
Go with the Flow:
Toward Workflow-Oriented Security Assessment

Binbin Chen*

binbin.chen@adsc.com.sg
Zbigniew Kalbarczyk†

kalbarcz@illinois.edu
David M. Nicol†

dmnicol@illinois.edu

William H. Sanders†

whs@illinois.edu
Rui Tan*

tanrui@adsc.com.sg
William G. Temple*

william.t@adsc.com.sg
Nils Ole Tippenhauer*
nils.t@adsc.com.sg

An Hoa Vu*

anhoa.vu@adsc.com.sg
David K.Y. Yau‡*

david_yau@sutd.edu.sg
*Advanced Digital
Sciences Center

1 Fusionopolis Way
Singapore 138632

†University of Illinois
at Urbana-Champaign
1308 W. Main Street

Urbana, IL 61801

‡Singapore University
of Technology and Design

20 Dover Drive
Singapore 138682

ABSTRACT
In this paper we advocate the use of workflow—describing
how a system provides its intended functionality—as a pillar
of cybersecurity analysis and propose a holistic workflow-
oriented assessment framework. While workflow models are
currently used in the area of performance and reliability as-
sessment, these approaches are designed neither to assess
a system in the presence of an active attacker, nor to as-
sess security aspects such as confidentiality. On the other
hand, existing security assessment methods typically focus
on modeling the active attacker (e.g., attack graphs), but
many rely on restrictive models that are not readily ap-
plicable to complex (e.g., cyber-physical or cyber-human)
systems.

By “going with the flow,” our assessment framework can
naturally adopt a holistic view of such systems, unifying in-
formation about system components, their properties, and
possible attacks to argue about a security goal. The ar-
gument is expressed in a graph structure, based on inputs
from several distinct classes that are integrated in a system-
atic manner. That rigorous structure allows our approach
to provide quantitative assessment in an automated fashion
(like reliability assessment tools and attack graphs), while
maintaining a broad assessment scope. We demonstrate our
security assessment process using the case of Advanced Me-
tering Infrastructure in a smart power grid and obtain quan-
titative results for system availability and confidentiality.
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1. INTRODUCTION
Over the years, the security community produced much

work addressing the problem of cybersecurity assessment1,
with different approaches varying in intent, scope, and hu-
man effort requirement [15, 20, 21, 28, 30]. For example,
security assessment in industry typically focuses on demon-
strating compliance with a policy or standard (e.g., Common
Criteria). Similarly, more general work such as the Method-
ically Organized Argument Tree (MOAT) [13] and security
assurance cases [3, 6, 11] intend to present a structured se-
curity argument demonstrating that a system is “acceptably
secure.” However, because these security arguments must
be constructed manually, they do not scale well and may
be derived or interpreted differently by different stakehold-
ers. Other work, largely academic in origin, is intended to
quantify the security of specific aspects of systems. Two
prominent efforts are attack-graph-based security quantifi-
cation [10, 26, 30, 38] and attack surface [20] methods, which
are commonly used for security assessments of IT networks
and software, respectively.

In recent years, security assessments of various complex
systems have gained attention, e.g., in the context of voting
processes [17, 27, 32] and smart power grids [7]. Different as-
sessment methods have been proposed for specific scenarios,
to model the involvement of physical processes and human
actors. However, we perceive the need for a general secu-
rity assessment framework that will be able to assess a wide
range of scenarios, among them traditional cyber-systems,
cyber-physical systems and cyber-human systems. Such an

1We will use cybersecurity and security interchangeably.
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approach needs to be both flexible enough to model phys-
ical, cyber, and human interactions and formal enough to
allow automated reasoning, which promotes scalability.

In this work, we propose a framework to address these
challenges. Our approach is motivated by the following in-
sights: (i) cybersecurity assessment should be carried out
throughout the system design, implementation, and oper-
ation stages, (ii) diverse security-relevant information (evi-
dence) is available throughout the system lifecycle, and may
take different forms for different system components, and
(iii) new tools are needed to aggregate this evidence into an
overall assessment of the system’s security. To this end, we
propose a structured framework to integrate diverse infor-
mation about the characteristics of a system, the function-
ality it provides, and possible threats, in a manner to reduce
human effort through automation.

Our assessment framework is workflow-oriented : based on
abstract descriptions of the actors and interactions in the
system. That approach allows us to define which aspect
of the system the assessment should consider, based on the
activities and services it provides to/for stakeholders. A
similar paradigm exists in the area of reliability analysis,
e.g. [4], but such approaches are designed neither to assess
the system in the presence of an active attacker, nor to assess
security aspects such as confidentiality.

By “going with the flow,” our approach naturally achieves
a holistic perspective by using a workflow as the backbone to
incorporate a variety of heterogeneous information about the
system being assessed, which includes detailed system infor-
mation, empirical data on system components, and possible
attack models. Based on that diverse input, our framework
derives a computable argument graph that captures the rel-
evant interactions within the system and with possible at-
tackers. The graph is then used to quantitatively evaluate
attributes of the system such as confidentiality, integrity,
and availability.

To summarize, our main contributions are the following:

• We identify the need for a holistic, yet rigorously struc-
tured approach to assess security aspects of complex
systems and show the importance of considering work-
flows (describing how a system provides its intended
functionality) to define the scope of the security as-
sessment.

• We propose a novel workflow-oriented security assess-
ment framework that: (i) integrates detailed system
and attacker information to enable reasoning about
security properties in a holistic manner, (ii) combines
quantitative evidence to evaluate a security goal (e.g.,
“the workflow can be accomplished in spite of attacks
or failures”), and (iii) supports a significant degree of
automation.

• We present a case study and apply our approach to
evaluate the availability and confidentiality of an ex-
ample smart grid Advanced Metering Infrastructure.

This work is structured as follows: In Section 2, we ar-
gue that a workflow-oriented approach can improve security
assessments of complex systems. In Section 3, we present a
framework to support such a workflow-based security assess-
ment. We then apply the proposed method to a smart grid
case study in Section 4. In Section 5, we discuss our exper-
imental implementation of the framework and highlight its

automation potential. We compare our approach with re-
lated work in Section 6. We conclude the paper and discuss
future work in Section 7.

2. MOTIVATION
In this section, we identify gaps in existing methods for

security assessments, and summarize features required to
bridge these gaps. We then propose a workflow-oriented
assessment framework that provides those features.

2.1 Gaps in Cybersecurity Assessment
The performance and reliability community has identified

and solved many challenges in modeling and understand-
ing today’s complex systems. Such assessments may include
detailed system models as well as rigorous mathematical un-
derpinnings. In recent years, some reliability assessment
approaches have even been extended to consider high-level
workflow models intended to represent the processes through
which the system provides its intended functionality [23].
However, the theoretical gap between dependability and se-
curity is well-known [25]; this gap is mainly due to the ab-
sence of an attacker model, as well as less-developed methods
for assessing information properties such as confidentiality
and integrity.

Conversely, the security community has directed a sig-
nificant effort toward modeling attackers and their interac-
tions with an IT network or piece of software. Examples
of such work include the software attack surface metric and
its automatic derivation process [20] and the various meth-
ods for constructing attack graphs [30, 38] to model an at-
tacker’s path to a target host on a network. However, we
observe that many such approaches are not readily applica-
ble to complex systems, particularly because of the absence
of workflow models, which help bridge the gap between IT
infrastructure and other subsystems or actors that influence
system operation.

Recent work has begun to address that gap., e.g., [2, 5,
12, 17, 27, 32]. For example, the Human-Influenced Task-
Oriented Process (HITOP) modeling formalism uses work-
flow specifications to reveal how human actors influence crit-
ical system processes [5]. However, this formalism by itself
does not include the attacker-specific information needed for
a holistic security assessment. Similarly, workflow informa-
tion has recently been considered in the context of voting
process security [17, 27, 32] to enable the application of
well-known IT security tools like attack trees to systems
with human interactions. In contrast to such bespoke ap-
proaches, we recognize the need for a broad framework, that
accepts input information in a range of formats and auto-
matically derives a holistic security argument and quantita-
tive assessment. We develop such a framework in the fol-
lowing sections, and defer further discussion of related work
to Section 6

2.2 Hallmarks of a New Approach
We now identify several directions for improving the state-

of-the-art in cybersecurity assessment, and highlight their
importance with brief examples inspired by smart power
grids. We provide more details on smart grids in Section 4.1.

Explicit consideration of workflow. While workflow in-
formation has been used in other security related areas (e.g.,
the design of specification-based intrusion detection [14] and
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provenance systems [24]), a formal workflow model is usu-
ally omitted from existing security assessment approaches.
Nevertheless, such information can be critical to proper un-
derstanding of security risks. A workflow model describing
the activities and services a system provides to/for stake-
holders can serve as a natural backbone linking cyber and
physical system elements as well as other information, like
attacker models.

As an example, let us consider the security of Advanced
Metering Infrastructure (AMI) in smart power grids. In re-
cent years, people have become increasingly concerned about
a potential attack that exploits the remote disconnect capa-
bility of smart meters to cause a large-scale blackout [1].
To model this, existing approaches like attack trees or the
attack execution graphs used in [18], mainly focus on the
analysis of the steps that an attacker takes in order to send
the malicious commands to the meters. However, such an
analysis may not be sufficient to capture the overall impact
of that potential attack. If the workflow information about
the utility’s remote disconnect process is considered, one
may show that surreptitiously sending a large number of
disconnect commands does not necessarily lead to a large-
scale blackout. In particular, when the process of switching
meters on and off is implemented with a random delay on the
order of hours [34, 35], that delay would cause some house-
holds to be affected earlier than others. With some of those
affected customers promptly reporting their loss of power to
the utility’s customer service department, the utility com-
pany will likely be able to detect and react to the attack,
hence prevent the remaining customers from actually losing
their power. That workflow, which involves human actors,
allows the utility to discover (and potentially stop) an attack
before it is fully realized, reducing the risk of a widespread
blackout.

Holistic perspective. An assessment should adopt a holis-
tic view, that considers detailed system information, such as
connectivity and device settings, along with sophisticated
attacker models and the workflows that describe the sys-
tem’s core functionality and interactions with users and its
environment. For an assessment to be truly holistic, all in-
puts must be integrated at a low level and unified into one
common security argument.

To continue the AMI example, consider a group of smart
meters that uses a wireless network to communicate with a
local aggregator. One important design decision for the util-
ity is whether or not to support dynamic routing in their me-
ter network. Analysis using traditional dependability tools
(without an attacker model) may favor dynamic routing to
increase reliability. However, in the presence of an attacker,
dynamic routing may lead to a severe loss of availability
(e.g., because of a black hole attack [8]), and may also lead
to confidentiality consequences if a household’s meter read-
ings are routed through a compromised device. On the other
hand, attacker-centric methods that do not consider the in-
ternal operations of the system (the workflows) may under-
value performance gains in normal operating conditions. To
properly assess the trade-off one needs to consider high-level
user requirements, as well as the way different components
interact, which is embedded in the workflow (see also Sec-
tion 4.3).

Structured integration framework. A holistic security
assessment must have precisely defined input classes and
clear semantics for the security argument. Meeting this

requirement is essential for removing ambiguity and pro-
moting continuous refinement and re-evaluation of the se-
curity assessment throughout the system lifecycle. With-
out such structure, different experts or decision-makers may
construct or interpret the security assessment differently.

For example, the security assurance case method [6] is
general enough to capture workflow within its goals, claims,
arguments, and evidence. It may seem reasonable, then, to
use security assurance cases to convince stakeholders that
“The smart meter remote disconnect command cannot be
abused to cause a blackout.” However, since that formalism
does not provide a precise step-by-step framework to build
the arguments and/or to evaluate them afterward, several
utilities in the same region could reach different conclusions
about the security of their systems, even if they use identical
business processes (workflow of the disconnect command)
and the same type of smart meters.

Support for automation. An important strength of many
IT security assessment methods is that they can automati-
cally construct some security argument or derive a certain
quantitative metric by analyzing the source code of a pro-
gram [20] or the topology of a network [30, 38]. The size and
heterogeneity of complex systems necessitates similar au-
tomation, yet existing approaches do not attempt to achieve
this. We identify the need for such automation, and propose
that an assessment process with the above features—explicit
consideration of workflow, a holistic perspective, and a struc-
tured integration framework—can support automated argu-
ment derivation and evaluation.

The AMI examples discussed previously (dynamic routing
and remote disconnect) illustrate the security implications of
physical design choices as well as business processes. While
AMI systems are undoubtedly complex (and part of an even
larger ecosystem of devices and services in a smart grid), we
can unify relevant security information in an automated way
by adopting a workflow-oriented approach. We investigate
the issue practically in Section 5, using publicly available
AMI meter-reading workflow models.

2.3 Going with the Flow
We propose a new framework for reasoning about the se-

curity of complex systems. Our approach incorporates five
input classes: security goal, workflow description, system de-
scription, attacker model, and evidence.

We envision an assessment process that begins at a high
level with a workflow model, and becomes progressively en-
riched with system-specific information and attacker-specific
information. A natural use case for this framework is design-
time security analysis, where a system architect with access
to detailed documentation (and potentially security experts)
can evaluate design alternatives and capture underlying se-
curity assumptions. In fact, the structure of our workflow-
oriented assessment framework parallels the system design
and development process. Initial design typically begins
with a set of functional requirements expressed as workflow
diagrams, with no specific implementation information avail-
able. As the design progresses, a network topology becomes
available, allowing the generic workflows to be instantiated
for specific devices, software, protocols, and network topol-
ogy. Once the system is described in sufficient detail, differ-
ent attacker models may be used to understand weaknesses
and iteratively improve the design.
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Argument Graph

G-graph
(high generality)

GS-graph
(specific to system)

GSA-graph
(specific to system and attacker)

Support Case
assumptions, calculation steps

Security Goal
e.g., availability

Workflow Description
e.g., UML activity diagram

Attacker Model
e.g., attack templates, skills

System Description
e.g., network topology

Evidence
e.g., empirical data

Graph Evaluation

Quantitative Assessment

e.g., 95% availability

Input Output

Figure 1: Proposed framework to automatically generate and evaluate an argument graph.

In addition to this design-time analysis, our assessment
framework can also be used when the system is reconfigured,
to verify that initially assessed security properties still hold.
After the design process, the security argument can thus
form part of the system specification. If real-time evidence
is provided, one could also envision the use of our framework
for on-line security monitoring of a running system.

Regardless of the specific application, we believe the mod-
ular and structured nature of our security assessment frame-
work will offer several benefits to individual users and orga-
nizations. For example, different stakeholders often repre-
sent their unique (and perhaps incomplete) system knowl-
edge in different formats: a system architect may use tools
like UML activity diagrams to express system workflows,
while security analysts may represent attack scenarios using
attack trees. Rather than asking these stakeholders to learn
a new modeling formalism, our framework, and the proto-
type software tool described in Section 5, allows different
users to input this information in its original form. This
reduces modeling effort while providing these users with a
global view of system security that may have been previously
unavailable.

3. WORKFLOW-ORIENTED SECURITY
ASSESSMENT

To derive arguments about the security of a system, the
assessment process in our framework takes a top-down ap-
proach (Fig. 1). Initially, the process starts with the work-
flow under consideration and the security goal. Based on the
workflow and goal, the Goal graph (G-graph) is constructed,
which decomposes the security goal into abstract intermedi-
ate goals. As the next step, a security analyst uses concrete
information about the system, such as the network topology
and configuration of individual devices, to instantiate the ab-
stract intermediate goals in the context of the system under
consideration. This results in the Goal and System graph
(GS-graph). The leaf nodes of the GS-graph correspond to
basic requirements, e.g., for availability of components. The
assessment process then takes the attacker into consider-
ation, and uses information about attacker strategies and

possible entry points to extend the GS-graph to the Goal,
System and Attacker graph (GSA-graph). As a last step,
the assessment process aggregates evidence about leaf re-
quirements and attaches it to the graph. That final graph
is then evaluated by the process to compute the assessment
result.

3.1 Inputs
Security goal. A security assessment requires clearly de-
fined security requirements. In the proposed framework, the
security goal can be a combination of security aspects such
as confidentiality, integrity, and availability, and is usually
defined from a system perspective (instead of an attacker
perspective). Thus, an example goal could be “Workflow
executes successfully and preserves the confidentiality of all
exchanged information.” Note that a goal can apply to mul-
tiple workflows.

Workflow description. The workflow description defines
the specific task(s) that should be assessed with respect to
the defined goal. This input describes how the system pro-
vides value, and should identify necessary actors (e.g., ab-
stract devices or humans) as well as the information they
exchange. To facilitate use of the framework, the workflow
input should accept a range of formats, e.g., UML activity
diagrams or HITOP models [5].

System description. While the workflow input describes
abstract actors and processes, the system description con-
tains concrete information about the specific system under
evaluation. This information covers as many aspects of the
system as possible, and is needed to accurately character-
ize the system. This input could include network topology,
device specifications, or software profiles.

Attacker model. The attacker model input contains in-
formation about potential adversaries, e.g., the attacker’s
access (specific locations, remote access), privilege (root, au-
thenticated, unauthenticated), and skill. The attacker mod-
els can be organized in attacker profiles to allow for easy
switches between different attacker configurations. This in-
formation can be used to obtain attacker-specific attack tem-
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plates that detail a sequence of individual attacker actions
an attacker could use to achieve his objectives.

Evidence. While the above inputs are used to construct
a security argument, evidence is used to evaluate the sys-
tem with respect to the argument’s goal. Since different
components of a system may be assessed by different tech-
niques (such as expert opinion, discrete event simulation,
or empirical data), all evidence needs to be translated into
quantitative values.

3.2 Argument Graphs
Our framework aims to automatically aggregate the di-

verse input information described above. In the center of
our framework is the construction of argument graphs, which
capture the logical relations of these diverse inputs in a holis-
tic and structured manner. Our argument graphs are con-
structed in several stages based on the workflow under con-
sideration, as illustrated in Fig. 2. The process starts with
the G-graph and results in the final GSA-graph. After the
GSA-graph has been constructed, it can be used for a quan-
titative security assessment of the system.

The argument graphs consist of nodes and directed edges.
The edges carry information that is used in the graph-driven
evaluation/reasoning process. We envision that the graph
structure supports assessments that use different methods
to aggregate information delivered to each node (non-leaf)
by the incoming edges (we discuss a concrete example in
Section 3.4). We introduce two basic node types—action
and property nodes—describing system behavior, along with
two equivalent node types describing attacker actions and
properties. In either case, action nodes correspond to events
that change the state of the system while property nodes
describe characteristics that are not directly associated with
state changes.

G-graph. The workflow description and the goal are com-
bined in the framework to derive the first high-level argu-
ment graph, which we call a G-graph. The G-graph provides
a mapping of the goals to the individual abstract compo-
nents involved in the workflow, while preserving the inher-
ent sequential structure of the workflow under considera-
tion. The G-graph is a directed graph with three different
kinds of nodes: action nodes, property nodes, and start/goal
nodes (Fig. 2). The node types differ in the data they rep-
resent, and how they can be connected to other nodes. The
start/goal nodes are the simplest: the start node denotes
the start of the workflow under consideration, and connects
directly to the first action in the workflow. The goal node
denotes the completion of the workflow, and aggregates all
properties of the workflow execution. Both nodes together
form the set G.

An action node Ai ∈ A relates to actions taken in the tar-
get workflow. For example, an action node could describe
a field device transmitting a measurement, and is used to
aggregate the associated properties. An action node is de-
noted by an ellipse in the graphs. Action nodes connect to
other action nodes or start/goal nodes using workflow step
edges denoted by a thick solid arrow Ni Nj with Ni ∈ A
and Nj ∈ A ∪G.

A property node Pi ∈ P aggregates properties. For ex-
ample, this property could be the availability of a certain
network link. Property nodes connect to each other or ac-
tion nodes using a composition edge in the graph: Ni Nj

with Ni ∈ P and Nj ∈ P ∪ A.

GS-graph. Based on the previously defined G-graph and
the system description, the framework derives the GS-graph.
This more detailed representation maps the abstract actors
from the workflow description to actual hardware, including
information about component redundancy and the nature of
the communication links, such as information about network
traffic passing through a firewall, or a multi-hop path in an
ad-hoc network.

As the GS-graph builds on the G-graph, it can contain all
node and edge types of the G-graph. In addition, the GS-
graph can contain leaf property nodes, which form the set
L. Leaf property nodes are very similar to normal property
nodes, but cannot be decomposed further. Leaf property
nodes define requirements for evidence; the evidence is going
to be attached to these nodes in a later step. Leaf nodes use
the same composition edges to connect to other property
nodes or action nodes: Ni Nj with Ni ∈ L and Nj ∈ P∪A.

GSA-graph. Based on the GS-graph and the attacker
model, the assessment process derives the GSA-graph. The
GSA-graph integrates the knowledge about the attacker into
the GS-graph. For example, weak points identified in the
GS-graph are matched to attack templates to model the set
of possible actions for the attacker.

The GSA-graph introduces two new types of nodes for the
graph: attacker action nodes, and attacker property nodes.
Attacker action nodes denote activities taken by the attacker
in the system, and can also aggregate properties. For ex-
ample, such an action could be “execute remote exploit on
Meter 1”. Attacker action nodes form the set M and connect
to other attacker action nodes or to attack entry points in
leaf property nodes, using attack step edges (thin and red):
Ni→Nj with Ni ∈ M and Nj ∈ M ∪ L.

Attacker property nodes from the set S denote individual
properties (e.g., skills) of the attacker. For example, the at-
tacker could have the skill to run a remote exploit on certain
meters. These properties are defined in the attacker model,
and attach to attack action node, represented by thin red
attack step edges: Ni→Nj with Ni ∈ S and Nj ∈ M ∪ L.

Argument graph evaluation. While the GSA-graph al-
ready captures the logical correlations between system com-
ponents and the attacker, actual data such as attack suc-
cess probabilities and statistics about device availability are
still missing. Such data are provided to the assessment pro-
cess as evidence input. Based on that input and the GSA-
graph, the process can automatically evaluate the provided
evidence (explained in more detail in Section 3.4).

3.3 Outputs
After the framework aggregates input information, the

evaluation of that graph yields two results: a quantitative as-
sessment and an associated support case. These outputs are
mainly intended to help stakeholders compare the relative
merits of different system architectures, and to gain a better
understanding of factors influencing system security—and
less to classify a system fully (in)secure.

Quantitative assessment. The quantitative assessment
allows the evaluating party to understand how the system
and its functional workflows perform with respect to the
security goal. It is mainly intended to be compared with
other results produced by this framework, rather than with
outputs from other security evaluation tools. The nature of
this quantitative assessment depends on the provided evi-
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Figure 2: Argument graph construction: From G-graph (a) to the GS-graph (b) and finally GSA-Graph (c).

dence and the combination rules used to perform the aggre-
gation. For example, if the estimated failure probabilities
for components and network links are provided as evidence,
our assessment process could provide an overall likelihood
of successful workflow completion in the presence of various
attackers.

Support case. Along with the quantitative assessment, the
evaluation process provides a concise summary of the input
conditions, calculation steps, and assumptions to engender
confidence in the result. This support case can help the eval-
uator understand where problems lie in the current design,
and assist with deciding which features should be strength-
ened first. For example, if the assessment result indicates
that a workflow will complete successfully with 95% proba-
bility using a certain attacker model, the support case will
provide the root cause analysis by presenting the different
reasoning paths through the argument graph that account
for the 5% probability of failure, as well as their relative
importance.

3.4 Aggregation using Boolean Equations
So far, we have not specified how nodes aggregate informa-

tion in the graphs, and what information is carried by edges.
Evidence information can be aggregated in different ways; in
the following, we discuss an approach that uses Boolean alge-
bra to capture the logical relationships between evidence and
the security goal (it is similar to techniques used in fault tree
analysis [37]). In the assessment procedure, we model sta-
tistically independent information sources based on Boolean
random variables. If such a Boolean random variable is
True, then the connected event has occurred, or the con-
nected property holds. The Boolean random variable A is
True with a certain probability P (A), derived from evidence
in our case. Boolean random variables are put into relation
with each other by equations using Boolean algebra. The as-
sessment process ultimately aggregates a Boolean equation
at the goal node. To obtain the final assessment result, that
Boolean equation is then evaluated using numerical values
obtained from the evidence.

Boolean equations. In our argument graphs, information
is carried by edges between the nodes. If Boolean algebra
is used for the assessment, the information is the aggregated
Boolean equation (ABE) of the edge source. For any node,
all outgoing edges carry the same information (the ABE of
this node). Each node computes its ABE based on its in-
trinsic Boolean equation (IBE). The IBE operates on vari-
ables corresponding to the incoming edges. To obtain the
ABE of a node, the process inserts all incoming ABEs into
the node’s IBE according to their placeholder variables. As
a result, the ABE of that node is obtained and associated

Figure 3: Example derivation of quantitative values
based on IBEs and ABEs.

with all outgoing edges. Each node’s IBE is defined dur-
ing the graph construction, while the ABEs are computed
and propagated during the graph evaluation phase. Once all
incoming edges of the goal node have been populated, the
ABE of the goal node can be constructed.

Leaf nodes without any incoming nodes must be initialized
to some ABE to bootstrap the aggregation process. We do
so by associating each leaf node with a Boolean random
variable.

Graph construction. To evaluate the argument graph,
each node’s ABE must be derived based on the incoming
ABEs and the node IBEs. After all ABEs have been com-
puted, they can be evaluated to combine the quantitative
data (from the evidence), which provides the central secu-
rity argument. Shared Boolean random variables in the final
ABE have to be considered (for example by conditioning in
the evaluation process).

Example derivation of ABEs and result. In Fig. 3, we
give an example of the process in more detail. In the up-
per left side, a small part of the GSA-graph is shown, with
labels denoting the properties of the nodes. In this exam-
ple, we consider two alternative network paths between the
DCU and M1, similar to the detailed example in Section 4.
One network path is a single-hop link, while the other one
has an intermediate node. As a result, the abstract path is
available if either the single-hop link or the alternative two
links are available. The upper right side shows the intrinsic
Boolean equations of the nodes, which get aggregated to the
ABEs in the lower left side. Then, based on known probabil-
ities assigned to underlying Boolean random variables, the
quantitative values for the properties can be evaluated in the
fourth step. For the numerical results, we consider the prob-
ability of path availability, and assume the following prob-
abilities for the properties: P (A) = P (C) = P (D) = 0.9,
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Figure 4: Power and data flow in a simplified smart grid system. Our case study considers its AMI component
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and P (B) = 0.99. In the figure, we use P (·) to denote the
probability of the node’s ABE being true. As the result-
ing ABE for the availability of the path between the DCU
and M1 does not contain terms with shared Boolean random
variables, the evaluation is straightforward.

4. SMART GRID CASE STUDY
In this section, we explain an assessment process based on

ABEs and IBEs in more detail, using an example workflow
from the smart grid domain as an illustration. We start by
briefly introducing smart grid systems to provide context.

4.1 Smart Grid Overview
The term smart grid refers to a modernized power grid,

which is characterized by broad measurement and control
capability, primarily at the network edges. One example of
a smart grid system deployed at the distribution level is Ad-
vanced Metering Infrastructure (AMI). The architecture of
a typical AMI system is shown in the context of a power
network in Fig. 4. The system consists of numerous smart
meters, which provide the utility with fine-grained house-
hold energy consumption data and the ability to transmit
dynamic price signals (e.g., time-of-use rates or real-time
pricing) to influence consumption behavior.

All information sent to and from the meters is routed
through data concentrator units (DCUs), which are located
in individual neighborhoods. These neighborhood area net-
works (NANs) are typically implemented using powerline
communication or wireless mesh networks. The head end is
connected to the utility’s corporate network, enabling access
to other services which are omitted here, such as meter data
archives or customer information systems.

The large scale of many AMI deployments, on the order of
500,000 meters or more (see Table 3.1 in [36]), and the likely
reliance on wireless networks present complex information
security and privacy issues. AMI security has been much dis-
cussed in recent years, with research focusing on privacy [31],
energy theft [22], misuse of remote service disconnection [1],
denial of service, or some combination thereof [7].

4.2 Detailed Assessment Process
In the following sections, we describe the steps of the as-

sessment in detail, and also derive some example graphs. We
will discuss automation of this process in detail in Section 5.

AMI head end
receives reply from

AMI meter

AMI meter receives
request, performs

reading, sends reply

AMI head end sends
reading request to

AMI meter

AMI head end
AMI meter

Figure 5: Smart meter on-demand reading work-
flow.

Goal and workflow model. The assessment process starts
with the definition of the assessment goal. In our example
case study, the security goal is to assess the probability that
the workflow will finish successfully in the presence of an
attacker (availability), and the probability that the attacker
will obtain the meter reading (confidentiality). In our ex-
ample, a head end unit at a utility initiates an on-demand
reading of a smart meter at the customer site (see Fig. 5).

As the next step, our assessment process can automat-
ically combine the workflow and goal to construct the G-
graph, as shown in Fig. 6. In the G-graph, the workflow
from the workflow description input has been extended to
explicitly model exchanged messages. These messages are
inferred from the workflow description, whenever two se-
quential workflow states are not associated with the same
abstract actor. In addition, the G-graph contains nodes to
explicitly model the actors: the AMI head end and the AMI
meter to be read. The workflow also shows that an abstract
path between meter and head end must be available.

System model. In the next step, the properties identified
in the G-graph are further decomposed. This decomposition
takes the system description into account. In our case study,
the system description includes a network topology (Fig. 4),
and information on the individual network links (e.g., the
encryption used). In this network, the head end commu-
nicates with a local data concentrator unit (DCU), which
itself forwards communication to two individual meters (M1
and M2). The meters and DCU form a local mesh network
that uses preshared symmetric keys to encrypt all traffic.
All traffic from the DCU to the head end is encrypted with
a key shared only between the DCU and the head end.

The system description allows us to map the abstract ac-
tors from the workflow description to physical devices: we
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Figure 6: G-Graph for the example workflow. Here,
M is the meter to be read, HE is the head end, and
m1 and m2 are messages (request/response) inferred
by the process.

map the AMI meter from the workflow description to M1
in the network topology, and use the head end as defined
in the topology. Based on the inference of a message ex-
change from the workflow description, the process discovers
that the workflow relies on the availability of an abstract
network path between the head end and M1. Using the
topology, the process traces this abstract path through the
DCU and determines that the availability of the DCU is also
critical for the workflow completion, although the DCU was
not explicitly mentioned in the workflow description. The
process also uses the mesh network between the meters and
the DCU to model two alternative routes between the DCU
and M1: (i) a direct link, and (ii) an indirect path via M2,
which would forward the messages.

In this example, actors are decomposed to the following
properties: availability on the logical layer, availability on
the physical layer, and confidentiality on the logical layer.
Single-hop network links are decomposed into availability on
the physical layer (e.g., noise, collisions) and confidentiality
(e.g., eavesdropping). To reduce the complexity of the ex-
ample, we do not decompose most of the properties further,
but consider them as leaf property nodes to which evidence
is attached. The confidentiality of links in the mesh net-
work is decomposed into the confidentiality of the shared
key, and the inverse of the physical layer availability of the
link (Fig. 7).

Attacker model. The attacker model defines template
graphs of attacker actions that eventually connect to leaf
property nodes in the GS-graph. For example, an attack
template can consist of two attacker action nodes, connected
with an attack step edge. In our example, one of the attack
points is OS integrity. A matching attack template would
consist of attacker actions: Gaining Access to Location

and Using local exploit. The attacker can only consider
executing the second action (local exploit) when the first ac-
tion (gaining access) has been executed. For both actions,
the attacker needs to have the required skills, which are de-
fined separately for the attacker action template. Typical
multi-stage attacks can also be collected and re-used in dif-
ferent assessments, independently of the attacker’s skills.

Figure 7: A branch in the GS-graph for our example
workflow, showcasing the path decomposition.

In our example, the attacker has the skill to compromise
the OS of any device, if he gets physical access to that device.
The attacker is assumed to be able to gain access to the
location of M2, but he not able to gain access to the locations
of M1, the DCU, or the head end. Based on this attacker
model input, the GSA-graph can be constructed–for this
case study, the GSA-graph has 60 nodes and 82 edges. Due
to this size, we cannot give a detailed view of the whole
graph here. Instead, we provide an overview of the GSA-
graph for this case study in Section 5, where we use our
prototype tool to automatically generate it (Fig. 10).

Evidence. For our example workflow, the following evi-
dence is needed to provide an assessment of the workflow’s
availability: (i) (statistical) data about the availability of the
OS functionality for M1, the DCU, M2, and the head end,
and (ii) (statistical) data about the availability of the hard-
ware functionality for M1, the DCU, M2, and the head end.
That evidence does not consider the attacker; it is similar
to the statistical data on device failures used in reliability
analysis. In our example, we assume a mean-time-to-fail of
5 years for all involved devices (hardware errors), a nonzero
chance of software errors (1%) in the meter devices, and no
software errors in the DCU and head end. For the links, we
assume no message loss on the link between the DCU and
head end, and a 10% loss rate for wireless links in the mesh
network.

Computation of quantitative results. In our case study,
we construct and evaluate the argument graph based on the
Boolean random variable calculus described in Section 3.4.
In Fig. 8, we show an example of how the ABEs are con-
structed based on the graphs (without showing the attacker).
We use a horizontal bar to differentiate two separate prop-
erties: the upper ABE is related to confidentiality, and the
lower one to availability.

The assessment has two quantitative results: an availabil-
ity score (AS) and a confidentiality score (CS). We now start
with assessment results in the absence of an attacker. In this
setting, the availability of the meter-reading workflow is de-
termined by general link quality and device availability. The
quantitative result is computed by combining the probabil-
ities for system operation and attacks as provided from the
evidence. First, the ABE for each node in the GSA graph is
computed (see Section 3.4 and Fig. 8). The combination of
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Figure 8: The branch from Fig. 7 with annotated
ABEs instead of labels. We separate confidentiality
and availability properties with a horizontal bar.

Figure 9: The trace of an attack in our example.

evidence then uses the ABE at the goal node to detect and
resolve statistical dependence of evidence.

To illustrate the computation of the availability and confi-
dentiality score in more detail, we continue with the example
ABE as shown in Fig. 8. Here, the availability ABE of the
path between the DCU and M1 is given as D∨ (E ∧F ∧G).
Using the evidence as detailed above, we arrive at an overall
AS of 0.981 for that path. For the whole workflow, the AS
is 0.97. As the communication between M1 and the DCU
is encrypted, and the communication between the DCU and
the head end is encrypted as well, confidentiality of the me-
ter data is preserved (CS = 1.0).

When the attacker is considered to be able to compromise
M2 locally, the availability score of the system is impacted,
because the alternative path from M1 to the DCU via M2 is
controlled by the attacker. A trace of this attack is shown
in Fig. 9. If the probability of this attack (that makes M2
unavailable) is modeled as a Boolean random variable Z
(which is statistically independent of other variables), then
the availability of the path between the DCU and M1 is
now given by the following ABE: D ∨ (E ∧ F ∧ (G ∧ ¬Z)).
The impact of such an attack can vary, depending on the
attacker’s goals. The attacker could either impact availabil-
ity by making the path unavailable (with Z = 1.0 → AS =
0.891, CS = 1.0), or forward the traffic while eavesdrop-
ping on all received data content, which would reduce the
confidentiality score (AS = 0.97 and CS = 0.1). The at-
tacker could also opt not to forward and eavesdrop, which
would lower both the availability and confidentiality scores
(AS = 0.891, CS = 0.1).

4.3 Discussion of Results
Our previous numerical examples demonstrate the impor-

tance of taking a holistic approach. In particular, differ-
ent attacker models (e.g., whether an attacker makes his
or her controlled path unavailable) could lead to different
security assessment results. Thus, in order to help assess
the impact of alternative design choices on the overall secu-
rity of the system, one needs to consider the attacker mod-
els together with the system description. To illustrate that
further, consider the design choice regarding whether one
should enable dynamic routing in a wireless mesh network
of meters. If dynamic routing is enabled, there is a certain
risk that an attacker can launch a black-hole routing attack,
in which a compromised meter announces a good route in
order to attract and drop packets from other meters. If the
attacker model suggests a high risk of such an attack, our
security assessment result would show a dramatic decrease
of the AS value because of dynamic routing. In this partic-
ular context, our holistic approach helps reveal a somewhat
counter-intuitive insight that dynamic routing (to improve
availability) should be disabled to ensure high availability.

Our meter-reading example also demonstrates the impor-
tance of making the assessment workflow-oriented. In prac-
tice, the simple meter-reading workflow serves as a building
block for a high-level automatic monthly electricity billing
workflow. Our example suggests that one needs the billing
workflow to provide the necessary context for conducting
the security assessment. In particular, the billing work-
flow may show that continuous real-time measurements are
not needed: the security goal could be to obtain monthly
readings. The billing workflow could also specify additional
mechanisms to mitigate temporary reading failures (e.g., au-
tomatic retries). Thus, our workflow-oriented assessment
framework allows one to better compare the risk and the
gain associated with dynamic routing.

5. INITIAL PROTOTYPE
In the previous sections, we have described our framework

on an abstract level (Section 3) and provided a detailed ex-
ample of how the framework assesses a basic workflow (Sec-
tion 4). While the example was derived by hand to simplify
the figures and show internal values, one of our main goals is
to provide a tool that allows the user to automatically assess
the security of a system based on a set of inputs. To that
end, we are currently working on an implementation of such
an assessment tool. In particular, we use this prototype to
experiment with automatic processing of user input, visual-
ization with automatically generated graphs, and automated
computation of the quantitative results.

The current version of the tool is written in Python and
uses several external libraries to facilitate input parsing and
graph generation. In particular, the tool reads workflow de-
scription inputs defined in XMI, an XML dialect for UML
models. We currently use workflows in XMI format from [33]
as test cases. The collection of workflows handles typical
cases related to AMI meter readings. Our tool does not
yet fully support branching and similar operations in the
workflows. In addition to workflow descriptions, the tool
processes system description inputs consisting of network
topologies and mappings between abstract actors and hard-
ware devices. The network topologies are parsed from XML
files generated by the CSET tool [9].
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Figure 10: Structure of a GSA-graph generated by
our prototype (node labels are not intended to be
readable here).

The attacker model input is currently hardcoded in the
tool, but we plan to capture it in an XML format as well.
Attackers are defined by a combination of access to locations,
attacker properties, and attacker action templates.

The evidence input is automatically parsed from CSV
files. For each leaf property node, it is possible to provide
probability distributions, a probability value, or a reference
to an external script. Based on that input, the tool auto-
matically generates the GSA-graph and produces the assess-
ment result. For 10 selected AMI meter-reading test cases
from [33], the GSA-graphs have on average 45 nodes, with
the largest graph having 130 nodes. The overall assessment
process per flow takes around 10 seconds. We also used our
tool to verify the example given in Section 4. For this, we
specified the example workflow and topology in the same
XML formats as our other test cases, and used the tool to
automatically generate the GSA-graph. In Fig. 10, we give
an high-level overview of the resulting graph.

6. RELATED WORK
In this section, we review related work on security as-

sessment and compare the related work with our proposed
workflow-oriented assessment framework.

Traditional methods that do not consider workflows.
Attack trees [29] and attack graphs [28] are two prominent
categories of work in the security assessment literature that
have been widely used in practice “because they have proved
to be an intuitive aid in threat analysis” [21]. In an attack
tree, the root node is the global goal of the attacker being
modeled, while the children of a node are refinements of this
goal. In this way, the attack tree provides an intuitive way
to describe the different actions that an attacker might take
to achieve his goal. Recently, Kordy et al. extended attack
trees to also model the behavior of defenders [15, 16]. Com-
pared with attack trees, attack graphs enable state-based
analysis for the protection of assets in networked computer
systems (e.g., a file’s access rights on a given host). Specif-
ically, attack graphs model how an attacker can compose
individual vulnerabilities in a networked system to create a
multi-stage attack. LeMay et al. recently extended attack
graphs to incorporate the attack behavior of different types
of adversaries [18].

In addition to attack trees and attack graphs, a number
of other security assessment methods were proposed, both

graphical and non-graphical. For example, a Methodically
Organized Argument Tree (MOAT) was proposed in [13]
to aid software development with explicit considerations for
system security. The MOAT consists of a collection of assur-
ance arguments represented by trees with logical AND/OR
operations for aggregation. Security assurance cases [3, 6,
11] were proposed to demonstrate the security attributes
of a given system by putting together a structured collec-
tion of security-related claims, arguments, and evidence. In
particular, the graphical Goal Structuring Notation (GSN)
is often adopted to present security assurance cases [11].
Attack surface analysis [19, 20] aims to measure unknown
vulnerabilities for a given software system, by identifying
the resources (including methods, channels, and data items)
that an attacker can potentially exploit.

The above traditional security assessment methods focus
on evaluating the protection of assets or the security prop-
erties of target systems. They do not consider workflow
information that models how different components interact
with each other to provide intended functionality—a feature
we feel is important for the assessment of complex systems.

Recent studies that explicitly consider workflows.
In the context of voting processes, some recent works have
started to explicitly consider the use of workflow informa-
tion [17, 27, 32]. For example, in [17], the authors first
develop a reusable threat model of election based on attack
trees, then they customize the tree according to the specific
voting workflow information in Marin County. Using an as-
sociated software tool, the resulting attack trees can then
be evaluated to find attacks with minimal cost in terms of
persons involved (attack team size). In addition to assessing
the security of voting, workflow information has also been
used in assessing the security of banking [12] and cyber-
physical systems [2]. While these recent efforts explicitly
consider workflow in security assessment, their approaches
are to incorporate workflow information into an existing se-
curity assessment method (e.g., attack tree in [17], and risk
analysis in [2, 12]), so that they can either consider workflow
information when applying the existing security assessment
method, or they can aggregate the results from existing as-
sessment methods to compute some workflow-level security
metrics.

In this work, we take this direction one step further and
propose the use of workflows as the central backbone of the
security assessment. This structure will allow a tool to auto-
matically identify relevant systems and attacker information
as security evidence, and aggregate the related evidence in
an organized way to construct a holistic workflow-centric
argument graph. In other words, our work is a new type
of security assessment method centered around workflow,
instead of an amendment to existing security assessment
methods to incorporate workflow information. As such, our
framework can potentially achieve better generality and re-
usability by leveraging the generality of workflow specifica-
tions themselves. Specifically, a workflow can model various
interactions between different types of entities, irrespective
of whether the interactions are messages sent over computer
networks, communications between humans, or actions with
physical consequences, e.g., a governor changing the valve of
a steam engine.

Compared to these recent research efforts that extend ex-
isting assessment methods with workflow information, our
approach of redesigning the assessment process around work-
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flow leads to the following potential benefits: (i) Our formal-
ism, i.e., the GSA argument graph, enables us to organize
different types of security-related information into a clear
argument structure that centers around workflow. (ii) If
machine-readable workflow specifications of the target sys-
tem are available, our tool can automatically use them to
generate the backbone of our graph and suggest relevant
supporting information. This can greatly reduce the man-
ual effort for the assessment. (iii) When constructing more
detailed argument graphs, our tool allows different types
of templates to be applied. For a specific context (e.g.,
election), domain-specific templates can be developed and
reused across different specific scenarios. Furthermore, we
envision that many common templates (e.g., regarding mes-
sage passing, system redundancy, or component trustwor-
thiness) can be reused across very different domains.

7. CONCLUSION AND FUTURE WORK
In this paper, we consider cybersecurity assessment of

complex computing systems, including cyber-physical sys-
tems. Specifically, we propose a novel approach that takes
into account a detailed system description, attacker-specific
information, and workflow description to reason about se-
curity properties in a holistic manner while facilitating au-
tomation. By “going with the flow” and using the workflow
as backbone of the argument graph, our assessment frame-
work can integrate the diverse inputs to represent complex
systems. The proposed reasoning framework is applied to
evaluate the availability and confidentiality of an example
Advance Metering Infrastructure. The assessment process
is currently being implemented in a tool.

In our future work, we plan to extend the prototype tool
to fully implement all aspects of the framework so that it
can be applied to a broad range of systems and application
domains. As one of those extensions, we will adapt the tool
to handle more complex input descriptions. For example, in
our case study (see Section 4), we consider a single workflow.
By supporting multiple parallel workflows, our framework
will be able to accurately assess more complex system con-
figurations, application scenarios, and attacker models. For
example, our framework could assess the susceptibility of a
power grid system to a blackout attack. In such a scenario,
the framework would allow one to consider (as part of the
security assessment) the random delay of the meter deacti-
vation and customer feedback, which is needed to accurately
assess the threat of the described attack.
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