
Point-and-Shoot Security Design:
Can We Build Better Tools for Developers?

Sven Türpe
Fraunhofer Institute for Secure Information Technology (SIT)

Rheinstraße 75
64295 Darmstadt, Germany

sven.tuerpe@sit.fraunhofer.de

ABSTRACT
Security property degrees systematize the angles from which
one can discuss the security of a system. Microscopic proper-
ties characterize how specific actions affect parts of a system.
Mesoscopic properties describe how the pursuit of an attack
objective may affect the system and the attacker. Macro-
scopic properties represent the interaction of a threat envi-
ronment with a system. Properties of different degrees are
interdependent, but not in a simple and universal manner.

Security design aims to control security properties, shap-
ing them in a favorable way. Its objective is macroscopic
control through design decisions on all three degrees. De-
sign tools today occupy mostly the lower half of the property
degree scale. A few macroscopic design aids exist but pro-
vide little guidance to engineers.

Security designers are thus in a similar situation as pho-
tographers, having to make fundamental design decisions
without methodologies other than their private, homegrown
approaches. This is essential for art but a deficiency in en-
gineering. Standardized mechanization in point-and-shoot
cameras helps inexpert photographers to a limited extent
but can get in the way of the experienced and ambitious.
Point-and-shoot security design, shorthand for current prac-
tice as well as a widely held expectation, may do the same
to security engineers.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection; D.2.0 [Software Engi-
neering]: General—Protection mechanisms; D.2.2 [Software
Engineering]: Design Tools and Techniques—Computer-
aided software engineering (CASE); D.2.1 [Software En-
gineering]: Requirements/Specifications—Tools

General Terms
Design, Security

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NSPW’12, September 18–21, 2012, Bertinoro, Italy.
Copyright 2012 ACM 978-1-4503-1794-8/12/09 ...$15.00.

Keywords
Security engineering, security properties, property degree,
macroscopic security, systematization, security tools, ab-
straction, security model, adversary, threat, philosophy, epis-
temology

1. INTRODUCTION

1.1 Science and Practice of Photography – a
Parody

Year after year, computer scientists at the Metropolis In-
stitute of Photography churn out reams of research papers,
published in eminently respectable venues. A typical paper
laments the state of affairs in photography, illustrates the
point using widely known failures, and goes on developing
a promising new approach. Using advanced image process-
ing calculi, a novel way of analyzing, constructing, proving,
or verifying photographic properties is proposed. The sci-
ence revolves around the triad of hue, saturation, and value,
sometimes amended with non-blurredness, properties con-
cordantly believed to constitute the essence of photography.
The scientists demonstrate their approach using a digital
photo, 10 by 15 pixels large, of their lab coats. They con-
clude their results promise significant improvements of pho-
tography after further research.

Meanwhile, Macroshot Corporation makes a fortune sell-
ing shrink-wrapped stock photo collections. Macroshot’s
reputation had suffered a bit when the Internet came about.
Their lomographies attracted lots of negative reviews online,
whereas formerly their customers had silently discarded poor
images and kept only the good ones. Under the pressure
of criticism and competition, Macroshot introduced the Ap-
pealing Photo Life Cycle (MS APL), a collection of practices
for better photography. Following APL, photographers ap-
ply the FACE (Focus, Abstraction, Composition, Exposure)
checklist early in a project; the checklist generalizes how crit-
ics review a photo. All photos are thoroughly tested prior
to release. Each must pass a discussion of drunk Internet
trolls and the review by a critic wearing fuzzer goggles that
simulate grandma’s declining vision. The APL has become
industry best practice. Nevertheless, released photo collec-
tions continue to require monthly patches replacing faulty
images.

Three days after an investigative journalist accused the
Cybersecurity Secretary of corruption, a blurry surveillance
camera still appears on the title pages of newspapers through-
out the country. A poor image in every conceivable respect,
neither photo scientists nor industry practitioners would ever

27

dare calling it a photo. Barely recognizable, the image is
nonetheless evidence of the Secretary’s clandestine meeting
with a lobbyist in the parking lot. The Secretary resigns
at 2:15 p.m. On page 17 in one of the newspapers, an art
gallery advertises a vernissage. The upcoming exhibition
will feature photographs taken with pinhole cameras.

1.2 Wait a Moment, Photography?
Our understanding of security design as a discipline and

practice remains inferior compared to other fields of cre-
ative endeavor. Security design is the methodical creation
of practically secure information technology – systems, soft-
ware, appliances, or infrastructures. Generalizing observa-
tions from the domain of photography and applying the re-
sulting model to security engineering, this paper explores
what is missing or less developed than it should be.

Photography and security engineering have little in com-
mon, except for the facts that in both, humans create – vi-
sual art in one field, secure systems in the other – and the re-
sults vary in quality. Developing a conception in one domain
and transferring it into the other will result either in utter
nonsense or in a functional analogy; this paper aims for the
latter. Even a proper metaphor has nonetheless limitations,
mapping only a subset of the source domain concepts and
relationships meaningfully into the destination domain [35].

Despite all artistic freedom, photography is a skill that
can be learned and taught to some degree. We expect the
same of security design, which should in addition be me-
thodical and repeatable. If we defined quality in photogra-
phy exclusively as technical perfection – perfect sharpness,
exposure, or perspective control – we could not explain how
great photos can come out of a pinhole camera and poor
ones out of expensive equipment, or how one perfect pho-
tographer creates expressive portraits while another shoots
appealing landscapes.

When it comes to art and esthetics, we don’t need an ex-
planation. In engineering we do, or we would have to submit
to luck and fate. If we define security exclusively as technical
perfection in the design and arrangement of security mech-
anisms and in the prevention of defects, we cannot explain
why some systems survive well despite known vulnerabili-
ties, while others continue to be attacked despite all effort
to secure them. As security engineers we cannot afford to
rely on unexplained magic.

1.3 Security Design is Property Control
What does it mean to design a secure system? How can we

effectively support developers in their security engineering
work? Which security design tasks should we automate,
which ones should we better leave to engineers, and which
tools support security problem solving?

In the most general sense, security design means to con-
trol the security properties of an artifact in the process of
creating it. This paper:

1. Establishes in Section 2 the notion of security prop-
erty degrees. Microscopic properties characterize the
impact of specific actions on parts of a system. Meso-
scopic properties characterize how a system constrains
attackers pursuing an objective. Macroscopic proper-
ties characterize the behavior of a threat environment
in the presence of a system. Figure 1 outlines this idea.

2. Construes security design as property control in all
three degrees in Section 3. To design a practically se-
cure system, security engineers optimize lower-degree
properties towards macroscopic objectives, exploring a
design space for appropriate solutions.

3. Discusses security design tools in the framework of se-
curity property degrees, and identifies missing macro-
scopic and mesoscopic tools (Section 4). Our current
design toolbox is too focused on microscopic work,
making security design more of an art than an engi-
neering discipline.

Mesoscopic

Macroscopic

Microscopic

Target

P
ro

fi
t

i > 10€
t > 30s

Figure 1: Security property degrees in a nutshell:
microscopic properties (bottom) characterize parts
under specific actions, mesoscopic properties (mid-
dle) characterize systems under attack, and macro-
scopic properties (top) characterize threat environ-
ments in the presence of systems.

Section 5 outlines an analogous model of photography
from which the ideas in this paper were developed. Highly
automated point-and-shoot cameras do not make photog-
raphers obsolete. Likewise, point-and-shoot security design
tools solve only some of our problems. We need to address
the macroscopic part of security design, too.

2. PROPERTY DEGREES
Properties characterize objects or entities; properties can

in turn have second-order properties [65]. We introduce the
property degree as a second-order property. The degree of
a property characterizes the practical expressiveness of the
language required to specify how to determine the value of
the property. Property degrees form a continuum from mi-
croscopic to macroscopic:

• Microscopic properties can be expressed and evaluated
locally, considering only parts or elements of an entity
in isolation from any context.

28

• Macroscopic properties require expressions beyond the
entity itself to evaluate them; their value may vary for
the very same entity depending on the context in which
we evaluate the property.

• Mesoscopic properties fill the range between these two
extremes. Idealized, mesoscopic properties require ex-
pressions about the entity as a whole, but given a con-
tinuum of degrees this is just a tendency.

To simplify the discussion that follows, we treat property
degrees as three distinct classes rather than as a continuum.

2.1 Security Properties of a System
Security properties of a system characterize how adver-

saries can affect the system’s operations and vice versa. Ad-
versaries have a range of intents or objectives, conditions
they would like to attain; they have capabilities, subject
to constraints in the environment such as availability of re-
sources or the laws of nature; and their behavior is adaptive.
Security properties describe what will happen if a system
meets its adversaries.

Figure 2: Two different coin designs: euro coins
(left) and embossed plastic chips (right).

We can think of security properties in different ways. Be-
fore discussing the differences, let’s look as an example at
two different designs of coins (Figure 2) and the payment
systems they are part of. Coins serve as standardized to-
kens representing value; they are part of a system manag-
ing their lifecycle and supporting their use in transactions.
Implementations range from simple plastic chips, used e.g.
as consumption tokens at festivals, to supranational com-
mon currencies like the euro. A well-known security threat
for coin-based payment is counterfeiting. Depending on the
property degree considered, we get different descriptions and
comparisons of the two systems with respect to security. Ta-
ble 1 summarizes the discussion below.

2.1.1 Microscopic View
The strength of coin authentication characterizes the se-

curity of a payment system. During a transaction the re-
cipient uses security features built into the coin to verify
its authenticity and reject counterfeits. The more effort it
takes to counterfeit coins that pass authentication, the more
secure the payment system becomes.

Euro coins are made of special alloys and have design fea-
tures difficult to replicate without original equipment. A

Table 1: Selected security properties of two coin-
based payment systems by property degree.

View Euro Coins Plastic Tokens
Macroscopic Small fraction of cir-

culating coins are
counterfeit

Apparently few
fraud incidents, low
losses

Mesoscopic Counterfeiting re-
quires some effort;
Soft limit on trans-
action size;
Limited accumula-
tion of counterfeits

Tight limits on
transaction type,
size, time, and
location

Microscopic Bimetal design;
Special alloys;
Visible features

No security features;
Buy online or 3D-
print

counterfeit has to meet the appearance, weight, and metal-
lic properties to pass a coin detector as genuine. Plastic
consumption tokens have no such security features. Their
authentication remains limited to appearance, which is easy
to reproduce using common materials.

To keep the payment system secure it is important that
coins are properly authenticated before accepting them. Plas-
tic coins should not be used for payments since they do not
provide strong authentication. Euro coins should be run
through an electronic coin detector before accepting them.

2.1.2 Mesoscopic View
The set of viable attacks by financially motivated adver-

sary characterize the security of a payment system. An at-
tack is a course of action with consequences for the system
and the attacker. It is viable if executing the attack is techni-
cally feasible and, with sufficient likelihood, profitable. The
system’s design determines the attacks an adversary can ex-
ecute and their consequences.

Counterfeiting is possible in both payment systems dis-
cussed here, yet some of their security properties differ. Euro
coins require a higher investment, per attack as well as per
coin, than plastic tokens to produce the same amount of us-
able counterfeits. In both systems, authentication of coins
remains superficial in most transactions, such that counter-
feits are detected only by chance.

Counterfeit euro coins can be used for arbitrary transac-
tions, anywhere in several countries. Counterfeit consump-
tion tokens can be used to buy food and drinks for the du-
ration and within the premises of a festival using them. A
limited amount can be changed into common currency with-
out raising suspicion. Adversaries’ profits are thus capped
to a much lower amount in the plastic token than in the euro
system. The plastic token system also has limited exposure.

The euro system removes counterfeits from circulation sys-
tematically. Regardless of weak authentication in everyday
transactions, circulating coins eventually come by a point
where they undergo a thorough check. The plastic token
system may do the same but less systematically; counter-
feiting attacks will be detected only by chance or when the
system breaks down.

2.1.3 Macroscopic View
The expected or, after the fact, observed incident profile

in an environment characterizes the security of a payment
system. A payment system attracts financially motivated

29

threats with criminal energy, from individuals to organized
crime. Some amount of counterfeiting activity may result.

For the euro system we have data on counterfeiting. 157,000
counterfeit coins were removed from circulation in 2011, one
counterfeit per 100,000 genuine coins circulating [21]. The
number of counterfeit banknotes has the same order of mag-
nitude [20] but corresponds with a larger sum of money. No
data seem to be available on counterfeiting in plastic token
payment systems. The lack of incident reports and their
continual use suggest that counterfeiting, if at all, occurs
only at a small scale.

Both systems attract the same threats, and they compete
with each other in doing so. For adversaries seriously consid-
ering payment systems as a target and counterfeiting as an
attack technique, the euro system seems much more attrac-
tive. It is more accessible, giving the adversary flexibility,
and promises higher profits. Given this factor, contrary to
what the microscopic view suggests, the plastic token system
seems equally secure in the threat environment.

2.2 Characteristics of Property Degrees
As we have seen, we can discuss security in microscopic,

mesoscopic, or macroscopic terms, leading to different state-
ments and conclusions about the same systems. What dis-
tinguishes the three property degrees from each other? While
a precise definition requires further research, some tenden-
cies become obvious from the example above. Table 2 out-
lines them.

2.2.1 Scope of Evaluation
To determine microscopic security properties one needs

to consider only individual parts of a system, such as com-
ponents, subsystems, interfaces, or processes. Mesoscopic
properties require that we evaluate the entire system; a par-
ticular, identifiable part may create a mesoscopic property in
a system, but we cannot determine whether the system has
the property by looking at that part in isolation. Macro-
scopic properties extend the scope even further, requiring
that we evaluate the supersystem – e.g. an ecosystem – in
which a system interacts with threats and adversaries.

2.2.2 Threat Models
The type of threat model considered corresponds with the

scope of property evaluation. A threat model serves as a
frame of reference within which one defines and evaluates se-
curity. Microscopic threat models assume specific attacker
actions as relevant and important. The better a security
function resists these actions, the more secure it becomes in
this view. Mesoscopic threat models represent adversary ob-
jectives, such as the objective of gaining control over certain
assets. An attacker may pursue an objective in different
ways; the threat model thus represents a range of specific
attacks. Macroscopic threat models represent a threat envi-
ronment, in which several threat communities and compet-
ing targets exist. This type of threat model allows a system
to be secure simply by being unattractive for adversaries.

2.2.3 Quality of Expressions
Microscopic properties express what can or cannot happen

under certain assumptions, or which assumptions one needs
to make in order to deem something possible or impossible.
Mesoscopic properties express the ramifications of adversar-
ial activity, the impact on a system and on the adversary

as a function of attack properties. Macroscopic properties
express the results of exposing a system to threats. Micro-
scopic expressions of security properties tend towards logic,
mesoscopic expressions towards functional relationships, and
macroscopic expressions towards probabilistic or statistical
statements.

2.2.4 System Security Failure Modes
We might say the microscopic view deals with security

functions and security properties of system functions, the
mesoscopic view with security architecture, and the macro-
scopic view with effective security. A system fails micro-
scopically if it has security defects. It fails mesoscopically
if it has an inappropriate security design. The system fails
macroscopically if it gets attacked with unacceptable conse-
quences.

2.2.5 Invalidation of Security Properties
A formally correct security analysis – a description of a

system by its security properties – is nonetheless wrong if it
is based on false assumptions. A microscopic analysis is ren-
dered useless by an adversary choosing an attack outside the
assumptions made. The pursuit of unexpected objectives
invalidates a mesoscopic security analysis. Macroscopic se-
curity properties become obsolete if the threat environment
changes in unforseen ways.

2.3 Property Degrees Are Not Abstractions
Higher-degree properties are not abstractions of lower-

degree properties. To abstract means to omit unnecessary
detail and retain the essence of something [30]. To move
from a microscopic to a mesoscopic and further up to a
macroscopic view, we must add information and reevaluate
what we already know. It seems therefore more appropriate
to think of abstraction as orthogonal to property degrees.

Abstractions of properties are properties, too. Abstrac-
tion maintains the property degree; an abstraction of prop-
erties has the same degree as the properties it is derived
from. As a consequence, we cannot draw conclusions about
security properties of one degree from properties of another
degree without understanding the mapping between the two.
There is no universal mapping that would apply to the same
system in all environments, or to all systems in the same en-
vironment.

Our inability to find meaningful definitions of almost or
sufficiently secure is a symptom indicating that we often
do not understand the dependencies between property de-
grees. Intuitively, approximation should work for macro-
scopic properties, considering their probabilistic nature. But
quantifying security remains difficult [67] despite earlier promis-
ing attempts [59], and we have to find a way yet to confi-
dently shrug off a microscopic security defect as macroscop-
ically irrelevant.

3. SECURITY DESIGN
Designing an object means to shape the properties that

characterize it. Security design thus requires deliberate con-
trol over the security properties of a system. The design
objective is to shape macroscopic security properties, which
can, however, be controlled only indirectly through lower-
degree design. Comprehensive security design must there-
fore encompass considerations and decisions on all three
property degrees.

30

Table 2: Characteristics of microscopic, mesoscopic, and macroscopic security properties.
Degree Scope Threat Model Expressiveness Definitions
Macroscopic Supersystem Populations of adversaries Incident statistics Behavioral
Mesoscopic System Adaptive attacker pursuing

an objective
Bounds of attack impact
on system and attacker

Dependent on
system design

Microscopic Parts;
Subsystems

Specific actions Possibility and prerequi-
sites of actions

Context-free

Contemporary security engineering in contrast does not
seem to follow this approach. We often try to get away
with microscopic considerations, hoping the properties thus
created would translate into the desired macroscopic prop-
erties.

3.1 Three Degrees of Property Control

3.1.1 Macroscopic Design
Macroscopic design means to constrain the emergent be-

havior of a threat environment with respect to a system.
The result is an acceptable incident profile expressing de-
sired constraints on the type, frequency, and impact of inci-
dents over the life cycle of the system. Macroscopic design
objectives are probabilistic: once a system is deployed and
being used, it will induce some behavior of the adversary
populations that constitute the threat environment. With
uncontrolled macroscopic properties this behavior comes as
a surprise, we don’t know what amount of attacks to expect,
what they aim at, and how together they affect the system.
Controlled properties give us confidence that, despite all re-
maining uncertainty about the adversaries, incident and im-
pact statistics likely remain within set constraints.

The threat environment consists of potential adversaries.
Their intents and capabilities vary; in security, by definition,
we have no direct control over the adversaries. Nonetheless
we shape their behavior, as a population, in various ways.
Perhaps the most obvious influence we exert simply by cre-
ating artifacts that become targets attracting adversaries.
Classical security engineering starts there, making a list of
assets and devising security functions to protect them. But
our most precious assets are not necessarily the biggest at-
traction for adversaries following their own agenda.

The macroscopic design space extends beyond the tech-
nical system; defining the system boundary is part of the
design task. A macroscopic security design may for exam-
ple include the legal system and law enforcement, meaning
that the designers either take advantage of what is there,
or even advocate changes through campaigning and lobby-
ing. A host of mesoscopic and microscopic design consider-
ations will follow if one goes down that path. More impor-
tantly, macroscopic design involves fundamental questions
and tradeoffs, such as whether and to what extent a system
should be allowed kill or damage human beings.

Ideally we would base macroscopic considerations on a
solid scientific foundation of data and theory about threat
environments. For now, in default of such a foundation, we
have to work with assumptions. If we develop products –
software, appliances, etc. – rather than a particular system,
macroscopic design needs to take into account the range of
systems that can be built using the software, and in some
cases the ecosystem that a mass-deployed product will cre-
ate.

3.1.2 Mesoscopic Design
Mesoscopically we design a complicated function. This

function has a system-specific space of attacker objectives as
its domain and a space of consequences – for the attacker,
the system, users, and other affected parties – as its range.
An attacker is one instantiation of a macroscopic adversary,
the generic intents translated into specific objectives – but
not attack actions – within or outside the system. Perti-
nent consequences are for instance required effort, expected
profit, and risk for the attacker, or losses and other impacts
for the system and its stakeholders. The design objective
is to constrain this function for all – or at least the most
likely – instances of macroscopic adversaries, such that con-
sequences for the system and stakeholders remain within
defined boundaries and those for the attacker, outside.

An attacker-consequence function is abstract; it needs a
concrete system design and architecture to create and sup-
port it. The result of mesoscopic design is therefore a set
of candidate architectures capable of approximating the de-
sired function. In a purely mesoscopic view, the function re-
mains parameterized. Its parameters represent microscopic
properties an architecture relies on, such as an encryption
scheme being as strong as required, users not sharing their
passwords inappropriately, or certain types of defects not
occurring in the implementation.

The mesoscopic design space encompasses design dimen-
sions like consistency, weakest protection, maximum impact,
or maximum net profit. Consistency means for instance con-
sistent protection of an abstract asset across all representa-
tions, instances, or access paths. To err safely, one should
base the attacker-consequence function on the weakest pro-
tection and the maximum impact or attacker net profit.

The design space extends beyond the technology domain,
taking into account for instance user behavior and capabil-
ities or security management and incident response. After
having made the macroscopic decision to consider the legal
system a design dimension, for example, one could go on
and engage in liability design [2].

Non-security requirements and unchangeable features, like
the capabilities of humanoid subsystems, constrain the de-
signer, making parts of the design space inaccessible. Ab-
stract building blocks represent the underlying microscopic
design and are here connected into a whole. Only in this
context can we evaluate the contribution of a security func-
tion or the possible impact security defect.

3.1.3 Microscopic Design
Microscopic design shapes the security building blocks a

system relies on. They can be pre-existing like common en-
cryption schemes, or custom-designed for a particular sys-
tem. A typical security building block creates a domain
within which a security function governs the likelihood of
particular events or states regardless of an attacker’s at-

31

tempted actions within the domain. This domain may have
a technical representation, like a sandbox or an access con-
trol function, or it may be virtual like the domain of entities
seeing only the ciphertext of some encrypted data.

Security building blocks often have dangling dependencies
and transform, rather than prevent attacks. An encryption
scheme, for example, transforms the attack of reading clear-
text data into the attack of reading ciphertext data and
obtaining a decryption key for the same result (but possi-
bly different side effects). The Java sandbox has multiple
dependencies, such as on code signing and user decisions.
To resolve these dependencies is a mesoscopic design task.
Designers of building blocks only have to document assump-
tions and dependencies fully and precisely.

One example of microscopic design is the prevention of
exploitable defects or functions wherever the mesoscopic de-
sign relies on properties of code, hardware, or other con-
stituent elements of a system.

3.2 The State of the Art
The problem of security design is far from solved. The in-

dustry continues to crave tools, techniques and processes to
build enough security into technology with limited budgets.
It seems we have made little progress since, almost 20 years
ago, Baskerville [3] identified three generations of security
design methods: (1) checklists, (2) mechanistic engineering,
and (3) logical transformational methods based on abstract
models of the problem and solution space. We are still strug-
gling to make the third generation happen [61, 47, 5] – we
do not understand “how . . . low-level mechanisms relate to
the high-level security goals” [12]. Research in economics of
information security and related disciplines may enable us in
the long run to do systematic macroscopic security design.
To date, however, our systematic security design practices
cover only microscopic and a limited extent of mesoscopic
design. The following selection of practices we use is repre-
sentative, not comprehensive.

3.2.1 Building Blocks
Research seems predominantly concerned with technologi-

cal matters [5] and supplies us with security building blocks:
cryptography, protocols, security functions, and so on and so
forth. Researchers love formal models and methods, making
problems accessible to rigorous mathematical reasoning [68].
Theoretical applications are manifold and not limited to spe-
cific problems [69]. Successful practical applications, how-
ever, remain scarce [50] and the required abstractions limit
their capabilities [54]. Nevertheless, formal methods have a
place in the development of building blocks security design-
ers can rely on.

3.2.2 Design Patterns
A small number of solid design patterns [8] have attracted

continuous attention in research as well as in engineering
practice. Patterns outline common solutions to common
problems. Some examples are secure communication, ref-
erence monitors and security kernels [1], and security poli-
cies. Research, e.g. on access control policies, focuses on
idealized versions of such patterns and prototypical prob-
lems, whereas practical applications integrate patterns into
larger designs. Security patterns as we know them today
contribute to mesoscopic design by providing structured and

comprehensive documentation of common security building
blocks.

There are ongoing efforts to create a structured pattern
catalog containing variants of patterns [24]. However, even
the most comprehensive catalog of security design patterns
is rendered useless by new design constraints. For instance
the strategies commonly applied to secure general-purpose
personal computers – frequent patching, antivirus software,
etc. – are less applicable to industrial control systems.

3.2.3 Development Processes
Security design in the industry focuses on hands-on ap-

proaches and on security assurance to build confidence. Se-
curity engineering has to blend in with existing development
processes and contribute to a vendor’s business. Developers
need to pay some attention to security without losing sight
of other objectives and requirements [44, 45]. A representa-
tive approach is Microsoft’s Security Development Lifecycle
(MS SDL) [31, 46], a collection of security engineering prac-
tices across the development process of a software product.
MS SDL aims at a security baseline, encouraging developers
to apply common security building blocks and helping them
to avoid common types of security defects. The predomi-
nant practices in development processes are security testing,
source code analysis, code review, and design reviews with
or without security experts [19]. Process models like the MS
SDL and related tools touch mesoscopic ground with some
of their tools and practices but leave a lot to be desired.
They may have their greatest strength in the prevention of
common defects.

3.2.4 Security Assurance
Vendors and their customers alike have an interest in secu-

rity assurance [62, 27, 7] to build confidence. Evaluation and
certification frameworks like the Common Criteria [13] and
less standardized practices like third-party security testing
serve this purpose. As a downside, assurance methodolo-
gies tend to focus on ease of demonstration rather than on
suitable security properties; the Common Criteria’s obses-
sion with security functions is an example. Assurance thus
may create incentives for developers to aim for ease of audit-
ing [63] rather than practical security, defending only against
the weakest possible adversary [15]. Microscopic properties
are easier to audit than higher-degree ones. Not only does
this lower the bar too far, assurance can also get in the way
of good design by patronizing security engineers with micro-
scopic presecriptions in standards and certification schemes.

3.3 Design for Practical Security
To control macroscopic security properties means to de-

sign for reality. Our current practice and community cul-
ture, in contrast, seems stuck in microscopic views, limiting
our ability to understand security. For example we pay a
great deal of attention to vulnerabilities – implementation
and design defects that might be exploited to undesirable
ends – but studying them teaches us little more than what
went wrong in a particular case. Machine learning beats
vulnerability scoring when it comes to predicting which de-
fects will be exploited [11]; we don’t know how to generalize
vulnerability studies beyond specific technologies and archi-
tectures [16]; and we cannot say whether a monthly patch
day is a good or a bad sign. How much security would we
gain if we could reliably prevent all vulnerabilities that we

32

have collected and analyzed over the years? We don’t know,
but probably we would gain less than we are hoping for, and
it won’t get better if we call a class of prevented vulnerabil-
ities a security guarantee.

Macroscopic security design means to accept reality and
to adjust our conception of security. Instead of aiming for
unattainable perfection in the microscopic details, security
engineers should firmly establish the weakest possible notion
of security they can get away with in practice, and then opti-
mize their security design for it. In this sense, some software
vendors may already have gotten it right for some uses of
some of their products. Software continues to have defects
and vulnerabilities, but a combination of development prac-
tices, vulnerability management, and a highly automated
maintenance infrastructure can keep security at an accept-
able level for the majority of users and applications. It’s
not perfect, but good enough. Macroscopic security design
invites us to jump a psychological barrier and make good
enough, statistically, the objective of security design.

One meaning of point-and-shoot security design in the title
of this paper is a description of our current state of affairs:
we are collectively acting like someone trying to become a
better photographer by buying better cameras. The new
paradigm is the equivalent of recommending to this person
to pay more attention to finding interesting subjects. We
will discuss a second meaning when it comes to tools later
on.

4. TOOLS FOR SECURITY DESIGNERS1

Security engineers need tools to support their work. Apart
from their role – provide feedback and analysis, help devel-
opers to keep track of information, automate tasks, prevent
errors, and so on – we can classify security design tools by
the property degree they address. There are tools and aids
for all degrees, but those addressing higher property degrees
provide too little guidance, leaving room for improvement.
On the other hand, massive automation, as we see it for in-
stance in software testing, seems unrealistic for macroscopic
and challenging for mesoscopic design. Other than the previ-
ous sections, which tried to be as generic as possible in their
scope, the discussion here remains limited to the software
technology domain.

4.1 Available Design Aids

4.1.1 Macroscopic Tools
Macroscopic design aids support the designer’s thinking

about the threat environment a system has to cope with.
They do not force the designer into particular design deci-
sions or considerations. Macroscopic design aids rather help
the designer to understand the threat environment of a sys-
tem and the effects of design decisions in this environment.
This is not necessarily the same as security requirements
in the traditional sense. Security requirements follow from
what is valuable to some stakeholder, whereas threats are
a consequence of something having value for an adversary.
Macroscopic design aids therefore focus on the objectives,
modi operandi, and capabilities of attackers; they help the
designer to figure out what to achieve and leave the how to
creativity – or to other tools.
1Apart from minor corrections and additions, this section is
left in its pre-workshop condition; some inconsistencies may
ensue.

Abuse cases [43] are an example of a macroscopic design
aid. An abuse case describes the resources, skills, and ob-
jectives of a class of attackers, possible abusive interactions
with a system, and their harmful consequences. As a design
aid, an abuse case requires a refutation to some desired level
of assurance: the developers need to argue how the system
copes with each abuse case [42]. Abuse cases provide merely
a notation; the result of their application thus depends on
the skill, effort, and experience put into their development.

4.1.2 Microscopic Tools
Microscopic design aids support local security considera-

tions, generally neglecting the system and threat context.
They work with generic, static, possibilistic attack models
instead: if the attacker does X, the consequence will be Y
and we do Z to prevent it. Microscopic aids leave it to as-
sumption whether any actual adversary has an interest in Y,
which alternative ways exist to attain Y through or around
Z, and thus which net effect Z has on the security of a sys-
tem. Microscopic design aids tend to be prescriptive, and
they seem easier to automate and formalize, as they abstract
away the complexity of threats and attacker behavior.

Examples for microscopic design aids are (semi-)automated
security testing tools, vulnerability and attack pattern da-
tabases, and formal methods. Automated security testing
tools and database like CWE2 and CAPEC3 deal with com-
mon implementation and low-level design defects. Testing
tools find defects in a program, thus giving the developer
feedback, whereas databases provide background informa-
tion. What makes them useful as a design aid are classes
of defects that are a) common, as they are provoked by the
design of technologies and platforms, and b) are almost al-
ways a problem regardless of specific requirements, as they
are easy to exploit to a wide range of ends. In most sys-
tem designs one does not need to understand the precise se-
curity requirements to consider a remote-exploitable buffer
overflow defect a critical vulnerability.

Formal methods become microscopic design aids through
the abstractions they make as a prerequisite for formalizing.
They tend to prescribe security properties based on assump-
tions about what security means, and they seem applicable
to security building blocks such as security kernels, access
control policies, or cryptographic protocols, rather than to
entire systems. System and software designers merely use
these building blocks rather than designing them.

4.1.3 Mesoscopic Tools
Mesoscopic design aids support the designer in relating

macroscopic and microscopic properties. They help devel-
opers to express design decisions and to analyze their impact
on the security of a system, adding context to microscopic
and design detail to macroscopic considerations. Mesoscopic
aids may combine analytical and prescriptive elements or fo-
cus on one of these aspects.

Examples of mesoscopic aids are security design patterns,
attack trees, Microsoft’s threat modeling technique, and ex-
ploratory testing tools. Design patterns [8, 60] capture com-
mon design problems and proven solutions, generally at a de-
gree of abstraction that takes some building blocks and their

2Common Weakness Enumeration, http://cwe.mitre.
org/
3Common Attack Pattern Enumeration and Classification,
http://capec.mitre.org/

33

Property
Degree

R
eq

u
ir

ed
Sk

ill

M
icr

osc
opic

M
ac

ro
sc

opic

General
Developer

Security
Expert

4 6

1

5

2

3

1 – Automated security testing;
Databases

2 – Security design patterns
3 – MS Threat Modeling
4 – Formal Methods
5 – Attack trees;

Exploratory testing tools
6 – Abuse cases

Figure 3: Rough classification of security design aids by property degree addressed and security-specific skill
required.

properties for granted. To apply a pattern, the designer
has to make macroscopic considerations to identify appli-
cable patterns and to assess whether they really solve the
problem at hand; the implementation of a pattern implies
microscopic requirements. Little creativity and expertise is
required to implement a pattern – the pattern description
tells the designer what to do and what to care about.

Attack trees [57, 39] provide a lightweight notation for
alternative attacks towards a common goal. Identifying at-
tack goals is a matter of macroscopic analysis and beyond
the scope of attack trees. Attack descriptions reflect the sys-
tem design and can be refined to any level of detail. Once
created, an attack tree can be used for model-based analy-
ses of macroscopic properties like attack effort and feasibil-
ity. Since attack trees are just a notation, their power as
a design aid depends on the designer’s skill, expertise and
creativity.

Microsoft’s approach to security design analysis [64], of-
ten called threat modeling, relates rough design models to
abstract attacker behavior. Developers model a system as
a data flow diagram and assign STRIDE threats (Spoofing,
Tampering, Repudiation, Information disclosure, Denial of
service, Elevation of privilege) to its elements as abstract
representations of common attacker behaviors and objec-
tives. This process creates a checklist of attacker interac-
tions that one might want to prevent. The technique does
not prescribe what to do about any of the threats, and it
does not specifically support the analysis of assets, require-
ments, or attacker objectives.

Exploratory testing tools support penetration testing, the
interactive search for vulnerabilities in a system. Examples
are interactive web proxies like WebScarab or Burp, Net-
work packet manipulation tools like Scapy, generic protocol
implementations like Netcat or Socat, fault injection tools,
or debuggers. These tools allow a tester to interact with
and observe a system in every possible way while testing
flaw hypotheses. Their application requires expertise, skill,
and creativity; their user needs to understand threats, at-

tack success conditions, and attack techniques to get useful
information out of them.

4.2 Room for Improvement
The challenge we are facing is to establish a discipline and

support tools for macroscopic and mesoscopic security prop-
erty control. We understand microscopic security design and
how to support it with design aids. Increasingly we become
able to support microscopic design tasks interactively as de-
velopers write code (e.g. [71]). However, we remain far from
having a complete toolbox for security designers that would
cover the entire scale of property degrees.

4.2.1 Macroscopic Design Aids
At the macroscopic end of the scale we have only nota-

tions, such as the abuse case notation, and vague notions
like threat or asset. Security designers would benefit from
techniques and aids for genuine threat analysis: Which as-
sets attract attackers, what are the attacker modi operandi
to consider, and which factors in the system design affect
their effort, risk, and behavior? Macroscopic security design
involves economic and ecosystem considerations that should
remain valid regardless of some amount of noise and uncer-
tainty about microscopic properties.

Some macroscopic design aids that might be useful if we
could create them:

Design-invariant threat models and techniques to ap-
ply them to specific system designs. Can we describe
the essence of attacker behaviors that remains after
abstracting out microscopic detail? We might create
models of, for example, opportunistic vs. targeted at-
tackers or of single-system vs. ecosystem threats, and
use them to understand the threat profile for a system
under development.

An asset valuator or target attractiveness metrics to
help engineers understand how valuable an asset, a col-
lection of assets or an entire system is to a class of ad-

34

versaries. Stakeholders’ and adversaries’ priorities are
not necessarily the same.

Abusability assessment techniques to show designers the
most likely abuses of a system, considering its purpose
and environment. For instance it would be nice to have
an attack objective generator asking unpleasant ques-
tions about a system, such as: “What if an attacker
wants something that isn’t on your list of precious as-
sets?”

Constraint analysis techniques that help the designer
of a system to find a small set of enforceable constraints
that make a system sufficiently secure against a type of
threat. A financial service for instance might want to
constrain the amount of money per unit of time that
can be lost through a wide range of attacks.

Such analytic techniques and aids would allow engineers
to explore the design space, evaluate prospective system de-
signs, and compare approaches.

4.2.2 Mesoscopic Design Aids
Mesoscopic design aids serve three purposes, not neces-

sarily all three in the same tool: to guide microscopic se-
curity considerations, to refine macroscopic models, and to
connect, or translate between, macroscopic and microscopic
considerations. A complete toolbox should support transla-
tion in both directions: deriving design directives and pri-
orities from macroscopic considerations, and the evaluation
of designs and design decisions for their macroscopic con-
sequences. Evaluation may be the more important part, as
design decisions are being made for a variety of reasons other
than security, yet their consequences need assessment.

Tools and aids like the following may support security
designers in their work:

Security-aware architecture modeling, highlighting as-
pects of system architectures and deployments that
most likely affect their security properties. From run-
time architecture visualization [22] to automated de-
tection and flagging of fractures in the interpretation
of information [16] there is a broad range of tools that
might be useful but are not available today.

An asset tracker helping developers to keep track of all
the manifestations of an asset in a system and pro-
tect them consistently. Often we do not really need to
protect files or databases, but rather that which they
represent and which may have further manifestations
in a system.

Tools to analyze security dependencies between secu-
rity building blocks and other components of a system.
Many security mechanisms do not solve problems but
rather transform them, creating secondary assets that
impose new protection requirements and points from
which security can be subverted. Trust distribution
diagrams [37] look like a step in this direction. Such
techniques may profit from better, standardized docu-
mentation of security functions: assumptions they rely
on; which problems they do not solve; and which new
attack paths they create.

Mechanism effect analysis would translate a security de-
sign into the macroscopic world and show how much

of a difference a security mechanism makes with re-
spect to a threat. Similarly, vulnerability landscape
analysis might show security designers which possible
security vulnerabilities will most likely be exploited by
real attackers.

Such tools help security engineers to properly combine
security building blocks and design decisions to attain those
security properties that a system really needs.

4.3 Why Don’t We Have Them Yet?
Several socio-economic factors may hamper the develop-

ment and adoption of advanced security design tools. In the
business of software and systems development, vendors may
start from a low maturity level and go for the low-hanging
fruits first – common bugs that threaten reputation. Taken
to the extreme, this leads to a checklist mentality where a
vendor focuses on avoiding the “Top Ten Security Bugs”.
As a community, we support this mentality by hunting just
these bugs and celebrating loudly every time we have found
another instance, sometimes neglecting honest assessment
of their macroscopic impact. Microscopic security tools that
are easy to use for general developers may be a larger market
than advanced tools for the fewer architects and security ex-
perts involved in development. Typical development teams
comprise many coders but few people responsible for higher-
level design considerations.

The software supply chain is another factor. Off-the-shelf
(COTS) software often serves as a template for systems,
adapted and extended for specific applications with mini-
mal effort. COTS developers thus make most of the design
decisions, but they cannot tailor their software to the secu-
rity needs of a particular application and system context.
Design information gets lost at the interface between soft-
ware developers and systems engineers; software often comes
as a black box with only functional security documentation.

Finally, we have a tradition of focusing on microscopic
security considerations. Even where we should understand
the macroscopic requirements pretty well, such as for gov-
ernment systems having to protect confidential information,
we rarely describe threats e.g. in terms of the characteristics
of a foreign agency trying to obtain secrets. Seminal work in
our field acknowledged the need for security considerations
beyond the scope of policy enforcement within a confined
computer system [53] but did not address the problem. Sub-
sequent research largely followed suit. Whether this is due to
the inherent difficulty of securing systems against adaptive
adversaries or to biases in our community culture remains
an open question.

5. THE POINT-AND-SHOOT ANALOGY
The property degree framework presented in this paper

originates in a less-than-obvious analogy, which however re-
flects an unfulfilled desire. Wouldn’t it be a great achieve-
ment if we could use technology to make security design
as casual and easy as photography has become? Everyone
can take good photos today knowing little more than how
to hold the camera, letting the camera figure out exposure
and all the other tricky stuff. Surely there is more to pho-
tography than that, but we have automated the basics and
should try the same for security engineering. But when we
listen to photographers we will find that, no, we haven’t au-
tomated the basics, as we can see with just a bit of common

35

sense. The property degree framework abstracts this reason-
ing, which is not really specific to photography, and allows
us to apply it to other fields.

Ignoring the artistic component, we can view photogra-
phy as visual engineering. Photos have visual properties;
the photographer designs them using a camera and other
tools. How photographers work and what they consider in
the process is documented in a large body of literature [23,
26, 58] and other sources [33].

5.1 Visual Properties of a Photo
What characterizes a photo? The answer to this seemingly

simple question depends on how we interpret the photo –
the property degree of the properties we consider. Figure 4
shows a sample photo from a microscopic, a mesoscopic, and
a macroscopic perspective.

5.1.1 Microscopic View: Pixels and Details
A digital photo is completely and precisely specified by an

array of pixels, each pixel carrying a color value. The word
pixel means picture element. The color value of each pixel
thus constitutes a property characterizing a portion of the
picture; all pixels together characterize the entire photo.

What are the pixels telling us about a photo? Individually,
not much: they allow us to compare photos, to qualify and
quantify differences, but not in a very interesting or informa-
tive way. Maybe abstraction comes to our rescue, removing
non-essential detail? We can indeed create abstractions of
microscopic properties, such as the color histogram in Fig-
ure 4 (b) showing the distributions of primary colors over
the pixel array. We may also apply image processing algo-
rithms to determine abstract properties, such as edges or
regions of highlight or shadow. But no matter how hard
we try, it will remain very difficult to determine properties
like: “This photo has a horizontally centered composition,”
or: “The horizon line is slightly skewed,”or: “This photo por-
trays an evening mood,” for arbitrary photos, starting from
pixel analysis.

5.1.2 Mesoscopic View: Composition
If we listen to photographers discussing photos, we will

hear them use a different vocabulary as they discuss a dif-
ferent set of properties. A major part of their conversation
will likely revolve around composition: the positioning and
arrangement of objects, shapes, and lines; sharpness and
blur in relation to the objects in the image; positive and
negative space; visual emphasis; texture; or depth [23, 26,
58]. They discuss mesoscopic properties.

Figure 4 (c) shows one abstraction representative of the
composition view, a dissection of a photo into positive and
negative space. Negative space surrounds and separates sub-
jects. This definition makes the notion dependent on inter-
pretation of the content of an image. The concept of nega-
tive space does not translate uniquely and universally into
microscopic properties; contrast in color, brightness, or tex-
ture, blur around sharp objects, and other visual effects can
create and define negative space.

To discuss the mesoscopic properties of composition, we
need to interpret the content of the entire photo. We can ex-
plain the underlying microscopic properties for a particular
image, but we cannot universally derive composition from a
microscopic analysis of pixels. Microscopic approximations
may exist for restricted sets of pictures.

5.1.3 Macroscopic View: Message and Reaction
An analysis of composition tells us how a photo works,

how the photographer decided to shoot. But only the photo
itself tells us its message and evokes our reaction – thoughts,
emotions, insight. A photo’s macroscopic properties charac-
terize its message. To discuss these properties we need to
take into account the beholder. An image alone does not
fully specify its message, the beholder’s interpretation is an
essential part of the macroscopic view: different people may
react differently to the same image. A photo may work or
fail for reasons independent of the photographer’s skill and
effort, such as the cultural background of the person view-
ing it or her personal relationship with that which the photo
shows. Figure 4 (d) shows a photo; your reaction to it is part
of its macroscopic properties.

Mesoscopic properties of a photo, such as the various as-
pects of composition, support its message by guiding and
focusing the beholder’s interpretation. However, composi-
tion alone does not characterize the message. We need to
consider properties like facial expressions, situations, moods,
symbols, or speculation about temporal context. Differ-
ent compositions may support similar messages, and similar
compositions of different subjects convey different messages.

A photo constitutes an abstraction of its message. While
shaping and conveying a message is the photographer’s ulti-
mate objective, not every detail of the message has a visual
representation in the photo. To the contrary, good photog-
raphers actively pursue photographic abstraction, reducing
that which a photo shows to the essentials.

5.2 How Does a Photographer Create?
The task of a photographer is to convey a message visually.

The message may be predetermined, as in applied photog-
raphy, or the photographer may freely define it in the more
artistic styles of photography. For a given message, some
photos work better than others in conveying it. This makes
photography a design task: the photographer optimizes a vi-
sual representation such that it communicates the intended
message effectively to the beholder of the photo.

If we observe photographers at work [29] or listen to them
explaining how they work [33], we will find an approach
roughly like this:

1. Choose a subject and style

2. Find a suitable angle and composition

3. Adjust camera settings

4. Take the picture

5. Improve the result in postprocessing (optional)

Within the process we will likely see iterations, e.g. try-
ing different angles and compositions, and the photographer
may abort the process either without taking a picture or
later by discarding it.

Property degrees allow us to describe this process in ab-
stract terms. The process begins with macroscopic consid-
erations, defining the message to be conveyed in a photo and
some constraints on how to do it. The photographer then
goes on and explores the design space, looking for favor-
able angles and compositions under the constraints imposed
by macroscopic requirements and the environment. Micro-
scopic decisions, such as camera settings or the position of

36

a

b

c d

Figure 4: Property degrees illustrated: microscopic properties (a), a microscopic abstraction (b), a mesoscopic
abstraction (c), and the whole photo (d).

the camera in space, follow as a consequence. Which micro-
scopic properties matter for which part of the photo depends
on higher-degree decisions.

Table 3: Some visual properties of the photo in Fig-
ure 4 and related means of property control.

Degree Properties Means of Control
Macroscopic Flowers;

Calm sunset mood
Selection of subject;
Choosing time, loca-
tion;
“Working the scene”;
Sense of esthetics

Mesoscopic Directed light;
Centered composi-
tion;
Flat, little depth;
Repetition;
Low horizon

Camera angle;
Use sky as negative
space;
Choice of lens;
Choice of aperture

Microscopic Vertical color gradi-
ent;
Blurred horizontal
edge;
Irregular reddish
shapes;
Vertical edges

Focal length 16mm;
Aperture f/3.5;
Auto shutter speed;
Exposure bias 0.67

We cannot simply reverse this process and start from a
microscopic definition of “good” photography, e.g. in terms
of sharpness or exposure. Doing so would constrain higher-
degree design decisions and cut the photographer off from
design options that would improve the result. However, a
photographer can voluntarily set such constraints as part of
his or her personal style, with the consequence of this style
working better for some subjects than for others.

5.3 Better Photographers Have More Control
If the subject is variable, lower-degree design decisions de-

pend on it, and everyone can push the shutter release but-
ton, what makes a good photographer? It is the degree of
property control attained. Anybody can point a camera at
something and take a shot. The result will have properties
of all degrees, but most are left to chance and do not sup-
port the intended message. Starting from this baseline, one
has to learn three skills to become an amazing photogra-
pher: controlling microscopic properties, such as focus and
exposure; controlling mesoscopic properties, such as compo-

sition and lighting; and controlling the message of a photo
by finding interesting subjects and ways of viewing them.

Figure 5 illustrates this idea with three different photos
of snow in winter. Photo (a) shows little conscious control
over any of its properties. Note, however, that we cannot
ground this statement on an analysis of the photo alone. We
have to take into account whether the photographer wanted
it to look that way and how it resonates with an audience.
Photo (b) shows a composition concept applied: diagonal
lines. Without a message control of composition leads to
formalist photos like this. Photo (c) in Figure 5 includes
elements representative of a situation, thus attempting to
tell a story.

This model is compatible with the common observation
that neither a better camera nor a better understanding of
camera controls makes better photographers.

5.4 The Point-and-Shoot Toolbox
Modern cameras greatly simplify the act of taking a pic-

ture; imaging software does the same for post-processing,
which once required darkroom skills. Nevertheless, ama-
teurs remain amateurs, and professionals often disable or
override the automated helpers in their cameras. Which
role play tools in photography and where are their limits?

We find rather little direct tool support for mesoscopic and
macroscopic property control. Choosing subjects, deciding
how to shoot them, and finding a suitable composition are
tasks left to the photographer. The lack of tools reflects the
lack of firm rules, the photographer’s creative freedom. In-
directly, however, digital imaging technology supports the
photographer by providing quick feedback on the back of
the camera and by making it easier to modify photos exper-
imentally in post-processing.

The majority of automated tools, such as auto exposure,
autofocus, or preset programs, make it easier to control mi-
croscopic properties – if the requirements meet the assump-
tions the tool was designed for. Auto exposure, for instance,
assumes average lighting and fails systematically for very
bright or very dark scenes, and autofocus has its own model
of what to focus on. Automation can thus get in the way of
experienced photographers – their higher-degree design de-
cisions often imply specific, non-standard requirements for
microscopic property control.

Automation seems most useful where it helps inexperi-
enced photographers to control at least some microscopic

37

a b c

Figure 5: Photographs of snow with different degrees of property control: almost none in a smartphone
snapshot (a), formalist control of composition (b), controlled message (c). Photo (a) courtesy Tim Kern.

properties in a better-than-nothing fashion. In a compre-
hensive design process, with a skilled photographer trying
to control properties at all degrees, the role of tools becomes
multifarious. Tools serve for example to:

• Support and simplify specific tasks while keeping the
photographer in full control. Auto exposure for in-
stance can be used to control only some of the param-
eters affecting exposure, leaving others for the photog-
rapher to control.

• Enlarge the design space. Technologies like image sta-
bilization, high-ISO sensors or high dynamic range pro-
cessing allow photos to be taken under adverse condi-
tions or in a look that would have been difficult to
create using film.

• Reduce the photographer’s workload. Professionals
don’t reject automation where it helps them. In sports
photography for instance, speed is important to cap-
ture the right moment; automation of mundane tasks
helps the photographer to achieve that.

There is no magic. Point-and-shoot functions as tools do
not replace the photographer. They improve the quality of
the result if one starts from a very low baseline of property
control, and they can sometimes relieve the photographer of
complications and minor tasks.

5.5 From Art to Engineering
Using photography as an analogy to discuss security engi-

neering embeds this paper in the age-old debate whether we
should conceive software development as engineering [17, 70,
9, 48, 4], art [34, 28], science [10], craft [66], or something
else, and whether we would be better off emphasizing one
view or the other [18, 49, 14, 41]. The author does not take
sides, but rather looks for lessons to be learnt from one field
for another.

As Graham points out [28],

“Hacking4 and painting have a lot in common.
In fact, of all the different types of people I’ve
known, hackers and painters are among the most
alike.

What hackers and painters have in common
is that they’re both makers. Along with com-
posers, architects, and writers, what hackers and
painters are trying to do is make good things.”

Art and engineering have in common the laborious pro-
cess of design optimization through a series of design deci-
sions. They differ in their objectives; engineering solves ob-
jective problems while art expresses subjective views. But
both start with an idea and subsequently refine it into an
optimized artifact, exploring a design space in the process.
While in everyday snapshots we trade quality for speed, a
careful photo design process can require just as much time
and effort as an engineering project. As an example, ac-
cording to a documentary [29] it took visual artist Andreas
Gursky about two years and multiple collaborators to create
just one of his photographs, Hamm, Bergwerk Ost. As an-
other case in point, photographers developed a formal model
of exposure control, the zone system [32, 36]. The zone sys-
tem provides precise control of the mapping of brightness
levels in a scene onto the limited dynamic range of film –
microscopic property control.

During the workshop, as well as through the writing and
revision of this paper, the photography analogy turned out
a bit distracting. This is in part owed to its purpose: to il-
lustrate notions and ideas in a manner that fits the medium.
Conceptually it seems interchangeable with any other non-
trivial creative practice. Photography just came in handy as
something familiar to most of us and easy to demonstrate.
Beyond this role, and a few general thoughts about the use
and purpose of tools and automation, photography should
not be taken for a proper model of security engineering.
There are important differences between the two:

4Note that Graham uses the term hacking in the traditional
sense [51], which has nothing to do with malicious activity.

38

• Photography is a single-objective task, whereas secu-
rity design takes place as part of a multi-objective en-
gineering process.

• Consequently, there is less teamwork in photography.
While professional photographers often work with aides,
the team remains small and has a clearly defined hier-
archy with the photographer at the top.

• Compared to security engineering, the stakes in pho-
tography seem negligible.

• Artists can choose their audiences, or do so implicitly
by their style and subject. Security engineers don’t
get to choose the threats their work result has to cope
with.

• There is less pressure, at least in free artistic photog-
raphy, to get results at all. A photographer, if not
working on an assignment, can at any time stop and
just not take a photo.

• Shots are cheap, facilitating experimentation. Shoot-
ing a large number of different attempts and discarding
most of them is perfectly feasible. Exploring a design
space may be much more costly in engineering.

• Engineering must be efficient. Engineers therefore pre-
fer to reuse available building blocks over developing
from scratch, limiting the range of feasible designs.

• More generally, a great deal of engineering takes place
outside the immediate development process of a system
or software product. Technologies evolve under the
influence of a gazillion of factors and players.

Our idealized model of a design process may therefore be
more appropriate for photography than it is for security engi-
neering. This should however not invalidate the proposition
that a design process needs to cover all property degrees.

6. CONCLUSION
The property degree framework systematizes the different

ways in which we can think about the security of a system.
Each degree of security properties corresponds with a class
of adversary models: microscopic properties with specific
attack actions; mesoscopic properties with attackers pursu-
ing particular objectives; and macroscopic properties with
populations of adversaries. The different viewpoints imply
barriers between security properties of different degrees, bar-
riers we cannot pass by simply abstracting, generalizing, or
aggregating lower-degree properties according to universal
rules. Rather, the mappings of properties from one degree
to another depend on macroscopic threats and mesoscopic
design decisions.

Effective security design controls macroscopic properties
through design decisions spanning the entire range of de-
grees. To this end we need design practices and tools to
support the developers of systems and software in their de-
sign process. Currently our collective toolbox is populated
predominantly by microscopic and to some extent, meso-
scopic tools. Other than safety engineers with their clearly
defined notions of undesired events, causes, consequences,
and contributing factors [52], we lack even the vocabulary
to express and discuss macroscopic design objectives.

Point-and-shoot security design has a double meaning.
First, it describes the state of the art in security design by
analogy. Point-and-shoot automation in a camera covers
only the microscopic part of a photographer’s job, and does
it well only in some situations. It is better than no property
control for inexperienced photographers, but often gets in
the way of the adepts and their macroscopic pursuits. So do
contemporary security design practices and tools, with the
difference that apparently we do not systematically teach
and develop adepts of security design yet.

Second, point-and-shoot security design refers to the in-
dustry demand for tools to support developers unobtrusively
in their security engineering tasks. This demand is legiti-
mate and rational; it poses the question to what extent it
can be fulfilled, in theory and in practice. The difference be-
tween art and engineering is that the artist is free to choose
objectives and approaches, whereas the engineer needs to
understand and solve particular problems. On the other
hand, “Humans have a funny knack for figuring out how to
do something when there is no perfect answer.” [10], so there
is a place for creativity in engineering. Point-and-shoot-style
tools alone are not the right answer to the demand for secu-
rity engineering tools.

The tools proposed in Section 4 are merely suggestions
how to apply the property degree framework in practice.
Beyond practical applications, the framework has implica-
tions for the science of security [56, 38, 40, 6]. If macroscopic
security properties characterize how a system interacts with
its threat environment, how can we describe them, to what
extent can we control them, which environmental factors
change them so we need to redesign a system, and how do
desired macroscopic properties translate into design deci-
sions? These are only some of the questions a science of
security needs to ask. In the process of trying to answer
them we may hit epistemological limits [55]: how far can we
not only anticipate, but control the future [25]? This is after
all what macroscopic security means, a decreased likelihood
of undesirable outcomes in spite of enemy action.

7. ACKNOWLEDGMENTS
I thank Michael Locasto for his shepherding and guidance,

all NSPW 2012 attendees and reviewers for their comments
and discussion, my colleagues Andreas Poller and Jörn Eich-
ler for their honest feedback on various drafts of this paper,
and Tim Kern for contributing a photo.

The work presented in this paper was performed in the
Software-Cluster project InDiNet (www.software-cluster.org),
funded by the German Federal Ministry of Education and
Research (BMBF) under grant no. 01IC10S04. The author
assumes responsibility for the content.

8. REFERENCES
[1] J. Ames, S.R., M. Gasser, and R. R. Schell. Security

kernel design and implementation: An introduction.
Computer, 16(7):14–22, July 1983.

[2] R. Anderson. Liability and computer security: Nine
principles. In D. Gollmann, editor, Computer Security
— ESORICS 94, volume 875 of LNCS, pages 231–245.
Springer Berlin / Heidelberg, 1994.

[3] R. Baskerville. Information systems security design
methods: implications for information systems
development. ACM Comput. Surv., 25:375–414,
December 1993.

39

[4] S. Berkun. Programmers, designers, and the Brooklyn
bridge, Mar. 2004.
http://www.scottberkun.com/essays/

30-programmers-designers-and-the-brooklyn-bridge/.

[5] K. Beznosov and O. Beznosova. On the imbalance of
the security problem space and its expected
consequences. Information Management & Computer
Security, 15(5):420–431, 2007.

[6] K. Bicakci and P. C. van Oorschot. A multi-word
password proposal (gridword) and exploring questions
about science in security research and usable security
evaluation. In Proceedings of the 2011 workshop on
New security paradigms workshop, NSPW ’11, pages
25–36, New York, NY, USA, 2011. ACM.

[7] BITS software assurance framework.
http://www.bits.org/publications/security/

BITSSoftwareAssurance0112.pdf, Jan. 2012.

[8] B. Blakley and C. Heath. Security design patterns.
Technical Guide G031, The Open Group, Apr. 2004.

[9] B. Boehm. A view of 20th and 21st century software
engineering. In Proc. 28th Intl. Conference on
Software Engineering, ICSE ’06, pages 12–29, New
York, NY, USA, 2006. ACM.

[10] T. Bollinger. The interplay of art and science in
software. Computer, 30(10):128, 12–127, Oct. 1997.

[11] M. Bozorgi, L. K. Saul, S. Savage, and G. M. Voelker.
Beyond heuristics: learning to classify vulnerabilities
and predict exploits. In Proc. 16th ACM SIGKDD
Intl. Conference on Knowledge Discovery and Data
Mining, KDD ’10, pages 105–114, New York, NY,
USA, 2010. ACM.

[12] A. A. Cardenas, T. Roosta, and S. Sastry. Rethinking
security properties, threat models, and the design
space in sensor networks: A case study in SCADA
systems. Ad Hoc Netw., 7:1434–1447, Nov. 2009.

[13] Common Criteria for Information Technology Security
Evaluation, July 2009. Version 3.1, revision 3.

[14] J. O. Coplien. Software development as science, art,
and engineering. In L. Rising, editor, The Patterns
Handbook: Techniques, Strategies, and Applications,
SIGS reference library series, pages 321–332.
Cambridge University Press, 1998.

[15] J. Corman. Intro to HDMoore’s Law.
http://blog.cognitivedissidents.com/2011/11/

01/intro-to-hdmoores-law/.

[16] J. Crandall and D. Oliveira. Holographic vulnerability
studies: Vulnerabilities as fractures in interpretation
as information flows across abstraction boundaries. In
Proc. New Security Paradigms Workshop 2012, NSPW
’12, Sept. 2012.

[17] M. Davis. Will software engineering ever be
engineering? Commun. ACM, 54:32–34, November
2011.

[18] T. DeMarco. Software engineering: An idea whose
time has come and gone? Software, IEEE, 26(4):96,
july-aug. 2009.

[19] J. Epstein. A survey of vendor software assurance
practices. In Proc. Annual Computer Security
Applications Conference 2009 (ACSAC ’09), pages
528–537, dec. 2009.

[20] European Central Bank. Biannual information on euro
banknote counterfeiting. Press release, 16 July 2012,
http://www.ecb.int/press/pr/date/2012/html/

pr120716.en.html, July 2012.

[21] European Commission. Euro coin counterfeiting in
2011. Press release, 27 January 2012,
http://ec.europa.eu/commission_2010-2014/

semeta/headlines/news/2012/01/20120127_en.htm,
Jan. 2012.

[22] W. Fang, B. P. Miller, and J. A. Kupsch. Automated
tracing and visualization of software security structure
and properties. In Proc. 9th International Symposium
on Visualization for Cyber Security, VizSec ’12, pages
9–16, New York, NY, USA, 2012. ACM.

[23] A. Feininger. A manual of advanced photography.
Thames and Hudson, 1962.

[24] E. B. Fernandez, N. Yoshioka, H. Washizaki,
J. Jürjens, M. VanHilst, and G. Pernul. Using security
patterns to develop secure systems. In H. Mouratidis,
editor, Software Engineering for Secure Systems:
Industrial and Research Perspectives, pages 16–31. IGI
Global, 2010.

[25] R. Ford and L. M. Mayron. All your base are belong
to us. In Proc. New Security Paradigms Workshop
2012, NSPW ’12, Sept. 2012.

[26] M. Freeman. The Photographer’s Mind. Elsevier
Science & Technology Books, 2010.

[27] K. M. Goertzel, T. Winograd, H. L. McKinley, L. J.
Oh, M. Colon, T. McGibbon, E. Fedchak, and
R. Vienneau. Software security assurance: A
state-of-the-art report (SOAR), 2007.

[28] P. Graham. Hackers and Painters, pages 18–33.
O’Reilly, Sebastopol, CA, May 2003.

[29] Long shot close up – Andreas Gursky. Art
Documentary Film, Aug. 2010. Jan Schmidt-Garre
(Director); Pars Media Film- und Fernsehproduktion;
Co-produced by BR, ARTE and Tilk Filmproduktion.

[30] K. Henney. Down on the upside. http://www.artima.
com/weblogs/viewpost.jsp?thread=341297, Mar.
2012.

[31] M. Howard and S. Lipner. The Security Development
Lifecycle. Microsoft Press, 2006.

[32] C. Johnson. The Practical Zone System for Film and
Digital Photography: Classic Tool, Universal
Applications. Elsevier Science, 2012.

[33] S. Kelby. Crush the composition. Google+
Photographer’s Conference presentation,
http://www.youtube.com/watch?v=FpHMuK7Htic,
May 2012.

[34] D. E. Knuth. Computer programming as an art.
Commun. ACM, 17(12):667–673, Dec. 1974.

[35] G. Lakoff and M. Johnson. Metaphors we live by.
Univ. of Chicago Press, 1996.

[36] B. Lav. Zone System: Step by Step Guide for
Photographers. Amherst Media, 2002.

[37] M. E. Locasto, S. J. Greenwald, and S. Bratus. Trust
distribution diagrams: Theory and applications. In
Fourth Annual Layered Assurance Workshop (LAW
2010), Dec. 2010.

[38] T. Longstaff, D. Balenson, and M. Matties. Barriers to
science in security. In Proceedings of the 26th Annual

40

Computer Security Applications Conference, ACSAC
’10, pages 127–129, New York, NY, USA, 2010. ACM.

[39] S. Mauw and M. Oostdijk. Foundations of attack trees.
In D. Won and S. Kim, editors, Information Security
and Cryptology - ICISC 2005, volume 3935 of LNCS,
pages 186–198. Springer Berlin / Heidelberg, 2006.

[40] R. A. Maxion, T. A. Longstaff, and J. McHugh. Why
is there no science in cyber science?: a panel
discussion at nspw 2010. In Proceedings of the 2010
workshop on New security paradigms, NSPW ’10,
pages 1–6, New York, NY, USA, 2010. ACM.

[41] S. McConnell. The art, science, and engineering of
software development. Software, IEEE, 15(1):120,
118–119, jan/feb 1998.

[42] J. McDermott. Abuse-case-based assurance
arguments. In Proc. 17th Annual Computer Security
Applications Conference (ACSAC 2001), pages 366 –
374, Dec. 2001.

[43] J. McDermott and C. Fox. Using abuse case models
for security requirements analysis. In Proc. 15th
Annual Computer Security Applications Conference
(ACSAC ’99), pages 55 –64, 1999.

[44] J. D. Meier. Web application security engineering.
IEEE Security & Privacy, 4(4):16–24, July-Aug. 2006.

[45] P. H. Meland and J. Jensen. Secure software design in
practice. In Proc. 3rd Intl. Conf. on Availability,
Reliability and Security, 2008 (ARES’08), pages
1164–1171, Mar. 2008.

[46] Microsoft. Microsoft security development lifecycle
(SDL). Version 5.1.

[47] K. G. Olthoff. The high assurance brake job—a
cautionary tale in five scenes. In Proc. New security
paradigms workshop 1999, NSPW ’99, pages 118–140,
New York, NY, USA, 2000. ACM.

[48] D. Parnas. Teaching programming as engineering. In
J. Bowen and M. Hinchey, editors, ZUM ’95: The Z
Formal Specification Notation, volume 967 of LNCS,
pages 470–481. Springer Berlin / Heidelberg, 1995.

[49] D. Parnas. Software engineering: An unconsummated
marriage (extended abstract). In M. Jazayeri and
H. Schauer, editors, Software Engineering –
ESEC/FSE’97, volume 1301 of LNCS, pages 1–3.
Springer Berlin / Heidelberg, 1997.

[50] D. L. Parnas. Really rethinking ’formal methods’.
Computer, 43(1):28–34, 2010.

[51] The jargon file. http://catb.org/jargon/, Oct. 2004.
Version 4.4.8.

[52] J. Rushby. Critical system properties: survey and
taxonomy. Reliability Engineering & System Safety,
43(2):189–219, 1994. Special Issue on Software Safety.

[53] J. H. Saltzer and M. D. Schroeder. The protection of
information in computer systems. Proceedings of the
IEEE, 63(9):1278–1308, 1975.

[54] M. Schaefer. Symbol security condition considered
harmful. In Security and Privacy, 1989. Proceedings.,
1989 IEEE Symposium on, pages 20–46, May 1989.

[55] R. Schaefer. The epistemology of computer security.
SIGSOFT Softw. Eng. Notes, 34:8–10, Dec. 2009.

[56] R. R. Schell. Information security: science,
pseudoscience, and flying pigs. In Computer Security

Applications Conference, 2001. ACSAC 2001.
Proceedings 17th Annual, pages 205 – 216, dec. 2001.

[57] B. Schneier. Attack trees. Dr. Dobb’s journal,
24(12):21–29, 1999.

[58] M. Schnelle-Schneyder. Sehen und Photographie:
Ästhetik und Bild. X.media.press / publishing.
Springer, 2nd edition, 2011.

[59] G. Schudel and B. Wood. Adversary work factor as a
metric for information assurance. In Proceedings of the
2000 workshop on New security paradigms, NSPW ’00,
pages 23–30, New York, NY, USA, 2000. ACM.

[60] M. Schumacher. Security Patterns: Integrating
Security and Systems Engineering. Wiley series in
software design patterns. John Wiley & Sons, 2006.

[61] A. Shostack. Engineers are people too. Slide deck,I3P
SAUSAGE workshop, http://www.homeport.org/
~adam/Engineers-are-people-too-SAUSAGE.pptx,
Apr. 2011.

[62] B. Snow. We need assurance! [assurance of computing
quality, reliability, and safety]. In Computer Security
Applications Conference, 21st Annual (ACSAC’05),
pages 7–10, Dec. 2005.

[63] C. Swan. Building security in – the audit paradox.
http://blog.thestateofme.com/2012/01/28/

building-security-in-the-audit-paradox/, Jan.
2012.

[64] F. Swiderski and W. Snyder. Threat Modeling.
Microsoft Press, 2004.

[65] C. Swoyer and F. Orilia. Properties. In E. N. Zalta,
editor, The Stanford Encyclopedia of Philosophy.
Metaphysics Research Lab, CSLI, winter 2011 edition,
2011.

[66] P. Taylor. Vernacularism in software design practice:
does craftsmanship have a place in software
engineering? Australasian Journal of Information
Systems, 11(1), 2003.

[67] V. Verendel. Quantified security is a weak hypothesis:
a critical survey of results and assumptions. In
Proceedings of the 2009 workshop on New security
paradigms workshop, NSPW ’09, pages 37–50, New
York, NY, USA, 2009. ACM.

[68] J. M. Wing. A specifier’s introduction to formal
methods. Computer, 23(9):8–22, Sept. 1990.

[69] J. M. Wing. A symbiotic relationship between formal
methods and security. In Computer Security,
Dependability and Assurance: From Needs to
Solutions, 1998. Proceedings, pages 26 –38, 1998.

[70] N. Wirth. A brief history of software engineering.
Annals of the History of Computing, IEEE, 30(3):32
–39, july-sept. 2008.

[71] J. Xie, B. Chu, H. R. Lipford, and J. T. Melton.
ASIDE: IDE support for web application security. In
Proc. 27th Annual Computer Security Applications
Conference, ACSAC ’11, pages 267–276, New York,
NY, USA, 2011. ACM.

41

