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ABSTRACT
Access control is an area where one size does not fit all.
However, previous work in access control has focused solely
on expressiveness as an absolute measure. Thus, we discuss
and justify the need for a new type of evaluation framework
for access control, one that is application-aware. To this end,
we apply previous work in access control evaluation, as well
as lessons learned from evaluation frameworks used in other
domains. We describe the analysis components required by
such a framework, the challenges involved in building it, and
our preliminary work in realizing this ambitious goal. We
then theorize about other areas within the security domain
that display a similar absence of such evaluation tools, and
consider ways in which we can adapt our framework to
analyze these broader types of security workloads.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Ac-
cess controls; I.6.5 [Simulation and Modeling]: Model
Development; K.6.5 [Management of Computing and
Information Systems]: Security and Protection

General Terms
Security, Theory, Verification

Keywords
Access Control Scheme, Application-Aware, Expressiveness,
Suitability Analysis

1. INTRODUCTION
Access control is one of the most fundamental aspects of

computer security, and has been the subject of much for-
mal study. However, existing work on the formal analysis
of access control schemes has focused largely on comparing
the relative expressive power of two or more access control
schemes (e.g., [1,7,11,17,20,21,23,25]). Although expressive

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NSPW’12, September 18–21, 2012, Bertinoro, Italy.
Copyright 2012 ACM 978-1-4503-1794-8/12/09 ...$15.00.

power is an interesting and meaningful basis for comparing
access control schemes, in practice it is not a sufficient in-
dicator of suitability to any particular application. That
is, the knowledge that a scheme T is more expressive than
another scheme S provides no assurance that T is the best
access control scheme for use within a particular real-world
application context. It could be the case, for instance, that S
is expressive enough for a particular application and also has
lower administrative overheads than T would in the same
situation. Furthermore, as was noted in a recent NIST report,
access control is not an area with “one size fits all” solutions
and, as such, systems should be evaluated and compared
relative to application-aware metrics [14]. This report notes
a variety of possible access control quality metrics, but pro-
vides little guidance for actually applying these metrics and
carrying out practical analyses of access control schemes.

For these reasons, we advocate the development of an
application-aware evaluation paradigm for access control
schemes. Informally, this problem can be stated as follows:
Given a description of a system’s access control needs and
a collection of access control schemes, which scheme best
meets the needs of the system? Instances of this question
can arise in many different scenarios, encompassing both the
deployment of new applications and the reexamination of
existing applications as assumptions and requirements evolve.
Modern software applications are complex entities that may
control access to both digital (e.g., files) and physical (e.g.,
doors) resources. Given that organizations are typically
afforded little guidance in choosing appropriate security so-
lutions, application-aware analysis of access control could
help developers sort through the myriad available security
frameworks (e.g., WPL [18], Spring [24], Shiro [3], etc.) and
the multiple access control schemes embedded in each.

Despite the vast differences in approach between existing
access control expressiveness evaluation and the application-
aware evaluation process that we propose, we believe that
expressiveness will remain a key component in the process.
To this end, we investigate the use of expressiveness-based
techniques for ensuring that the access control schemes con-
sidered for an application possess the necessary functionality.
However, unlike prior work, we place application-aware con-
straints on the types of safety and security properties that
must be preserved by an access control scheme while servic-
ing the needs of a particular application. Furthermore, we
study techniques used for cost analysis in other domains to
present the first formal notion of an access control workload
and offer guidelines for workload construction and access
control cost analysis.
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Thus, we proceed in developing an application-aware evalu-
ation framework in two parts: the structures used to formally
specify the inputs to the analysis process (e.g., the descrip-
tion of the application in question, the access control schemes
that are candidates for the application), and the analysis
process itself (i.e., the general workflow used to analyze the
access control schemes with respect to the application). We
believe that the process is fairly mature. Indeed, we choose
machine-like input structures whose inherent execution se-
mantics make them natural to evaluate. This intuitiveness
is one strength of our approach, and lends to our goal of
creating a more formal representation of an informal process
that is already carried out by administrators in the real world.
Its familiarity in this sense means that it will be natural to
analysts, while its formal rigor will allow administrators to
have confidence in its results. However, at this point, the
structures for specifying of inputs to the framework are much
less mature, and each presents its own challenges. Thus, the
“right” way of representing each component is a subject of
ongoing work.

In this paper, we describe the analysis process and our pre-
liminary progress in properly specifying the process’s inputs.
Although the ideas we present are somewhat nascent, they
reflect significant progress towards realizing the ambitious
goal of application-aware security analysis. We then present
shortcomings of the basic forms of the various input struc-
tures we use, and discuss ways in which this framework must
be improved to realize the full goals of application-aware
evaluation.

Finally, we discuss other areas within the security domain
that display a similar absence of application-aware evaluation
tools. We believe that a framework with the properties
described in this paper can be adapted toward formalizing
other types of broader security workloads and analyzing
candidate implementations with respect to those workloads.
That is, given a more general security goal, we may be able
to utilize a similar approach to that which we advocate for
the analysis of an application’s access control needs: first,
identify the candidate solutions which are capable of servicing
the security workload while preserving its requisite safety and
security properties, then determine which solution works best
relative to the application’s specific cost valuations. In this
way, we make progress not only in a more thorough evaluation
of access control, but also a more complete evaluation of a
range of security problems. Thus, we make the following
contributions:

• We present the first discussion of the shortcomings of
current, application-agnostic access control methods.

• We discuss requirements of a formal structure for specifying
access control workloads, a novel concept that we introduce
to capture an application’s specific access control needs. A
workload formalizes both the functional requirements of an
application, as well as expected patterns of invocation and
use of this functionality. We also describe our preliminary
efforts in creating such a structure.

• We describe a two-phase, application-aware analysis pro-
cess for access control schemes. In the first phase, we apply
expressiveness-based access control evaluation techniques
toward proving that candidate access control schemes are
capable of executing the workload while maintaining se-
curity and safety properties deemed important to the ap-
plication. In the second phase, we apply novel techniques

inspired by cost evaluation in other domains toward cal-
culating the cost of executing the workload within each
candidate scheme.

• We describe ways in which an application-aware evaluation
framework may lend itself to the development of similar
techniques and tools in the broader security domain.

The remainder of this paper will be structured as follows.
In Section 2, we present several scenarios that motivate the
development of an application-aware access control evalua-
tion framework, and discuss why past work in expressiveness
evaluation in access control is insufficient for these scenarios.
In addition, we highlight select work in cost analysis in other
domains. In Section 3, we combine these ideas to form an
overview of the design of an application-aware access control
evaluation framework. In Section 4, we discuss methods for
formally specifying the inputs to the analysis framework,
including access control schemes, workloads, implementa-
tions and costs. In Section 5, we describe simulation-based
methods for utilizing implementations to calculate the cost
each scheme incurs in implementing a workload. We present
some of our progress toward realizing an early version of
such a framework in Section 6, and discuss shortcomings and
open problems in Section 7, including the adaptation of such
a framework to more general security problems. Finally, we
conclude in Section 8.

2. BACKGROUND
In this section, we present several scenarios to motivate

an application-aware analysis of access control, and discuss
why past work is insufficient in addressing these scenarios.

2.1 Motivating Scenarios
In this section, we discuss several realistic evaluation sce-

narios for which previous work is ill-suited. One such scenario
is the establishment of new systems with access control com-
ponents. For example, suppose a new resort is opening, and
to choose an appropriate security package, the systems man-
agers consider a number of access control use cases. Guests
should be allowed into the resort at all hours, but in certain
areas during business hours only, and of course into no guest
rooms but their own. Office staff should have access to the
necessary portions of guest records during their shift. Main-
tenance staff must have access to supply areas and guest
rooms, as well as records of which guest rooms are vacant. In
modern facilities, we expect access to both physical and elec-
tronic resources to be controlled by computer systems. An
application-aware access control analysis framework would
enable the resort managers to formalize their workload’s
requirements and their candidate security packages’ mech-
anisms, and use these formalizations to choose the package
that best meets their needs with minimal overheads.

Another scenario that highlights the need for application-
aware evaluation for access control is re-evaluating the access
control components of existing systems whose requirements
or operating assumptions have evolved. For example, two
MITRE technical reports [13, 26] highlight the fact that the
lattice-based access control scheme relied upon by the U.S.
Armed Forces is beginning to show signs of age. In particular,
[13] cites several examples of improper and unauthorized out-
of-band data sharing that have occurred because it is “easier
to ask for forgiveness than for permission,” given the high
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delays and human costs associated with utilizing the proper
channels. The second report [26] posits that this phenomenon
is a byproduct of an increasingly dynamic military that
relies on a dizzying array of data sources and ever-changing
coalitions, but bases access decisions on a static classification
system. In short, the changing military workload has led to
confidentiality breaches due to an ill-fitting access control
scheme. An application-aware analysis could help identify
the root causes of these failures and assess the utility of
alternate access control approaches.

Example 1. In the military application just described, data
is generated simultaneously by a large number of independent
processes. Coalitions are created, joined, and disbanded with
high frequency. Thus, large numbers of accesses need to be
granted or revoked at once, often within a very short time.�

2.2 Related Work
The formal study of access control schemes began with

the seminal paper by Harrison, Ruzzo, and Ullman that
investigated the rights leakage problem [11]. This paper
formalized a general access control model and proved that
determining whether a particular access right could ever
be granted to a specific individual—the so-called “safety
problem”—was an undecidable problem. Shortly thereafter,
Lipton and Snyder showed that in a more restricted access
control system, this problem was not only decidable, but
decidable in linear time [17]. These two results introduced the
notion that the most capable system is not always the right
choice—that restricting our system can yield higher efficiency
and greater ease in solving relevant security problems. This
led to many results investigating the relative expressive power
of various access control schemes, often leveraging some
notion of (bi)simulation (e.g., [1, 7, 20,21,23]).

Further work by Ammann et al. [1], Chander et al. [7],
and Li et al. [16] developed simulation-based frameworks
for comparing the expressive power of various access con-
trol schemes. These simulation frameworks proved to be
too relaxed, allowing almost any reasonable scheme to be
shown equivalent to all others. To address this, Tripunitara
and Li [25] developed a more restrictive notion of expres-
sive power. Their framework supersedes the more informal
notions of simulation developed in prior works by requiring
the use of specific types of mappings between systems that
guarantee relevant security properties are preserved under
simulation; this provides a greater level of precision when
ranking access control schemes in terms of their expressive-
ness. Unfortunately, none of these frameworks support the
comparison of access control schemes with regards to their
ability to perform well within a particular environment.

As such, the most we can learn from these simulation-
based frameworks is an absolute ranking in expressiveness,
irrespective of the requirements of the application. As stated
above, it is unclear that there is any benefit to expressiveness
beyond “expressive enough,” but past work does not even
provide us with a method for ensuring that a scheme is ex-
pressive enough for an application. Thus, it seems clear that
a new, application-aware access control evaluation paradigm
is needed.

The need for application-aware evaluation of access con-
trol systems was reinforced by a recent NIST report, which
states that “when it comes to access control mechanisms, one
size does not fit all” [14]. The report bemoans the lack of
established quality metrics for access control systems, going

construct
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construct
extensions

drop
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implemen-
tations

cost
analysis

scheme
decision

Figure 1: Workflow of an application-aware analysis frame-
work for access control

so far as to list numerous possibilities, but stopping short of
explaining how one might choose between them or evaluate
systems with respect to one’s specific requirements. In this
paper, we explore exactly this problem.

Recent work by Wang et al. [27] describes methods to
safely extend role-based access control schemes with delega-
tion primitives. However, role-based access control is only
one particular scheme, and delegation is only one particular
capability that may be desirable in an access control environ-
ment. Thus, this work provides no guideline for extending
other access control schemes, or using extensions to allow
different classes of abilities. In our work, we discuss the need
to extend arbitrary access control schemes with a variety of
added capabilities (see Section 4.3.2).

As a result of the lack of access control evaluation tools
that are application-aware, there is little work in the field
for generating synthetic traces that are representative of an
application. Thus, for inspiration in designing the first access
control workloads, we turn to work in other domains. In
the field of disk benchmarking, Ganger [10] observes that
interleaved workloads provided the most accurate approxima-
tion of recorded traces. Thus, mechanisms for representing
access control workloads must be capable of simulating the
interleaved actions of multiple actors. This view is reen-
forced by the design of IBM’s SWORD workload generator
for stream processing systems [2]. This work also points out
that synthetic workloads need to replicate both volumetric
and contextual properties of an execution environment in
order to provide an accurate indication of a system’s perfor-
mance within that environment. Thus, we conjecture that
access control workloads as well may need to be capable of
expressing not only volumetric statistics such as number of
documents created, but also contextual statistics such as the
type of content in created documents.

3. FRAMEWORK OVERVIEW
In this section, we present an overview of the components

of an application-aware access control evaluation framework.
Figure 1 depicts the process of utilizing such a framework to
evaluate a series of access control schemes with respect to a
specific application. First, the application’s access-control-
relevant properties and requirements are formalized as an
access control workload. This workload must describe two
components. The operational component specifies an abstract
model of the capabilities the application requires of its access
control solution, including the properties of this model that
acceptable implementations must preserve. The invocational
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component, then, describes the usage pattern in which the
final access control system will be expected to perform.

Next, in the capability analysis procedure, the access con-
trol schemes to be evaluated are formalized as state machines.
Each state machine must be shown to be expressive enough
to implement the operational component of the workload or
extended to enable an implementation. An implementation
is a formal mapping from the workload’s operational com-
ponent to an access control scheme that shows the access
control scheme is expressive enough to simulate the work-
load. The notion of an implementation is application-aware
in that an application can require that all access control
scheme implementations satisfy several additional, high-level
properties.

Finally, in cost analysis, traces of access control actions are
generated to match the workload’s usage pattern as specified
in the invocational component. These traces are translated
into concrete actions in each candidate scheme using the
implementation, and the cost of executing the translated
traces is evaluated, yielding a total cost for each scheme.
The notion of “cost” that is used, in the application-aware
spirit, can vary between applications, from operational costs
such as data management overheads, to human-centric costs
such as administrative overhead.

4. MODELING ACCESS CONTROL
In this section, we discuss the structures necessary to spec-

ify the inputs to our access control analysis framework. We
describe minimal requirements of each structure, which lead
us to the basic forms we use in our preliminary investigation
(Section 6). We also discuss areas of improvement in our
structures to increase expressiveness and ease of specification.

4.1 Models, Schemes, and Systems
At the heart of an access control system is the access control

model. Intuitively, an access control model is a collection
of data structures used to store the information needed to
make access control decisions. Each configuration of these
data structures (each access control state) defines an access
control policy, and thus changing the contents of these data
structures changes the policy. An access control model is
formalized as the set of all possible configurations of its data
structures, that is, the set of all possible states.

An access control scheme, then, refines a model by defining
sets of commands and queries that can be used to interact
with these states. Commands formalize the set of transfor-
mations that can be made to the state, and thus define the
reachability relation between states. Queries define which
questions users can ask of the system and how the system
will interpret the state to construct its responses to such ques-
tions. Lastly, an access control system is an instantiation
of a scheme, defining the subset of the scheme’s commands
that are immediately available, as well as an initial state.

Reasoning about models, then, allows conclusions to be
drawn only about access control systems’ data structures.
This has proven to be too abstract, as previous work shows
distinctions between schemes with identical models but dif-
ferent commands [7, 25] or queries [23, 25]. On the other
hand, little is to be gained by including a system’s initial
state in an analysis; generalizing over all states in a scheme
allows us to make stronger claims about its properties. Thus,
in this paper, our discussions mainly consider access control
schemes. This allows us to make claims that are general

enough to affect more than just a single instantiation (claims
that could be invalidated even by minor changes to the state),
while being specific enough to enable a more powerful analy-
sis than can be performed at the model level. Furthermore,
the inclusion of the commands and queries enables reasoning
about traces of actions, an integral part of cost analysis.

Thus, the main structure that we will study is the access
control scheme, containing the following components:

• The set of states, which specifies the data structures the
system will use to store access control information

• The set of commands, which specifies the procedures avail-
able for transforming the state

• The set of queries, which specifies the access control ques-
tions that can be asked of the system and answered from
the information in the state

As will be seen later, the ability to represent both the state
of the system, as well as its means of usage and modification
is central towards analyzing a particular scheme’s ability to
service some access control workload.

4.2 Workloads
An access control workload needs to formalize all of the

access control requirements of an application. Thus, we
believe it should contain two components: an operational
component that describes the capabilities the application
requires of an access control scheme, and an invocational
component that describes how these capabilities will be used.
In this section, we present the first discussion of the structure
of an access control workload.

4.2.1 Operational Component
The operational component of an access control workload

must describe the minimum set of capabilities that a suitable
access control scheme needs to support in order to properly
operate within the application of interest. Thus, it should
describe, at a high level, the following components.

• The set of states, which describes the access control rele-
vant information that the system must maintain

• The set of commands, which specifies the procedures that
the system requires for modifying the state

• The set of queries, which specifies the access control ques-
tions that the system needs to answer from the state

• The implementation restrictions, which specify what prop-
erties an implementation of this workload must possess

Describing the first three components can thus be accom-
plished by describing an access control scheme that meets
the applications’ requirements. We note that, while access
control workloads and schemes can be formalized the same
way, they differ in their intention: a scheme represents a
functioning piece of software, while a workload’s operational
component is built by the analyst to represent the higher-
level desired functionality of a system, without necessarily
being appropriate for direct implementation.

While the first three components listed above represent a
specification of the system’s capabilities, the fourth describes
high-level properties that any implementation of this work-
load must have. Intuitively, these properties dictate how
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each state and command of the workload is represented in
the access control scheme. For example, the access control
policy of any given workload state should be represented
by an access control scheme state with exactly the same
access control policy, or else the implementation would fail to
enforce the same access control policy as the workload. But
depending on the application, additional properties may be
useful as well, such as requiring that a single command in the
workload be represented as a single command in the access
control scheme (therefore ensuring the atomicity of workload
commands). We discuss such properties in Section 4.3.1.

Example 2. Recall the application described in Example 1.
The operational component of the workload that represents
this application should describe the components it uses to
store the sets of users in coalitions, the documents that mem-
bers have access to, based on their country of origin and
need-to-know information, and other state information that
naturally encodes the access control policy of the application.
Commands should be available that add groups of people,
perhaps previously unknown to the system, to new or exist-
ing coalitions, granting them some accesses in the process.
Coalitions should also be able to be disbanded, removing
large numbers of accesses from various classes of users. The
set of queries may allow asking whether a user has a particu-
lar access, whether a user belongs to a particular coalition,
whether a user’s home country is a particular country, and
any other data that is used to make decisions within the
system. As a military (confidentiality) system, the type of
implementation required will likely be relatively strict. �

4.2.2 Invocational Component
As we discussed in the previous section, describing the

capabilities that an application requires of its access control
scheme allows us to decide which schemes are capable of
operating within a particular application. However, it offers
no insight into which is most suitable for the application.
Towards this goal, we believe that an access control workload
should also contain an invocational component describing the
ways in which the capabilities of the workload are to be used
in practice.

The invocational component of an access control workload
should describe the ways in which the system is expected to
be used. At a minimum, the invocation component should
be able to dictate the order in which commands are executed,
and which queries are asked during which paths of execution.
We identify the set of actions as the set of commands com-
bined with the set of queries (i.e., the operations that can be
executed within the access control system). A simple invoca-
tion structure, then, might simply describe the probability
distribution among actions.

Example 3. The invocational component to accompany
the operational component described in Example 2 should
describe a number of correlations between actions. For exam-
ple, when a coalition is formed, large numbers of documents
that each own should be shared with the others. When
a coalition is disbanded, these accesses should be revoked.
Additionally, disbanding often indicates the end of a mission,
which can cause the disbanding of other coalitions as well.�

Unlike the operational component of a workload, for which
there seems to be a single, obvious choice, in our preliminary
investigations, we considered several different structures for

A1

A2

A3

A4

Figure 2: A petri net, demonstrating action dependencies

specifying the invocational component of a workload and
found them all to be plausible candidates. For example,
while a probability distribution over actions is a conceptually
simple description of possible invocations, it can not express
any dependency between actions, making it unsuitable for
an application in which, e.g., adding a user is necessarily
followed by granting this user access to a shared resource.
Below we describe three of the structures we considered.

Petri nets are one possible candidate structure for an access
control workload’s invocational component. A Petri net is
a type of state machine in which paths alternate between
reaching places and transitions. This type of structure can
be applied to access control workload invocations by labeling
transitions with actions from the workload scheme. Whenever
a transition is reached, the action it is labeled with is executed.
Thus, as shown in Fig. 2, it is simple to represent action
dependencies as described above. In this Petri net, action
A1 will be executed first, followed by A2 and A3 (in either
order), and finally followed by A4. In addition, Petri nets
are a natural representation of concurrent and distributed
processes, making them powerful for expressing applications
in which, e.g., there are many users acting on the access
control system simultaneously.

Another structure that may be useful in specifying access
control invocations is the agent-based “data factory,” as in
SWORD [2]. As it was built for high-volume data processing
systems, an invocation based on the techniques in SWORD
would allow complex, interleaving traces of actions caused by
a large number of communicating and cooperating entities.
This type of high-volume, multi-agent scenario is likely to
occur in access control systems with automatically-generated
data from multiple sources that requires immediate process-
ing.

Finally, we mention the use of constrained workflow sys-
tems [6, 9, 27]. These structures allow for specification of
execution constraints for actions, such as those commonly
used to enforce separation of duty. Thus, execution con-
straints are likely to be useful in specifying invocations for
business-oriented applications.

As will be discussed in Section 6, our preliminary work
on analyzing the invocation component of a workload treats
it almost as a black box, and therefore we are free to defer
the task of identifying the best way of using these structures
to construct a flexible, expressive, easy-to-specify invocation
to future work. Another reason to postpone its formal de-
velopment is that, despite having already identified several
desirable features of a structure for specifying invocations
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(e.g., the Petri net’s ability to express concurrent execution),
we expect to encounter additional features as we analyze new
access control applications.

4.3 Implementations
An access control implementation is a mapping between a

workload and a candidate scheme. The existence of such a
mapping (and proof that it satisfies the required implementa-
tion properties) shows that the scheme is capable of executing
the application described by the workload. Furthermore, an
implementation provides a “recipe” that describes how to
use the scheme to satisfy the requirements of the workload.
We refer to the implementation that describes how to use an
access control scheme S to satisfy the requirements of the
application described by an access control workload W as an
implementation of W in S.

Intuitively, an implemenation dictates how the actions of
the workload can be carried out in the access control scheme.
An implementation in this sense is akin to a simulation
in previous work [1, 7, 20, 21, 23]. Although some previous
work [5] attempts to prove expressiveness by describing only
the mapping from states to states, other work shows that
commands [7] and queries [25] can also affect the ability
of a scheme to successfully simulate another. Thus, an
implementation must include the following:

• The state mapping, which translates an abstract workload
state to an equivalent state in the implementing scheme

• The command mapping, which translates a workload com-
mand to a list of commands that perform the same action
in the implementing scheme

• The query mapping, which maps a workload query to an
equivalent query in the implementing scheme

Example 4. To specify a scheme’s implementation of the
workload detailed in Examples 2 and 3, one must describe
several mappings. The coalition membership information
and other workload state elements must be stored within
the scheme’s state components. Each of the workload’s
commands should be translated into a series of functionally
equivalent commands in the scheme. Finally, the workload’s
queries should be mapped to equivalent scheme queries. �

4.3.1 Implementation Properties
An access control scheme can admit many different imple-

mentations of a workload, and those implementations are
sometimes qualitatively different from one another. Two
qualitatively different implementations (two different imple-
mentation types) may provide different security guarantees,
and hence as mentioned in Section 4.2.1, a workload’s op-
erational component should specify the set of qualitative
properties that an implementation must satisfy.

A fairly minimal property for implementations, access-
safety, requires the set of accesses be preserved across the
implementation. That is, for any given state in the work-
load, its equivalent state in an implementing scheme should
respond in the same way to any queries of the form “Does
subject s have access right r to object o?” Indeed, some past
work in expressiveness analysis uses only this restriction in
their simulations [1,23]. A similar implementation constraint
is simple safety (after the simple safety question [11, 25]),
which asks, “Can subject s ever obtain access r to object o?”
An implementation with simple safety preserves the answers

to all instances of the simple safety question. Generalizing
even farther, the temporal-safety property requires that all
propositional formulas over all queries be preserved when
either existentially or universally temporally quantified. (A
universal quantifier requires a propositional formula to be
true at all subsequent states, and an existential quantifier
requires it to be true at some subsequent state.)

Grant-safety and revocation-safety relate to the execution
of multiple commands in an implementing scheme to simulate
a single command in the workload scheme. Grant-safety
requires that, if a permission is granted to a subject during
the chain of commands, it be required by the action. That
is, no permissions are granted and later revoked. Revocation-
safety, similarly, requires that no permissions be removed and
later granted again. For example, if a workload command
grants one permission, an implementation that is not required
to be grant-safe could grant ten permissions and then revoke
the nine that were unnecessary. Requiring these properties
can thus eliminate implementations that are unfavorable, but
can also prohibit certain acceptable implementations.

Another property that may be desirable for implementa-
tions is one we call the homomorphic property. An imple-
mentation is homomorphic if any substitution of the state el-
ements’ identifiers yields another valid implementation. This
prevents implementations that use the names of subjects,
objects, or other elements of the state to encode additional
data (we identify this as a type of “cheating,” as it can ex-
tend the capabilities of an access control system to be nearly
limitless.)

Finally, exposure-robustness enforces that the system be
safe (i.e., preserve the other required implementation proper-
ties) even if the implementing scheme’s commands are used
arbitrarily (i.e., not only in the way that simulates the work-
load scheme’s commands). For an implementation to be safe
under this definition, it must not be possible to violate other
properties of the workload scheme by interleaving workload
commands with implementing scheme commands. Implemen-
tations that are not required to preserve this property may
only be safe if the scheme’s commands are considered strictly
in the context of simulating the workload’s commands.

In our preliminary investigation (see Section 6), we use a
particularly strict notion of implementation, which allows
us to demonstrate our analysis process. A subject of future
work is developing a more thorough understanding of various
implementation properties in an effort to ensure that imple-
mentations are neither too strict nor too loose in preserving
the important characteristics of an application. An analysis
that uses too strict a notion of implementation may yield
an inefficient mapping in an effort to preserve features that
are unneeded. On the other hand, using an implementation
that lacks the features necessary for a workload can lead
to violations of security assumptions. For example, if the
application in question will not reveal the access control
scheme’s commands directly to untrusted users, requiring an
exposure-robust implementation may result in a suboptimal
mapping. Conversely, if the scheme’s commands are made
available, failing to preserve exposure-robustness can result
in an implementation that enters states that the workload
considers unsafe.

4.3.2 Extending Schemes
If there is an implementation of the workload in each of

the schemes one is interested in analyzing, and each of these
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implementations satisfies the required properties, then the
schemes in question are all capable of implementing the
workload. However, this is not always the case. It is possi-
ble, for example, that one of the candidate implementations
satisfies access-safety, but accomplishes this by storing ad-
ditional metadata in the names of files, and thus violates
the homomorphic property. If this is a required property
for implementations of the workload in question, but such
an implementation can not be constructed easily within the
scheme, then this scheme must be dropped from the analysis
or enhanced in some way to expand its expressiveness and
enable the stronger implementation. It is also possible that
the scheme is not capable of implementing the workload at
all, even under the most relaxed definition of implementation.

In either case, it is possible that this under-expressive
scheme nonetheless has the lowest execution cost. Thus, if
the additional required expressiveness could be added to the
scheme in a similarly low-cost way, the resulting extended
scheme may yield the most efficient implementation. For this
reason, we claim that it is desirable to be able to extend the
access control scheme in such a way that newly enables it to
implement the workload. An extension to an access control
scheme specifies one or more of the following:

• Additional state components to be added to the state

• Additional commands to be added to the command set

• Additional queries to be added to the query set

One must use care, however, when extending schemes. Al-
though virtually any changes to an access control scheme
will yield another valid scheme, not all changes will yield a
scheme that preserves the security properties of the origi-
nal. For example, almost any scheme will be “broken” if we
add a “grant-all” command that grants all permissions to all
subjects. If we allow an extension to arbitrarily change the
specification of a scheme, we are then effectively writing an
access control scheme from scratch, rather than extending an
existing scheme. To maintain the intuition behind the term
“extension,” we enforce that the changes made to the scheme
at most enable strictly greater expressiveness without affect-
ing any of the scheme’s possible existing implementations.
Specifically, in order to safely extend a scheme, one must
prove that the extension does not violate any of the security
properties of the scheme. Which security properties are rele-
vant can depend, as expected, on the type of implementation
in question. Showing that there is an implementation of
the original scheme within the extended scheme proves that
the extended scheme can be used transparently in place of
the original. The violation of even simple safety resulting
from extending a scheme with the above “grant-all” command
can be detected by attempting (and failing) to construct an
implementation of the original scheme within this extended
version while preserving simple safety.

Example 5. Consider the scenario in which, when con-
structing the implementation described in Example 4, it is
discovered that the scheme does not have any state compo-
nents that can be used to maintain a user’s home country.
However, the coalition-based workload, as described in Ex-
amples 2 and 3, requires this information for making policy
decisions and answering certain queries. Thus, one may at-
tempt to extend this scheme by adding to the state a relation
that maps users to home countries and adding a query to
ask whether a user is a citizen of a particular country. �

Thus, having justified the need for ensuring that an exten-
sion will not violate the scheme’s security properties (with
respect to the desired type of implementation), it is desirable
to characterize the set of extensions that satisfy this require-
ment. This would enable us to more easily verify that an
extension is safe, without constructing an implementation
for every extension we want to use. A description of the
structural properties of a safe extension (for a given type of
implementation) would enable easier verification than check-
ing the properties directly or building an implementation.

Note, though, that extending a scheme is not necessarily
without penalty. Since, in practice, these extensions would be
implemented as additional trusted code that communicates
in a secure way with the original access control software, one
may be concerned if a high proportion of the total state is
stored within the extension, or if a large amount of commu-
nication needs to occur between the original state and the
extension state. If desired, these concerns can be addressed
within the definition of cost measure (see Section 4.4.1).
For example, one can consider the measure, “the maximum
proportion of total state contained within the extension.”

4.4 Costs
In this section, we describe the input structures that specify

the costs associated with each command and query in the
candidate access control schemes.

4.4.1 Cost Measures
In order to calculate overall costs, one must first formalize

the relevant measure (or measures) within which to evaluate
the cost. We describe the minimal set of properties a cost
measure must have. First, the measure must obviously in-
clude a set of elements, the costs. A binary operator is used
to combine elements, i.e., add the costs of two actions into a
single cost. Typically, we can assume that this operator is
associative and commutative. Lastly, in the spirit of compar-
ing costs, we enforce that the elements are (at least) partially
ordered. (A specific application can require a total order
over costs to avoid finding schemes incomparable.) Finally,
we enforce that there are no “negative” elements (i.e., that
the sum of two elements is greater than the both summands).
In practice, we generally consider measures over the non-
negative real numbers, using addition as the operator and
magnitude as the (total) order.

This notion of cost measure can be used to encode a
variety of interesting access control metrics, including several
of those noted in a recent NIST report on the assessment of
access control schemes [14]. For example, costs like “steps
required for assigning and dis-assigning user capabilities” and
“number of relationships required to create an access control
policy” can be represented using the non-negative integers.
Our notion of cost measure is general enough to represent
many other types of costs as well. Metrics for human work
such as “personnel-hours per operation” and “proportion of
administrative work to data-entry work” can be represented
using the non-negative integers and a vector of two integers,
respectively. Maximum memory usage can be represented
using the integers (using max rather than addition). For
applications in which multiple metrics are relevant, vectors
of cost measures can be used.

Example 6. Recall the coalition-based workload described
in Examples 2 and 3. When analyzing the cost of an im-
plementation of this workload, perhaps the most important

121



metric is human-based, since the steps that must be per-
formed by security experts seem to be the bottleneck in the
military’s current system. Thus, perhaps the measure for
such an evaluation is, “average administrative overhead per
action.” �

4.4.2 Cost Functions
In order to calculate the total cost of a particular im-

plementation, costs of executing the implementing scheme’s
individual commands and queries must be determined. Some-
times, we can generalize over entire commands or queries
(e.g., creating a document requires a constant amount of I/
O). In other cases, the parameters of the command or query
affect the cost (e.g., adding a user to the system is more
expensive for users with greater capabilities). In addition,
some costs depend on elements of the state (e.g., granting
access to all documents with a certain property may require
checking each document, a procedure that grows in cost with
the number of documents in the system). In general, the
required function maps each (command, state) or (query,
state) pair to an element of the relevant cost measure.

In some systems, the number of commands and queries
can be quite large, with costs that are hard to generalize
(e.g., commands whose costs vary depending on both the
executing user and the command’s parameters). This makes
an access control cost function difficult to specify concisely.
A continuing thread of investigation in cost functions is in
making them easier to specify, and finding special cases that
can be expressed more compactly. One option we are investi-
gating is to aggregate costs over sequences of operations that
are common in a particular invocation, thus specifying costs
as a coarser granularity. For example, rather than assigning
a cost to each command in the scheme, it may be easier to
assign a single cost to the administrative task of creating a
new user, assigning this user default roles, and granting this
user access to shared resources.

5. SIMULATION-BASED COST ANALYSIS
Once an analyst has constructed a series of implemen-

tations of the workload in various candidate schemes, she
has a “recipe” for using each candidate scheme to execute
the actions needed by the application of interest. In this
section, we describe a method for combining this information
with each scheme’s cost function to derive the cost of using
each scheme in the scenario described by the workload. We
note that many of the invocation mechanisms described in
Section 4.2.2 are machine-like. This makes them particularly
well-suited to evaluation by simulation. Thus, the techniques
we describe in this section are simulation-based.

Because many of the natural ways of expressing a work-
load’s invocational component are structurally machine-like,
they can often be executed almost directly. For example,
the procedure to simulate the execution of a Petri net is
inherent in its description, and probability distributions are
easily sampled from, leading to natural simulation algorithms.
Executing a workload’s invocation in this way yields a list
of actions to simulate within the workload scheme. These
actions must then be translated into actions in each of the im-
plementing schemes, using the specification of each scheme’s
implementation of the workload. The resulting actions are
executed in each scheme, accruing cost and possibly altering
components of the scheme’s state. The general structure of
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Figure 3: The structure of a modular, application-aware cost
evaluation, using simulation

an application-aware cost evaluation simulator appears in
Fig. 3.

Proper methods for determining appropriate stopping con-
ditions for a simulation is a subject of future work. In our
preliminary study (Section 6), we observe the size of state ele-
ments and ensure that these sets reach a steady state. While
this method results in relatively consistent simulation results
in our study, more complex workloads (specifically, invoca-
tional components) will likely require more robust techniques
for calculating stopping conditions.

Finally, we reiterate that the execution of the invocation
component is independent of the remaining elements of the
simulation, enabling the other components to view it as a
black box that simply generates lists of actions to simulate.
For example, although a Petri net and a multi-agent inter-
leaved workflow system have very different specifications and
meanings, they can each be used by the general analysis pro-
cess without the remaining components requiring knowledge
of how the list of actions is generated.

6. PRELIMINARY RESULTS
For the coalition-based application discussed in examples in

previous sections, we have constructed a simplified workload.
We wrote and used a simulator to evaluate the cost of imple-
menting that workload on BLP (Bell-LaPadula scheme [4],
the military’s current access control solution), RBAC (role-
based access control [22]), and SD3-T (an instantiation of
SD3 [15] used to represent TBA, tag-based authorization [12]).
We fixed the required implementation properties to coincide
with the state-matching reduction, a type of implementation
defined by Tripunitara and Li [25]. We found that both BLP
and RBAC required extensions to implement the coalition-
based workload, since neither of them is capable of storing the
necessary metadata to represent the workload state. RBAC
required a smaller extension because we were able to use the
user-role relation to store workload data, but BLP required
adding nearly a complete, separate access control scheme to
its original state.

In our examination of this workload, we considered three
measures: administrative personnel-hours, number of total
I/O operations, and number of extenison I/O operations. We
use administrative personnel-hours because it is relatively
easy to quantify and reflects the amount of work that must
be done by well-paid individuals to support the functional-
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Figure 4: Change in average cost per action as number of users is varied. Averages over 1,000,000 actions from initial state
|P | = 150, |D| = 10, 000.

ity of the access control scheme. Tasks such as managing
system-wide policies, granting clearances, and creating and
deleting users are all tasks that require work of administrator
users. We use total I/O operations as a means of measuring
the computational performance as systems get very large.
This measure becomes relevant, e.g., in the context of imple-
mentations that must manipulate complex state when during
execution. Lastly, we investigate extension I/O operations to
capture the effect on expanding the trusted computing base
of an access control scheme. Implementing an extension atop
an existing access control system would require a trusted
channel for communication between the original system and
the extension, a cost our final measure attempts to capture.

Our simulator allows various parameters of the initial
state—e.g., number of users and documents, size of policy—
to be varied prior to the start of a given run. We chose
a variety of start states, then ran our simulator on each
to a point significantly beyond stabilization of the system.
Figure 4 show charts for each of our cost measures as we vary
the number of users in the simulation’s initial state. These
charts show averages over five runs. Error bars, where shown,
indicate one standard deviation in each direction.

From the point of view of the administrative personnel-
hours measure, SD3-T and the augmented BLP implemen-
tation are equally efficient, while the augmented RBAC
implementation was consistently around 25% more expen-
sive, as shown in Fig. 4a. These values do not vary with the
number of users. SD3-T and BLP are equal in this measure
due to the similarity in their implementations: all of the
expensive actions in the augmented BLP scheme are within
the extension, and its extension is very similar to the SD3-T
system.

In terms of I/O operations, SD3-T is nearly always the
most efficient. The cost of executing our workload remained
almost constant with respect to the number of users, as
seen in Fig. 4b. In contrast, BLP’s I/O costs rose linearly
with the number of users. RBAC’s extension proved to be
an expensive tradeoff. Although less information was kept
outside of the original scheme, the information that was
stored within the user-role relation was roughly exponential
in the number of users. This resulted in much higher costs
in I/O. Thus, as seen in Fig. 4b, RBAC’s I/O cost grew

exponentially with number of users, quickly growing in many
orders of magnitude once more than 100 users were created.

Our final measure considers I/O costs associated with
managing and querying extension state. Since SD3-T is
sufficient to execute our workload without an extension, its
costs in this category are always zero. However, an interesting
relationship is seen between the augmented implementations
of BLP and RBAC. Previously, BLP seemed much more
feasible than RBAC due to the latter’s managing a very
large number of roles. However, considering extension state
reveals a different scenario. As the number of users increased,
Fig. 4c shows BLP’s costs growing while RBAC’s remain
nearly constant. Thus, for systems with many users, RBAC’s
extension I/O costs were lower than BLP’s.

Although this preliminary experiment allows us to demon-
strate the usage of an application-aware evaluation frame-
work, we identified several shortcomings in some of our simple
input structures. For example, while constructing our ex-
ample workload, we found ourselves wishing our invocation
structure could express interleaved execution of actions by
different entities. Furthermore, it is possible that using an
overly strict notion of implementation resulted in our craft-
ing suboptimal implementations. Thus, one direction of
future work in developing an application-aware evaluation
framework for access control is improving our techniques and
structures for specifying the inputs to the analysis process.
We discuss several ideas toward this end in the following
section.

7. DISCUSSION
In this section, we discuss the future of application-aware

analysis, including obstacles in realizing the framework as
envisioned and ways in which it can be extended to the
formalization of more general security workloads.

7.1 Future Obstacles
Refining Input Structures As described in Section 4,

the various structures used to specify the inputs to our analy-
sis process (e.g., invocations, implementations, cost functions)
remain somewhat underdeveloped. We present the required
features of each component, and in Section 6 use simple
versions of each that satisfy these working requirements.
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Determining the desired characteristics of more expressive,
easier to specify components is an area of continuing work.

Abstraction Levels A recent NIST report [14] distin-
guishes three abstractions within access control: access con-
trol policies, models, and mechanisms. A policy describes
the high-level requirements of a system, a model is the math-
ematical representation of the system, and a mechanism is
the implementation that is deployed to enforce the policy.
Since most of our work is done at the model abstraction, it
would be preferable to have a deterministic way to transform
a policy into the more concrete representation that we use for
our workloads. This would make it easier for administrators
to represent the system requirements appropriately, without
relying on a “correct” translation from policy to model.

Implementation Non-Existence A proof that a par-
ticular implementation does not exist is typically harder to
produce than a constructive existence proof. Thus, in our
work so far, when discussing a lack of an implementation, we
often resort to informal arguments for justification. Ideally, it
would be possible to more easily prove the non-existence of of
an implementation, since such proofs give higher confidence
in the necessity of extending access control schemes.

Implementation Optimality The constructive nature
of an implementation of a workload in a scheme leads quite
naturally to the cost analysis of this scheme, as workload
actions can be translated into scheme actions by the imple-
mentation. Given an access control scheme S and a workload
W , we therefore carry out the cost analysis of a particular im-
plementation of W in S, rather than the best implementation
of W in S. It would be useful to develop techniques for prov-
ing the optimality of an implementation. This would enable
analysts to make strong claims about the (sub-)optimality
of an access control scheme for a given workload without
needing to justify or defend the implementations used dur-
ing their analysis. Furthermore, methods for automatically
constructing implementations could enable the use of an
application-aware framework by analysts without a strong
understanding of constructing or proving implementations.

7.2 General Security Applications
Web security is built on public key infrastructures (PKIs)

in which trusted certification authorities (CAs) provide cer-
tificates authorizing web services to assert a DNS name. This
infrastructure, while typically thought of as an authentication
system, can be modeled as an access control system that au-
thorizes cryptographic keys held by web services to be bound
to certain DNS names. Recently, there have been high profile
compromises of CAs in the web PKI domain [8,19]. These
failures have made clear the fragility of the trust model and
revocation mechanisms in the web space, and have inspired
the community to examine methods both for reinforcing
the system’s mechanisms to prevent fraudulent certificate
issuances and improving the robustness of the revocation
infrastructure. However, there is considerable debate in the
community regarding what the appropriate metrics for judg-
ing replacement systems should be, and how the different
proposals compare under realistic conditions.

We believe that problems such as these can be represented
as application-aware evaluation problems. For example, web
services and their certificates can be represented within the
operational component of a workload. This workload’s com-
mands could represent such operations as issuing and revok-
ing certificates, and its queries could formalize, for example, a

web user verifying the identity of a server. Candidate schemes,
then, could be constructed to describe how each of these
actions would be implemented in various proposed replace-
ment architectures. The required type of implementation
would need to enforce, e.g., that identities are not accepted
without a certificate, and certificates are only be issued to the
correct owner. The costs of individual actions could then be
combined with an invocational workload component that de-
scribes the workflow of the typical web deployment, yielding
a cost for each scheme. In a similar fashion, we believe that
such techniques can be applied to a wide range of security
problems, allowing analysts to model the application as a
workload, candidate solutions as schemes, and the execution
of the former using the latter as an implementation.

8. CONCLUSION
In this paper, we have motivated the need for new evalua-

tion techniques for access control that transcend expressive-
ness and account for the differences between applications. We
described the design goals of an application-aware analysis
framework and discussed how it can be utilized to determine
which access control scheme is best suited to an applica-
tion. In such a framework, an application’s requirements
are formalized as a workload, a novel structure that enables
evaluation of schemes’ ability and cost to operate within the
application. We presented the results of preliminary work
in realizing our goal, and detail future plans for continued
progress. Finally, we hypothesize that access control is not
alone in its need for (or lack of) application-aware evaluation
tools, and propose ways to apply these techniques to other
problems in the security domain.
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