
Panel Summary: The Future of Software Regulation

Benjamin Edwards
University of New Mexico

Dept. of Computer Science
MSC01 1130

1 University of New Mexico
Albuquerque, NM 87131

bedwards@cs.unm.edu

Michael Locasto
University of Calgary

Dept. of Computer Science
602 ICT

2500 University Dr. NW
Calgary, Alberta T2N 1N4
locasto@ucalgary.ca

Jeremy Epstein
SRI International
1100 Wilson Blvd

Arlington, VA 22209
jeremy.epstein@sri.com

ABSTRACT
A panel at the New Security Paradigms Workshop (2014)
discussed the topic of regulation and licensing of software
developers and information security professionals. This in-
cluded topics of the current state of certification, future pos-
sibilities, and challenges associated with new forms of regu-
lation. This paper presents a brief background on the sub-
ject, three opinions presented by the panelists, and finally a
summary of the discussion which occurred at the workshop,
including input from both the panelists and the workshop
attendees.

Categories and Subject Descriptors
H.1.1 [Models and Principles]: Systems and Information
Theory—Value of Information; K.5.2 [Legal Aspects of
Computing]: Government Issues—Regulation; K.7.3 [The
Computing Profession]: Testing, Certification, and Li-
censing

General Terms
Security, Measurement, Legal Aspects

Keywords
regulation, licensing, ethics, software development, offensive
security, credit score, public policy

1. INTRODUCTION
Increasingly there are calls for tighter regulation of the

Internet [27], the introduction of “driver’s licenses” for the
Internet [9], and licensing of software developers. These
calls are often made in response to significant cybersecurity
events. In the last four years we have experienced numer-
ous cyber-meltdowns: the 2011 summer of Lulz, failures of
certificate authorities, failures in critical open source soft-
ware [20], and the loss of massive amounts of personal and
financial information [47]. In the wake of these events we

Publication rights licensed to ACM. ACM acknowledges that this contribution was au-
thored or co-authored by an employee, contractor or affiliate of the United States gov-
ernment. As such, the United States Government retains a nonexclusive, royalty-free
right to publish or reproduce this article, or to allow others to do so, for Government
purposes only.
NSPW’14, September 15–18, 2014, Victoria, BC, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3062-6/14/09 ...$15.00.
http://dx.doi.org/10.1145/2683467.2683478.

expect a renewal of calls for schemes involving the licensing
or regulation of the software development industry.

Certainly, regulation in meaningful forms would profoundly
affect the construction and analysis of software, and that
certain forms of regulation might have significant negative
consequences for the relative ease with which bugs and bro-
ken systems can be studied. Strict regulation might mean a
reduction in access to the ability to code and make the con-
struction of software a much less open activity. We would
agree that this is a poor outcome, but to conduct a fair as-
sessment, such a negative consequence must be set against
the perceived or anticipated increase in security that pro-
ponents claim might follow from various regulatory models.
Moreover, there are many possible forms of regulation; we
should withhold judgement until we understand the nature
of this spectrum.

This panel sought to examine whether such regulation has
any value for preventing or reducing the occurrence of soft-
ware bugs that lead to compromised systems. If it is be-
lieved regulation can reduce such bugs, we considered ex-
actly what forms of regulation are viable, and which should
be avoided. Finally, we considered how best to cooperate
with politicians, professional organizations, and developers
to implement effective regulation.

2. PANEL FORMAT
The panel was presented as follows. The first author

provided a brief introduction and motivation for the panel.
Each of the three panelists then gave a brief statement (ap-
proximately 5 minutes), outlining a position concerning reg-
ulation of the software development industry.

Rather than specifically including two positions (FOR,
AGAINST), the panel invited a more open discussion of the
topic at hand. Participants at the workshop were prompted
with a few questions.

1. Is regulation of the software industry inevitable?

2. If it is inevitable, on what timeline will regulations
develop?

3. What are possible models for regulation?

4. What are some of the positive and negative outcomes
for various modes of regulation?

5. Can regulation actually make software better, or do
we have to settle for better protection of consumers?

6. What has prevented previous attempts at regulation
to fail?

117

7. Which organizations and individuals are most impor-
tant to getting effective regulation implemented?

3. RELATED WORK
The idea of regulation in cyberspace is not unique. In this

section we review proposals for regulation of cyberspace, the
necessary information needed for effective regulation, as well
as a review of regulation in other industries.

3.1 Software Industry
Data breaches often result in a flurry of calls for new regu-

lations concerning data privacy. Following the ChoicePoint
data breach in 2005 [41], in which Federal Trade Commis-
sion(FTC) forced the company to pay $15 million in civil
penalties, discussions began about whether the software and
data storage industry should be regulated or whether the
free market simply needed more time to improve itself [61].
More recent breaches such as Target’s loss of millions of
consumer credit cards have also resulted in FTC investiga-
tions and lawsuits for companies responsible for data [47].
However, the effectiveness of these lawsuits has been ques-
tioned [51], and more robust laws have been suggested [52].

Bruce Schneier has written extensively on regulation of
the software industry and advocates for a liability model [49].
This model was refined by Dan Geer and Poul-Henning
Kamp to include three levels of liability. (0) In the case
of damage caused by willful intent, the software company
should be held responsible via a criminal code. (1) If the
source code is provided with the software, then the provider
is only liable for the cost of the software. In the case of open
source software, the development cycle remains unchanged.
(2) In all other cases, software companies are liable for any
damage caused by their products [21].

Further refinement of who in the software development/
deployment chain should be liable has been discussed. An-
derson et al. outline various options for software and systems
liability, and ultimately recommend that network-connected
equipment be ‘secure by default’ [2], with required vulner-
ability disclosure, and security patches kept separate from
feature updates. A European Union working group further
suggested that software vendors have upper and lower lim-
ited liability thresholds based on the potential harm or criti-
cality of software [4]. Models for liability have examined the
effectiveness of different liability policies, finding that their
effectiveness can be highly variable depending on the prob-
ability of zero-day exploits, the cost of patch deployment,
the nature of loss, and whether a software vendor holds a
monopoly [3, 23].

The insurance industry is already taking note of the po-
tential to protect against such liability, with the Ameri-
can International Group investigating how to assess cyber
risks [54]. However, insurers have struggled to assess the
risk associated with cyber insurance [57], and the cyber-
insurance industry has failed to succeed despite theoretical
work outlining its construction [5]. It is often difficult for in-
surers to assess the damage to a company’s reputation that
could result in lost sales, as was the case with the Target
breach [60].

As a counterpoint Leveson advocates developing a sci-
ence of computer security so that new regulations can be
developed intelligently [26], using the development of high-
pressure steam engines as an analogy. There have been many
attempts at codifying the software development process, one

of the earliest examples being the “Trusted Computer Sys-
tem Evaluation Criteria” [44]. Organizations, such as the
Capability Maturity Model Integration Institute [11], have
claimed to develop processes that reduce the number of bugs
in software, as well as deliver it on time and under budget,
with other organizations making similar claims [43, 7, 13].
Vinton Cerf, the past president of the ACM, has stated that
a ‘certified’ or ‘professional’ designation is likely to occur in
the near future [9]. A necessary component to professional
certification is the need to teach new Computer Science ma-
jors the basics of cybersecurity [25]. However, Doctrow has
argued that our limited understanding of how cyberspace
will continue to shape society makes regulation difficult at
this time [17].

An important component to designing effective regula-
tions is knowing the risk of security vulnerability in a spe-
cific piece of software. Clark et. al found that most soft-
ware enjoys a “honeymoon” period after release before the
first vulnerability is found, and that legacy code reuse con-
tributes to the number of vulnerabilities found and the rate
at which they are discovered [10]. An examination of open
source projects finds the change in the number and density
of issues reported by source analysis correlates with future
exploitable bugs, and that that the rate of exploitable bugs
in software tends to drop 3 to 5 years after its initial re-
lease [18]. This suggests that the use of such static analysis
tools might help regulators and developers alike identify at
risk software. Other work indicates that files authored by
independent groups were more likely to have vulnerabilities
than those who had wide scrutiny [32]. However, when files
were changed by numerous developers they were more likely
to have vulnerabilities later. Having small groups responsi-
ble for maintaining code not only helps to identify liability
but also lower the risk of vulnerabilities in this code.

3.2 Intellectual Property
The other area of cyberspace to be actively regulated is

Intellectual Property. Proposals for how to manage intellec-
tual property in an age where copying and distribution of
media is increasingly cheap and easy are myriad. The Digital
Millennium Copyright Act was pass in 1998 to prevent the
circumvention of Digital Rights Management Software [33].
However, it has been argued that this particular law does
not allow security researchers to locate flaws in current soft-
ware [14]. Later attempts at protecting intellectual property
such as the Stop Online Piracy Act(SOPA) and Protect IP
Act(PIPA) were designed to help protect intellectual prop-
erty. However they were widely regarded as written too
broadly and likely to stifle legitimate free speech [29]. One
view regards these broad copyright regulations as the ulti-
mate stifler of innovation [28].

3.3 Other Industries
In different industries motivations for regulation are var-

ied. Banking panics motivated regulation of the financial
industry [8]. The codification of engineering as a profession
came from a desire in the engineering community to more
clearly define a leadership role in society [31]. The side bene-
fit of this movement was the standardization of practices and
knowledge engineers required. More general labor laws, like
those protecting workers and enforced by the Occupational
Safety and Health Act of 1970, arose after the realization
that billions of dollars were being lost due to on the job

118

deaths and injuries [30]. Medical practice has always fallen
under particular legal scrutiny due to its obvious risks to
public health. In the United States the practice of medicine
(and who is able to do so) has been regulated since colonial
times [46]. The potential vulnerability of individuals in the
legal system has generally led to the self-regulation of the
practice law with bar associations and courts working closely
together to define who can and cannot practice law [16].

This diversity in origin of regulation in different profes-
sions has led to different methods of certification of individ-
uals in the professions. In the United States, engineers first
have to graduate from an accredited university, and pass an
exam. After this individuals need to accumulate engineering
experience over several years before being able to complete
a Principles and Practice in Engineering exam, certifying
them as a professional engineer [35]. This type of appren-
ticeship where work is required before certification can be
achieved is still practiced in many technical professions in
the United States such as electricians, iron workers, plaster-
ers, plumbers and bricklayers [58].

In contrast, the ability to practice law or medicine usu-
ally only requires graduating from an accredited university
with the appropriate degree and passing a qualifying exam.
The details of the process vary from country to country and
within states, and specialized programs exist to maximize
the likelihood of passing legal or medical boards.

It is not clear however that professional certification ben-
efits individuals in all cases. Hashimoto found no difference
in outcomes when individuals represented themselves (pro
se) vs having criminal defense attorney [22]. At the time of
this writing there is no work indicating that unlicensed con-
tractors have higher accident rates1. Licensed contractors
are generally required to carry insurance, protecting home-
owners against on the job accidents [39].

4. PANEL POSITION: DON’T REGULATE
OFFENSIVE SECURITY2

From time to time the suggestion arises that software en-
gineers or developers should be subject to a licensing or reg-
ulation scheme [9]. Such suggestions often occur in the af-
termath of widely publicized failures of security controls or
systems or in the wake of a significant data breach. Re-
cent significant breaches include RSA [48], Target [47] and
Heartbleed [20], and we are now seeing a renewal of calls for
schemes involving licensing or regulation of developers.

Other professions are held up as models – e.g., if it works
for civil engineers to be professionally certified, why can’t
it work for software engineers? We also consider the dif-
ficulty of translating certification frameworks into the real
world. This position statement rejects the notion that peo-
ple should be certified or that “offensive security” activities
should be controlled [55]. Instead, the onus should be on
showing software is secure, not on limiting activity and tech-
nology typically associated with offensive activities.

4.1 Why Does the Call for Regulation Arise?
Periodic calls for tighter regulation of the Internet include

the introduction of “driver’s licenses” for the Internet, and

1This is conspicuous as licensed contractors might have an
interest making that information known.
2This section was authored by Michael Locasto

licensing of software developers raise the question of just
what the cost and value of such regulation might be. Such
calls are often made in response to significant cybersecurity
events. It has been almost four years since Brian Snow pre-
dicted a significant security meltdown [50] (December 2010),
and in that time, we have experienced any number of cyber-
meltdowns, from the 2011 summer of Lulz to failures of cer-
tificate authorities to the Heartbleed bug.

Each of these events is no longer a small technical matter
affecting a piece of software used by only a few individuals
or companies. Most major events over the past few years
have affected ordinary people with no special technical or
Computer Science background. Calls from these people for
a solution to the problem of computer trustworthiness will
only grow louder.

But who might be held responsible for such a breach?
Certainly RSA bears the majority of the responsibility for
their breach [48], but Adobe could conceivably be held liable
for releasing software with this particular exploit. At a finer
grained level, if the particular developer who introduced the
flaw into the software could be identified, could she be held
liable? What about the software architect who created the
specification, the QA or tester who missed the bug, or the
manager who failed to expose it during a code review?

For those outside the field of security or software engi-
neering, a seemingly “natural” place to find a solution to
“guarantee” trustworthiness is in the forced professionaliza-
tion of software developers. Forced professionalization is
but the tip of the legislative iceberg; self–interested parties
sometimes call for the deep regulation of the Internet or the
outright banning of new technology [28].

4.2 Calls for Regulation Are Just an Admis-
sion of Being out of Ideas

Various forms of certification and regulation exist for cer-
tain types of software development activities. Existing reg-
ulation, certification, and validation frameworks, guidelines,
and standards seem to work within narrow circumstances.
Recently, there has been a renewed call to somehow regulate
the production of software (e.g., by licensing developers) as
a way to reduce the number of flaws and vulnerabilities in
important computing systems (e.g., cyber-physical or criti-
cal information or industrial control systems) [9]. In some
cases, such calls are phrased as warnings, but increasingly
senior and respected Computer Scientists are openly sup-
porting such suggestions and efforts. One wonders whether
such support is a tacit admission of defeat – after all, the
security community has a long history of certification and
validation practice, and such practices have not solved the
problem of insecure software. Why should this time around
be any better?

4.3 Regulation Should Not Focus on Offensive
Security

One exceedingly dangerous outcome of such regulation
crusades is the risk that such efforts will seek to regulate
or prohibit the practice of offensive security. Certain forms
of regulation might have significant negative consequences
for the relative ease with which bugs and broken systems
can be studied. In particular, there is a temptation to reg-
ulate tools of the trade, mostly exploits [19]. Using reg-
ulation or legal means to limit access to or the activity of
“hackers” or “hacking” tools is a mistake. The panel position

119

statement argues that the focus of regulation should be on
certifying software correct, not in limiting offensive security
techniques, software, or frameworks.

4.4 Regulating Tools and Research is a Bad
Idea

One way to produce more secure software is to try to make
developers better and thereby reduce the presence of flaws
and vulnerabilities. Another method to reduce security inci-
dents is to attempt to control “hacking” or offensive security
tools and practices — after all, if we can“force”developers to
be “better” through legal means, why can’t we force black-
hats to behave better by simply outlawing what they do?
We consider such attempts misguided and the logic absurd.

I will highlight two recent developments that illustrate
the nature of the threat to security research. The first is
an article by Stockton and Golabek-Goldman that strongly
recommends aggressive control of offensive security activi-
ties [55]:

Third, the United States should amend the Com-
puter Fraud and Abuse Act to strengthen its abil-
ity to prosecute researchers located both domes-
tically and abroad who recklessly sell dangerous
exploits targeting critical infrastructure to Amer-
ica’s adversaries.

The second development centers around proposed modifi-
cations to the Wassenaar Arrangement to control “intrusion
software” [38]. In such a proposal, we see the early fruits
of our discipline and technical terminology being misunder-
stood by lawyers and policy makers. Bratus et al. [6] argue
that as a community, we must establish definitions before
they are established for us:

Offensive security – or, in plain English, the prac-
tice of exploitation has greatly enhanced our un-
derstanding of what it means for computers to
be trustworthy. Having grown from hacker con-
ventions that fit into a single room into a distinct
engineering discipline in all but the name, offen-
sive computing has so far been content with a jar-
gon and an informal “hacker curriculum.” Now
that it is unmistakably an industry, and an en-
gineering specialization, it faces the challenge of
defining itself as one, in a language that is under-
stood beyond its own confines-most importantly,
by makers of law and policy. [6]

4.5 Discussion Questions

1. Threat to the Discipline: Are regulation and de-
veloper certification a threat to Computer Science?

2. Terminology: Terminology is important, but many
among us still don’t use terms like “exploit” or “zero-
day” correctly or consistently. What is the best ap-
proach to developing a sensible terminology that can
be communicated to policy makers?

3. Measuring Security: Are calls to regulate develop-
ment simply shallow and transparent ways to solve the
hard problem of security measurement, and represent
a dangerous shift in focus from software to people?

4. LangSec Compliance Should regulation schemes be
aimed squarely at software artifacts and how they can
show that a development process was followed that for-
mally eliminates certain classes of bugs? The LangSec
(http://langsec.org) philosophy is one example of
this.

5. Other Considerations: Is secure software construc-
tion now desperately in need of professional licensing
as the cure for its ills? Will that cure be worse than
the disease? What are the possible models we can de-
rive from trends toward guilds, professionalization, or
regulation in other disciplines? How does this square
with the National Academies saying that cybersecurity
is an occupation, not a profession [45]?

4.6 Conclusion
The interaction of legislation and computer and informa-

tion technology is an evolving morass of largely unintelli-
gible and sometimes unfair legal consequences. The urge
to regulate behavior is a natural “public” reaction to secu-
rity meltdowns like RSA, Target, and Heartbleed. Given a
public that is largely ignorant or uninformed of the actual
complexities of software development and software security,
the security and software engineering communities will con-
tinue to face this kind of pressure, and have a significant
stake in educating their legal and political peers. Many of
us are academics, and value a free and open exchange of
ideas and information. Without defending this ground, we
may find it already gone from beneath our feet.

The information security community has seen the elas-
ticity applied to what is “lawful” by overzealous prosecutors
and uninformed public officials. There are lessons for techni-
cal people to learn – namely, how to cope with the slow and
uninformed grind of the legislative process and the justice
system. Lawyers and legislators feel a deep need to apply
legal solutions to a technical problem. The position of this
statement is that our community has to fight very strongly
against this urge.

5. PANEL POSITION: A CREDIT SCORE
FOR DEVELOPERS, SOFTWARE, AND
VENDORS3

Discussion of major cyber security events is no longer con-
fined to tech blogs and security mailing lists. Target’s leak
of millions of customer credit card numbers [47], and the
well marketed Heartbleed bug [20], made major national
headlines. Following the Target breach, there were seri-
ous economic consequences for both the company and con-
sumers [60]. To help avoid disasters like this, it has been
suggested that software development should be subject to
licensing or regulation [9]. It won’t be long before it isn’t
just industry insiders calling for regulation, but the wider
public who will be increasingly affected by future security
events. Regulation of the use and creation of software is
inevitable.

If regulation is inevitable, what should it look like? The
unique nature of software development will likely require
a unique solution. New attacks are developed daily, while
old attacks are still viable in new software. The number
of vulnerabilities reported in the National Vulnerabilities

3This section was authored by Benjamin Edwards

120

http://langsec.org

Database has increased from 102 a month in early 2002 to
506 a month in the summer of 2014 [37]. The constant arms
race between security professionals and attackers will result
in new languages, platforms, and techniques leading to a
dynamic and complex security landscape. In such an en-
vironment, classic models of certifying professionals will be
insufficient, and insurance agencies will struggle to establish
premiums when risk is unknown.

Here some possible models for the regulation of software
development are outline. I will focus on one particular model,
which develops a credit score for developers, products and
software vendors. This model is flexible enough to address
the dynamic nature of the software development industry,
while providing valuable feedback to companies, developers,
and users. However, like all regulation there are many chal-
lenges, both technical and social, to bringing this model to
fruition, and I will detail some obvious objections.

5.1 Regulatory Models
In this section I introduce models which represent a spec-

trum of ways the software development industry might be
regulated. While some are outlandish, they provide a lens
with which to view possibilities for regulation. Next, I briefly
summarize a more realistic model for regulation of software
development advocated by security experts, detailing some
possible flaws and roadblocks.

5.1.1 The Regulatory Spectrum
While somewhat hyperbolic in nature these regulatory

models provide a spectrum of ways to regulate the software
development industry. One could certainly imagine interme-
diary models, or borrowing some features of one for another.

Stallman’s Paradise: Under this model all software
must be free and all binaries distributed with source code.
Patents cease to exist. Developers are not licensed, as this
interferes with the free exchange of ideas and code. All hard-
ware is distributed with a full and transparent specification.
The burden of verification rests on the users of software or
their appointed agents. Most people must therefore be code-
literate. This regulation scenario is the most feasible to “en-
force” in some way, but it is also most likely to lead to the
collapse of profitability of the software market.

Draconian Ground-up Digital Signing: A hybrid
technical and policy solution mandated by legislation, the
production of each software bit must be carefully tracked
and accounted for. Computing infrastructure must be con-
structed to support near 100% attribution of functionality
and information flow. Government mandates the forced reg-
istration, licensing, and repeated testing of software devel-
opers. Developers likely lose their license according to some
schedule of offenses or bug rates. Hobbyist software is either
banned or of quasi-legal status. Significant legal tests as to
whether code is free speech arise; even if it is, the use of
such speech in commercial products deemed important to
critical infrastructure may be outlawed, taxed, or subject to
significant fees.

Developer Licensing: An alternative to government-
run registration and licensing is government support for pro-
fessional societies or unions that enforce their own profes-
sional codes of conduct and licensing. One likely expression
of this form of regulation is to produce a guild model or
apprentice-like model for developers. Various forms of“com-
puter systems failure” insurance may or may not be involved

or mandated. General access to such“approved”software de-
velopment is largely unavailable or involves significant wait
times.

US Department of Software Development: An ob-
vious approach to managing the above models would be to
create a government agency who would be entrusted enforc-
ing the laws. As appealing as such an agency might be to
politicians, such a blunt and limited solution has significant
shortcomings. Its task is hopelessly complex and might be
easily circumvented without other legal and economic sup-
port. The agency itself presents a rather attractive target
and if it chose to involve itself in the certification of software
(like Apple does), would rapidly be overwhelmed without a
mechanism to discourage or penalize the creation and sub-
mission of software for review. Such an agency might have
to contend with copyright law: how could the government
make itself party to all code, which is a written expression
of ideas protected by copyright? Probably most damning,
such an agency would probably do little to improve software
security or quality. Registration without review provides a
false sense of security, and registration with review means
an explosion of government employees or a deep backlog of
cases akin to the US Patent process. Having the agency
sign software to indicate registration of the software means
nothing in terms of quality or absence of bugs.

Even licensing of developers will likely have little impact
on software security. CGI Federal, the lead contractor at
Healthcare.gov, has been awarded the highest possible Capa-
bility Maturity Model Integration(CMMI) level for develop-
ment certification. CMMI purports to improve the software
development process by helping companies deliver software
which meets requirements, stays on budget, and is deliv-
ered on time [11]. Despite this, on the date of the roll-
out of healthcare.gov only 30-40% of the system had been
built [56]. CMMI appraisal seems to have little value except
to the CMMI corporation.

5.1.2 Software Liability
Bruce Schneier has written extensively on regulation of

the software industry and advocates for a liability model [49].
By forcing software companies to be liable for defects in
their products, Schneier believes that software quality will
increase. Moreover, this will encourage the insurance indus-
try to provide security insurance. This model was refined by
Dan Geer and Poul-Henning Kamp to include three levels
liability as outlined in subsection 3.1.

Other refinements for software liability have been sug-
gested [5, 2, 3, 23, 4]. These works suggest various types
of liability, applied to various parties within the software
deployment/development chain. The insurance industry is
already taking note of the potential to protect against such
liability, with the American International Group investigat-
ing how to asses cyber risks [54]. However, insurers have
struggled asses the risk associated with cyber insurance [57],
and the cyber-insurance industry has failed to succeed de-
spite theoretical work outlining its construction [5]. It is
often difficult for insurers to assess the damage to a com-
panies reputation that could result in lost sales, as was the
case with the Target breach[60]. Moreover, as we noted in
the previous section, certifications don’t seem to decrease
the probability of a dangerous vulnerability being released
within a piece of software. Even if best practices are fol-
lowed, new types of attacks, such as the MD5 collision at-

121

tack utilized in the FLAME malware [53], would be nearly
impossible to predict.

There are some broad estimates of the cost of bugs. A
2002 NIST report estimates that only one third of the cost
of bugs can be eliminated by improved testing infrastructure.
If we do a back of the envelope calculation it could mean a
liability of roughly $200 billion for US companies today4.

It is important for insurance companies to appropriately
determine what fraction of this $186.5 billion should be cov-
ered by which companies. Over price insurance and this
may stifle innovation, preventing small companies from be-
ing able to to enter the market without devoting a significant
portion of capital towards insurance. Under price insurance
and the market will collapse. Insurance companies need an
objective way to measure the quality of developers, software
and company to help appropriately price cyber insurance.

5.2 Credit Score for Developers
In this section I outline a measure of software quality. This

model proposes the creation of a developer ratings bureau
which is able to provide scores to developers, software prod-
ucts, and vendors. Similar to the way credit bureaus in the
United States provide FICO scores to individual consumers
rating their creditworthiness, a private or public (or some
combination thereof) organization would provide scores to
developers based on their past development history.

5.2.1 Registration and Tracking of Developers
In such a scheme, developers, projects or vendors register

with a bureau. After a vendor releases a new product to
market two pieces of information would be reported to the
bureau (1) information on the amount of code produced by
each registered developer and (2) bugs and vulnerabilities
linked back to specific developers through commit histories
in version control systems. The more bug free code a de-
veloper writes, the higher their score. Bugs and vulnera-
bilities that are found in released products negatively affect
the score. The score could be weighted by the severity of
the bug, or its ability to cause financial (or even physical
damage). Like a FICO score, a developers score could in-
crease with time and the more bug free code written, and
past mistakes would hold less weight as time goes on. The
bureau could further aggregate scores for individual pieces
of software, or the entire software companies. The constant
stream of bugs and vulnerabilities would likely provide a rich
dataset for the creation a score, and modern version control
systems provide a link between bugs and developers.

While simple in structure, this solves some of the problems
in the liability scheme. Rather than providing a theoretical
set of standards by which the company operates, as CMMI
does, this provides a measurable, historical basis by which to
rate developers, projects, and software companies. As new
attacks merge and best practices evolve, developers would
be required to improve their knowledge or suffer the risk of
writing buggy code and doing damage to their scores.

Scores could provide insurance companies with a more
concrete basis on which to assess risk and price their prod-
ucts accordingly. Because the ratings bureau is not directly

4The NIST reported bugs cost US companies $59.5 billion
in 2002. In 2014 there are roughly 5 times as many bugs,
if two thirds of these are addressable through testing, this
works out to 2

3
∗ 5 ∗ $59.5 ≈ $200

involved in the development process, there are no questions
of copyright ownership in the case of registered software.

Mechanisms would need to be put in place to avoid having
companies attempt to inflate the scores of their products or
developers. For example, such a system would create an in-
centive for companies to under report bugs in order to boost
their, and their products’ score. Bug reports and tracking
systems would need to be required to be public, with the
bureau cross referencing the public reports, with the private
reporting of the company. Random audits examining com-
mit histories of products could also provide spot checks of a
software companies honesty.

Further consideration would have to be given to the open
source community, and hobbyist developers. The most ten-
able solution would be to borrow from the Geer/Kamp model,
and provision that if software is provided with the source
code, registration and reporting with the bureau is optional.
In all other cases it would be required. Open source develop-
ers and projects may decide to voluntarily register however,
as this would provide a method for developers to build their
scores outside of the context of industry.

The bureau itself could be a profitable venture. Software
companies could buy reports from the bureau on potential
new hires to evaluate their abilities. Companies seeking to
contract with a software vendor would be able to purchase
reports on the company and its products to assess not only
who could provide the lowest bid for a product, but who
would be most likely to produce a working product.

Despite these advantages, there would likely be issues with
implementing such a bureau. Deciding the criticality of bugs
and the actual construction of the score is an open question.
Moreover, is there even enough variance in the ability of de-
velopers make a score meaningful? If critical security bugs
have a large, lasting negative affect on a developer’s score, it
might dissuade individuals from working on critical infras-
tructure products. A single mistake could have a devastat-
ing impact on a developers score and therefor career. While
bug reports and commit histories make it theoretically pos-
sible to link bugs back to specific developers, in practice this
could be a complex undertaking.

5.3 Questions and Conclusions
Here I have given a brief overview of a few schemes for

regulating the software development industry. These are
prototypes, and will require significant effort to implement.
However, I believe the unique nature of software develop-
ment will require a unique solution, and developer scores
may provide a simple basis for which to begin to improve
the software development.

5.4 Questions

1. What are advantages and disadvantages in the schemes
above that are not described?

2. Are there other schemes that should reasonably be con-
sidered?

3. Are any of these schemes actually tenable?

4. What would be the best ownership for the bureau, pub-
lic, private or some sort of partnership?

122

6. PANEL POSITION: SOFTWARE REGU-
LATION MUST CONSIDER PUBLIC POL-
ICY5

Issues of software development regulation to improve se-
curity have been bouncing around for decades. Many of the
early efforts in security standardization (e.g., Trusted Com-
puter System Evaluation Criteria [44], aka Orange Book)
include elements of programmer regulation.

The focus of regulation in recent years has divided into
several categories:

• Regulate the programmers. Testing, certification, li-
censure, etc. are common methods, including licen-
sures such as (ISC)2 CSSLP [42].

• Regulate the employers. Companies must obtain some
form of corporate certification based on processes. Vari-
ations on the Software Engineering Institute’s Capabil-
ity Maturity Model (SEI-CMM) [11, 34, 36] and ISO
9001 have been proposed, as well as approaches such
as OpenSAMM [43] and BSIMM [7] which focus on
measurement but do not formally define requirements
for organizations.

• Regulate the products. Regardless of who developed
the products (primarily but not exclusively software),
they must go through a certification process, such as
Common Criteria [15] or PCI DSS [13].

The three are not mutually exclusive-for example, a prod-
uct could be built by licensed employees employed by cer-
tified employers following a process, with the resulting sys-
tems being certified against a standard. Other fields, such as
the medical profession, use a combination of all three: doc-
tors, nurses, and other professionals are individually licensed
and work for employers that go through a regulation pro-
cess (e.g., hospital accreditation), with the“systems”(health
care) being subject to monitoring and regulation for quality,
cost, and other factors.

In the security field, methods of each of the three forms
of regulation are, at this point, rudimentary. Software prod-
ucts are developed, almost exclusively, by developers with
no independently verifiable qualifications, by companies that
follow no independently verifiable processes, with the result-
ing systems having no verifiable quality characteristics.

Further, it is common practice that even when one (or
more) of these characteristics are present, they are not accu-
rately represented. Companies routinely obtain SEI-CMM
certification for one part of the company, and advertise as
if the entire company followed those practices. Similarly, a
single version of a product may be certified as meeting the
Common Criteria, but other versions of the product, or even
other products made by the same company, may be implied
to meet those requirements.

However, even if these problems are solved, effective reg-
ulation may never come to fruition, because any scheme de-
veloped by engineers and scientists that addresses the re-
quirements that doesn’t address public policy will simply
sit on the shelf.

5This section was authored by Jeremy Epstein

6.1 Public Policy and Software
Adopting any form of regulation will require regulatory

and/or legislative actions. However, the vast majority of leg-
islators and regulators do not have technical backgrounds,
and will not understand the deep implications of regulation.
In addition, they will be influenced by stakeholders, includ-
ing:

• Software vendors who want to minimize their develop-
ment and sales costs, and hence will oppose any move
that requires licensed professionals (who can presum-
ably demand higher salaries).

• Plaintiff’s lawyers (e.g., for software purchasers) who
will want to ensure they can pass the liability to the
software vendors.

• Organizations that earn fees from issuing licenses, whether
to individuals or organizations. This could include
professional organizations like ACM and IEEE, quasi-
professional organizations like (ISC)2 and SANS, as
well as organizations that provide product assessments
(e.g., ICSA Labs).

Dan Geer argues [21] that regulation is inevitable. Laws
are pending in some states to make licensure mandatory
for developers of certain types of systems [24]. One of the
key risks of regulation is that those writing the regulations
won’t understand what they are regulating. Combined with
the above-named stakeholders goals, the risk is that regu-
lations (especially licensing of software developers) will set
a floor rather than a ceiling - to avoid killing the software
industry, it will establish a low minimum, and there will be
little motivation to go above those minimums.

As an example, some years ago I was named to a legisla-
tive commission on securing voting systems. I argued that
they were vulnerable to many forms of attacks, to which a
state legislator responded that I was wrong - since the source
code is not available for the voting systems, they can’t be
attacked. This level of technical naiveté is unfortunately
common in legislators, just as naiveté about the political
process is common among computer scientists.

So how can any progress be made? Computer scientists,
and security experts in particular, must not simply pontifi-
cate about what regulation and licensing should entail (i.e.,
the technical requirements). Rather, we need to spend at
least as much time and effort working with elected officials
to educate them about the limits of licensing and regulation
as well as the benefits. And we need to learn from them
what would motivate them to make the necessary legal and
policy changes with the goal of improving security of the
software we all rely on.

6.2 Questions
Addressing issues of regulation must include the following:

1. How will the “public interest” in regulation be defined,
balancing security against other criteria such as cost
and performance?

2. What organization(s) will be responsible for defining
the regulations, and how will they ensure that the re-
sulting regulation maximizes the public interest?

123

3. How will any resulting standards be kept up to date?
As both technology and attack methods evolve, stan-
dards will either be high level (and hence subject to
interpretation) or low level (and hence obsolete before
they are even adopted).

4. Who/what (individuals, organizations, or software prod-
ucts) will be grandfathered / grandmothered in by any
new regulations?

5. What will happen with existing orphaned software (as
defined by Geer, software for which there is no active
development or maintenance)? Will someone who vol-
untarily picks it up become responsible for upgrading
it to current standards?

6. Should “in house” software (i.e., developed by an or-
ganization for its own use) be subject to regulation,
or only software developed by others? What if the in
house software is developed under contract as custom
software?

7. What methods are effective for educating the general
public as to the values of software regulation?

8. What are the interactions with existing financial regu-
lations (e.g., SEC regulations that require recognition
of risks)?

7. PANEL SUMMARY
In this section we summarise the discussion that took

place at the workshop. To the best of our ability, we re-
port the opinions and conclusions that were expressed. The
discussion focused primarily on the certification of security
professionals and imposing personal liability on software de-
velopers.

7.1 Certification
The current state of certification, specifically Certified In-

formation Systems Security Professional (CISSP) [12], has
done little to reduce security incidents or the number of vul-
nerabilities present in software. While certifications such
as CISSP can create a lower bound on knowledge, in prac-
tice certification does not guarantee real world experience or
competence. The main motivation for current certification
systems is the desire to satisfy customers that deliverables
were produced by skilled individuals. The process to obtain
the certification is difficult even for experienced security pro-
fessionals, but a lack of certification may hinder the ability
of professionals to access crucial data.

Given the failings of CISSP, it is not clear whether good
alternatives exist. One possible reason for the failure of pro-
grams like CISSP to improve the security landscape is that,
unlike other fields, there is no agreed upon body of knowl-
edge which could be used as a foundation for certification.
Other efforts to systematize software development knowl-
edge, such as the Software Engineering Body of Knowl-
edge(SWEBOK) [1], lack foundational information which
might be used to develop a reasonable security professional
certification. It may be the case that no such body of knowl-
edge could be gathered given the universal nature of a com-
puter and the emergent behavior of software. However, some
persistent threats have been identified. For example, there
has been little change in the top ten most critical web appli-
cation security risks as ranked by the Open Web Application

Security Project between 2010 and 2013 [40, 59]. These per-
sistent threats, given the proper organization, could begin
to form the basis of a type of certification.

As the field of computer security grows and adapts it may
be necessary for certifications to be equally flexible. One
possibility is to restrict the scope of certifications and offer
different types of certifications for different subfields such as
security operations, cryptography, web security or systems
integration. Specifically, systems which require certifications
in other engineering fields, e.g. medical devices and aviation,
could be extended to software. In this way, software could be
certified rather than the individuals who wrote it, developing
a type of building codes for software. Formal methods may
be able to help verify a particular piece of software is valid
given the developers current knowledge.

These are promising suggestions, but there exists some
barriers to their implementation. If new certifications are
required in the United States for instance6, this could create
a sudden dearth of security professionals, and current pro-
fessionals with other types of certifications would need to be
grandfathered in. Such certifications would likely lengthen
schedules and increase the cost of software development.
This may drive development overseas where no certification
is required. Even if better certifications are developed it is
unlikely that such certifications will actually improve soft-
ware quality. The political process of implementing such
regulation could will be an onerous, but necessary task as
mentioned in section 6. Possibly the easiest targets for such
required certification may be at the state level; however,
this could fragment the regulation landscape and delay a
consensus of what is an acceptable certification.

7.2 Liability
Given the problems with certification, it may be prudent

to impose personal liability on software developers in the
same way doctors and lawyers are personally liable for their
practice. However, personal liability in the software devel-
opment industry has its own barriers. Medical malpractice
often stems from the death or disabling of a single patient.
In the security field, a single mistake could be much more far
reaching, touching tens of millions of systems. Frequently
developers have less control over their work than in other
fields, with management imposing timelines in which no rea-
sonably secure software could be made. For liability to be
viable, developers would have to be given the power to post-
pone deployment of questionable software. Moreover, with
such a rapidly changing field it is unclear whether develop-
ers should be liable for unanticipated flaws and new attacks.
Holding developers liable for previously unknown attacks
seems unreasonable. Software often integrates many differ-
ent libraries which may not have been authored by a single
individual, or may have no known author in the case of open
source software. Flaws may emerge not from the software
itself but from the integration of different pieces of software.
Holding system integrators liable in the same way as the
original developer would be necessary. This could make the
assignment of liability following an incident difficult. How-
ever, courts frequently assign liability in other fields, and
it is likely that after a significant body of law is developed
the same could be done in the software development field.
In this way, software would become one more portion of a
failing system to which liability could be assigned.

6This is likely the best course of action.

124

8. CONCLUSIONS
While the panel itself provided a fruitful discussion, there

seems to be little agreement on the best course of action to
improve software quality through regulation. Two things are
readily apparent however 1) as more people are touched by
security incidents, calls for regulation will increase, and 2)
it is crucial that as a community we need to act rather than
let non-professionals impose regulation. This should either
be done by working with policy makers directly to develop
reasonable policy or through non-governmental professional
action.

9. REFERENCES
[1] Abran, A., Bourque, P., Dupuis, R., and Moore,

J. W. Guide to the software engineering body of
knowledge-SWEBOK. IEEE Press, 2001.

[2] Anderson, R., Böhme, R., Clayton, R., and
Moore, T. Security economics and the internal
market. Study commissioned by ENISA (2008).

[3] August, T., and Tunca, T. I. Who should be
responsible for software security? a comparative
analysis of liability policies in network environments.
Management Science 57, 5 (2011), 934–959.

[4] Böhme, R., Rath, M., Schneider, R., and
Telang, R. Economics of security: Facing the
challenges. Study commissioned by ENISA (2011).

[5] Böhme, R., and Schwartz, G. Modeling
cyber-insurance: Towards a unifying framework. In
WEIS (2010).

[6] Bratus, S., Arce, I., Locasto, M. E., and
Zanero, S. Why Offensive Security Needs
Engineering Textbooks: Or, How to Avoid a Replay of
âĂIJCrypto WarsâĂİ in Security Research. ;login 39,
4 (August 2014).

[7] BSIMM. Building security in maturity model.
http://www.bsimm.com/facts/, Aug. 2014.

[8] Calomiris, C. W., and Gorton, G. The origins of
banking panics: models, facts, and bank regulation. In
Financial markets and financial crises. University of
Chicago Press, 1991, pp. 109–174.

[9] Cerf, V. G. ’but officer, i was only programming at
100 lines per hour!’. Communications of the ACM 56,
7 (2013).

[10] Clark, S., Frei, S., Blaze, M., and Smith, J.
Familiarity breeds contempt: The honeymoon effect
and the role of legacy code in zero-day vulnerabilities.
In Proc. of ACSAC 2010 (2010), ACM, pp. 251–260.

[11] CMMI. Cmmi institute.
http://whatis.cmmiinstitute.com/what-is-cmmi,
Aug. 2014.

[12] Consortium, I. S. S. C. Cissp - certified information
systems security professional.
https://www.isc2.org/cissp/default.aspx.

[13] Council, P. S. S. Pci ssc data security standards
overview. https://www.pcisecuritystandards.org/
security_standards/, Aug. 2014.

[14] Craver, S., Wu, M., Liu, B., Stubblefield, A.,
Swartzlander, B., Wallach, D. S., Dean, D.,
and Felten, E. W. Reading between the lines:
Lessons from the sdmi challenge. In USENIX Security
Symposium (2001).

[15] Criteria, C. Common criteria for information
technology security.
https://www.commoncriteriaportal.org.

[16] Denckla, D. A. Nonlawyers and the unauthorized
practice of law: An overview of the legal and ethical
paramaters. Fordham L. Rev. 67 (1998), 2581.

[17] Doctorow, C. Why it is not possible to regulate
robots. http://www.theguardian.com/technology/
blog/2014/apr/02/why-it-is-not-possible-to-

regulate-robots, April 2014.

[18] Edwards, N., and Chen, L. An historical
examination of open source releases and their
vulnerabilities. In Proc. of CCS 2012 (2012), ACM,
pp. 183–194.

[19] Egelman, S., Herley, C., and van Oorschot,
P. C. Markets for zero-day exploits: Ethics and
implications. In Proc. NSPW 2013 (New York, NY,
USA, 2013), NSPW ’13, ACM, pp. 41–46.

[20] Evans, P. Heartbleed bug: Rcmp asked revenue
canada to delay news of sin thefts.
http://www.cbc.ca/news/business/1.2609192, April
2014.

[21] Geer, D. Cybersecurity as realpolitik. http:
//geer.tinho.net/geer.blackhat.6viii14.txt,
Aug. 2014.

[22] Hashimoto, E. Defending the right to self
representation: an empirical look at the pro se felony
defendant. North Carolina Law Review 85, 2 (2007),
423–487.

[23] Kim, B. C., Chen, P.-Y., and Mukhopadhyay, T.
The effect of liability and patch release on software
security: The monopoly case. Production and
Operations Management 20, 4 (2011), 603–617.

[24] Laplante, P. A. Licensing professional software
engineers: seize the opportunity. Communications of
the ACM 57, 7 (2014), 38–40.

[25] Ledin Jr, G. The growing harm of not teaching
malware. Communications of the ACM 54, 2 (2011),
32–34.

[26] Leveson, N. G. High-pressure steam engines and
computer software. In Proc. of ICSE 1992 (1992),
ACM, pp. 2–14.

[27] Markoff, J. Taking the mystery out of web
anonymity. The New York Times (July 2010).

[28] Masnick, M. Former copyright boss: New technology
should be presumed illegal until congress says
otherwise. https://www.techdirt.com/blog/
innovation/articles/20120927/00320920527/,
September 2012.

[29] McSherry, C. Sopa: Hollywood finally gets a chance
to break the internet.
https://www.eff.org/deeplinks/2011/10/sopa-

hollywood-finally-gets-chance-break-internet,
October 2011.

[30] Meeds, L. Legislative history of osha, a. Gonz. L.
Rev. 9 (1973), 327.

[31] Meiksins, P. The ”revolt of the engineers”
reconsidered. Technology and Culture 29, 2 (1988), pp.
219–246.

[32] Meneely, A., and Williams, L. Secure open source
collaboration: an empirical study of linus’ law. In
Proc. of ACSAC 2009 (2009), ACM, pp. 453–462.

125

http://www.bsimm.com/facts/
http://whatis.cmmiinstitute.com/what-is-cmmi
https://www.isc2.org/cissp/default.aspx
https://www.pcisecuritystandards.org/security_standards/
https://www.pcisecuritystandards.org/security_standards/
https://www.commoncriteriaportal.org
http://www.theguardian.com/technology/blog/2014/apr/02/why-it-is-not-possible-to-regulate-robots
http://www.theguardian.com/technology/blog/2014/apr/02/why-it-is-not-possible-to-regulate-robots
http://www.theguardian.com/technology/blog/2014/apr/02/why-it-is-not-possible-to-regulate-robots
http://www.cbc.ca/news/business/1.2609192
http://geer.tinho.net/geer.blackhat.6viii14.txt
http://geer.tinho.net/geer.blackhat.6viii14.txt
https://www.techdirt.com/blog/innovation/articles/20120927/00320920527/
https://www.techdirt.com/blog/innovation/articles/20120927/00320920527/
https://www.eff.org/deeplinks/2011/10/sopa-hollywood-finally-gets-chance-break-internet
https://www.eff.org/deeplinks/2011/10/sopa-hollywood-finally-gets-chance-break-internet

[33] of America, U. S. Digital millenium copyright act.
http://thomas.loc.gov/cgi-bin/toGPO/http:

//frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?

dbname=105_cong_public_laws&docid=f:

publ304.105.pdf, 1998.

[34] of Energy, D. Cybersecurity capability maturity
model (c2m2). http://energy.gov/sites/prod/
files/2014/03/f13/C2M2-v1-1_cor.pdf.

[35] of Examiners for Engineering, N. C., and
Surveying. Continuing professional competency
guidelines, Oct. 2010.

[36] of Standards, N. I., and Technology. Systems
security engineering capability maturity model
(sse-cmm), Apr. 1999.

[37] of Standards, N. I., and Technology. National
vulnerability database. https://nvd.nist.gov/, Apr.
2014.

[38] Omanovic, E. International agreement reached
controlling export of mass and intrusive surveillance
technology.
https://www.privacyinternational.org/blog/

international-agreement-reached-controlling-

export-of-mass-and-intrusive-surveillance, Dec.
2013.

[39] Orleans, L. U. N. Insurance requirements for
contractors.
http://finance.loyno.edu/risk/insurance-

requirements-contractors, 2014.

[40] OWASP, T. Top 10–2010–the ten most critical web
application security risks. The Open Web Application
Security Project (2010).

[41] Pantesco, J. Ftc imposes record fine on choicepoint
in data-loss case.
http://jurist.law.pitt.edu/paperchase/2006/01/

ftc-imposes-record-fine-on-choicepoint.php,
Jan. 2006.

[42] Proffesional, C. S. S. L.
https://www.isc2.org/csslp/Default.aspx.

[43] Project, O. W. A. S. Software assurance maturity
model.
https://www.owasp.org/index.php/Category:

Software_Assurance_Maturity_Model, Aug. 2014.

[44] Qiu, L., Zhang, Y., Wang, F., Kyung, M., and
Mahajan, H. R. Trusted computer system evaluation
criteria. In National Computer Security Center (1985),
Citeseer.

[45] Ragan, S. Cybersecurity should be seen as an
occupation, not a profession, report says.
http://www.csoonline.com/article/2134002/

security-awareness/cybersecurity-should-be-

seen-as-an-occupation--not-a-profession--

report-says.html, Sept. 2013.

[46] Richards, E. P. Police power and the regulation of
medical practice: A historical review and guide for

medical licensing board regulation of physicians in
erisa-qualified managed care organizations, the.
Annals Health L. 8 (1999), 201.

[47] Risen, T. Ftc investigates target data breach.
http://www.usnews.com/news/articles/2014/03/

26/ftc-investigates-target-data-breach, March
2014.

[48] Rivner, U. Anatomy of an attack.
http://blogs.rsa.com/anatomy-of-an-attack/,
Apr. 2011.

[49] Schneier, B. Liability and security. https:
//www.schneier.com/crypto-gram-0204.html#6,
Apr. 2002.

[50] Schneier, B. Brian snow sows cyber fears.
https://www.schneier.com/blog/archives/2010/

12/brian_snow_sows.html, Dec. 2010.

[51] Solove, D. J., and Hartzog, W. The ftc and the
new common law of privacy. Available at SSRN
(2013).

[52] Solove, D. J., and Hoofnagle, C. J. A model
pregime of privacy protection (version 3.0). Available
at SSRN (2013).

[53] Sotirov, A. Analyzing the md5 collision in flame.
Presentation at SummerCon, slides available at
http://www. trailofbits. com/resources/flame-md5. pdf
(2012).

[54] Stanley, M. K. Aig: Cyber threats a top concern for
industry execs. http:
//www.lifehealthpro.com/2013/02/07/aig-cyber-

threats-a-top-concern-for-industry-execs,
February 2013.

[55] Stockton, P., and Golabek-Goldman, M.
Curbing the Market for Cyber Weapons. Yale Law
and Policy Review (December 2013).

[56] Thibodeau, P. The firm behind healthcare.gov had
topnotch credentials – and it didn’t help.
ComputerWorld (Oct. 2013).

[57] Thomas, L., and Finkle, J. Insurers struggle to get
a grip on the burgeoning cyber risk market. Reuters
(July 2014).

[58] Unwin, L., and Wellington, J. Reconstructing the
work-based route: lessons from the modern
apprenticeship. The Vocational Aspect of Education
47, 4 (1995), 337–352.

[59] Williams, J., and Wichers, D. Owasp top 10-2013
rcl-the ten most critical web application security risks.
The open wep application security project (2013).

[60] Wolff, J. The $10 million deductible. Slate (June
2014).

[61] Zetter, K. The fight over cyber oversight.
http://archive.wired.com/politics/security/

news/2005/02/66632r, February 2005.

126

http://thomas.loc.gov/cgi-bin/toGPO/http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=105_cong_public_laws&docid=f:publ304.105.pdf
http://thomas.loc.gov/cgi-bin/toGPO/http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=105_cong_public_laws&docid=f:publ304.105.pdf
http://thomas.loc.gov/cgi-bin/toGPO/http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=105_cong_public_laws&docid=f:publ304.105.pdf
http://thomas.loc.gov/cgi-bin/toGPO/http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=105_cong_public_laws&docid=f:publ304.105.pdf
http://energy.gov/sites/prod/files/2014/03/f13/C2M2-v1-1_cor.pdf
http://energy.gov/sites/prod/files/2014/03/f13/C2M2-v1-1_cor.pdf
https://nvd.nist.gov/
https://www.privacyinternational.org/blog/international-agreement-reached-controlling-export-of-mass-and-intrusive-surveillance
https://www.privacyinternational.org/blog/international-agreement-reached-controlling-export-of-mass-and-intrusive-surveillance
https://www.privacyinternational.org/blog/international-agreement-reached-controlling-export-of-mass-and-intrusive-surveillance
http://finance.loyno.edu/risk/insurance-requirements-contractors
http://finance.loyno.edu/risk/insurance-requirements-contractors
http://jurist.law.pitt.edu/paperchase/2006/01/ftc-imposes-record-fine-on-choicepoint.php
http://jurist.law.pitt.edu/paperchase/2006/01/ftc-imposes-record-fine-on-choicepoint.php
https://www.isc2.org/csslp/Default.aspx
https://www.owasp.org/index.php/Category:Software_Assurance_Maturity_Model
https://www.owasp.org/index.php/Category:Software_Assurance_Maturity_Model
http://www.csoonline.com/article/2134002/security-awareness/cybersecurity-should-be-seen-as-an-occupation--not-a-profession--report-says.html
http://www.csoonline.com/article/2134002/security-awareness/cybersecurity-should-be-seen-as-an-occupation--not-a-profession--report-says.html
http://www.csoonline.com/article/2134002/security-awareness/cybersecurity-should-be-seen-as-an-occupation--not-a-profession--report-says.html
http://www.csoonline.com/article/2134002/security-awareness/cybersecurity-should-be-seen-as-an-occupation--not-a-profession--report-says.html
http://www.usnews.com/news/articles/2014/03/26/ftc-investigates-target-data-breach
http://www.usnews.com/news/articles/2014/03/26/ftc-investigates-target-data-breach
http://blogs.rsa.com/anatomy-of-an-attack/
https://www.schneier.com/crypto-gram-0204.html#6
https://www.schneier.com/crypto-gram-0204.html#6
https://www.schneier.com/blog/archives/2010/12/brian_snow_sows.html
https://www.schneier.com/blog/archives/2010/12/brian_snow_sows.html
http://www.lifehealthpro.com/2013/02/07/aig-cyber-threats-a-top-concern-for-industry-execs
http://www.lifehealthpro.com/2013/02/07/aig-cyber-threats-a-top-concern-for-industry-execs
http://www.lifehealthpro.com/2013/02/07/aig-cyber-threats-a-top-concern-for-industry-execs
http://archive.wired.com/politics/security/news/2005/02/66632r
http://archive.wired.com/politics/security/news/2005/02/66632r

	Introduction
	Panel Format
	Related Work
	Software Industry
	Intellectual Property
	Other Industries

	Panel Position: Don't Regulate Offensive Security
	Why Does the Call for Regulation Arise?
	Calls for Regulation Are Just an Admission of Being out of Ideas
	Regulation Should Not Focus on Offensive Security
	Regulating Tools and Research is a Bad Idea
	Discussion Questions
	Conclusion

	Panel Position: A Credit Score for Developers, Software, and Vendors
	Regulatory Models
	The Regulatory Spectrum
	Software Liability

	Credit Score for Developers
	Registration and Tracking of Developers

	Questions and Conclusions
	Questions

	Panel Position: Software Regulation Must Consider Public Policy
	Public Policy and Software
	Questions

	Panel Summary
	Certification
	Liability

	Conclusions
	References

