
Detecting Hidden Enemy Lines in IP Address Space

Suhas Mathur and Baris Coskun
AT&T Security Research Center

New York, NY
{suhas, baris}@att.com

Suhrid Balakrishnan
AT&T Labs Research

Florham Park, NJ
suhrid@research.att.com

ABSTRACT
If an outbound flow is observed at the boundary of a pro-
tected network, destined to an IP address within a few ad-
dresses of a known malicious IP address, should it be con-
sidered a suspicious flow? Conventional blacklisting is not
going to cut it in this situation, and the established fact
that malicious IP addresses tend to be highly clustered in
certain portions of IP address space, should indeed raise
suspicions. We present a new approach for perimeter de-
fense that addresses this concern. At the heart of our ap-
proach, we attempt to infer internal, hidden boundaries in
IP address space, that lie within publicly known boundaries
of registered IP netblocks. Our hypothesis is that given a
known bad IP address, other IP address in the same in-
ternal contiguous block are likely to share similar security
properties, and may therefore be vulnerable to being sim-
ilarly hacked and used by attackers in the future. In this
paper, we describe how we infer hidden internal boundaries
in IPv4 netblocks, and what effect this has on being able to
predict malicious IP addresses.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection; I.5.3 [Pattern Recog-
nition]: Clustering; G.3 [Probability and Statistics]:
Multivariate statistics

Keywords
Clustering, Predictive modeling, Blacklists, Statistical fin-
gerprinting

1. INTRODUCTION
Firewalls and Network Address Translation (NAT) devices
have become the industry standard in providing perimeter
defense for enterprise networks. By blocking incoming net-
work connections and hiding hosts within an enterprise net-
work from the external world, they have been quite success-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
NSPW’13, September 9–12, 2013, Banff, AB, Canada.
Copyright 2013 ACM 978-1-4503-2582-0/13/09 ...$15.00.
http://dx.doi.org/10.1145/2535813.2535816.

Figure 1: How should known bad IP addresses in-
form whether an outbound flow may be suspicious?

ful in protecting internal hosts against attacks which actively
seek and exploit victims, such as scanning, worm propaga-
tion, password guessing, etc. However, such perimeter de-
fenses have started to lose their efficacy as attackers have
adapted their strategies. For instance, a significant fraction
of recent malware evades such perimeter defenses by trick-
ing unsuspecting users to click malicious links in an email
or on a website. Unfortunately, existing network perimeter
defense systems provide little to no protection against such
strategies since malicious network connections are all initi-
ated from within the protected network. Furthermore, once
an internal host is infected, the perimeter defense completely
falls apart and infected hosts can freely communicate with
their command and control servers (i.e. botnets) or exfiltrate
sensitive information to external dropservers (i.e. advanced
persistent threats), etc.
Motivated to fix this outdated form of protection, in this
work we focus on network connections initiated from within
the protected network. This is in stark contrast to conven-
tional perimeter defense mechanisms. More specifically, we
aim to answer whether an outgoing network connection ini-
tiated by an internal host is malicious or not, the question
depicted in Figure 1.
One simple and standard way to partly address these se-
curity concerns is to utilize blacklists of IP addresses that
have exhibited malicious behavior in the recent past. That
is, a network flow destined to a known malicious IP is highly
likely to be malicious as well. However, this approach has
the obvious limitation that it can only apply in situations
where the destination IP address is already in some black-
list. Malicious IP addresses that have not been blacklisted
yet because they have been compromised only recently (and
therefore have not exhibited excessive malicious behavior
yet), or whose operators have just recently changed their IP
addresses, can slip by completely unnoticed. This raises the
following interesting question: ”Can we say whether a flow

19

is likely to be malicious even if the destination IP address is
not on a blacklist, but it appears to be close in IP address
space, to one or more IP addresses that are on a blacklist?”
We believe the answer is “Yes!”. The intuition we appeal to
is that a set of hosts with IP addresses in close vicinity are
generally used and administered in a similar fashion there-
fore share similar security properties. For instance hosts in
a lab of a university, or in a department of a corporation,
or servers of a hosting company often connect to a same
subnetwork and hence have IP addresses very close to each
other on the IP address space. Since such a group of hosts
are administered by a same entity, they share similar vul-
nerabilities, such as running the same vulnerable operating
system version or being used by unsuspecting users with a
similar profile, etc. Therefore if one host is known to be com-
promised then others in the vicinity might be vulnerable to
a similar type of compromise.
In order to study whether malicious IP addresses tend to
be concentrated in specific regions within the IP netblock in
which they appear (as opposed being uniformly distributed
inside the netblock), we utilized a dataset of about 74, 000
IP addresses blacklisted by SpamHaus, and a second dataset
of about 4, 000 botnet C&C servers. To test the clustering
hypothesis, given a netblock with N IP addresses, k of which
are blacklisted, we let the null hypothesis be that the k ad-
dresses were chosen uniformly randomly from among the(
N
k

)
possibilities. We define the metric of interest M , to be

the median of the distance between each of the k selected
IP addresses and the nearest other selected IP address. Us-
ing Monte Carlo simulations, we compute the distribution
of this metric under the null hypothesis for each setting of
the (N, k) tuple that appears in our datasets. The observed
value of the metric for a given netblock is then compared
with the empirical distribution of M computed by simula-
tion under the null hypothesis to determine a p-value, i.e.,
the area under the empirical distribution for metric values
less than or equal to the observed value. The p-value there-
fore measures how likely it is to observe a given metric for
a given netblock, if the null hypothesis were true. There-
fore, a small p-value is evidence against the null hypothesis.
Results from our study are summarized in Figure 2. Box-
plots for the null hypothesis summarize the distribution of
the mean value of M normalized by dividing by the size of
the netblock (N). Boxplots for the observed cases summa-
rize the distribution of the observed value of M , also nor-
malized by dividing by N . 37% and 44% of the net blocks
have p-values less than 0.05 in the SpamHaus dataset and in
the Botnets C&C dataset respectively. Even though some
netblocks seem to have malicious IP addresses close to uni-
formly distributed inside them, there is clear evidence of
clustering of malicious IP addresses for a large fraction of
netblocks.
However, it is unclear to what extent the influence of a
known bad IP address is in terms of casting suspicion over
IP addresses in its vicinity. For example, if X.X.0.1 is known
to be a C&C server, should flows going to X.X.0.2 be con-
sidered suspicious? What about flows going to X.X.2.1? In
this paper, we attempt to quantify the extent, in IP ad-
dress space, that a bad IP address should have on other IP
addresses.
It would be easy to answer this question if the internal IP
address space boundaries of subnets containing similar hosts
were known. In such a case, a known malicious IP address

would cast suspicion over other IP addresses residing in the
same internal subnet. Unfortunately, information on inter-
nal boundaries is almost never available in such fine granu-
larity. In this paper we show that nonetheless, it is possible
to infer these boundaries from network traffic characteristics
observed for each IP address.
We view an IP address as a data point comprising a rich
set of features extracted from network behavior observed at
the backbone of a large ISP, over a period of several weeks.
We then partition the IP address space around known mali-
cious IP addresses such that IP addresses within a partition
exhibit similar traffic feature characteristics. We deem any
internal subnet that contains a known malicious IP address,
as being potentially malicious. In other words, if an out-
bound flow is observed destined to an IP address that lies
in the same inferred (by us) cluster as a known malicious IP
address, then we deem that flow to be suspicious.
We discuss related work in Section 2, and then further mo-
tivate the new paradigm we are proposing in Section 3. In
Section 4 we describe the data we collected in order to in-
fer the hidden internal boundaries in IP netblocks. In Sec-
tion 5, we describe our methodology for finding these hidden
boundaries, and in Section 6, we study whether the inferred
boundaries seem useful in predicting malicious IP addresses.
We conclude in Section 7 with a list of planned future direc-
tions of exploration.

2. RELATED WORK
A number of prior research efforts have highlighted the fact
that malicious hosts tend to heavily cluster in IP address
space, rather than be scattered uniformly all over it. [16]
aims to discover regions of IPv4 space that are run by parties
that deliberately support malicious activities. [17] analyzes
lists of known bad IP addresses for how well they cluster
in IP address space. The reason malicious hosts tend to
appear in a highly clustered manner in IP address space is
that some networks are maintained well (regularly patched,
well configured, etc.) while some networks are poorly main-
tained (e.g. running old, unpatched software, or misconfig-
ured). This leads attackers looking for vulnerable internet-
connected hosts to favor the poorly managed networks when
they need to set up a malicious host. Our work build on top
to the insights in [16, 17].
The problem of predicting whether a given IP address may
be malicious is closely related to the problem of predicting
whether a newly created domain name is malicious. The
work in [8] builds a classification model for domains using
several input features derived from DNS records, and prop-
erties of the IP addresses the domain name points to, etc.
[9] using features derived entire from the structure of the
domain name’s string in order to classify it as a legitimate
or malicious domain name.
A large body of work has focused on the reputation of IP
addresses as senders of traffic [10, 11, 12, 13, 14, 15]. It is
surprising to note the apparent lack of attention paid to IP
addresses as receivers rather than initiators of malicious traf-
fic, among researchers working on the notion of reputation.
This focus on IP addresses as senders of malicious traffic is
at apparent loggerheads with present-day reality of network
malware, which seems to heavily rely on an outgoing flow
from the (soon-to-be-) victim’s network to a malicious host,
C&C server or dropserver.

20

Null Hypothesis Observed

0.
0

0.
1

0.
2

0.
3

0.
4

Null Hypothesis Observed

0.
0

0.
1

0.
2

0.
3

0.
4

(a) SpamHaus Dataset (b) Botnet C&C Dataset

Figure 2: Boxplots showing the distributions of the mean value of the metric of interest M , namely the
median of the distances between a bad IP and the closest other bad IP. The mean is normalized by dividing
by the size of the netblock. Boxplots are shown for the null hypothesis and the observed values, for each of
the two datasets.

Figure 3: If an outbound flow from a network is ob-
served destined to an IP address that shares an in-
ternal block with a known malicious IP address, then
we propose that this flow should be considered sus-
picious, especially if there has been no traffic bound
for that portion of IP space from this network in
recent times.

3. CASTING SUSPICION BY INFERRING
HIDDEN BOUNDARIES

Given a known malicious IP address, it is easy to ascertain
the smallest publicly known registered IP netblock in which
it lies, using the publicly available whois database. To take
a concrete but hypothetical example, suppose we know that
X.X.0.1 is a malicious IP address, then we can easily figure
out using publicly available records, that it lies in the block
X.X.0.0/16, owned by some organization. The question is:
what is the chance that other IP addresses in the vicinity
of this one known malicious IP address are compromised
and either currently being used or will shortly be used for
malicious purposes?
At one extreme, a policy we can adopt is to assume that
all IP addresses that lie in the same netblock as the known
malicious IP address are suspicious, and we would therefore
block flows going to any of these IP addresses. In our hy-
pothetical example, this would amount to blocking all flows
destined to any IP address in the X.X.0.0/16 block, which
contains 216 = 65, 536 IP addresses. Clearly, this approach
is not very practical because the number of publicly known

netblocks containing least one malicious IP address is im-
mense, and therefore blocking each such block would amount
to blocking a very large fraction of IPv4 space.
The opposite extreme, blacklisting, is closer to the current
de-facto standard. Here we only consider the individual bad
IP addresses themselves to be suspicious, and worthy of be-
ing blocked, but allow all flows destined to any other IP
address, even if it is just one address away from a known
bad IP address. This strategy is also clearly lacking. What
if another host, in the same network as a known bad IP
address, is also infected and we allow traffic destined to it?
What if a host with a known bad IP address is re-assigned a
different IP address from within a small block of addresses?
We seek to strike a balance between the two extremes above,
by attempting to quantify which IP addresses in the vicinity
of a known bad IP address are more susceptible to turning
malicious in the future.

Our approach. Our central idea is that publicly avail-
able netblocks are further partitioned into contiguous in-
ternal blocks (subnets) of IP addresses (see Figure 3). An
internal block may correspond to a set of hosts used for a
specific purpose (e.g. web servers), or by a specific group
of people (e.g. a specific office or lab), or it may simply
represent address range of a Dynamic Host Configuration
Protocol (DHCP) server. The common thread connecting
IP addresses belonging to an inner block is that they are
likely to be administered in a similar way and running sim-
ilar software, and therefore have similar security properties.
Therefore, if one IP is malicious in an inner block, the other
IPs within the same block should be treated with suspicion.
To leverage this suspicion spilling over to neighboring IP
addresses, we envision a two-component system protecting
an enterprise network:

• The first component constantly collects information on
destination IP addresses for all outbound flows from
the network perimeter, so as to build a probability
distribution over IP address space. Essentially, this
component serves the function of an anomaly detec-

21

Figure 4: Histogram of the size (log base 2) of net-
blocks containing at least one malicious IP address.

tor, allowing the computation of a probability that the
destination IP address (or the public netblock in which
it lies) is anomalous for outbound flows from this net-
work.

• When an anomalous outbound flow is detected using
the first component (i.e. it is destined to a highly
unlikely IP address), the second component attempts
to ascertain whether the destination IP address lies
within the same inner block as a known malicious IP
address from the recent past, so as to warrant suspi-
cion. If the flow is deemed to be suspicious, one can
imagine variety of actions that can be taken, depend-
ing on the governing security policy, such as blocking,
allowing with scrutiny, requiring further authorization
from the user before allowing, etc.

Unsurprisingly, the efficacy of such a system would highly
depend on precise knowledge of the inner block boundaries.
As mentioned before, these inner boundaries are hidden from
public view. In this work, we aim to infer these inner bound-
aries using a large number of features derived from network
flows going to and from the IP addresses that constitute
the larger publicly known netblock, over a large interval of
time (weeks/months). Our intuition is that, since IP ad-
dresses within an internal block are used in a similar man-
ner they are likely to exhibit similar network level behavior,
which is somewhat different than the behavior of IP ad-
dresses that reside on the other side of the boundary. As
a result, the boundaries between internal blocks should fea-
ture discernible changes in network behavior. This intuition
is clearly observed in Figure 5, where network features we
compute from observed network traffic flow sharply change
their characteristics across what we believe are inner block
boundaries.
To identify the hidden boundaries inside a given netblock,
we utilize network flow records captured at the backbone
of a Tier-1 ISP for an extended period of time. Then we
apply a specific clustering method which is tailored to our
problem. Details of data collection and clustering method
are presented in Section 4 and Section 5, respectively. We
conclude this section with a discussion on a number of as-
pects that impact our proposed system.

NATs: A NAT merges the traffic from multiple hosts sit-
uated behind a gateway, and thus appears to the public in-

ternet as a single IP address. A group of NAT gateways
with consecutive IP addresses (e.g. a group of home routers
of an ISP) will be grouped into a single contiguous clus-
ter if the long term characteristics of traffic emerging from
the NAT gateways are similar. If one of the NAT gateway
IP addresses is known to be malicious (say, a NAT router
was hacked into by an attacker exploiting a vulnerability),
then we posit that flows destined to other NAT gateways
in proximity of this IP address should be viewed with sus-
picion, since they may be vulnerable to the same exploit.
Note that a host situated behind a NAT cannot appear on
a malicious blacklist since it is not publicly routable.

Dynamic IP address allocation: IP addresses in some
netblocks may be dynamically assigned and therefore, the
same address may represent different hosts at different points
in time. However, dynamic IP address assignments typically
rotate a given IP address among hosts of the same type (e.g.
a set of NAT gateways). In this case, even though hosts may
change their IP addresses, as long as similar hosts rotate
among a pool of IP addresses, that pool of IP addresses is
likely to be inferred as a single contiguous block consisting
of hosts with similar behavior over a long time interval.

IPv6: Our approach for partitioning an IP netblock into be-
haviorally distinct contiguous sub-blocks requires the collec-
tion of network flow data for all IP addresses in the netblock.
This implies that applying this method to IPv6 may lead to
scalability issues. It is therefore worth exploring methods to
discover only boundaries that immediately enclose known
malicious IP addresses, instead of having to partition en-
tire netblocks. After all, we are only really interested in
internal blocks that contain one or more known malicious
IP addresses.

Missing data: It is possible to observe no network data
from some IP addresses. In fact in our experimental datasets,
we often observe no data of a certain type (e.g. no ICMP
flows) from some IP addresses over the entire period of ob-
servation. Rather than let this be a hurdle in our attempt at
characterizing IP addresses, we recognize that the absence
of data from an IP addresses over a long measurement hori-
zon, is itself a valuable piece of information because it tells
us something about its behavior.

Shared hosting: Many IP addresses in the Internet host
multiple web properties, often with a large number of do-
main names pointing to the same IP address. Often, at-
tackers compromise such shared hosting IP addresses to use
them as an attack endpoint. Suppose that of the several
domain names pointing to an IP address, only one (or none)
is malicious. Should an outbound flow from an enterprise be
allowed to go to this IP address if it is based on one of the
non-malicious domain names? We believe not. Therefore,
even if an IP address is part of a shared hosting environ-
ment, if it appears in the same contiguous behavioral block
as a known malicious IP address, we posit that a flow going
to it should be looked at with suspicion.

4. DATA COLLECTION & PREPARATION
As mentioned in the previous section, our approach for as-
signing suspicion to IP addresses using a known malicious

22

Figure 5: Network traffic features for IP addresses
within a publicly available netblock. Vertical axis
corresponds to different features and horizontal axis
corresponds to IP addresses. Abrupt changes in fea-
tures across inner block boundaries are clearly visi-
ble.

IP address is by monitoring all IP addresses in netblock
containing one ore more known malicious IP addresses, and
building network behavioral profiles of all these IP addresses
over time. In other words, given a malicious IP address, we
first determine using public registry information, the small-
est registered netblock that contains that IP address. Then
we collect netflow data for all IP addresses in the netblock,
in order to build behavioral profiles for each IP address over
a long period of time. These profiles are then used to infer
clusters of contiguous blocks in IP-address space. We next
describe the netflow data we collect. We follow this data
description by detailing our feature based behavioral profile
construction per monitored IP address.

4.1 IP netblock data
Given a publicly known IP netblock containing one or more
bad IP addresses, we collect network flow record data for
all IP addresses in the netblock. In our experiments, we
collected netflow data for all IP addresses in 95 such IP
netblocks, of sizes ranging from /23 to /17, for a period
of 1 month. In addition, we also collected data for 256 IP
addresses each immediately before and immediately after
each of these 95 netblocks. This was done so that we can
later test whether we are able to detect the known start
and end boundaries of the netblock, apart from the internal
boundaries inside it. Data captured for each flow includes
source and destination IP addresses, source and destination
ports, the number of bytes, and packets, and the protocol.
It does not include payloads. The data is collected from
peering points between a tier-1 backbone and its peers.

4.2 Behavioral profile/features per IP address
From the above netflow data per subnet, we extract 92 fea-
tures per IP address that aim to summarize the traffic char-
acteristics of each IP addresses in that subnet. All flows
for a given monitored IP address X, are aggregated over the

course of a day, and then the following 3 types of features
are derived from each day’s worth of data:

1. Features based on counts: Number of bytes, packets
and flows associated with X.

2. Features based on the IP addresses that X communi-
cates with: The arithmetic mean of these IP addresses
(treating IP addresses as integers), the entropy of the
distribution of these IP addresses, the standard devi-
ation of this distribution, and the unique number of
such IP addresses.

3. Features based on the ports used by an IP address:
The most frequently used port, the entropy of the port
number distribution, and the number of unique ports
used.

For each type of feature above, we distinguish between TCP,
UDP and ICMP protocols. For TCP flows, we distinguish
between completed TCP flows (which represent real commu-
nications) and incomplete TCP flows (e.g. scan attempts).
We also distinguish between whether the flow is outgoing or
incoming based on whether the source IP or destination IP
is in the corresponding network. Finally, for features based
on ports, we distinguish between the remote port number
and the local port number. This provides 92 real and cate-
gorial features for each IP address monitored, per day. Real
features are then averaged across days, over a period of 1
month, to give mean values. The only categorical features
are the ones that capture the most used port for each set-
ting of the other variables. For these features, we compute
the dominant/most-frequent port across the entire month.
At the end, we have a rich dataset with 92 features per IP
address, that represent its long-term behavior. Note that
given a netblock, we obviously do not necessarily observe all
netflow data going to and from it. However, this is not a hin-
derance because we are only interested in relative changes
in the behavior of IP addresses inside the netblock.

4.3 Feature quantization
We wish to use the feature representation of each IP address
to discover internal boundaries in subnets that contain one
or more bad IP addresses. However, three challenges con-
front our using these features directly as the profile of an IP
address.

• Varying range: The values in the data span varying
and large ranges. For example, flow counts could be
unobserved for some IP address, and in the millions
for some other IP address

• Heterogeneity: The data are a mix of real-valued
and categorical features. Examples of real-valued fea-
tures are mean counts per day, flow distribution en-
tropies etc. The categorical variables are the dominant
ports for various types of flows (TCP/ UDP, incom-
ing/outgoing, remote/local etc.)

• Missing data: There are a fair number of unob-
served/missing values. This occurs often, as a given
IP address may not have any flows of a certain type,
say incoming UDP flows, for the entire duration of data
collection.

23

We deal with all three of these challenges by transforming
the data into a categorical dataset using an adaptive quanti-
zation scheme. This is similar in spirit to the transformation
used in other IP-address clustering work in the literature
[1]. We transform the data from each netblock individu-
ally. Within any dataset, we also transform each variable
vj , j = 1, . . . , 92 independently. Our quantization scheme is
based on first sorting all the values vj takes and creating 50
bins based on 50 equally spaced percentiles: 2, 4, . . . , 98, 100.
By construction, our bins have roughly equal number of
points in them. To deal with the special case that the
range of vj we observe in the subnet dataset encompasses
less than 50 distinct values, we employ dithering, a well-
known method to randomize quantization error, by adding
a very small amount of random noise to the feature values.
This adaptive transformation to purely categorical data, ad-
dresses the large-range issue and issue of having a mixture of
categorical and real values data. It also allows us a straight-
forward route to handle missing information in a reasonable
manner. In this case, we simply encode the absence of infor-
mation on a particular feature by a distinct 51st bin. Note
that this missing data/51st bin is not balanced like the other
bins, i.e., there is no guarantee that the number of points
falling in the bin is equal to the number of points in the
other bins.

5. A CLUSTERING-BASED APPROACH TO
INFER INTERNAL BOUNDARIES

Given the categorical netblock data, we now turn to the task
of generating clusters of IP addresses. While clustering itself
is an extremely well studied problem with a vast literature
[3, 2], because we are dealing with IP addresses, there is
a strong structural constraint on the clustering results that
we must respect, namely, we should only allow clusters to
consist of contiguous regions of IP address space.
A second constraint that we impose is that our clustering
procedure be computationally efficient, due to the ambi-
tiousness of the task (clustering a large fraction of IP address
space). Note that this constraint isn’t a strict requirement,
unlike the contiguous IPs in a cluster constraint, which is.
While seemingly innocuous, these additional constraints (
mainly the contiguity requirement) rule out the application
of many standard clustering algorithms like k-means, hier-
archical agglomerative clustering etc. Indeed, the clustering
problem simplifies with the structural constraint. While still
large, the number of contiguous partitions of an ordered set
of n items (our case) is much smaller than the number of un-
restricted partitions of the same n items (generic clustering
case).

5.1 Breakpoints
Partitioning discrete IP address space into contiguous clus-
ters is equivalent to the task of finding cluster boundaries/
breakpoints in IP address space. For computational speed
we propose the following one-pass breakpoint identification
scheme: for each potential breakpoint i, between successive
IP addresses, we compute a “breakpoint score”, σ(i) that
evaluates how different the IP addresses in a window on the
left are, compared to a equal-sized window of IP addresses
on the right of the potential breakpoint (call the window size
parameter |ω|, details on how we compute this score follow).
Intuitively, true breakpoints/cluster boundaries would have

high breakpoint scores, because the behavioral profile of IP
addresses in the left window/cluster would be different from
the behavioral profile of IP addresses in the right window.
Thresholding the breakpoint scores results in a list of candi-
date breakpoint IP addresses with corresponding breakpoint
scores (call this scalar threshold parameter τ).
Of course, breakpoint scores would also be high for potential
breakpoints that are just to the left or right of a true break-
point (because a large number of points in the left and right
window would have very different behavioral profiles). For
this reason, to obtain the final clustering, we further apply a
greedy breakpoint filtering scheme. In our filtering scheme,
we iteratively pick the highest scoring breakpoint, and then
filter/remove from the list the candidate breakpoints that
lie in a contiguous window of IP addresses around the cho-
sen breakpoint. For parsimony of parameters, we set the
same window size |ω| in the filtering step as that used in the
breakpoint score evaluation. We end when our candidate
IP address list (list of all IP addresses that have breakpoint
scores greater than our threshold parameter) is exhausted.

5.2 Summarizing windows of observations
Continuing on the path to computing breakpoint scores, re-
call that after our adaptive quantization transformation, our
data are represented in terms of categorical features, which
are challenging to work with when computing distances be-
tween pairs of observations. While numerous scores have
been proposed in the literature to calculate distances be-
tween categorical valued observations [4], our problem is
slightly complicated by the fact that we want to compute
distances not just between pairs of observations, but sets of
observations (the set of observations in the window to the
left vs. the set in the window to the right of a potential
breakpoint).
To tackle this challenge, we take inspiration from probabilis-
tic clustering methodology to define our breakpoint score.
Briefly, consider the the left window of observations. For
any one categorical feature, we now have |ω| instances of
this feature, corresponding to the values each of the ob-
servations takes. If we imagine a Multinomial distribution
generates the set of observed values, it is straightforward
to estimate the parameters of this distribution using maxi-
mum likelihood, and these component probabilities will be
proportional to the frequency of the counts of the observed
category values.
This is essentially what we compute, except with one minor
twist, in that we also additionally smooth the parameter
estimates by adding a small probability to all category values
and normalizing the Multinomial parameters appropriately
(Laplace smoothing, [5]). This smoothing helps us avoid
zero probability estimates for categories not observed in the
window of observations, and can be viewed as the expected
value of a Bayesian posterior with combining a Dirichlet
prior and the Multinomial observations we have.

5.3 Computing breakpoint scores
To make the score computation precise we introduce some
notation. Let the features for the ith IP address in a net-
block be referred to by xi, with the superscript ranging over
the (say) M IP addresses in that netblock, i.e., i = 1, . . . ,M .
As mentioned, we compute N = 92 categorical features per
IP address/observation, so that the vector xi = xij=1,...,N .

Further, since each xij is a value taken on by a categori-

24

cal variable with 51 possible values, conceptually, we can
also consider a sparse vector representation of xij , which
has K = 51 components, all zero, apart from the single
component indicating the category value, for example, xij =
[0, . . . , 1, . . . , 0]. Note in this view of the data, every obser-
vation xi, is now a (sparse) matrix of size N × K, rather
than a vector of size N . We will also denote the ordered in-
dex set of IP addresses in a window of size |ω| to the left of

(and including) the IP address i by
←−
ωi = {i−|ω|, . . . , i}, and

analogously the index set of the IP addresses in a |ω|-sized

window to the right by
−→
ωi = {i+ 1, . . . , i+ |ω|}.

With these definitions, consider any IP address i in a net-
block (with M IP addresses in it). For any one of the cate-
gorical features j, the set of observations in an ω-window

to the left has a summary count statistics vector c
←−
ωi
j =

[cj1, . . . , cjK], where cjk =
∑
{z∈←−ωi} x

z
j . In words, c

←−
ωi
j is just

the vector of counts of the number of occurrences of the var-
ious categories for feature j in the left window observation
set. Analogously, we can compute the right window count

statistics vector: c
−→
ωi
j .

Assuming a small positive Laplace fraction ε, our smoothed

Multinomial window distrbution p
←−
ωi
j is a K-dimensional vec-

tor whose every entry is computed via:

p
←−
ωi
jk =

cjk + ε

(|ω|+K ∗ ε) .

An analogous expression for p
−→
ωi
j results from using c

−→
ωi
j . Now

that we have our final K-dimensional Multinomial window
distributions for

←−
ωi and

−→
ωi, we compute the Jensen-Shannon

divergence between these distributions for each feature. The
Jensen-Shannon divergence is a symmetric measure of simi-
larity between two probability distributions P and Q defined
as:

JS(P ||Q) = H(X)−H(X|Z),

where H is the entropy, X is a random variable coming from
the mixture distribution 0.5 ∗ (P + Q), and Z is a binary
indicator variable such that Z = 1 when X is from P and
Z = 0 when X is from Q. Thus, for any breakpoint IP
address i, for each feature j, we compute

sij = JS(p
←−
ωi
j ||p

−→
ωi
j).

Finally, our breakpoint score σ(i), between the left window
ending at the ith IP address in the netblock, and the cor-
responding right window, is the just the sum of these N
component divergences, so that σ(i) =

∑N
j=1 sij .

5.4 Tuning Clustering Hyperparameters
Now that our clustering methodology is defined, our remain-
ing task is choosing the clustering procedure hyperpameters,
namely the threshold τ and the window size parameter |ω|.
Recall that in line with our hypothesis about security risks
of bad IP addresses being shared by member in the same ad-
ministrative block, our objective is to capture intra-netblock
boundaries accurately.
Unfortunately, we do not have ground-truth information on
the internal boundaries of our netblock data. Therefore,
we create a synthetic dataset using portions of our original
dataset on 95 netblocks. By doing so, we create specific clus-
ter boundaries. We then choose our clustering algorithm hy-
perparameters such that our performance on detecting these

known boundaries is maximal. In order to measure perfor-
mance of our clustering technique, we use the variation of
information (V I) statistic [6], which is based on an informa-
tion theoretic view of the degree of alignment between two
clusterings. V I between two clusterings C1 and C2 is defined
as,

V I(C1, C2) = H(C1) +H(C2)− 2I(C1, C2).

As before, H is discrete entropy, and additionally, I is the
mutual information. Ci is a clustering/partition of a dataset
into non-overlapping clusters and the entropy for a partition
is defined in the usual way, and depends upon the relative
evenness of the sizes of the clusters. Similarly, the mutual in-
formation depends upon the degree of overlap between clus-
ters from two different clusterings. These expressions can be
found in [7], which also shows a number of nice theoretical
and practical properties associated with V I.
Mimicking our original dataset of 95 netblocks and 92 fea-
tures per IP in each netblock, we generate 100 synthetic
datasets which are spliced together from various portions of
the original dataset. The splicing process creates artificial
boundaries that we are aware of. It is these boundaries, cre-
ated by us, that we seek via clustering. We assemble each
of the 100 synthetic datasets by the following process:

1. Pick a uniformly random number N1 of segments of IP
addresses, between 3 and 10, both inclusive.

2. For constructing each of the N1 segments:

(a) First pick one out of the 95 netblocks we collected
data for, uniformly at random.

(b) Given one of the 95 netblocks, randomly pick one
of the following 4 contiguous portions of length
256 IP addresses: the 256 IPs just before the start
of the netblock (recall that in addition to each
netblock, we also collected data for 256 IPs im-
mediately before and 256 IPs after the netblock),
the first 256 IPs of the netblock, the last 256 IPs
of the netblock and the 256 IPs just after the net-
block.

(c) Given a portion of length 256 IP addresses, pick
a uniformly random number N2 between 128 and
256, and keep the first N2 IP addresses from the
portion picked above.

3. Concatenate the N1 segments selected by (2) above.

We next split the 100 synthetic datasets into a training and
test portion (with 67 randomly chosen training datasets and
the remaining 33 as test datasets). In order to get a han-
dle on our cluster hyperparameters, we ran a grid search
on combinations of τ and |ω|, seeking to minimize average
training V I. This search revealed τ = 15 and |ω| = 101 as
the best hyper parameters. Indeed, the clustering perfor-
mance on our synthetic data is excellent, with mean test V I
being 0.16. See Figure 6 for results on three test datasets,
one where the clustering is almost perfect (top), one where
the clustering performance is average (middle sub plot), and
one where the performance is poor (lowest sub plot). As can
be seen in the bottom figure, even when our clustering dis-
agrees with the ground truth, it doesn’t do so egregiously,
and the clusters look extremely reasonable.

25

Figure 6: Plot showing results of our clustering al-
gorithm on the assembled dataset. The plot shows
three synthetic datasets. In each, the blue lines and
alternating blue shaded regions show the ground
truth clustering. The thick red lines show where
our clustering algorithm places boundaries. The VI
between the two clusterings can be found above each
plot. Points in the background of the plot show the
feature values for one quantized feature.

6. EVALUATION
In this section, we report our results from experiments on
predicting malicious IP addresses via inferring internal bound-
aries. We first describe the malicious IP address data that
we use in the evaluation.

6.1 Blacklist Data
We collected lists of malicious IP addresses from two sep-
arate sources (Table 1). Spamhaus is a major provider of
blacklists, directed towards mitigating the spread of email
spam and malware via emails. Given an IP address, it is
possible to query Spamhaus, which replies with a code spec-
ifying whether the queried IP addresses is malicious (and
why) or not. While we cannot acquire a copy of Spamhaus’
malicious IP address database, we queried the Spamhaus
database for a period of 4 months, using all IP addresses
that we observed in raw netflow data crossing our peering
points, in several hours worth of traffic. The BotnetsC2 list
is a much smaller, manually curated list of confirmed bot-
net command & control servers. Table 1 gives the details
on how long a period of time each blacklist corresponds to,
the number of IP addresses in each list, and the number of
netblocks, among our 95 netblocks, that contain more than
1 malicious IP address from each list.
With the malicious IP address data defined we now turn to
the experimental protocol and evaluation metrics.

Blacklist Duration Size Netblocks w/ > 1 bad IP
Spamhaus 4 months 73969 29
BotnetsC2 2 years 4031 23

Table 1: Two blacklists we use for evaluation.

6.2 Experimental Protocol
At a high level, our experiments will involve: (1). clustering
the 95 netblock datasets. (2). evaluating the utility of these
inferred clusters (the metrics we use are described shortly) in
repeated experiments. In each experiment, given a netblock
with B > 1 malicious IP addresses appearing in one of the
blacklists, we leave one of the known malicious IP addresses
out, and evaluate whether our clusters and the remaining
B−1 malicious IP addresses provide us any predictive power
to infer the maliciousness of this left-out IP address. This
experiment is then repeated for all B choices of the held-out
IP address.
The two metrics we track are:
Detection rate: We consider a value 1 for a detection if
in our held-out IP address lies in one of the clusters already
containing one or more of the B− 1 malicious IP addresses.
Otherwise this value is 0. We average this binary value
over all selections of the held-out IP address, and further
over over all netblocks containing more than one malicious
IP address to obtain the detection rate. Clearly, a high
detection rate (as close as possible to 1) is desirable.
Backlisted fraction: Measures the amount of IP address
space we “blacklist”, as a fraction of total IP address space.
In particular, blacklisting fraction for any one netblock and
held out IP address (one experiment) is the ratio of the size
of the union of the clusters that contain the B − 1 mali-
cious IP addresses to the total size of that netblock. This
quantity, averaged over all settings of B − 1 IP addresses,
gives the mean blacklisting rate for that netblock, and this,
when averaged over all netblocks, gives the overall Black-
listed fraction. A low blacklisted fraction is preferable to a
high rate (less traffic will be subject to scrutiny).

Note that it is easy to have a very high detection rate at the
cost of a high blacklisted fraction. For example, by declaring
an entire netblock to be a single cluster, one can get a de-
tection rate of 1, but that will also produce a blocking rate
of 1. With the metrics and protocol settled, we next turn to
the results we obtain on our experiments.

6.3 Results
We first evaluate the detection and blacklisting behavior of
our clustering scheme, with clustering hyperparameters set
as: threshold τ = 15 and the window size |ω| = 101. Recall
that these were the values of hyper parameters that we found
via a grid search for minimal V I in Section 5. The follow-
ing table shows the resulting detection rates and blacklisted
fractions:

Blacklist Detection Rate Blacklisted Fraction
Spamhaus 0.83 0.27
BotnetsC2 0.61 0.13

While these are reasonable results, there are at least two
issues with using these particular hyperparameter values in
this set of security related experiments. Firstly, we used the

26

(a) Spamhaus, Blacklisted fraction (b) Spamhaus, Detection rate (c) botnetsC2, Blacklisted fraction (d) botnetsC2, Detection rate

Figure 7: Comparing our clustering with the kernel method (a) holding the detection rate const, and compar-
ing the blacklisting rate, in the SpamHaus list and (b) holding the blacklisting ratio constant and comparing
detection rate, on the SpamHaus list. (c)-(d): Similar results on the BotnetsC2 list.
.

synthetic datasets to estimate these clustering hyper param-
eters, and thus cannot be sure they apply directly to the real
netblock data. Secondly, and more importantly, the detec-
tion rates are not particularly high. In our security problem
setting, we wish to be able to capture most of the malicious
IP addresses, even if it might mean tolerating a higher black-
listed fraction. This is natural given the asymmetric nature
of the costs involved in security: additional scrutiny is an
impediment, allowing malicious traffic is a disaster.
With this in mind, we re-cluster our original 95 netblock
datasets with parameters which would produce higher de-
tection rates (and hence have fewer boundaries, and larger
clusters on average). With threshold τ= 15, we now obtain
the following performance on the Spamhaus and botnetsC2
blacklists:

Blacklist Detection Rate BL Rate Windowsize
Spamhaus 0.94 0.41 151
BotnetsC2 0.92 0.58 201

Using these values of the window size parameter |ω|, we do
a further comparison of our clustering algorithm’s perfor-
mance with another prediction method, which we will call
the Kernel method. The Kernel method is rather intuitive
and powerful: imagine that given B − 1 malicious IP ad-
dresses in a given netblock, we are asked, as before, to pre-
dict where the Bth IP address will lie. This time, we place
a window of K IP addresses, centered around each of the
known malicious IP addresses, and blacklist any IP address
that lies in such a window. We then use these blacklisted
IP addresses as a predictor of the Bth address. As before,
we can define a detection rate and a blacklisting rate for the
Kernel method. It is obvious that if the kernel K is large
enough, the blacklisting rate and detection rate would both
be 1.0.
In Figure 7, we compare the performance of our clustering
algorithm with the Kernel method, on both, the Spamhaus
list and the botnetC2 list. First, we hold the detection rate
constant for each method and compare the blacklisting rate
(lower is better). Then we hold the blacklisting rate con-
stant for the two schemes and compare the detection rate
(higher is better). The results show a marked improvement
in detection rate by our technique over the Kernel method
with an up to 13.7% increase for the same blacklist rate
(for the botnetsC2 list). On the flip side we see that for
the same detection rate, our clustering scheme can blacklist

much less IP address space, up to 44% (for the Spamhaus
list), tremendously reducing the burden of scrutiny. Every
difference between the clustering and kernel outcomes is sta-
tistically significant (using a paired sample t-test and a 5%
significance level).
Finally, we study the performance of our clustering algo-
rithm on each of the datasets separately. Figure 8(a) and
(b) show the performance on a netblock-by-netblock basis on
the Spamhaus and the botnetsC2 lists repectively. Figures 8
(a) and (b) convey that if a netblock has poor detection rate
performance, it has very few known malicious IP addresses
in it. In fact, we verified that all netblocks that have 0% de-
tection rate (appearing along the bottom of the figure) are
netblocks with 2, and sometimes 3 malicious IP addresses.
This means that we are attempting to predict a malicious
IP addresses using just one, and sometimes 2, IP addresses.
Note that netblocks with just 2 or 3 known malicious IP ad-
dresses have a high chance of truly lying in different clusters,
which in our leave-one-out evaluation scenario would always
result in poor detection (knowing one malicious IP address
gives you no information about the other if they are in sepa-
rate clusters). Netblocks with larger number of malicious IP
addresses (larger bubbles in Figure 8) are less likely to all lie
in separate clusters, and always have much higher detection
rates in our evaluation.
In Figure 9, we illustrate a couple of examples of net blocks
with internal boundaries inferred by us along with the lo-
cations of known malicious IP addresses. In each of these
cases, the malicious IP addresses are well contained within
an internal cluster.
We end this section with a few facts about some of the chal-
lenges in an evaluation like ours. In reality, we would like
to know whether other IP addresses in the same cluster as
a known malicious IP address are also vulnerable to the
same issue that caused the known IP address to turn mali-
cious. The evaluation we have carried out using blacklists of
known malicious IP addresses is really a proxy, because: (i)
it doesn’t capture the fact that all IP addresses in a cluster
may share the same vulnerability but only a few of them
are blacklisted. Therefore, we may be accurately inferring
cluster boundaries despite low detection rates, (ii) it doesn’t
capture the fact that known malicious IP addresses may
truly lie in different inner clusters, and when this happens,
we do not have a way of making a prediction. That said,
we believe the results we show are very promising, and point

27

(a) Spamhaus (b) botnetsC2

Figure 8: Performance of the clustering algorithm on individual subnets in predicting malicious IP addresses
in the (a) Spamhaus list and (b) botnetC2 list. Size of a point is proportional to the number of malicious IP
addresses known to be in the subnet.

(a) A /21 netblock with 263 bad IP addresses (b) A /18 netblock with 18 bad IP addresses

Figure 9: Two netblocks for which we inferred internal boundaries. The x-axis denotes IPv4 space. Vertical
magenta lines indicate the locations of inferred boundaries. Red lines of half the height indicate the locations
of known malicious IP addresses.

towards directions to make inroads towards solving the more
difficult problem.

7. CONCLUSIONS & FUTURE WORK
In this work we present a new paradigm where we gauge the
likelihood of outbound flows initiated from within protected
networks being malicious, in contrast to traditional network
perimeter defenses. Our approach is based on the intuition
that, there are contiguous blocks of IP addresses (subnets)
of IPv4 address space which are used and administered in
a similar way, hence share similar security properties and
vulnerabilities. Therefore, if one IP address is compromised
and known to be malicious (i.e. blackisted), then other IP
addresses within the same subnet might have been compro-
mised as well. Consequently, any network flow destined to
that subnet should be blocked or handled with caution. The
critical component of our approach is to infer the boundaries
of such subnets on the IPv4 address space. In this work we
present a custom tailored clustering method, which attempts
to infer such boundaries from IP traffic characteristics ob-
served at the backbone of a Tier-1 ISP. In our experiments,
we demonstrate that the proposed clustering method can
accurately detect subnet boundaries and effectively predict
the blacklisted IP addresses.
Accurately inferring subnet boundaries is central to our ap-
proach and there are few avenues that can be pursued to im-
prove this task. For instance, our current clustering method
relies on proper selection of threshold and window size pa-

rameters, which may not be trivial in practice. One way
to address this is to utilize recent non-parametric Bayesian
clustering methods which attempt to find a clustering that
explains the observed data best. However, these Bayesian
clustering methods are known to be very computationally
expensive, and may not trivially scale up to very large datasets.
We leave this exploration as future work.
Another important issue that requires further exploration is
whether two IP addresses in two different subnets within a
same publicly known netblock share similar security proper-
ties if the two subnets exhibit similar traffic characteristics
in the feature space. Could they be two non-adjacent inner
subnets used and administered in a similar way? We leave
this as future work as well.
Finally, our ultimate goal is to design a system which can
make accurate decisions on outbound network connections
initiated from within a network. To achieve that, for each
outbound flow, we envision to combine the suspicion level
of its destination IP address obtained from this work with
an anomaly detection scheme which specifies how surprising
to have an outbound flow destined to that particular IP
address. We believe such multi-layered decision mechanism
would yield accurate decisions.

8. REFERENCES
[1] S. Coull, F. Monrose, and M. Bailey. On Measuring

the Similarity of Network Hosts: Pitfalls, New
Metrics, and Empirical Analyses. In Proceedings of

28

the 18th Annual Network and Distributed Systems
Security Symposium, February, 2011.

[2] A. K. Jain, ”Data Clustering: 50 Years Beyond
K-Means” , Pattern Recognition Letters, Vol. 31, No.
8, pp. 651-666, 2010.

[3] A. K. Jain, M.N. Murthy and P.J. Flynn, Data
Clustering: A Review, ACM Computing Reviews, Nov
1999.

[4] Shyam Boriah, Varun Chandola, Vipin Kumar,
”imilarity measures for categorical data: A
comparative evaluation”, In Proceedings of the eighth
SIAM International Conference on Data Mining

[5] SF Chen, J Goodman (1996). ”An empirical study of
smoothing techniques for language modeling”.
Proceedings of the 34th annual meeting on
Association for Computational Linguistics.

[6] Meila, Marina, ”Comparing Clusterings by the
Variation of Information”. Learning Theory and
Kernel Machines, 2003, pp 173-187.

[7] Meila, Marina, ”Comparing clusterings – an axiomatic
view”, Int. Conf. on Machine Learning, 2005.

[8] Manos Antonakakis, Roberto Perdisci, David Dagon,
Wenke Lee, and Nick Feamster. 2010. Building a
dynamic reputation system for DNS. In Proceedings of
the 19th USENIX conference on Security (USENIX
Security’10). USENIX Association, Berkeley, CA,
USA, 18-18.

[9] Yuanchen He, Zhenyu Zhong, Sven Krasser, Yuchun
Tang, ”Mining DNS for Malicious Domain
Registrations,” Proc. of The 6th International
Conference on Collaborative Computing
(CollaborateCom 2010), Chicago, 2010.

[10] S. Sinha, M. Bailey, and F. Jahanian. Shades of grey:
On the effectiveness of reputation-based blacklists. In
3rd International Conference on MALWARE, 2008.

[11] J. Zhang, P. Porra, and J. Ullrich. Highly predictive
blacklisting. In Proceedings of the USENIX Security
Symposium, 2008.

[12] D. Anderson, C. Fleizach, S. Savage, and G. Voelker.
Spamscatter: Characterizing internet scam hosting
infrastructure. In Proceedings of the USENIX Security
Symposium, 2007

[13] S. Hao, N. Syed, N. Feamster, A. Gray and S. Krasser.
Detecting spammers with SNARE: Spatiotemporal
network-level automatic reputation engine. In
Proceedings of the USENIX Security Symposium, 2009

[14] Exploiting Network Structure for Proactive Spam
Mitigation Shobha Venkataraman, Subhabrata Sen,
Oliver Spatscheck, Patrick Haffner and Dawn Song In
Usenix Security 2007, August 2007

[15] Tracking Dynamic Sources of Malicious Activity a
Internet-Scale, NIPS 2009, Shobha Venkataraman,
Avrim Blum, Dawn Song, Subhabrata Sen, Oliver
Spatscheck

[16] Brett Stone-gross , Christopher Kruegel , Kevin
Almeroth , Andreas Moser , Engin Kirda, FIRE:
FInding Rogue nEtworks, ACSAC 2009 Proceedings of
the 2009 Annual Computer Security Applications
Conference.

[17] M. Collins, T. Shimeall, S. Faber, J. Janies, R.
Weaver, and M. D. Shon. Using Uncleanliness to
Predict Future Botnet Addresses. In ACM Internet
Measurement Conference (IMC), 2007.

29

	Introduction
	Related work
	Casting suspicion by inferring hidden boundaries
	Data collection & preparation
	IP netblock data
	Behavioral profile/features per IP address
	Feature quantization

	A clustering-based approach to infer internal boundaries
	Breakpoints
	Summarizing windows of observations
	Computing breakpoint scores
	Tuning Clustering Hyperparameters

	Evaluation
	Blacklist Data
	Experimental Protocol
	Results

	Conclusions & Future work
	References

