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ABSTRACT
Cyber warfare is asymmetric in the current paradigm, with
attackers having the high ground over defenders. This asym-
metry stems from the situation that attackers have the ini-
tiative, while defenders concentrate on passive fortifications.
Defenders are constantly patching the newest hole in their
defenses and creating taller and thicker walls, without plac-
ing guards on those walls to watch for the enemy and react
to attacks. Current passive cyber security defenses such as
intrusion detection, anti-virus, and hardened software are
not sufficient to repel attackers. In fact, in conventional
warfare this passivity would be entirely nonsensical, given
the available active strategies, such as counterattacks and
deception.

Based on this observation, we have identified the technique
of booby trapping software. This extends the arsenal of
weaponry available to defenders with an active technique for
directly reacting to attacks. Ultimately, we believe this ap-
proach will restore some of the much sought after equilibrium
between attackers and defenders in the digital domain.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—In-
vasive software; D.3.4 [Programming Languages]: Pro-
cessors—Compilers
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booby traps; active defense; intrusion detection; compilers

1. MOTIVATION
The status quo in cyber security puts defenders at a dis-

advantage over attackers: the attacker only has to find one
way in, while the defender needs to guard multiple points of
exposure, some of which may be unknown. Even a defender
with vastly superior resources is still at risk from unknown
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bugs [3]. The current context in which we use software
greatly amplifies this asymmetry. Two key factors multiply
the attacker’s advantage:

1. Software Monoculture: Hundreds of millions of com-
puters run identical versions of popular software, such
as Microsoft Windows, Acrobat Reader, Adobe Flash,
and modern web browsers. This monoculture favors
attackers disproportionately, since the exact same at-
tack vector will be effective on large numbers of targets.
Moreover, since the attacker can easily replicate the
environment which he or she will eventually execute
the attack against, the attacker can develop, debug,
and test the attack before releasing it into the wild.

2. Passive Defense Strategies and Tactics: Aside from
network-based defenses, the defenses deployed on the
computers that are the actual targets of attacks are
mainly passive. We define passive defenses as anything
which makes an attack harder to accomplish but does
not react automatically during an attack. This includes
traditional defenses such as firewalls, hardened secure
software, and scans for resident malware after infection.

Biologically-inspired defenses leading to software diversity
have recently started to address the first of these factors.
This is still work in progress, with solutions ranging from
simple approaches such as memory layout randomization to
more ambitious ones that actually diversify the binary code
of application programs. Unfortunately, some approaches to
binary code diversity tend to restrict possible input programs.
For example, current code diversification techniques do not
extend to programs that involve self-modifying code, such
as just-in-time compilers. This means that there is further
room for innovation in this area.

The second factor favoring the attacker, the passive na-
ture of current defense mechanisms on target computers, has
received much less attention so far. In contrast to passive
defenses, we define active defenses as countermeasures trig-
gered as a direct reaction to an attack. Intrusion prevention
systems (IPS) which together with a firewall actively block
network connections when the IPS detects an ongoing attack
is a good example of such active defenses. Part of the reason
for the current lack of active defenses is that an active solution
will consume some resources. Frequently, users are unwilling
to deploy heavyweight schemes. Additionally, active defenses
may have high false positive rates and detrimental effects for
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legitimate users, making system administrators even more
reluctant to deploy them.

This paper describes a new defense paradigm that address
both factors. Rather than just trying to build stronger
defenses, we suggest also introducing active responses to
discourage the attacker. Our technique protects software
without human intervention using either compile-time or load-
time rewriting to add active, diversity-based defenses with
no run-time overhead. In particular, we focus on extending
the compiler or loader to weave dormant, active defenses into
generated binaries. Among other capabilities, these active
defenses can discourage brute-force attacks by costing the
attacker time or other resources Since the defenses that our
system weaves into the target code are not executed during
normal operation, the protected programs run at full speed.
We use the term “arming” a program to refer to this process
of automatically adding these active defenses to strengthen
a program.

We have identified one such active defense which we call the
“booby trap.” We define booby traps as code providing active
defense that is only triggered by an attack. These booby traps
do not implement program functionality and do not influence
its operation—in fact, the program does not know about
its own booby traps and under normal operation cannot
trigger them. We propose to automatically insert booby
traps into the original program code during compilation or
program loading. Whenever an attack triggers one of the
booby traps within the program, the trap instantly knows
that the software is under attack, and is in a position to
adequately react to the threat (see Figure 1). For example,
a booby trap might perform advanced forensics to identify
an attack in real-time to facilitate a deceptive response. In
Section 4 we describe further research directions and new
opportunities to engage attackers.

The use and effect of cybersecurity booby traps bears
striking resemblance to their real-world equivalents. First, a
booby trap signals the position of the enemy to the defender.
Second, it is in the interest of the defender to place booby
traps in locations with a high likelihood of being triggered
by the enemy. Third, booby traps affect the mindset of
the enemy: they demoralize attackers, keep them stressed,
make them cautious instead of aggressive, and slow down the
enemy’s movement. We anticipate that all of these effects
hold true in the digital domain, too.

Finally, we think that booby trapping is a transformative
approach to cybersecurity, since it provides new options to
defenders. By arming a program, we fundamentally alter
the terrain of cyber warfare, since active, direct response to
intrusion gives defenders an equalizing advantage. Defenders
need not constrain themselves to preparing for attacks or
cleaning up after them, instead they can automatically and
reliably respond during an attack. These responses are not
triggered by heuristics and observation, as the few current
active approaches are, but rather as a direct side-effect of
the attack. This means that defenders can pursue more
aggressive reactions, with the assurance that there really was
an attempted attack. This ability to respond tips the scales
of cyber war back towards the defender.

Summing up, our contributions are:

• We propose a new active cyber defense tool, booby
traps, which will help to correct the current asymmetry
in cyber warfare initiative. In Section 3 we discuss a

Figure 1: Software diversity forces the attacker to bombard
targets to find a working exploit. Even if the attacker man-
ages to find an exploit that “sticks,” active defenses now
trigger a reaction in the target.

concrete example of how defenders could insert booby
traps in the context of code-reuse attacks.

• We provide examples that demonstrate how cyber
booby traps can actively defend software by enabling
responses such as providing additional information to
defenders, preventing and recovering from attacks, and
disincentivizing attackers. In Section 4 we enumer-
ate and discuss useful responses particularly suited to
booby traps.

2. BACKGROUND
While the concept of booby traps is an applicable defense

tactic for many types of attacks, in this paper we will focus
primarily on applying booby traps to protecting against code-
reuse attacks, which are an increasingly important threat.
Throughout this paper we will also assume a remote attacker
model, where the attacker does not have direct access to the
process under attack. Thus, attacks from the same machine
such as software or hardware tampering are out of scope for
our defenses, which assume that we can hide booby traps
from the attacker. To give context to this discussion, we
must first explore code-reuse attacks and relevant defenses.

To prevent classic code injection attacks, modern operating
systems use security mechanisms, such as W ⊕X and code
signing. This led to the development of attacks which circum-
vent these protection mechanisms entirely by reusing existing
code. Code-reuse attacks include “return-to-libc” [35] attacks
which reuse functionality present in standard libraries and
“return-oriented programming” (ROP) [40], which reuse short
code sequences, gadgets, ending in a return instruction or
instructions with a similar effect. ROP techniques are very
powerful since virtually every targeted binary contains code
with the prerequisite gadgets. Not only is ROP supported
by attack construction toolkits, but it was also implicated in
the Stuxnet attacks [33] and used to compromise a hardened
electronic voting machine [13].

Attacks using this technique “thread through” code snip-
pets contained in the gadgets by using the program stack in
an unconventional manner. The attacker carefully arranges
the addresses of the gadgets to be executed in sequence onto
the stack. Unlike regular subroutines, characterized by call-

return pairs, gadget sequencing in a return-oriented attack
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Figure 2: Attack using return-oriented programming. The
attacker arranges gadget addresses on the execution stack.
Code injection is avoided by reusing existing code already
loaded in the process.

uses only the return mechanism. The attacker begins by
diverting execution to the first gadget, updating the stack
pointer in the process. The return instruction at the end of
the gadget transfers the control flow to the next gadget, and
so on. Consequently, the stack pointer takes the role of the
instruction pointer in ROP attacks. Figure 2 illustrates a
return-oriented attack.

2.1 Defending against Code-Reuse Attacks
Preventing ROP attacks is difficult because the attacker

can find sufficient code to reuse in almost any non-trivial
binary. Attackers generally also have access to the exact
binary that is running on the target, allowing them to devise
a reliable remote attack.

Fortunately, there are several ways to prevent return-
oriented attacks from succeeding. First, note that the control-
flow must be hijacked by an attacker to execute the gadgets.
Second, the control flow resulting from an attack is unusual;
jumps into the middle of functions and returns occur with
much higher frequency relative to “legitimate” control-flows.
Third, successful ROP attacks require gadgets to be located
at predictable addresses known to the attacker. As a result,
we can disrupt ROP attacks in one of the following ways:

1. preventing control flow hijacking,

2. detecting frequent returns,

3. removing the usable gadgets; or

4. diversifying gadget locations.

Each approach is distinct in terms of the security provided,
generality with respect to eligible input programs, perfor-
mance overhead, and so forth. We seek an approach that
preserves performance and remains fully compatible with
existing code. However these goals make effectively defending
against return-oriented programs challenging.

The first approach, enforcing control-flow integrity [2], is
conceptually simple, but difficult to realize for many pro-
grams. Distinguishing intended from unintended control-
flows may be possible for a large class of programs. This
class, however, does not include important programs, such
as interpreters and just-in-time compilers, which cannot be
left unprotected.

Why not just remove the gadgets from the binaries then?
While return-less kernels [31] have attempted to do this,
this approach has been shown to be ineffective since return-
oriented programming can be generalized to approaches that
do not use explicit return instructions [12]. A later refinement
of code-reuse attacks, jump-oriented programming, does away
with the use of the stack entirely, relying on indirect jumps
instead of returns [8]. While we can potentially broaden the
definition of a gadget and extend current work that removes
gadgets, this solution relies on details of the attack and
therefore requires additional effort to extend to each new
code-reuse attack.

The third approach detects the high frequency of returns
resulting from executing a ROP attack [14]. While this
approach may prevent basic ROP attacks, code-reuse attacks
can avoid return instructions by using indirect jumps, which
are also frequently executed by legitimate programs, such as
interpreters.

Compatibility concerns aside, the first and third approaches
share another drawback: they add computational overheads
to the programs they protect. While this may not be too
much of a concern in high-security deployments, the result-
ing increase in power consumption is highly undesirable for
programs running on battery-powered mobile devices, or in
data centers which are increasingly power-constrained.

2.2 Diversifying Gadget Locations
Accepting that all binaries above a certain size contain

a Turing-complete set of code that attackers can reuse [26],
we must diversify gadget locations. By giving each end-user
an unique binary, attackers no longer know where to find
the gadgets in target binaries. This software diversification
approach has several desirable properties. The compilation
process can randomize gadget locations which avoids adding
computational overhead to the protected programs. Conse-
quently, this approach is suitable for all programs irrespective
of whether they are running on an embedded device, a per-
sonal computer, or on a server in a data center. Even more
important than performance, we think such diversification
is compatible with virtually all input programs, including
interpreters and just-in-time (JIT) compilers. This property
follows from the fact that programs — apart from malware

— do not rely on where code is located in a binary; the code
and data layout happens at the discretion of the compiler,
which exploit this to optimize for time or space. We see this
degree of freedom as an opportunity to effectively enhance
security through artificial software diversity.

Previous research in diversity has shown that fine-grained
code diversification using NOP insertion incurs very low over-
head (approx. 1%) [25]. By diversifying the code, we can
be confident that a remote attacker will not be able to ac-
curately predict the locations of gadgets he or she needs to
use. If the attacker does not expect to attack a diversified
code image, an attack against the expected single “canoni-
cal” binary will certainly crash due to invalid instructions
or incorrect behavior. We expect this situation if only some
high-security targets choose to specially compile their soft-
ware with diversity. However, if all users receive diversified
binaries, we still expect that crafting a code-reuse attack is
not possible without exfiltrating the particular binary under
attack.
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Figure 3: After diversification, the attack is disarmed since
gadgets have moved from their expected locations. After
booby traps are weaved into the binary, the attack is detected
and the system reacts to the anomaly.

3. CYBER BOOBY TRAPS
As discussed previously, a booby trap provides an active

defense triggered directly by an attack. Booby traps could
be useful to defend at many different levels of the software
stack. As an example in the web domain, booby traps could
be inserted in web frameworks to protect against attacks
which attempt to use functions or SQL statements which are
not normally used by the framework. We could also insert
booby traps into the operating system to trap syscalls or
OS interaction which we guarantee the system will never use
during normal operation.

However, we will focus on low-level booby traps as a run-
ning example in this paper. By extending the idea of artificial
software diversity, we can create booby traps for code-reuse
attacks. Attack code which inadvertently lands in a booby
trap will trigger active defenses, which we describe in Sec-
tion 4. The following sub-sections detail research questions
we need to address before cyber booby traps enter the arsenal
of defenders. Specifically, we describe what code-reuse booby
traps are, and then determine when and where booby traps
should be inserted for the greatest probability of catching an
attack.

3.1 What to add?
By diversifying code as described above, we are confident

that a realistic ROP attack will crash at some point when
it tries to call a gadget which is broken or no longer in the
expected position. However, by inserting booby trap hooks
into the binary while diversifying, we can catch the attack and
react to it directly. When the attack redirects execution to
what the attacker thought a useful gadget, but is now a booby
trap, the booby trap takes over execution and responds to the
attack. By inserting booby traps where the attacker expects
a gadget, or simply sprinkle traps throughout the binary so
that any attack has some probability of triggering a trap
instead of executing a gadget, we can reliably catch attacks
while they occur. These booby traps will then pass execution
to a handler which can actively respond to an attack in
real-time and provide additional security to disincentivize
the attacker from blindly attempting additional code-reuse
attacks (see Section 4 for discussion of possible responses).

Additionally, we must decide what these handlers actually
do when triggered. What makes a suitable booby trap, and

who supplies the booby trap code? Obviously, an attacker
should not be able to use a booby trap to mount an attack,
which means that we have to either find a restricted set of
eligible instructions to be used for booby traps, or supply
hardened booby trap code ourselves. Either way, we have
to make sure that it does not compromise security. An
interesting direction to explore here is to enable programmers
to supply domain specific booby trap code, which is then
automatically hardened and weaved into the application
code.

3.2 When to add?
After we determine how the booby traps function, we must

decide when and how to best insert them. Essentially, we
think that there are two options to arm a program:

1. inserting code at compile-time,

2. inserting code at load-time, or

As is usually the case, there are several trade-offs involved
in deciding which technique to use. Since each has its ad-
vantages and disadvantages, we shall now explore both tech-
niques to offer a complete and applicable solution.

Compile-time Insertion.
Arming at compile-time has the benefit that it happens

ahead of time, i.e., we have greater flexibility to diversify
and choose suitable booby traps to insert into a program.
The compiler has full control of all code emitted and can
place booby trap code at arbitrary locations. This process
is far simpler and more practical than trying to rewrite
existing binary code, which may not even be automatically
disassemblable, but requires the availability of source code.

Compiler diversity can create a nearly infinite number of
versions of software, so we can give each end-user a cus-
tom diversified and armed binary. However, this affects the
release and distribution of programs, as publishers cannot
realistically ship software on a physical medium anymore.
Fortunately with the growing popularity of digital software
distribution, we do not need to worry about this difficulty.
A previous work by Franz [22] describes this paradigm shift
in more detail.

Load-time Insertion.
If we diversify and arm a program at load-time, we could

still ship a single binary to the users. Inserting code at load-
time could provide even higher security guarantees, as not
even an informed insider would be able determine what the
program layout is without access after it is loaded. Further, it
would extend our techniques to programs whose source code
is not readily available. In this case, however, we would also
have to properly handle all indirect-branches and make sure
that they get properly “redirected” to the intended branch
target. One way to optimize this detour away would be to
add a table listing all indirect branch targets when compiling
the program. Research in the area of load-time diversity by
Wartell et al [46] may be a starting point which booby trap
arming at load-time could be based upon.

So, we see that there is no clear best approach, but rather
varying points on the same spectrum. Furthermore, diversify-
ing/arming at both times, i.e., at compile-time and load-time,
results in a system offering higher security in face of poten-
tially compromised parties: compile-time arming protects
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against a compromised or disabled load-time diversifier, and
load-time arming protects against a compromised code pro-
ducer or use of an insecure transmission medium.

3.3 Where to add?
If we choose to insert booby traps either at compile-time

or load-time, we need to address the question of where we
actually insert our trap code. Guiding this decision is the
goal of inserting in locations an attacker will execute, but
where normal execution will never trigger the trap.

We expect that finer grained insertion will result in stronger
security, although at the cost of slightly slower performance.
For example, inserting a NOP slide ending in a booby trap
within an existing basic-block is going to increase its size,
decreasing instruction cache utilization and thus increase
instruction cache misses. Whenever we insert a booby trap
into a basic block, we need to make sure that the program’s
control flow does not reach it. This can be done by breaking
the basic block in sub-blocks and jumping past the booby
trap. Using this technique, we expect to reduce performance
penalties. We expect that this fine-grained level of insertion
does positively affect security, as we can insert booby traps
in all places that are attractive to attackers.

To insert booby traps in positions which an attacker will
likely execute, we can find all possible ROP gadget locations
and insert traps at these locations, displacing the existing
gadgets. However, this assumes a known attack model, which
is generally not the case. To properly combat new and
evolving threats, we recommend inserting traps in random
locations throughout the binary so that any code-reuse attack
will have some probability of triggering a trap.

4. ACTIVE RESPONSES
Since attacks directly trigger booby traps, which then run

inside the program space under attack, booby trap handlers
are in a unique position to react to attacks. A booby trap is
the fastest possible reaction to an attack, since it runs during
the attack itself. Booby traps also have full access to the
program and attempted exploit, which allows them to modify
the execution of both the program and attack. Finally, booby
traps are an integral part of the application code itself, and
as such cannot be easily disabled by an attacker, especially
if the operating system verifies that binaries are properly
signed. Based on this unique position, we think that there
are many interesting ways to use booby trapping to increase
the cost of attacks.

When considering responses, we must first determine how
much information we will allow to the attacker about our
response. Stealthy responses allow defenders to maintain
an advantage by responding as the attacker expects and
therefore not leaking knowledge that the attack occurred.
We can engineer many responses to either be stealthy or not,
although a few that we suggest below will by nature betray
their existence.

Recovery
Since we have access to the running program in the booby
trap, we can attempt to recover from the attack, rather than
simply crash. For certain high-availability services, it is more
desirable that the program stay running, even if the system
cannot guarantee program correctness. A recovery handler
could use standard software fault tolerance techniques such
as checkpointing, or more domain specific techniques such

as inferring what data was corrupted in the attack and
synthesizing replacement data. Additionally, we can use the
booby trap to re-activate programs, memory protection flags,
and other security mechanisms that the attack disabled by
reverse engineering the attack payload.

Recovery will generally leak information back to the at-
tacker, although we are unsure how attackers might interpret
this information. Depending on when the attack triggers
the trap, we may recover before the attacker actually knows
that the attack has partially succeeded. However, this recov-
ery must not alter correct execution of the software, or the
attacker can observe unexpected side-effects.

Version Flux
Take a snapshot of the current program state and re-start
another program instance with this state. This is particu-
larly effective if the new program is a program containing a
different set of diversifications and/or booby traps. There
are several compelling applications of mixing program di-
versification with execution, for example, we could supply a
custom program loader which chooses one program out of
many diversified/armed ones at random. In such a situation,
even insider knowledge might not be sufficient to sabotage
the computing infrastructure, because the attacker cannot
deduce which of the variations is currently running, or will
be running on the next launch.

Version flux naturally leaks information to the attacker,
since a new version of the software ideally behaves differently
in response to the same attack. However, we can introduce
noise into this leak by switching software versions randomly
without detecting an attack.

Honeypots
Honeypots are network machines specifically configured to
be vulnerable to attack in order to gather information about
new exploits and tactics. Booby traps are ideal for this
purpose, since they can provide detailed information about
attacks, especially the initial exploitation vector. By using
advanced forensics capabilities (see Section 4) armed binaries
can report exactly what the attack is doing in real-time
without requiring further execution in a virtual machine. We
believe that armed binaries will be a very useful new tool to
existing honeypot research such as the Honeynet project [43].

Honeypots are ideal for implementing stealthy booby traps.
We expect that hiding most responses from the attacker will
require the use of some sort of a honeypot to simulate the
attack completing successfully.

Feedback Directed Instrumentation
Until now, we have only talked about the technicalities of
inserting active defenses, i.e., how, where, and what. Doing
this, however, at all places that could be a potential attack is a
conservative approach. If we assume a software monoculture,
as we have today, where all binaries of a single version of an
application are identical, we can insert booby traps where
known gadgets would be located in the “expected” binary.
While this increases security if applied for only a minority
of users, attackers will not have an “expected” binary if
these techniques are widely utilized. In this situation, we
can insert booby traps of various sizes randomly into the
code, and probabilistically catch an attack targeting some
particular binary (assuming we protect the binary itself from
exfiltration or diversify at load-time).
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Figure 4: When attacked, armed binaries report the attack to aggregation servers that monitor the attacks in real-time.
Defenders can use the early warning capabilities to alert developers and cause potentially vulnerable systems to take preventive
action ahead of the attack.

Whenever we discover classes of new attacks, we can add
a dedicated analysis phase and make sure that targeted
locations in the “expected” binary are prepared to trigger
booby traps in our version. Arming programs in this way
allows us to make better guesses as to where to actually add
booby traps and where a simple NOP pad suffices. It also
allows us to guarantee that no gadgets survive (remain usable)
between any two programs in a population of diversified
binaries. Finally, by also using feedback obtained from a
performance profiler, we can also avoid instrumenting the
most frequently executed code as demonstrated by Homescu
et al. [25].

Enhanced Forensics
Complimentary to improved accuracy, which is possible by us-
ing adaptive techniques as the previous paragraph describes,
we can use booby traps to trigger a host of forensic analyses.
The purpose of such analysis is to determine the origin and
signature of the attack. Since it is difficult to determine if
a program crash is caused by an attack or simply a coding
error, triggering forensics in the early stages of an attack
improves our opportunities to distinguish the two cases.

Since attacks trigger booby traps while they are still run-
ning we can deeply inspect the memory of a running attack.
For example, return-oriented programming uses the return-
stack of the native machine to manage the control of the
attack, similar to an instruction pointer. When the ROP-
attack triggers a booby trap, we can walk the stack of the
program in reverse order and use a gadget look-up table to
find which words hold data, and which (most likely) point
to gadgets. Whenever we have looked at enough data points,
it is likely that we have “recovered” the original stack that
the attacker prepared. At this point, we can actually run
analysis on the attack, and use well-known techniques, such
as signatures, to identify how the actual attack works.

While some of this is possible with conventional forensics
techniques, triggering these techniques from a booby trap lets
us catch an attack in progress, and thus allows us to inspect
the initial attack vector. Using booby traps we can do this
without costly deep packet inspection and storage to replay

attacks after-the-fact. Since booby traps trigger in real-time,
we get immediate feedback on techniques and intentions of
the initial attack vector. We can use these features to our
advantage in the following way: First, we could use forensics
analysis results, possibly based on the signatures to find out
the entry point and possible goals of the attack. Next, we
can potentially deceive the attacker with incorrect knowledge
in real-time, or move the whole attack to a safe environment,
e.g., to a virtual machine, while it is still running. Finally, we
can drive or validate the feedback directed insertion process
using forensics information to prevent future similar attacks.

We think that deception based on advanced forensics is
a promising application for booby traps, since this allows
defenders to respond stealthily to the attack. Cohen has al-
ready done significant work in the field of deception, and has
shown that deception is an extremely powerful technique [16].
Using booby traps to trigger deceptive campaigns can espe-
cially provide low-level deception that the attack succeeded
when in fact it did not. Real-time forensics provides the
details of the attack, allowing defenders to possibly simulate
the attack in a secure environment. Defenders then have
full control over the attack and can construct a simulated
environment to deceive the attacker.

Counterattack
Although counterattacking (colloquially termed “hacking
back”) is rife with dangers, pitfalls, and questions of legality,
we believe that booby traps might be a good point to launch
counterattacks from. Previous literature has discussed the
legality and morality of counterattacks [29, 20], and we de-
fer this discussion to more qualified experts on the subject.
Instead we simply address the role that booby traps might
play in facilitating counterattacks.

Booby traps could serve as an automatic start to the
counterattack process. As an automated response, booby
traps could quickly engage the attacker before he or she even
realizes that the attack has failed. This might allow the
counterattack to catch the attacker unaware and before he
or she has a chance to retreat and abandon the source of
the attack. However, since counterattacking is risky, any
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automated response would need to use the forensics tech-
niques we touched upon earlier to verify the trigger was a
real attack rather than a software bug. In addition, counter-
attack, or even counter-intelligence, betrays that the booby
trap detected the attack, which is a large disadvantage. We
imagine that booby traps might serve as only a starting point
in a counterattack campaign, perhaps providing initial port
scan or automated vulnerability scan results to a human
operator who would then continue the campaign. However,
with automated attack toolkits such as Metasploit [1], it is
certainly possible that an automated counterattack may gain
access to the offending system. While counterattacking is
still under debate, there may be contexts where it is a valid
tactic and booby traps could provide the perfect starting
point to trigger such counterattacks.

During the workshop we also discussed the possibility
of internal cooperation for counter-intelligence. If both the
victim and attacking machines are in the same administrative
domain, booby traps could trigger a mechanism installed on
all internal machines, giving direct access to the attacking
machine for forensics. This would allow the booby trap at
the very least to instantly follow the attack trail until it left
the organization.

Cooperative Situational Awareness
In the battlefield, access to relevant information regarding
the situational awareness plays a crucial role. Consequently,
military leaders depend on networked and interconnected
systems to use these information to their tactical advantage.
We think that duplicating this approach in the digital domain
results in a similar competitive edge. Binaries could be armed
so that triggering a booby trap causes the target binary to
broadcast information about the ongoing attack to other
interested parties. For instance, cloud computing resources
could aggregate attack reports and thus let defenders track
and locate attackers in real time (see Figure 4.) Probabilistic
and machine learning techniques let us identify causal events
and detect denial of service and decoy attacks in such a
cooperative situational awareness system.

We think that defenders will benefit in multiple ways. First,
this system can further automate the task of tracking and
locking down malicious IP traffic and identifying the ISPs
hosting the attacker-controlled servers. We can notify local
law enforcement much earlier relative to current practice
and simultaneously collect more evidence, too. Second, the
triggering of booby traps in a single armed binary could
provide an early warning to all other armed binaries created
from the same input program. This means, for example that
we can start preventive re-diversification of the binary started
even before the attack reaches the hosting computer. Finally,
the alerted hosts can take steps to confuse the attackers by
sending them decoy information to increase the likelihood of
their apprehension.

5. RELATED WORK
There is a multitude of related work with respect to soft-

ware diversity and defeating return-oriented programming.
Additionally, there has been some research into active re-
sponses to intrusion detection. However, to the best of our
knowledge there has not been any research on active code-
based cyber-defenses, such as our booby traps.

Code-Reuse Attacks
Return-oriented programming was initially demonstrated by
Shacham [40] in 2007 for the x86 architecture. ROP is a
generalization of the return-to-libc attacks first described by
Nergal in 2001 [35] and an evolution of the “borrowed code
chunks” technique described by Krahmer in 2005. Buchanan
et al. [10] extended this in 2008 to a generalized version of
ROP, targeting fixed-width instruction set architectures.

Several automated tools [27, 39, 26] scan a given binary,
produce a set of useful gadgets, and optionally a payload
that uses those gadgets. These tools build a database of
gadgets that is, in most cases, Turing-complete. However
these tools require that the attacker have a copy of the binary
running on the target system, and if we insert booby traps
in locations the attacker expects gadgets, we will catch the
attack.

Address Space Layout Randomization (ASLR) [38] has
been proposed and implemented to prevent code-reuse at-
tacks. Unfortunately attackers can circumvent this protection
when the program leaks pointer values or brute-forcing is
practical. We envision our booby traps to be complemen-
tary to ASLR, and could augment ASLR by providing an
active response when an attacker tries to circumvent the
randomization.

New defense mechanisms, such as return-less kernels by Li
et al. [31] and frequent return detection by Chen et al. [14],
were proposed to defeat return-oriented programming. The
former technique aims to disrupt return-oriented program-
ming by removing all gadgets, while the latter is a runtime
technique that has high overheads without direct hardware
support. In our work, we do not intend to make return-
oriented programming strictly impossible, but rather pro-
hibitively increase attackers’ software exploit development
cost. It is quite possible that a diversified binary has most, if
not all, gadgets from the original binary, but the randomness
introduced in the locations of these gadgets along with active
responses when an attack triggers a booby trap render a
ROP-based attack intractable.

Checkoway et al. [12] demonstrate a return-less approach
that thwarts Li et al.’s [31] and Chen et al.’s [14] defenses.
Instead of using the conventional approach which depends on
RET instructions, Checkoway et al. [12] make use of certain
instructions that behave like a return instruction. Similarly,
jump-oriented programming [8] does not use the stack in
any way and does not require that gadgets end in the RET

instruction. Our approach targets these techniques, too.

Software Diversity Defenses
Cohen’s seminal paper [15] on operating system protection
by leveraging program evolution anticipates much of the
development in what we now call artificial software diversity.
Consequently, it is safe to say that this work motivates sub-
sequent research in automated software diversity in general.
Cohen describes several program evolution techniques, for
example he describes adding garbage computation to another
program using a source-to-source compiler, while we insert
useful traps which the program does not execute under nor-
mal circumstances. Forrest et al. [21] also advocated diversity
to combat the currently insecure software monoculture.

In 2008 Jacob et al. [28] introduce the idea of a “superdi-
versifier,” a compiler that performs superoptimization [32]
for the purposes of increasing computer security. More re-
cently, Giuffrida et al. [23] used a diversifying compilation
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scheme to protect operating systems from kernel level ex-
ploits. Their approach collects meta-data during compilation
to allow re-randomization of kernel components while the
system is running. In 2013 Homescu et al. [25] present compi-
lation techniques to introduce diversification, using profiling
feedback to reduce the performance impact of introducing
additional NOP instructions. This work could be extended to
incorporate our compilation-based approach to booby trap
insertion.

In 2012 Hiser et al. [24] and Wartell et al. [46] presented
their approaches to introduce artificial software diversity at
load-time without the need for source code. We believe that
our load-time arming techniques are compatible with both
approaches. Pappas et al. [37] also describe a technique for
introducing diversity at load-time, but their approach con-
strains diversification to techniques which do not reposition
code, and therefore cannot insert additional code for booby
traps.

Instruction set randomization [7, 30] (ISR) is another in-
teresting approach towards introducing diversity. In 2005,
Sovarel et al. [42] describe a technique that illustrates some
of the limitations of ISR. In 2009, Williams et al. [47] present
an updated ISR implementation using virtual machines and
a stronger cryptographic basis by replacing the original en-
cryption algorithm with AES.

Other Prevention Techniques
Other approaches to the prevention of return-oriented pro-
gramming attacks and arbitrary-code execution attacks are
based on preventing the attacker from either taking control
of the program execution or making changes in disallowed
sections of memory. Since most attacks begin by taking ad-
vantage of a vulnerability such as a buffer overflow or printf
format string vulnerability in order to overwrite some memory
address with a value chosen by the attacker, researchers have
dedicated significant research work to techniques meant to
prevent these attack vectors. A significant number of attacks
simply overwrite the return address on the stack directly.
StackGuard, by Cowan et al. [17] is a simple transformation
to stack frames that can be used for security. StackGuard
places a value called a canary on the stack in between the
stack variables and the activation record that must survive
an integrity check once the function terminates. Other trans-
formations [44] protect against stack-based buffer overflows.

Another approach, called software fault isolation, restricts
the allowed regions of memory that the program can access.
These ranges are also separated into code and data regions,
which have W ⊕X restrictions. Isolated programs are also
prevented from jumping into the middle of an instruction
on CISC machines, forcing any indirect jumps to be aligned
to the start of an intended instruction. The PittSFIeld [34]
software fault isolation system inserts NOPs at the end of each
basic block to enforce alignment of jump targets. A verifier
checks input programs before execution and prevents them
from being executed if not all memory accesses and control
flow transfers are instrumented as described. The Native
Client [48] project extends PittSFIeld using x86 segmentation
and other techniques to improve performance.

Abadi et al. [2] more generally describe control flow in-
tegrity, placing restrictions on all indirect jumps and returns
so that jump targets belong to a whitelisted set. The system
inserts the checks as efficiently as possible using static analy-
sis. Because these projects perform software fault isolation

and enforce control flow integrity, they have side effects that
are effective defenses against return-oriented programming.
However, like instruction set randomization, we are not aware
of any research that shows the implications control flow in-
tegrity has on return-oriented programming. Ansel et al. [4]
optimized the execution of NOP padding in their extension to
Native Client.

In 2010, Onarlioglu et al. present a set of techniques that
“de-generalize the [ROP] threat to a traditional return-to-
lib(c) attack.” [36] Their technique allows for comprehensive
protection against (jump-) and return-oriented programming
attacks at the expense of adding run-time checks to the
secured programs.

In 2011, Cui et al. [18] present their Symbiotes approach to
secure the embedded networked devices. It is able to inject
itself into Cisco routers and monitors the firmware while it
is running. To create a symbiote, it is necessary to obtain
a program binary and scan points where “code interception”
is possible. A symbiote inserts itself at a randomly selected
subset of these points and monitors the firmware operation
of the router. These symbiotes are executed during normal
program flow and can perform diagnostic and monitoring
functionality. In contrast, our approach inserts code that
is only executed when control flow diverges from normal
execution due to an attack. This allows us to intercept and
prevent attacks which attempt to reuse program code, while
not introducing additional overhead during normal execution.

Active Defenses
Much of the closest work in defenses which we term active
has been in the realm of intrusion prevention and response
systems, which are intrusion detection systems extended
with techniques to actively mitigate or repair detected in-
trusions. Common commercial intrusion prevention systems
often include functionality to automatically block network
connections detected as malicious [5]. Recently research
intrusion response systems have included capabilities of at-
tempting to trace intrusions to their sources [45]. There has
also been considerable work in automatically choosing proper
responses to intrusions [11, 6].

Most of the previous work in intrusion prevention and
response systems is compatible with our techniques. Booby
traps can directly serve as a replacement or enhancement to
the intrusion detection portions of these systems. However,
booby traps have the advantage of being a reliable source
of attack information, since they can only be triggered by a
program bug which attackers then exploit. We expect that
existing IPS and IRS responses will be a good starting point
to develop responses tailored to the advantages of booby
traps specifically.

As a specific example of a possible active response, we high-
light recovery and self-healing. There has been research into
both developing patches to immunize against later attempts
at the same exploit (such as [41]), as well as recovery to keep
the compromised process running (such as [19]). Booby traps
could directly trigger and use these responses.

Finally, there has been some work in creating active decoy
documents to catch information exfiltration [9]. This is a sim-
ilar to our booby traps, since this system attempts to actively
track exfiltration when triggered. However, the document
decoys attempt to prevent information loss through exist-
ing known channels, while we focus on protecting software
against exploitation.
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6. CONCLUSION
Active defenses are a critical part of a strong defense

strategy, and we believe that booby traps are a great tool to
provide active response. As attackers become more powerful
and persistent, we, as the defenders, must find new ways
to handle these attacks. Sitting idly by or monitoring for
compromises while attackers bombard critical systems is no
longer sufficient to fight off adversaries. However, with booby
traps, defenders can respond immediately to attacks with
intimate knowledge of the exploit itself and the vulnerable
software.

By triggering from the attack itself, booby traps give de-
fenders a variety of unique responses. Booby traps have the
potential to allow software to recover from attacks, rather
than crashing immediately. They also provide a platform
for automatic and accurate forensics inside an attack. Since
booby traps trigger in real-time, defenders could even auto-
matically launch attribution or deception responses, while
the attack is in progress and an open connection is still avail-
able. We are just beginning to scratch the surface of what
might be possible with real-time, active responses triggered
by attacks directly, but we believe that booby traps are a
powerful weapon to add to the defense arsenal. We look
forward to the development of new types of booby traps,
especially to combat higher-level vulnerabilities, such as are
prevalent in web applications.

Automatically arming software by inserting cyber booby
traps will have a lasting effect on the field of cybersecurity.
Booby traps are the sentries guarding existing defensive walls
such as diversity. With these sentries, software armed with
booby traps actively protects itself by handling attacks as
they occur, allowing defenders to raise the cost and risk of
attempted attacks. Using active response to raise the bar for
attacks tips the balance of power in cyber war towards the
side of the defender. By booby trapping software defenders
can now take the initiative and fight back against incoming
attacks.
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[20] D. Dittrich and K. E. Himma. Active response to
computer intrusions. In The Handbook of Information
Security, volume III. 2005.

[21] S. Forrest, A. Somayaji, and D. H. Ackley. Building
diverse computer systems. In Proceedings of the
Workshop on Hot Topics in Operating Systems, pages
67–72. IEEE Computer Society, 1997.

[22] M. Franz. E unibus pluram: Massive-Scale Software
Diversity as a Defense Mechanism. In Proceedings of
the 2010 New Security Paradigms Workshop,
NSPW ’10, pages 7–16. ACM, 2010.

[23] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum.
Enhanced operating system security through efficient
and fine-grained address space randomization. In
Proceedings of the 21st USENIX Security Symposium,
pages 475–490, 2012.

[24] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W.
Davidson. ILR: Where’d my gadgets go? In Proceedings
of the 33rd IEEE Symposium on Security and Privacy,
S&P ’12, pages 571–585, 2012.

[25] A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, and
M. Franz. Profile-guided automated software diversity.
In Proceedings of the 11th International Symposium on
Code Generation and Optimization, CGO ’13. ACM,
2013.

[26] A. Homescu, M. Stewart, P. Larsen, S. Brunthaler, and
M. Franz. Microgadgets: size does matter in
turing-complete return-oriented programming. In

Proceedings of the 6th USENIX Workshop on Offensive
Technologies, WOOT ’12. USENIX Association, 2012.

[27] R. Hund, T. Holz, and F. C. Freiling. Return-oriented
rootkits: Bypassing kernel code integrity protection
mechanisms. In Proceedings of the 18th USENIX
Security Symposium, pages 383–398. USENIX
Association, 2009.

[28] M. Jacob, M. Jakubowski, P. Naldurg, C. Saw, and
R. Venkatesan. The superdiversifier: Peephole
individualization for software protection. In Proceedings
of the Third International Workshop on Security,
volume 5312 of Lecture Notes in Computer Science,
pages 100–120. Springer Berlin Heidelberg, 2008.

[29] V. Jayaswal, W. Yurcik, and D. Doss. Internet hack
back: counter attacks as self-defense or vigilantism? In
Proceedings of the 2002 International Symposium on
Technology and Society, ISTAS ’02, pages 380 – 386,
2002.

[30] G. S. Kc, A. D. Keromytis, and V. Prevelakis.
Countering Code-Injection Attacks with Instruction-Set
Randomization. In Proceedings of the 10th ACM
Conference on Computer and Communications Security,
CCS ’03, pages 272–280. ACM Press, 2003.

[31] J. Li, Z. Wang, X. Jiang, M. C. Grace, and S. Bahram.
Defeating Return-oriented Rootkits with ”Return-Less”
Kernels. In Proceedings of the 5th European Conference
on Computer Systems, EuroSys ’10, pages 195–208.
ACM, 2010.

[32] H. Massalin. Superoptimizer: a look at the smallest
program. In Proceedings of the Second International
Conference on Architectual Support for Programming
Languages and Operating Systems, ASPLOS-II, pages
122–126. IEEE Computer Society, 1987.

[33] A. Matrosov, E. Rodionov, D. Harley, and J. Malcho.
Stuxnet Under the Microscope, 2010.
http://go.eset.com/us/resources/white-papers/

Stuxnet_Under_the_Microscope.pdf. Accessed
04/09/2013.

[34] S. McCamant and G. Morrisett. Evaluating SFI for a
CISC architecture. In Proceedings of the 15th USENIX
Security Symposium. USENIX Association, 2006.

[35] Nergal. The advanced return-into-lib(c) exploits: PaX
case study. Phrack Magazine, Issue 58, 2001.

[36] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and
E. Kirda. G-free: defeating return-oriented
programming through gadget-less binaries. In
Proceedings of the 26th Annual Computer Security
Applications Conference, ACSAC ’10, pages 49–58.
ACM, 2010.

[37] V. Pappas, M. Polychronakis, and A. D. Keromytis.
Smashing the gadgets: Hindering return-oriented
programming using in-place code randomization. In
Proceedings of the 33rd IEEE Symposium on Security
and Privacy, S&P ’12, pages 601–615, 2012.

[38] PaX. Homepage of The PaX Team, 2009.
http://pax.grsecurity.net.

[39] E. J. Schwartz, T. Avgerinos, and D. Brumley. Q:
Exploit Hardening Made Easy. In Proceedings of the
20th USENIX Security Symposium. USENIX
Association, 2011.

[40] H. Shacham. The Geometry of Innocent Flesh on the
Bone: Return-into-libc without Function Calls (on the

104

http://go.eset.com/us/resources/white-papers/Stuxnet_Under_the_Microscope.pdf
http://go.eset.com/us/resources/white-papers/Stuxnet_Under_the_Microscope.pdf
http://pax.grsecurity.net


x86). In Proceedings of the 14th ACM Conference on
Computer and Communications Security, CCS ’07,
pages 552–561. ACM Press, 2007.

[41] S. Sidiroglou, M. E. Locasto, S. W. Boyd, and A. D.
Keromytis. Building a reactive immune system for
software services. Proceedings of the general track, 2005
USENIX annual technical conference: April 10 - 15,
2005, Anaheim, CA, USA, pages 149–161, 2005.

[42] N. Sovarel, D. Evans, and N. Paul. Where’s the FEEB?:
The Effectiveness of Instruction Set Randomization. In
Proceedings of the 14th USENIX Security Symposium,
pages 145–160. USENIX Association, 2005.

[43] L. Spitzner. The honeynet project: trapping the
hackers. IEEE Security Privacy, 1(2):15–23, 2003.

[44] Vendicator. StackShield: A “stack smashing” Technique
Protection Tool for Linux, 2000.
http://www.angelfire.com/sk/stackshield/.

[45] X. Wang, D. S. Reeves, S. F. Wu, and J. Yuill. Sleepy
watermark tracing: An active network-based intrusion

response framework. In Proceedings of the 16th
International Information Security Conference, pages
369–384, 2001.

[46] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin.
Binary stirring: self-randomizing instruction addresses
of legacy x86 binary code. In Proceedings of the 19th
ACM Conference on Computer and Communications
Security, CCS ’12, pages 157–168, 2012.

[47] D. W. Williams, W. Hu, J. W. Davidson, J. Hiser, J. C.
Knight, and A. Nguyen-Tuong. Security through
diversity: Leveraging virtual machine technology. IEEE
Security & Privacy, 7(1):26–33, 2009.

[48] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth,
T. Ormandy, S. Okasaka, N. Narula, and N. Fullagar.
Native client: A sandbox for portable, untrusted x86
native code. In Proceedings of the 30th IEEE
Symposium on Security and Privacy, S&P ’09, pages
79–93. IEEE Computer Society, 2009.

105

http://www.angelfire.com/sk/stackshield/

	Motivation
	Background
	Defending against Code-Reuse Attacks
	Diversifying Gadget Locations

	Cyber Booby Traps
	What to add?
	When to add?
	Where to add?

	Active Responses
	Related Work
	Conclusion
	References



