is bound to a session; the client end is
not. Therefore, the client can legitimately use a session from
a different process or machine.

Because of the nature of binding in the stateful framework,
session hijackers must spoof packets after knowing the ses-
sion identifier. In particularly, they must spoof the client’s
IP address, TCP port number, and the TCP sequence num-
ber. For web applications, however, spoofing is not needed:
once the attackers obtain the session ID, they can use the
session like the session’s legitimate user, from another com-
puter.

One-way or Two-way. In TCP session hijackings, the
response to the spoofed packets will still go to the spoofed
client, not to the attacker, because of the spoofing. In other
words, the attackers cannot see the response (unless they can
observe the traffic between the legitimate client and server).
We call this type of session hijacking one-way; by analogy, a
two-way hijacking allows the attacker to see traffic both to
and from the server. Limiting to one way increases the diffi-
culty for session hijacking. In web applications, because no
spoofing is needed, the reply will go to the attacker, making
two-way session hijackings much easier.

Disclosure of Session Identifiers. It is easier for web ap-
plications to inadvertently disclose their session identifiers
than the stateful client/server applications. In the latter
case, the source port number and the TCP sequence number
are usually transparent to programs: rarely are they refer-
enced by programs (there is probably no API to obtain the
sequence number). In web applications, it is easy to get the
session IDs within the program (e.g. in PHP, session_id()
returns the session ID). When something is so easily acces-
sible, developers will soon make “creative” use of it, leading
to potential disclosure of the session ID. For example, to
allow users to share their private data (e.g. pictures) with
friends, some web applications send the friends a URL of the
data, with the session ID attached. This basically allows the

friends, or any attacker able to read the message carrying
the URL, to hijack the entire session.

5.2 Session Fixation
If stealing session identifiers is too difficult, attackers can

try a different approach to get the session identifiers: setting
or resetting victims’ sessions using a known identifier. This
type of attack is called session fixation. Once the attack-
ers have successfully fixed the victim’s session, they have all
the information to hijack this session. Session fixation was
rarely, if ever, heard of for traditional client/server appli-
cations. This is because parts of the session identifiers are
decided by operating systems: when a victim process estab-
lishes a session with a server, it cannot set its source port,
source IP, or the TCP sequence number, unless the process
is a root process and wants to do packet spoofing. There-
fore, it is impossible for a non-root malicious process (or a
malicious machine) to “convince” the victim process to use
a provided session identifier.

Session fixation is a common attack in web applications.
Along with several other session-related vulnerabilities, they
take the No. 3 position on the OWASP’s Top Ten list [23].
The main reason is that session identifiers can be set by
normal users, which opens a door for attackers. There are
several mechanisms for setting the victims’ session identi-
fiers.

Through URL. In PHP programs, if users provide an
SID parameter in their URL, session_start() will use this
value as the session ID when creating a new session for the
current HTTP request. For example, a rogue URL can
look like this: http://targeted_server.com/logon.php?

SID=12345. To get the victim to use this fixed ID, the at-
tackers need to send this URL to the victims, and get them
to click on this URL. After the victims enter their credential
to targeted_server.com, they will get an established ses-
sion with the server. Unfortunately, the session identifier,
provided by the attackers, is not a secret anymore.

Through Cookies. In PHP programs, if users provide a
cookie named SID in their HTTP request, session_start()
will use this value as the session identifier when creating a
new session for the current HTTP request. Therefore, to
fixate a victim’s session ID, the attackers need to first store
the SID cookie in the victim’s browser (in the domain of the
targeted server). This is usually achieved through other vul-
nerabilities. For example, cross-site cooking exploits browser
vulnerabilities to store information from one domain as a
cookie in another domain [31]. Cross-site scripting can also
set cookies2.

Using the session-fixation technique, attackers can also
“donate” their current sessions to victims. In other words,
the attackers intentionally let victims “hijack” their sessions.
If the victims are unaware of the situation, and type sensitive
information (e.g. credit card numbers) in the sessions, the
attackers may be able to retrieve that information, as they
have the control of the sessions; they can also monitor the
victim’s actions. The CSRF login attack is such an attack.

2JavaScript can be used to set victim’s cookies, but it is not
necessary; HTTP <meta> tag’s Set-Cookie option can also
instruct browsers to set cookies.
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5.3 Session Confusion
Having been familiar with traditional client/server appli-

cations, users are used to the session concept in this type of
application; they tend to perceive the session concept in web
applications similarly. If the actual behaviors of sessions in
web applications do not match this perception, users may
be tricked into doing things that diminish security. We call
this phenomena session confusion; it has led to a variety of
attacks.

Signs of session termination. In a stateful framework,
when a session terminates, it is quite obvious to the users,
because users can see that the TCP connection is closed,
the process has ended, etc. Session termination is quite ob-
scure in web applications. When users switch to another
web site (i.e. starting a new session with a new web site),
it appears that their sessions with the previous web site has
ended. This is not true; the session is still active, unless
the user kills the browser or the server expires the session.
Therefore, if the user switches into a malicious web site,
the site can launch cross-site request forgery attacks on the
user’s account with the previous web site.

Session switching. In web applications, page redirecting
is quite common. Users can be redirected from one page to
another page or even to another site. If the redirection is to
another site, users are basically switched from one session
(with one server) to another session (with another server).
The switching is transparent by design, so users may not
be aware of such a switch, especially if the target site looks
similar to the previous web site. This becomes a source of
phishing attacks.

Some web applications fail to validate the target URLs
when redirecting users. In many cases, the URLs are pro-
vided by other users, who trick the vulnerable web applica-
tions into redirecting victims to a malicious web site, which
looks similar to the original site. If the victims are unaware
of such a switch, they may type in sensitive information in
the malicious site. This type of attack is ranked No. 10 in
the OWASP Top-ten list [23]. Such an attack is difficult or
impossible in the stateful client/server framework, because
switching from one session to another is quite noticeable.

5.4 Extra Efforts to Preserve Session In-
tegrity

To preserve the integrity of sessions, web developers must
implement security measures in their applications. Several
techniques are commonly used. A basic technique is to use
long pseudo-random numbers as session identifiers [22], mak-
ing it difficult for attackers to predict the number. This is
already supported by several web application frameworks,
such as PHP and Java Servlets. An additional layer of de-
fense is to bind each session to an IP address [18]. If an
HTTP request’s originating IP address differs from the IP
address tied to the session, the request will be rejected. This
approach basically emulates the binding feature of the ses-
sion in the stateful client/server framework.

Another common guideline is to regenerate session iden-
tifiers after user authentication [18]. Several web applica-
tions create a session even before users are authenticated,
depriving attackers the chance to launch the session fixation
attack. Using this method the application can make sure

OWASP Top-10 List Cause
A1: Injection -
A2: Cross-Site Scripting Access Control
A3: Broken Authentication & Session Management Session Integrity
A4: Insecure Direct Object References Data Integrity
A5: Cross-Site Request Forgery Access Control
A6: Security Misconfiguration -
A7: Insecure Cryptographic Storage -
A8: Failure to Restrict URL Access Control Integrity
A9: Insufficient Transport Layer Protection -
A10: Unvalidate Redirects & Forwards Session Integrity

1
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that an attacker does not have access to the session after
user are authenticated.

In addition, web applications may also take additional
measures to ensure that each request indeed originated from
a legitimate web page. For example, web applications may
add a secret token to each HTML form that they create, and
check the presence of the token on each incoming request,
ensuring that the request is initiated from within the page,
not outside (e.g. cross-site request forgery). Moreover, some
web applications use the HTTP Referrer or Origin headers
to validate the source of requests.

Another common practice is to use short-lived sessions
for important transactions [22]. For example, an online-
retailing application can use a short-lived session for each
checkout transaction. These sessions expire immediately at
the end of each transaction. It is difficult for attackers to
take advantage of these sessions because an attacker has to
trick users or browsers into making a malicious request while
the session is alive.

6. OUR POSITIONS

6.1 Mapping to OWASP Top-ten List
To summarize our discussion, we map the vulnerabilities

on the OWASP Top-ten list [23] to the causes discussed pre-
viously (Figure 5). Six of the top-10 vulnerabilities can be
mapped, making them traceable to the stateless nature of
the Web. For the other four, we were not able to trace them
to the stateless nature. After taking a closer look at these
vulnerabilities, we found that they are not unique to web
applications; they are also quite common in traditional ap-
plications. The mapping clearly supports our claim that the
stateless nature of the web infrastructure is one of the root
causes of the security problems on the Web.

6.2 Weakened TCB
We would like to go a step further to answer why the

stateless nature can cause so many problems for stateful
applications. As we can see from our discussions, a state-
ful framework has the ability to preserve trust states and
code/data/session integrity. The preservation is achieved
by the underlying operating systems, i.e., by the underlying
Trusted Computing Base (TCB). When we chose a stateless
framework for the Web, the ability to preserve those features
was lost. Therefore, by choosing statelessness, we have cho-
sen a TCB that is weaker than a stateful TCB. Probably,
the pioneers who designed the web infrastructure have never
thought about this consequence.

The Web enjoys a performance boost thanks to its state-
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less nature, i.e., the system underneath web applications
avoids the responsibility of maintaining states, and thus im-
proves performance. However, in the words of Robert Hein-
lein, “There Ain’t No Such Thing as a Free Lunch;” now, we
know how we pay for this: security. In some sense, we failed
to anticipate the unexpected consequence of being stateless:
a weakened TCB.

Faced by a weakened TCB, web application developers
have to pick up the slack. They have to implement extra se-
curity mechanisms in their program logic to make up for the
missing pieces in the underlying TCB. Such implementation
is reflected in two aspects: (1) extra access control mecha-
nisms to offset the inadequacy of the underlying same-origin
and same-session policies; (2) extra mechanisms to protect
the integrity of their control flow, data flow, and sessions.
As we have discussed, mechanisms for these purposes have
been developed and deployed. Unfortunately, requiring ap-
plication developers to make up for the weakened TCB is
problematic; there are three main problems.

First, there is an awareness issue: developers need to be
aware that their TCB is now weakened, so they should not
treat web applications the same as they do to stateful ap-
plications. Unfortunately, many developers are not aware of
the weakened TCB, and many vulnerabilities in the Web are
caused by such ignorance. We should not just blame devel-
opers for their ignorance; we should blame those who devel-
oped the web infrastructure, blaming them for putting such
a new and unfamiliar burden on developers. Had the web in-
frastructure had a similar TCB like the stateful framework,
this would not have caused so many security problems.

Second, there is an implementation issue: web application
developers essentially need to implement some part of the
TCB in their programs. As we know, implementing a TCB
is not something that an average programmer can do, be-
cause the program logic for the TCB is quite complicated
and error-prone, requiring a strong background in security.
Forcing unqualified developers to do such a job is an invi-
tation for vulnerabilities. Traditional software development,
although having its own problems, has much better TCB
support, which provides systematic mechanisms to preserve
trust state and to enforce code/data/session integrity. This
may explain why the percentage of vulnerable web applica-
tions is much higher than general software.

Third, there is a usage issue: one may argue that since
many applications have implemented those security mecha-
nisms, other applications can simply reuse them. Indeed,
companies like Facebook, Google, and many banks have
put a lot of resources into securing their web applications.
Unfortunately, because the security mechanisms are imple-
mented within the program logic of their web applications,
they are tightly coupled with the applications. Even if the
code is open source, it is not easy to just use them directly.
Other applications might reuse their ideas, but not their
code. Moreover, unlike the TCB, which is meant for oth-
ers to use, the security mechanisms implemented in those
web application are not designed for others to use; there-
fore, they are not general enough. These situations make it
difficult to use existing implementations correctly.

In summary, we believe that the stateless nature of the
web infrastructure has led to a weakened TCB for the Web,
forcing developers to implement extra protection mecha-
nisms in their applications. Mistakes made during such an
effort, or the lack of such an effort, have led to many of the
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security problems on the Web. We depict our positions in
Figure 6.

6.3 Potential Solutions
Understanding the root causes and the chain of effects can

lead us to better solutions. From the chain-effect diagram
in Figure 6, it is quite clear that potential solutions mostly
fall into three places: locations marked with 1, 2, 3 in the
figure. Let us examine each of these locations.

First, we can fix the problem at the root (i.e. Location
1). This can be done by either turning the Web into a state-
ful system, or making web applications stateless. Neither
approach is acceptable and practical. The former approach
will not only cause significant downgrading of server perfor-
mance and scalability, but also change fundamentally how
the Web functions, making it resistant to acceptance by in-
dustry. We do not believe this is a viable solution. The latter
approach is incompatible with the needs of most web appli-
cations. For example, an online-retailing application has to
be stateful to track the contents of its customers’ shopping
carts.

Second, we can fix the problems that directly cause the
security flaws. (i.e. Location 3). To achieve that, we can
develop methods, reusable libraries, and tools to help devel-
opers make up for the deficient TCB, reducing their errors.
We can also improve our education and training, turning
all web application developers into security experts. These
ideas sound familiar, as they are exactly what we have been
doing for the last 15 years, and we are still facing the fact
that over 80% of web applications are vulnerable. If we have
not been so successful in this approach, it will be hard to
believe that we can do better in the future, given the fact
that Web applications are getting more and more sophisti-
cated with the emergence of Web 2.0, HTML 5, and other
advanced web technologies.

Third, we can fix the insufficient TCB at Location 2, so
the web infrastructure can provide systematic security sup-
ports similar to those in the stateful framework, i.e., preserv-
ing trust states and the integrity of code, data, and session.
With this support at the TCB level, developers will be liber-
ated from those complicated and error-prone tasks; this can
potentially lead to a significant reduction in the number of
security flaws.

We strongly believe that the third approach is what we
should take, although most existing work has taken the sec-
ond approach. If the fundamental problems with the TCB
are not fixed, even if we can fix a problem specific to certain
attacks, new attacks will keep coming up, because the Web
is still evolving, with new features being added regularly.
We also acknowledge that fixing the TCB correctly is not
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an easy job; it requires a well thought-out design. While
we are working on this direction with some preliminary re-
sults [6, 10, 19, 26], there is still a long way to go. We hope
that this position paper can convince more researchers to
join the pursuit.

7. SUMMARY
When deciding to make the Web stateless, developers of

the web infrastructure failed to analyze the security conse-
quence of such a decision; they failed to realize that being
stateless would lead to a weakened TCB. No effort was made
by the infrastructure developers to enhance the TCB up to
a level that is comparable with the TCB of stateful frame-
works. As a result, the burden of bridging the gap was
left to web application developers, who have to bear the re-
sponsibilities of providing security support within their code.
Average developers are not qualified to bear such responsi-
bilities, and often make mistakes that lead to security vul-
nerabilities. That, we believe, is the main cause of the many
security flaws in web applications.
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