
NSPHD: The Polyglot Computer ∗

Daniel Medeiros Nunes de Castro
Department of Computer Science

University of Calgary
2500 University Drive N.W.

Calgary, AB, Canada T2N 1N4
dmncastr@ucalgary.ca

ABSTRACT
Performing security verification on a compromised system
can give a false sense of security. If compromised, a com-
puter system would likely return false information, which
could “deceive” any verification process. Our motivation
for this work is straightforward: Computers should not be
trusted, at least not when they are attesting their own in-
tegrity.

In our project Babel, this problem is addressed by, quite
literally, thinking outside the box. Babel takes into consider-
ation the advances in computer networks and cloud comput-
ing and moves the verification process to outside the physical
limits of the computer.

With Babel, we propose an approach that we call “secure
co-dependency”, that consists of making the user’s computer
physically unable to execute any program by itself. In this
approach, the computer then becomes dependent on an ex-
ternal entity that helps it to execute programs. This external
entity, a “security provider”, is responsible for verifying each
portion of code prior to its execution, assuring that code
that is executed by the computer will not be harmful for the
computer.

Babel architecture incorporates three main components:
a local component in the user’s computer; a remote com-
ponent, that is managed by the security provider; and the
communication channel used to perform communication be-
tween the user’s computer and the security provider.

The local component consists of the actual operating sys-
tem that runs in the user’s computer. We envision it to
take the form of a micro-kernel based operating system, in
order to reduce the amount and complexity of code that is
required to be trusted by the user’s computer. Secure co-
dependency is enforced by implementing program diversity
at the instruction level. Each program is executed within
an application VM that is incompatible with the program
itself, i.e., its instruction set is different than the one used

∗A full version of this paper is available as a technical report
in [1].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
NSPW’13, September 9–12, 2013, Banff, AB, Canada.
ACM 978-1-4503-2582-0/13/09.
http://dx.doi.org/10.1145/2535813.2535827.

to create the program. In order to execute the program,
the VM needs to incrementally translate portions of it, as it
becomes necessary.

That translation happens off-site, and is performed by the
remote component of Babel at the security provider, which
consists basically of a service running in the network. Along
with the translation, the security provider will also carry out
its main task: perform security checks to verify if the code
is safe to be executed.

With the physical separation between code execution and
code verification, Babel introduces an extra challenge for
attackers, as a malicious process will not be able to affect
the code verification.

Babel could be mistaken for yet another instance of ex-
tant approaches, such as remote computing. In this talk, we
revisit the Babel architecture with the twofold intention of
clarifying what Babel is and showing how Babel differs from
previous work.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: General – Sys-
tem architectures; D.4.6 [Operating Systems]: Security
and Protection; D.4.7 [Operating Systems]: Organization
and Design

General Terms
Security, design

Keywords
Diversity, client-server, remote computing, virtualization,
secure co-dependency

1. REFERENCES
[1] D. M. N. de Castro. The polyglot computer. Technical

Report TR-2013-1048-16, Department of Computer
Science, University of Calgary, Calgary, Alberta,
Canada, October 2013.

121




