
Milware: Identification and Implications of State Authored Malicious
Software

Trey Herr, Eric Armbrust

The George Washington University

Abstract
The pervasive development and deployment of malicious
software by states presents a new challenge for the informa-
tion security and policy communities because of the resource
advantage and legal status of governments. The difference
between state and non-state authored code is typically de-
scribed in vague terms of sophistication, contributing to the
inaccurate confirmation bias of many that states simply ’do
it better’. This paper attempts to determine if state au-
thored code is demonstrably different from that written by
non-state actors and if so, how. To do so, we examine a
collection of malware samples which, through existing ana-
lytic techniques, have been attributed to a mix of state and
non-state actors. Reviewing technical information available
in the public domain for each sample, reverse-engineering
a sub-set, we determine that there is a set of criteria by
which state authored code can be differentiated from the
conventional malware of non-state groups. This MAlicious
Software Sophistication or MASS index relies on a set of
characteristics which describe the behavior and construc-
tion of malware including the severity of exploits and cus-
tomization of the payload. In addition to highlighting these
particular differences, the paper discusses several policy im-
plications which arise from identifying a separate class of
state-authored code. This is an interdisciplinary effort and
pilot project based on a limited dataset however the con-
clusions drawn have important ramifications for both the
information security and relevant policymaking communi-
ties.

CCS Concepts
•Security and privacy → Formal security models;

1. INTRODUCTION
Malicious activity is the natural byproduct of technologies

which, by default, assume trust between user and informa-
tion. Stretching back to the design choice that instructions
and information be considered the same but differentiated

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

NSPW’15 September 8–11, 2015, Twente, The Netherlands
c⃝ 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3754-0/15/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2841113.2841116

prior to execution, information security has faced a chal-
lenge in protecting the majority of users from a malicious
minority. There is a recent trend towards more capable mal-
ware samples emerging in an otherwise slowly evolving sea
of code, often with exotic propagation and compromise ca-
pabilities. A shorthand for these samples generally would
be useful for analysts; a more comprehensive means of clas-
sifying them, relying less on the labor intensive and opaque
efforts of information security firms, would serve to benefit
the research and policymaking communities. These more
capable samples represent an aberrant spike in an otherwise
slow evolution over time. According to analysis from infor-
mation security firms like Symantec and Kaspersky, much
of this code originates with states. The implication for well
resourced political entities as a more common source of ma-
licious software samples is potentially significant.

Previous work presented has attempted to move beyond
the simple ”sophisticated/unsophisticated” dichotomy and
succeeded in developing a metric that measured social engi-
neering techniques but there remains more to be done. [1]
We advance this effort by focusing on common functional
characteristics of malicious code and comparing the work
of state and non-state actors to better understand what
depends on the unique operational demands of the state.
Understanding the difference between state and non-state
authored malicious software has important policy and aca-
demic implications. This paper reviews a number of sam-
ples in order to generate an index to consistently classify
code as state or non-state authored. We reviewed malicious
software for which there is material in the public domain,
available through white papers or other technical analysis,
and selected several different examples for more thorough
analysis, described in detail in the Code Analysis section.

For policymakers, identifying state authored code can help
to develop a more robust suite of attribution techniques and
may highlight a growing divergence in the evolution of ma-
licious software being authored by these two groups - con-
tributing to what many commentators refer to as an ”arms
race”. For analysts and the information security community,
recognizing the degree of sophistication in state authored
code more systematically than is current practice may con-
tribute to greater awareness and more rapid recognition of
new compromise techniques and infection vectors. Firms
may use the information to make different insurance claims
or solicit help from law enforcement bodies where it might
not otherwise happen. Understanding quickly something is
a state authored piece of code may help shape the security
response rapidly at beginning rather than after an extended

forensic effort. The academic community can benefit from
this work as it served to provide a model for empirically
sound investigations with cross-disciplinary teams and con-
clusions.
The paper starts by evaluating a collection of malicious

software samples for which there is information available in
the public domain and then proceeds to reverse engineer sev-
eral more samples. From this analysis, the paper develops
a rudimentary set of criteria that consistently distinguishes
the samples identified as state or non-state; we collect these
critiera into a MAlicious Software Sophistication (MASS)
Index. Concluding, we use the evidence of this distinction
(rather than the material differences) to suggest several pol-
icy implications and highlight opportunities for future work.

2. BACKGROUND
Malicious software analysis has long been focused on in-

dividually functional components in code, using information
gleaned from particular modules to describe the function of
an entire sample in a sound but somewhat limiting bottom
up approach. Our method attempts to work top down, es-
tablishing three broad components of all malicious samples
underneath the PrEP framework; Propagation method, Ex-
ploits, and Payload. [2]
Propagation is the act of delivering code to the target

system; it could be an email attachment, compromised web
site, or USB stick. Propagation may span multiple stages
or include a so-called ”dropper,” code written specifically to
land on a target system and phone home to a designated
IP address to download other malware components. Propa-
gation is the least software intensive piece of malware, any-
thing that can hold or transmit data can propagate mal-
ware. A variety of propagation methods have been observed
in the wild including compromised websites, email attach-
ments, and removable storage media. Propagtion methods
are sold on web based markets for a variety of services such
as Pay Per Install, where a customer pays for the delivery of
their payload to a population of target machines and pays
the botnet owner any successful installations.
A payload is the core content of malware: malicious soft-

ware designed to execute on a computer system and achieve
some predefined goal such as compromising password files
or deleting data. It could take advantage of code libraries
present on a target system in order to execute and may com-
bine several modules, each with a different but complemen-
tary purpose. The payload is malware’s raison d’etre and
can vary widely in design and objective.The amateur Wank
worm, which infected computers running Digital Equipment
Corporation (DEC)’s VMS operating system in the late
1980s, executed a simple operation to change user’s pass-
words and display an anti-nuclear slogan. Stuxnet’s payload
by contrast, was designed to manipulate machinery into de-
stroying itself. The payload of a piece of malicious software
executes on a computer system in order to create some effect;
to alter data, remotely activate a camera, create a ’backdoor’
for future access, or damage hardware - these actions ma-
nipulate the intended function of an information system to
achieve the effects desired by an attacker. The term cyber
weapon, though misused widely, covers only those malicious
software samples with payloads capable of generating de-
structive effects.
Aiding the propagation method and payload are software

programs that take advantage of vulnerabilities in computer

systems or surrounding networks called exploits. Exploits
are code, written to take advantage of features or flaws in
software, and enable the operation of other malware com-
ponents, either the propagation method or payload. Ex-
ploits are the most commodity-like component in malware;
bought and sold on the web, their need to be specific to a
target system creates tremendous value with quoted prices
ranging into the hundreds of thousands of dollars. Increas-
ingly, companies such as VUPEN and a sizable collection of
freelancers are selling newly discovered vulnerabilities and
developed exploits to governments, including the NSA, and
non-state actors rather than the original software vendors
like Google.

Distinguishing between the payload and an exploit is im-
portant when thinking about their development. A pay-
load is written to achieve a desired effect so focus is on the
code’s output. An exploit is written to a particular target,
emphasizing the target software’s structure and function.
This distinction makes for divergent practices in developing,
selling, and integrating exploits and payloads. Exploits are
highly fungible, and can be integrated with different mal-
ware components depending on need. Payloads are more
time intensive to repurpose; though still code, like a hammer
they were written to achieve some narrow range of effects.
This difference helps underline the role exploits play in mal-
ware, opening the door for malicious code to propagate to
and execute on a target system, such that exploits are not
themselves malicious. Achieving root access on a machine
does not create an effect by itself; rather it makes a further
operation possible, credential theft for example.

This terminology is at odds with some usage, which com-
bines the payload’s function into the exploit and uses the
combination as a verb, to ’exploit’ a system. [3] This ap-
proach however limits our ability to categorize and under-
stand malicious code; the two are logically distinct both in
sequence and form as exploits are written to a particular
vulnerability present in some piece of software while pay-
loads are written to achieve a particular effect. Without
one or several exploits, a payload would almost never be
able to execute on a target computer - these exploits serve
to manipulate the target system into giving malicious code
access and user privileges necessary to function. Each of
the three components of this framework [2] has a distinct
purpose and works in combination with the others to con-
stitute a malicious package. Cyber weapons are a subset
of malicious software, where the payload is designed to pro-
duce destructive physical or logical effects. Thus not all mil-
or malware are cyber weapons as many samples from both
categories employ payloads designed for espionage and in-
formation theft. There are actually very few examples of
destructive payloads, thus cyber weapons, in the history of
information security.

Differentiating between sophisticated and unsophisticated
samples is not a new area of work in the information secu-
rity community; static and dynamic analysis techniques have
been in use and evolving for several decades. [4, 5] Existing
techniques tend to emphasize forensic attributes like match-
ing language setting and compiled time stamps to potential
threat actors’ locations, selection of targets, and attempts
to ’fingerprint’ developers based on their development styles.
[6, 7, 8] Some of these characteristics are useful but all can
be spoofed to one degree or another, potentially complicat-
ing attribution. Identifying the source of samples has come

to the foreground more in the past decade as efforts have
shifted to understand the nature of threats and their activ-
ities beyond the network perimeter. As part of this change,
the motivations of attackers and their political status has
become a factor of interest. [1, 9] Analytically, the next
step is understanding the relationship between the complex-
ity and capability of a piece of malicious code and the nature
of its authors. We do this by focusing on the discrete com-
ponents outlined above, the propagation method, exploits,
and payload, an approach which has seen other application.
[10]

2.1 MASS Index
The MAlicious Software Sophistication (MASS) Index is

a set of functional criteria which could be employed in dis-
cussing the high level characteristics of a piece of malicious
code - architectural and behavioral features. The contents
of the index are descriptive and qualitative in nature - ob-
served features of code that has already been attributed to
state or non-state actors. It is not intended as a quantified
or machine readable tool; such an effort would, at the mo-
ment, involve an awkward translation between categorical
and ordinal values and potentially specious attempts to cre-
ate quantitative specificity where none is currently present.
This index is intended to serve as a collection of charac-

teristics which might be intelligible to business leaders and
the policy community in discussing the origins and nature of
state-authored code. The first portion of the paper aims to
develop, through analysis of these different samples which
have been identified as state or non-state, a more consistent
shorthand set of features useful to differentiate products of
the two sources. The work in this paper considers the non-
state samples Lohmys, Upatre, Tinba, and GOZas well as the
state samples Stuxnet, Red October, Duqu, Duqu 2.0, and
Turla.

2.2 Milware
The following analysis, which feeds into the MASS Index,

supports the hypothesis that there are systematic differences
between state and non-state authored code and proffers the
term ’milware’ as an alternative descriptor for this former
category. The intent of the term is not to draw a firm line
in the sand or to suggest that all states write code at equal
levels of capability or towards the same end. Milware is in-
tended to describe the more developed engineering effort ev-
idently behind samples like Duqu, Turla, and Stuxnet; their
persistence and innovative means of compromise in particu-
lar denote a more developed adversary than many non-state
examples. Capturing these more developed samples under
the term ”milware” provides a shorthand for analysts and
policymakers to describe this collection of capabilities with-
out relying on vague references to ”sophistication”.
The design of a piece of malicious software like Duqu

demonstrates a more mainstream software development pro-
cess with a core platform complimented by functional mod-
ules capable of being updated based on user need rather
than a single bespoke product intended for one purpose.
This shift towards an almost operating system like devel-
opment process builds on the rudimentary multi-component
design effort found in tools like the Blackhole exploit kit
where efforts are made to integrate propagation methods
and exploits into a single package. Our analysis does not
consider malicious software for use on the battlefield and

does recognize that other states writing code, such as Italy
or Pakistan, have yet to deploy tools of this nature. Our
purpose in declaiming a category called milware is to iden-
tify a simpler shorthand for the espionage, and in one case
destructive, tools increasingly found by information secu-
rity firms and attributed to state intelligence and military
organizations. It is important to note that the resource con-
siderations and operational demands of the state apply as
well to firms working for the state. Thus while milware may
have been developed, in whole or in part, by defense con-
tractors or other private companies, we still categorize the
code as state developed.

Almost all of the code considered by this paper to be
milware is from Russian or US sources thus the technical
characteristics we identify may be a product of the cultural
influence or operational priorities of each states. The im-
portance of the claim that there is a gap between state and
non-state authored code is not to claim that all state code
looks the same, indeed there is substantial variation between
the software platforms deployed by North Korea, the United
States, and China. Even within states, the priority and as-
sessed vulnerability of a target can contribute to different
tactics and malware component use; escalation to employ-
ing zero days for example has been a multi-step process ob-
served of some Chinese groups. [11] Recognizing the differ-
ence between Duqu and the Wanker worm is not to suggest
Duqu is common or indicative of the capability of all states
but rather to to highlight significant difference between sam-
ples in what is otherwise collectively referred to as malware.
The argument for what milware is in this paper is thus not
a claim of what may always be present but what is possible
amongst edge cases and the attendant implications of this
new category.

3. OPEN SOURCE ANALYSIS
This section reviews samples which have open source tech-

nical and analytic documentation as well as previous claims
of attribution, to discern patterns that may exist in the con-
struction and behavior of state code. In so doing, the paper
attempts to expand the array of samples under investigation
beyond what might be possible with the direct functional
analysis methodology employed later.

3.1 Non-State Code
These samples are developed from analysis conducted by

existing information security firms and the larger research
community.

3.1.1 Lohmys
Lohmys is malware which targeted Brazilian banks and

financial institutions during the World Cup. The code uses
phishing campaigns to reach and infect its target as well as
a dropper to propagate a malicious executable onto the vic-
tim’s machine. [12] Lohmys then attempts to gain elevated
permissions on the victim’s computer and begins scraping
web form data for banking information. [13]

Lohmys payload requires elevated permissions on the ma-
chine in order to exfiltrate data but is propagated using a
set of low severity exploits which has already been disclosed
at the time of discovery. [14] The code relies on a dropper to
pull down an executable file, making the sample somewhat
easier to detect and more uncertain to successfully compro-
mise the target machine. Lohmys shows little emphasis for

specific individuals or information, infecting approximately
700,000 users throughout Brazil during phishing campaigns
carrying World Cup themed content during weeks leading up
to the event. [15] The content of the campaign demonstrated
little specificity other than being written in Portugese, a low
cost approach to maximize potential victims if the expected
rate of compromise is low.

3.1.2 Upatre
Upatre is an unusual piece of malware with more exten-

sible propagation capabilities than other observed samples.
Its rise followed a strong dip in use of the Blackhole Exploit
Kit; Upatre spreads through similar propagation techniques,
such as malicious attachments, direct downloads, and mal-
ware served by compromised web hosts. What makes Upa-
tre unique is a persistence architecture which facilitates the
delivery of other malware samples onto compromised ma-
chines. This feature creates a tie between Upatre and the
other samples explored. By acting as a dedicated dropper,
Upatre bridges the traditional gap between propagating a
payload using the segmented process of combining an ex-
ploit kit with a custom dropper and pushing code directly
through a pay per install service.
Upatre’s initial propagation method is similar to previous

samples, with a combination of file format exploits support-
ing email phishing campaigns and compromised web hosts
delivering the code. [16] Once a toehold is established on
the victim’s machine, Upatre will drop it’s payload on the
system and delete the original running copy. [17] Upatre
will then sit on the victim’s system and listen for commands
from the C2 server without, initially, trying to exfiltrate data
beyond basic reconnaissance information like the operating
system version and hostname. The payload installed func-
tions primarily as a propagation method for follow on code
as Upatre is intended to operate as a persistent dropper,
allowing non-state actors to dynamically spread their own
malware and control infections with more specificity. [17]

3.2 State Code
This set of samples have been identified by information

security firms and research organizations as authored by
states, based variously on analysis of the code’s features,
targets, and contextual factors like the likely working time
of the developers or their computer language settings. This
analysis, as with our work, is subject to speculation and in-
accuracy, as none of these factors are intrinsic or immutable
but we make an effort to include material from multiple dif-
ferent firms so as to try and offset some of this bias.

3.2.1 Red October
Red October was a sophisticated espionage package dis-

covered by Kaspersky in October of 2012. Likely developed
by Russian speakers, Red October targeted research and
diplomatic organizations across Central Asia and Eastern
Europe with a payload of more than one hundred separate
modules intended to collect system information and copy
user data such as email files, credentials, and keystrokes. [18]
Propagation - Red October had a three-stage propaga-

tion method. Initially spread through spear-phishing emails,
later adding both compromised attachments and a malicious
URL, all were used to download a second-stage, dropper
program. [19] This second propagation stage would pull dif-
ferent payload modules from a set of command and control

(C2) servers and store them on the target’s local disk or sys-
tem memory depending on the program’s function. [20] Once
injected, some of the downloaded modules functioned as a
third propagation method to spread over infected machine’s
local networks.

Exploits - Red October employed four separate ex-
ploits. [20] Three were used to enable compromised attach-
ments while a fourth allowed the embedding of a malicious
URL in emails. Each of these exploits had been previously
discovered and published but remained unpatched on tar-
geted systems, one of the few state sponsored samples with
no exploits leveraging zero day vulnerabilities. Two of the
Excel exploits used in the first stage of Red October’s propa-
gation method were originally developed by Chinese hackers,
likely as part of unrelated attacks on Tibetan activists. [20]

Payload - Red October’s Payload was stored remotely,
waiting for the second propagation stage dropper program
to download it from a range of servers. A loader program
then decrypted one of more than a hundred different mod-
ules, each with a different function. [18] Reconnaissance
modules collected information about the infected system,
from browser versions to filename and folder trees, to as-
sess the value of data stored locally. Others were responsi-
ble for collecting email records, user credentials, password
hashes, information about attached mobile devices, and sys-
tem keystrokes. A set of persistence modules included code
designed to write a backdoor into either MS Office or Adobe
PDF Reader, allowing Red October’s authors to use other-
wise innocuous attachments for these programs to reestab-
lish a foothold if kicked off of a target. [20] The variety of pos-
sible espionage and reconnaissance capabilities which could
be deployed to an infected computer were tremendous.

3.2.2 Stuxnet
Stuxnet was developed by the United States, in conjunc-

tion with Israel, to damage Iran’s nuclear enrichment fa-
cilities at Natanz and generally disrupt a potential weapons
development program . [21] Targeting centrifuges being used
to separate different isotopes of Uranium in order to obtain
pure fissile material, Stuxnet was able to jump into an air-
gapped network to infect machines directly controlling the
Programmable Logic Controllers (PLCs) directing each cen-
trifuge. [22]

Propagation - Stuxnet included a two-stage propagation
method; computers at the centrifuge facility were networked
together but likely not connected to the internet. [23] A sep-
arate set of Windows machines, configured to communicate
directly with the Siemens-built PLCs managing the cen-
trifuges, were air-gapped (given physical separation) from
all other machines with no direct link to the internet.[22]
The first propagation stage, including two exploits that had
not yet been publicly released, manipulated each computer’s
network services into replicating the code to all connected
computers. In all, this first stage propagation had at least
five different propagation techniques associated with it, in-
cluding a peer to peer communications and update protocol,
local area network shares, and the Microsoft local print net-
work software. [23]

In order to jump the gap to those Windows machines with
access to the centrifuges, Stuxnet had a second propagation
method, employing a small software package that lived on
removable USB sticks. This program would run, automat-
ically, when connected to a new machine, allowing Stuxnet

to jump between computers even those kept physically sep-
arate. [24] The coordinated efforts of the local network and
USB stick propagation methods proved highly effective in
delivering Stuxnet’s payload.
Exploits - Part of the Stuxnet propagation method used

an exploit in the Windows Print Spool network service
to spread between computers. From an infected machine,
Stuxnet would submit a specially formatted print request
to another, uninfected, machine. Instead of supplying infor-
mation for a print job, the request would trigger a remote
procedure call, injecting Stuxnet’s code from the original
infected computer over the print network to the target ma-
chine. [23] Here the propagation method was the network-
based, remote-procedure call, but the exploit was necessary
to take advantage of a vulnerability in the Windows print
software. The first stage of Stuxnet’s propagation method
employed at least two previously unknown exploits to spread
its payload through the Microsoft Print Spool, Windows
Server Service, and USB sticks.[22] These exploits allowed
the propagation method to hijack existing network services
and replicate Stuxnet.
Payload - Stuxnet’s payload was designed to damage the

centrifuge systems at Natanz without alerting facility staff.
One module infected the PLCs for centrifuge rotation; run-
ning the affected machines up to just over their maximum
design speed for 15 minutes then returning to normal for 27
days before slowing down almost to a standstill for 50 min-
utes. [23] This month-long cycle was written to repeat until
centrifuges began to crack from what would appear to be
metal fatigue. A second payload module opened and closed
feed and exhaust valves controlling the flow of gas to other
centrifuges, disrupting the multi-stage enrichment process.
Stuxnet also had an obfuscation module that took normal
diagnostic information on the centrifuge rotation speed and
fed it into the machine’s Supervisory Control and Data Ac-
quisition equipment so that nothing would appear to change
until the machines had broken down . [24] These two pay-
load modules represented a significant investment in time
and resources to write and test the code. [21]

3.2.3 Duqu
Duqu is an espionage platform identified by the Labora-

tory of Cryptography and System Security (CrSys Lab) at
Budapest University in Hungary in September of 2011. In a
detailed report, later reinforced by analysis done at Syman-
tec, Duqu was revealed as a small but capable espionage
focused malware platform with a highly customized payload
employing multiple nested installers for security. [25]
Propagation - Initial infection was using a compromised

windows .doc file sent via spear-phishing email. [26] Duqu
did not self-replicate, instead infecting new machines based
on instructions from the related command & control (C2)
servers. This human in the loop propagation process oc-
curred over network shares rather than an internet based
technique.
Exploits - Duqu leveraged a vulnerability in the Win-

dows TrueType font parsing engine (CVE-2011-3402). This
allowed the initial dropper to gain access to the targeted
machine. This exploit was unknown at the time of use and
appears to have been the only one employed by the sample.
Payload - Duqu contained modules for communication,

reconnaissance, and a keylogger. Communications took
place primarily with other infected machines over a peer-

to-peer protocol using both HTTP and IPC (Inter Process
Communication) over SMB (Server Message Block). [26]
This allowed for communication to a set of C2 servers from
a more limited number of computers, thereby minimizing
the number of machines emanating unusual network traf-
fic. A custom protocol involved uploading .jpg files with
appended encrypted data to exfiltrate information and re-
ceive commands. This allowed other functional modules to
be downloaded into existing Duqu infections according to
the attacker’s needs. Duqu used a valid certificate from C-
Media Electronics, a Taiwanese firm, to sign its code. [27]

3.2.4 Duqu 2.0
Duqu 2.0 is part of an espionage campaign targeting

Kaspersky Labs and hotels and conference facilities sur-
rounding negotiations behind the 2015 Iran/P5+1 nuclear
non-proliferation agreement. The software is closely related
to the Duqu platform; analysis from Kaspersky as well as the
CrySys Lab in Hungary suggest that while the payload mod-
ules had changed, the underlying architecture of the sample
for propagation was substantially similar. [28] Demonstrat-
ing many of the same behaviors, Duqu 2.0 allowed for a more
expansive set of espionage capabilities and included a new
certificate.

Propagation - Duqu 2.0 propagated through targeted
spearphishing emails, in one case penetrating the security
firm Kaspersky through a small affiliate office. [29]. The at-
tack then moved laterally through the firm’s network using
Microsoft Windows Installer Packages to spread to and in-
fect new machines. The firm also noted that, ”modules were
also observed performing a ’pass the hash’ attack inside the
local network, effectively giving the attackers many different
ways to do lateral movement”. [29]

Exploits - The sample used an exploit similar to the orig-
inal Duqu code, based on a vulnerability in Windows True
Type fonts. [29]. This exploit was used to gain access to the
Kernel on affected machines, representing a serious escala-
tion of privilege event in the native environment.

Payload - Payload modules for Duqu 2.0 included a
means to initiate, freeze, and bypass a host of intrusion-
detection and anti-virus applications as well as a network
reconnaissance tool and more than 100 configurable modules
available for download as a single package. These modules
include the capability to gather credentials, network meta-
data, and to read/write files on the affected machine. [29]

3.2.5 Turla
Turla, also known as Snake or Uroburos, is a sample that

has been in the wild since early 2008 and is of suspected
Russian origin. [30, 31] For much of its life, Turla was found
exclusively on Windows machines however it recently made
a jump to Linux as well. While the abilities of Turla may be
observable in other, non-state authored, samples, the sever-
ity of its exploits and use of the code are what set it apart.
While Turla was used to compromise several servers over
the years to gather information, [32] it also established a
presence in Department of Defense networks. The fact that
this sample was able to penetrate DoD and perform a com-
plex intelligence gathering campaign is evidence of a capa-
ble adversary. Beyond the DoD compromise, in early 2014,
samples of Turla were found to be on Ukrainian devices per-
forming the same intelligence gathering. [31, 33]

Propagation - Turla employs a combination of targeted

spearphishing and watering hole attacks to compromise its
targets. [34] The emails include infected .pdf attachments
with language specific details about conferences and other
events while the websites are specific to the region and in-
terest issue of the target.
Exploits - The exploits in use by Turla include several

known Java, Flash, and Internet Explorer vulnerabilities for
web compromise as well as two previously unknown. The
first, targeting Adobe, enables arbitrary code to support
the propagation method. The second, a privilege escala-
tion technique against Windows XP and 2003, supports the
payload. [34]
Payload - Turla’s payload, cd00r, allows the new strain

to listen on the host for ’magic packets,’ without the need for
elevated permissions, that allow will establish a connection
to the C2 server and begin executing the issued commands
via ’/bin/sh -c.’. [32] Turla employs this backdoor to main-
tain persistence on host’s machines. While running on the
host without elevated permissions does restrict the activity
of Turla, it does allow for remote intelligence gathering of
the target by simply sniffing internet traffic, exfiltrating the
host’s files, and other seemingly benign activities. [35]

4. FUNCTIONAL ANALYSIS
In this section, we identify several additional samples and

conduct a more detailed analysis in order to evaluate the
trends and commonalities identified above with direct in-
spection of code from both state and non-state examples.

4.1 Methods
To gain a fuller understanding of our samples we reverse

engineered each in a controlled lab environment using both
static and dynamic analysis. This process leveraged existing
and widely used tools, including IDA Pro [36], BOCHS [37],
WinDBG [38], Immunity [39], and SysAnalyzer [40], in a
live running environment. These tools helped document the
changes our samples made to the testing system and parsed
each of the binaries, enabling us to work with readable ma-
chine code. This analysis also considered how samples inter-
acted with their surrounding network so we included TCP-
DUMP [41] and WireShark [42] to gather and analyze out-
bound traffic.

4.2 Data Collection
We selected a set of state and non-state samples for both

accessibility and their chronological proximity. Our ability
to work directly with the state authored samples was limited
by non-disclosure agreement with a commercial firm and so
relies in part on open source documentation. Code selection
was driven by three key factors: scope of impact, availabil-
ity of samples, and knowledge of lineage. Using non-state
samples with a long history of use allowed us to consider
crossover between each and select more complete instances
of code.
To achieve the clearest possible distinction between state

and non-state authored code, we selected two samples from
each category. Non-state samples included Game Over Zeus
(GOZ) and Tinybanker (Tinba) while Sandworm and the code
used in the compromise of Sony Entertainment’s networks
were selected as our state samples. Each sample has had
world wide impact of one type or another and propagates
using a different method.

4.3 Non-State Code
GOZ is piece a of malware that, when installed on a tar-

get system, will establish a P2P connection based on the
Kademlia protocol. [43] The binary propagates using phish-
ing emails containing links that redirect to compromised web
hosts. At these links are servers using the Blackhole Exploit
Kit to infect target machines via vulnerabilities in the vic-
tim’s web browser. A dropper module then deposits a piece
of code on the target system to execute the GOZ payload
which attempts to contact a C2 server. [44]

The use of an exploit kit is not novel and indeed is
present in the second malware sample analyzed in this pa-
per. Tinba is a banking trojan that has become notorious for
its incredibly small size, clocking in at only 20kb. Tinba’s
propagation method uses a set of compromised websites to
distribute code to victim systems, either via linking to a
web host in a phishing email or by targeting certain user’s
browsing habits; the group behind Tinba is notorious for
compromising pornographic web sites and indeed this now
serves as the main mode of Tinba propagation. [45] Once
a victim visits the compromised web host, Tinba uses the
Blackhole Exploit Kit to enable installation of a dropper on
the victim’s system. Lastly, this dropper downloads and in-
stalls the Tinba payload from a predetermined list of URLs.
Tinba, unlike GOZ, does not emphasize botnet functionality
in its payload, instead it focuses on skimming victim’s bank-
ing information through the use of web-injects and function
hooks. [46]

Both samples of malware differ in the type of data tar-
geted and the manner of exfiltration but each makes use of
the Blackhole Exploit Kit to successfully propagate and exe-
cute their respective payloads. This fact demonstrates some
of the limitations of developing code for malicious purposes -
designing several payloads may well be less costly in terms of
information and human capital than keeping abreast of the
latest vulnerabilities present on a particular target systems
and continually developing new exploits to match. This en-
courages malware’s relatively broader propagation - the pro-
portional rate of success for all attacks is lower than for more
targeted efforts but the victim pool is made substantially
broader to compensate. Each group distributing malware,
while they might find it cost-effective to develop an original
payload, appear willing to use the same vulnerabilities found
in many other samples of malware to gain code execution on
the target system.

This breadth of propagation is further reinforced by the
selection of a kit like Blackhole, which targets users with a
variety of potential exploits in any given iteration. Black-
hole targets victim interactions with the web browser; by
loading an iframe containing malicious JavaScript into the
victim’s browser, Blackhole can detect which exploits the
victim is vulnerable to and craft an environment wherein
the victim will be exposed to a condition that triggers the
exploit and executes the associated payload. [47] While not
a core sample, the Blackhole Exploit Kit is taken into con-
sideration in the analysis due to its significance in GOZ and
Tinbaand prevalence in other malware as a means to support
propagation.

4.4 State Code
The Sandworm group, a Russian linked state sponsored or

supported hacking organization, has been running a multi-
national intelligence gathering campaign on Western states

from as early as 2009. [48] The propagation method typically
observed with Sandworm attacks involves spear-phishing
email to the target with an attached Powerpoint document
that, when opened, will trigger CVE-2014-4114 to compro-
mise the target system. [49]. The Sandworm attacks tar-
geted largely NATO states and affiliated countries including
the United States, United Kingdom, and the Ukraine; the
breadth of this spread allows us to to analyze the propaga-
tion patterns behind single state sample exploiting a single
CVE.
The selection of Sandworm in based off the observed sim-

ilarities to GOZ was botnet functionality and provided a
basis to contrast the two with regard to their communica-
tion protocol. [44, 48] GOZ’s use of the Blackhole Exploit
Kit demonstrates a common feature of malware; reliance on
pre-existing third-party exploit packages. This is directly at
odds with Sandworm’s use of a more particularly selected
and applied exploit to gain access to target systems. While
GOZ and Sandworm do share similarities in functionality,
one the quantifiable difference between the two samples is
the severity of the exploit(s) and payload(s) used. A CVSS
score was used to determine the observed severity of the
samples analyzed, Sandworm’s CVSS score is 9.3 [50] while
GOZ’s average CVSS score comes to 6.3. [51, 52] This distinc-
tion in CVSS score between samples shows some evidence of
the difference in severity. [53]
The second state sample is from the compromise of Sony

Entertainment’s networks in 2014. While not a coherent,
multi-target attack like Sandworm , this particular chain of
events provides insight into the functional process of an at-
tack by state actors. The state samples exhibit particular
characteristics in their propagation methods, exploit selec-
tion, and payload behavior that help delineate them from
more conventional malware binaries.

4.5 Sample Analysis
Our methods of analysis focused on differences and sim-

ilarities among the gathered samples. In addition to tradi-
tional reverse engineering techniques, we also chose to study
how the samples acted in a network environment similar to
those found in corporate and personal targets so that we
could observe how non-state samples propagated to, and
within, a target differently from state authored code. Com-
paring Sandworm’s use of CVE-2014-4114 with Tinba and
GOZ’s use of the Blackhole Exploit Kit, we were able to
identify key differences between their respective propagation
methods.
Starting with GOZ and Tinba was, we used IDA Pro to

examine what the code looked like, how it was packed, if
it was obfuscated, and what techniques were used to com-
promise and gain access to the target system. At a higher
level, to measure differences such as impact on the system
and internal network propagation, we simulated a network
of computers and observed how the samples moved through
it. The paper’s goal is to create a more robust series of iden-
tifiers for which to classify malicious samples. To do this we
targeted core similarities shared between each milware and
malware sample, then classified the strongest found similar-
ities within each category.
To follow the life cycle of an attack, we started with the

propagation of code to the target. While GOZ alone used the
Cutwail botnet to spread, both GOZ and Tinba used emails
containing links to malicious web servers and compromised

web hosts serving malware. [44, 45] The emails contained
lures to bait the victim to click through to these sites, crafted
email templates emulating unpaid invoices, negative account
balances and social media advertisements containing logos
and identifiers that belonged to legitimate companies. These
phishing emails did not include personally identifying infor-
mation however. To verify this, we set up a honey-pot to try
and attract emails from these spammers; what we received
was poorly customized and did, in fact, lead to known ma-
licious web hosts serving Blackhole Exploits. [54] Below are
some of the URL patterns discovered:

[redacted].php?pBzmU=ePRGAAKDWk

&CMSgsDyzkuFvs=JnhjMIPLmQY

200 OK (application/java-archive)

[redacted].php?DgdAXYmfoKifsN=sNZsfdfdRLslud

&xpcuSaClYajZ=bsczZZysmLE

200 OK (application/java-archive)

GOZ and Tinba both make heavy use of the Blackhole Ex-
ploit Kit as a means of facilitating code execution on vic-
tim computers. This fact was significant in the analysis;
unlike milware, non-state authored code relies largely on
third-party exploit kits, following from the intent to infect
as many victims as possible. Some of Blackhole’s releases
make use of 15 to 24 existing CVEs with CVSS scores rang-
ing between 6 and 9.5; however, none of Blackhole’s exploits
are built around zero day vulnerabilities and most have been
patched by the manufacturer. Subsequently, this indicates
that those who are using Blackhole do not necessarily need
to guarantee code execution on a high percentage of their
targets, but instead aim to propagate to as many victims as
possible.

Moving from propagation to payload, the paper found
that while the purpose of each sample was different,
Tinba being a banking trojan and GOZ the payload to set
up a botnet, there were key similarities between the two.
Most important of these were the two sample’s preference
for targeting browsers, with the ability to siphon account
information and dynamically inject web content. This func-
tionality is seen on a number of malware samples in the wild
and requires very little specific information about the vic-
tim prior to attack. [55, 56, 57]. In a limited extension of
this pilot study, digging deeper into the payload’s code base,
we found that even when looking at a new strain of these
samples, there were a striking number of similarities. [57]

In the more detailed code analysis of each of the milware
samples, this paper considered the findings from the mal-
ware binaries and used the PrEP framework to draw par-
allels between the two sets in order to identify key differ-
ences in propagation, exploitation and payload functional-
ity. [2] While analysis of the milware samples was limited by
relatively greater reliance open source documentation than
with the malware samples, this paper was able to utilize an
arms-length relationship with an information security ven-
dor which included some analytic support with the source of
our samples. Although not in possession of the binaries, we
were able to obtain the .text, .code, .data and .bss sections,
where applicable, as well as the imports and exports of the
binaries to statically analyze each in addition to gathered
emails and official documentation.

Working with Sandworm, the paper’s analysis looked to
the propagation method attackers chose to distribute their

Sample Propagation Exploitation Method Payload CVSS Score*

Sandworm Tailored
Spear Phishing

CVE-2014-4114 BlackEnergy 9.3

Sony Attacks Tailored
Spear Phishing
& Physical
Access

SMB Worm Tool Listening Implant
Lightweight Backdoor
Proxy Tool
Destructive Hard Drive Tool
Network Propagation Wiper

N/A

Game Over Zeus
Email Spam &
Compromised
Web Hosts

Blackhole Exploit Kit GOZ Server 5.0

Tiny Banker
Email Spam &
Generic
Spear Phishing

Blackhole Exploit Kit Tinba Server 6.3

Table 1: Overview of Examined Samples

*Average of observed exploit CVSS

code. Examining multiple email samples sent to victims,
there was a generally high level of customization in the prose
which specifically targeted their victims including a compro-
mised Powerpoint slide deck. [58, 48] While popular security
practice tells users to never download attachments from un-
trusted emails, the work that the Sandworm Group put into
crafting legitimate looking messages provided a convincing,
tailored, basis for the recipients to trust the content.
Looking at the Sony compromise, this paper took a differ-

ent approach to analyzing the propagation of the attack due
to the fact that the initial compromise was most likely due
to an insider and not through an email campaign as seen in
our previous samples. [59] The core analysis however was the
same, still focused on the degree of customization present in
the code. Looking at how the milware propagated through
Sony’s network, it’s likely that, due to the tool set used [60],
the attackers attempted to breach higher value targets in
order to further cement their presence in the network. This
process involved targeting network administrators’ comput-
ers and using the stolen elevated credentials to breach the
Active Directory and Domain Controller servers to gain ac-
cess to credentials used network-wide.
Finally, we looked at the design and functionality of each

sample’s payload and supporting exploits. In both cases,
the actual functionality of the payloads were tailored to a
particular purpose. In the case of Sandworm, the attackers
used a version of the BlackEnergy remote administration
tool that supported the use of delete, ldplg, unlplg, update,
dexec, exec, updcfg. These commands allowed the attacker
to gain and maintain persistent access to the victim’s ma-
chine through its backdoor functionality as well as facilitat-
ing the execution of any new payload sent to the system. [61]
The payload deployed on victim machines in Sony’s networks
contained specific functionality, designed for the purpose of
exfiltrating corporate data, further propagation of the pay-
load through the network, dynamic access to compromised
nodes, and the destruction of victim hard drives. [60]
The exploits supporting each of these payloads were tai-

lored to their function. In the case of Sandworm, an Office
exploit (targeting CVE-2014-4114) was used via an email at-
tachment to give the attacker time to create a backdoor in
the system to enable further code execution. [49] Within

Sony, the SMB Worm Tool was used to propagate itself
through the network after the initial victim was compro-
mised. [60] This allowed the attackers to traverse network
undetected due to its zero day classification. [60]

5. FINDINGS
The sum of this open-source and functional analysis are a

set of criteria for differentiating milware from malware, the
utility for which extends beyond the information security
community to policymakers. This paper proposes the MAli-
cious Software Sophistication or MASS Indexas a basic tool
to help identify the authorship of malicious code samples.
The MASS Indexconsists of four main categories by which
to classify malicious software: method of propagation to the
victim, movement with the target network, exploit severity,
and degree of payload customization.

5.1 Propagation Method
Propagation methods can be classified according to their

scale and specificity. Scale determines the total possible tar-
get pool i.e. how many computers and devices in the world
are accessible. Code which propagates over the internet
is likely to be found much farther afield than that spread
over compromised storage media. The scale of a compro-
mised web site would be tremendous if the site in question
is Google or tiny if a research page on an academic net-
work, visible to users in that institution only. Conventional
botnets may have tens of millions of slave machines and
present an excellent method of propagating to targets indis-
criminately [62]. A propagation method which targets all
internet connected computers (large scale) is thus different
from one which targets only users connected to a particular
local area network (small scale). GOZ’s server contains tools
such as DGAs, USB, NFS, Samba spreading tools, designed
to propagate as widely as possible.

Specificity measures the targeting constraints placed on
malicious code, determining how much of the possible tar-
get pool is of interest or ’active’. These could be techni-
cal limitations, focusing on a particular operating system or
software version, based on personal information like account
credentials or details about co-workers, or the presence of
certain file names on the victim’s machine. Specificity can

Figure 1: Geographic distribution of nodes in the
ZeuS P2P network by Bot ID. (Source: Dell Se-
cureWorks)

help to contain the spread of malware infections, lowering
the likelihood of detection and limiting defensive response.
In propagating to the victim, milware tends towards

medium to small scale and highly specific propagation meth-
ods while malware employs large scale methods with little
to no specificity. Propagation scale can be relatively easily
established by looking at the format code is spread in while
specificity is well established by the degree of customization
in the delivery vector. This can range from the use of the
Targeted Threat Index [1] with regard to email propaga-
tion, to examining how much prior access or knowledge the
attacker had about the target. In the case of GOZ infections,
we see a tendency for GOZ to spread to any other computer
where code execution can be achieved.
The first major indicator across samples was the method

by which code propagated to the victims. Referring to the
Targeted Thread Index, emails containing malware had a
Targeting Score from 1 to 3 while those propagating mil-
ware had a Targeting Score from 4 to 5. [1, 63] The method
used to expose victims to malicious code also varied, for ex-
ample GOZ was very large scale and employed something akin
to the ’shotgun technique’, prioritizing spread of malicious
emails to as many victims as possible. Milware incidents
such as Sandworm used similar scale methods but with far
more restrictive specificity, pushing code to a highly con-
strained group of targets. [58]
Propagation within a network, after the attacker has com-

promised the target, demonstrates further variation between
mil- and malware samples. Milware demonstrated a trend
towards attacking higher value targets before further prop-
agating to lower value targets, cementing its position in the
network. This stands in contrast to malware, which tended
to spread to as many hosts as possible and typically moved to
topographically proximate peers instead of high value nodes
within the network. Milware’s lateral movement evinced a
human in the loop, prioritizing users with valuable creden-
tials and network permissions. As demonstrated by the Sony
compromise, careful propagation within the entertainment
company’s network infrastructure was key to the attacker’s
success. The presence of the Network Propagation Wiper in
the attacker’s toolkit indicates and interest and investment
in covert navigation of Sony’s network. [60] The selected
malware samples by contrast, propagated without obvious
human input or regard for the value of individual nodes,
proceeding in a more geometric fashion determined by the

initial point of infection.

5.2 Exploit
The severity of the exploits used to compromise the tar-

gets serves as another major indicator in the MASS In-
dex. Reuse of exploits or the use of exploits with a low
CVSS generally indicated malware while use of higher scored
and chained exploits was associated with milware. [53] Be-
cause GOZ relies so heavily on third party exploit kits, the
CVSS score, while generally critical, is predictable across the
board. Consequently, the wider exposure of these exploits
via Blackhole will substantially increase their likelihood of
discovery and mitigation, leading to their use as signatures
in many IDS/IPS solutions.

Milware samples employ exploits which do not exhibit the
same bias towards web-facing software as malware and there
are generally higher CVSS scores across the board; Sand-
wormhad an over all rating of 9.3 with a propagation subscore
of 10 and exploitability subscore of 8.6 [64].

Both of the malware samples considered in functional
analysis relied on the Blackhole Exploit Kit to support prop-
agation and gain access to target systems. While these dif-
ferent exploit kit versions did contain exploits with a rela-
tively high CVSS scores, many had already been patched.
The milware samples used exploits with similar or higher
CVSS ratings and included vulnerabilities which had gener-
ally not yet been disclosed. This reliance on smaller numbers
of high quality exploits demonstrates milware’s target focus,
which necessitates substantially higher probabilities of suc-
cessful infection. This stands in opposition to malware which
is sensitive less to the particular target than the tool which
is accessible and so employs a wide array of exploits in or-
der to develop a financially viable hit rate of compromised
machines without investing in particular vulnerabilities.

5.3 Payload
Examining the tool set and functionality of the payload

in question, the level of capability and customization in mil-
ware payloads to be higher on average. This involves the
payload in question using custom developed tools for post-
compromise activity on particular machines rather than
equivalent functionality broadly available in the marketplace
i.e. a payload for a web server, a payload for a desktop,
and a payload for a Domain Controller. Sandworm, employs
a very small set of tools intended to guarantee persistence
and data exfiltration. With regard to the Sony attacks, Ta-
ble 1 shows that while the payload did contain some generic
tools, they were all tweaked to the constraints of the firm’s
network and limited their functionality to that network. By
contrast, GOZ’s payload was identical regardless of the target
in question.

Component Behavior
Propagation

Severity of Exploit
Customization of Payload

Highly specific propagation method
Lateral movement within target
Target specific exploit
Customized Payloads

Table 2: Core Set of Differentiating Features between Malware and Milware

5.4 The MASS Index
These trends suggest a set of criteria to distinguish state

and non-state authored code which we build into the MA-
licious Software Sophistication (MASS) Index. Using com-
monalities between state samples, we were able to generate
a set of criteria which differentiate milware from malware.
Table 1 provides an overview of our findings with regards to
the core set of features present in each sample while Table
2 identifies the divergence identified between malware and
milware.
Using this tool, we can begin to consistently distinguish

between mal- and milware. These differences refer to code
sourced from the United States, Russia, and possibly Israel,
so do not represent the complete spectrum of state capabili-
ties but rather, are concentrated on the most advanced edge
of what has been observed so far.

5.5 Hacking Team and Private Intermedi-
aries

The compromise of Hacking Team and subsequent full dis-
closure of their internal emails, business documentation, and
product code in the summer of 2015 provided an interesting
tension between principle and research value. The release
of emails between parties with an entirely reasonable and
complete expectation of privacy poses a quandary for re-
searchers looking to use the material as empirical resource.
While there is value in the material contained and using the
Hacking Team documents can be weighed directly against
the virtue of attempting to protect their secrecy, the greater
problem is one of principle. Hacking Team’s activities are
those of a business but the firm’s clientele includes repres-
sive regimes whose consideration of political expression and
individual liberty stand in stark contrast to the expressive
ideals of free society and the academy (at least in its nominal
form).
It is not enough to say however that Hacking Team’s

choice of customers, reprehensible though it may be, was
morally depraved enough to warrant voiding each individ-
ual employee’s privacy interests. To do so would be to in-
vite a cavalcade of consequences for researchers of all stripes
from any leaked information now and in future. Rather than
invite the creation of such unsound precedent, this paper
chooses to use only that information which is of a business,
rather than personal, nature on the rationale that the firm
as an entity has a far less developed expectation of privacy
than its employees. The information obtained and reused
in this analyses then is limited to that which centers on,
stems from, or directly supports Hacking Team’s commer-
cial enterprise as a developer and distributor of malicious
software.
On the nature of Hacking Team’s products - there is a

distinct similarity with the characteristics of the Galileo Re-
mote Control System offering and the descriptors of mil-

ware described in this paper. Particularly, the limited use
of zero days for propagation to their targets and evidence
of some customization between different customers. There
is a distributed payload function, with different modules for
network reconnaissance and more overt collection activities
like keylogging and activation of audio and visual peripher-
als. [65]

The propagation patterns by contrast are different from
both mal- and milware samples investigated, focusing on
single user’s devices and seemingly paying less attention to
their attached networks. While there appears to be some
human in the loop of the propagation of Hacking Team’s
products depending on the client, targets appear to be in-
fected directly rather than via lateral movement through
a network. This is indicative of the environment in which
Hacking Team is operating - against individuals and small
organizations with lower security posture than might be tar-
geted by states.

There also appears to be less effort placed into target-
ing spearphishing emails from Hacking Team’s clients when
compared to those associated with several milware samples.
Hacking Team’s products, and in all likelihood some oth-
ers offered by private intermediary firms like Gamma Group
and BlueCoat, sit in between the code associated with non-
state groups like carders and those offering pay-per-install
services and the leading edge tech from advanced states like
the US, Israel, or Russia.

6. POLICY IMPLICATIONS
Pervasive development and use of milware constitutes not

only a direct technical challenge of decomposing and ana-
lyzing well obfuscated code but also threatens a set of key
assumptions underpinning the current information security
research and defense paradigm. States operate in a different
legal regime than criminal groups and individuals, inverting
the power relationship between attacker and defender and
altering what is possible in the defense against and prosecu-
tion of sources of information assurance threats. This paper
develops the MASS index as a rudimentary tool to distin-
guish between state and non-state authored code. Given the
existence of such a distinction, the paper highlights several
potentially significant policy implications:

6.1 Mitigating Public Disclosure
The material impact of public disclosure by information

security firms on state’s espionage and related operations
appears to be minimal. Operations may change tactics but
absent the aggregated total of incidents seen between the
US and China, states appear to have little to fear from dis-
closure of their activities and so the traditional paradigm of
revealing tactics and techniques to dissuade attackers and
aid defenders is less effective. The commercial and academic
information security community demonstrates a preference

for a ”sunlight is the best disinfectant”model when it comes
to threat actors and their code. Reports on the activities of
groups from the US to Lebanon to China abound, identifying
these ”APTs” and their activities under various entertaining
monikers ala Putter Panda. [66] While not an industry stan-
dard behavior with all attackers for competitive reasons, in-
formation about particular techniques, tactics, and exploits
has become both an information sharing device and market-
ing tool for information security firms.
One underlying expectation is that such disclosure will

dissuade attackers and aid defenders. While the publication
and circulation of information about milware is useful as
an academic research tool, several years of slick reports, in-
cluding a trove of analysis on Chinese [67] and Russian [20]
activities and revelations by Symantec [68] and Kaspersky
about several alleged US samples, including one espionage
framework in place for almost 14 years [69], seems to have
done little to dissuade milware development or deployment
in any permanent fashion.
This lack of impact is in large part due to the fact that mil-

ware reverses the traditional hierarchy of information secu-
rity, where defenders have the onus of legitimacy and hackers
are operating outside of the law - their existence a product
of the confluence of fundamental insecurity in most commer-
cial software and opportunities for financial gain. States, to
a very rough extent, are the law and have little fear of ma-
terial harm from the pubic effects of disclosure about their
activities.
There may well be a higher threshold for response whereby

if states are found engaging in more destructive activities or
targeting highly vulnerable groups, revealing these activities
may yield a response from the targeted state. Impact on
public opinion of these disclosures is also unclear, as yet not
well studied; the shift in popular sentiment from publicizing
milware’s impacts and targets could bring about the rancor
and outcry necessary to force government action in response.
Aside from these hypotheticals however, public disclosure of
state’s activities along the lines of those revelations used
to discuss non-state groups appears to have had minimal
material impact.

6.2 Milware Proliferating to Malware
States have far more resources to develop new techniques

and exploits than non-state actors. While this disparity has
long been focused on the threat of states developing destruc-
tive payloads, an acknowledged resource and expertise inten-
sive endeavor [70], one more immediate threat is that the
propagation techniques and exploits developed for milware
applications will trickle down to malware authors. [71] The
chief threat of malware then is not the prospect of readily
available destructive payloads, but that states might inad-
vertently fund a massive research and development appara-
tus for non-state groups, further intensifying the disparity
in capabilities between attacker and defender.
The exact reuptake rate of code from platforms like Duqu,

Turla, and Red October into malware is unclear but com-
ponents of all three have been reused by criminal groups
at one time or another. More work remains to be done to
understand the decision making process of non-state actors
who choose to reuse code in the wild, buy new components,
or build their own. Even a rudimentary game-theoretic
model considering the information available to actors and
the resources required of each for these three choices weighed

against the potential benefit to be obtained would be use-
ful. It is not a novel idea to suggest that there are a small
set of sophisticated threat actors in the information secu-
rity space whose code and tactics may leak into the actions
of others but recognizing the source of these innovations as
states highlights a key problem. State’s financial and human
resources are substantially greater than any non-state orga-
nizations - meaning the output of innovation, in terms of
both variety and volume, is sufficiently great so as to consti-
tute a fundamentally different phenomenon in the perverse
’trickle down effect’ from mil- to malware.

6.3 Growing the Malware Market
State’s financial resources may price defenders out of the

market for exploits and even bring new sellers into play.
Even where state resources are not used directly to de-
velop new code, the presence of a market like mechanism for
groups to buy, sell, and trade components of malicious soft-
ware has been established. [72, 73, 74] While estimates of the
prices and popularity of different tools is subject to some de-
bate, the resources of state actors will impact these markets.
The rise of milware may be pricing software vendors, and
other defensive organizations operating through bug bounty
programs, out of the market. More insidiously, the presence
of states with financial resources to burn and an appetite for
the latest vulnerabilities in widely used commercial software
may well encourage substantial growth in the number and
talent of individuals who participate in this market as sellers.
As the prospect for financial gain increases, more and more
people join to sell their malicious wares to the highest bid-
der. Milware then offers the prospect of becoming a driving
force in the sophistication and variety of malicious software
components, especially vulnerabilities, available on the web.
For states, this might already be encouraging an arms race to
compete for the most effective espionage tools and weapons.
For non-state actors, it may make milware-like capabilities
available to terrorist groups or criminal organizations.

A more exact characterization of this change in supply
based on state demands is deferred until further work can
be done to establish workable answers to at least two key
questions about the malicious software market. First, how
dense are vulnerabilities in software as a whole and are they
relatively more or less so in the types which attract most
attention from states e.g. operating systems? Second, while
it is clear there are several general groupings of actors in the
market, it remains unspecified under what conditions and in
what quality information flows between these groups. Ev-
idence from the Hacking Team document release indicates
that vulnerability brokers and developers are often unsure
how to establish a market price for their goods, leading to
inefficient outcomes and failed transactions. This segmenta-
tion of the market impacts the potential answer to questions
about the role of state purchasing. Understanding the rela-
tive scarcity of vulnerabilities as well as information flows in
the malware market may also allow evaluation of proposals
like Dan Geer’s at BlackHat 2014 that the US should pro-
pose to ”corner the market” on vulnerabilities by purchasing
and disclosing them all.

6.4 Harming Software Security
The regulatory apparatus in place in many states, espe-

cially the U.S., privileges standards for the defense of net-
works and information systems rather than holding liable the

manufacturers of software and hardware in place on these
networks. States have taken advantage of this emphasis on
defensive and information assurance standards over software
developer liability to develop, stockpile, and deploy exploits
for common commercial software. [75] These vulnerabilities
may be in firm’s supply chains as well as software, providing
more permanent basis for compromise. The key distinction
here is that states have the financial resources to select high
risk but high benefit means to introduce vulnerabilities into
target systems.
This emphasis on vulnerabilities translates into milware

prioritizing the acquisition and maintenance of access to tar-
geted systems for long periods of time over deploying par-
ticular effects at frequent intervals. The continued vulner-
ability of most major software families presents a less cost
intensive and more obscured operational pattern to enable
less frequent but more substantial intrusions rather than en-
gaging in small, regular attacks.
States are daring software vendors to build better software

with the expectation that they can continue to beat infor-
mation security vendors and existing security practices at
the network and system level. Malware, distributed by indi-
viduals and non-state actors, prioritizes effects over access -
the particular machine compromised by an infection is less
consequential than the successful execution of code to bring
about the manipulation or data exfiltration desired. This is
because most malware targets certain resource types within
vast networks, banking credentials or PII, rather than the
data tied to an individual. Milware, by contrast, is con-
cerned with access to more narrowly tailored targets and
particular pieces of information.

6.5 Working Above the Law
Existing legal tools presume the target of law enforce-

ment activities are non-state actors but states are operating
under this same regime, allowing them to act with relative
impunity. States are largely immune from the existing array
of legal tools used to locate and prosecute malware authors
and distributors as these resources presume targets that can
be subject to a state’s jurisdiction. A cooperative, hierar-
chical model exists in the infrequent collaboration between
national law enforcement agencies tasked with cybercrime.
Limiting the use of milware is an inter-state monitoring

and enforcement task more akin to conventional arms sales
or export control restrictions. Non-state actors can be pur-
sued and prosecuted but states and their milware will largely
be subject to the state’s own willingness to self-restrain or
the ability for other states to compel the same. This con-
stitutes a parallel enforcement and mitigation problem for
all parties as malware tends to be large scale and much is
indiscriminate. Milware by contrast is focused on small tar-
get sets and is distributed by actors who are substantively
different in terms of motivation, resources, and dependence
on other entities.

7. LIMITATIONS AND FUTURE WORK
This paper represents a pilot effort to identify distinctions

between malware and milware, thereby providing a basis
for discussion on the implications such a separate category
might have for the policy community. The data involved is
limited but sufficient for an initial probe of the plausibility of
such a distinction. In an effort to broaden the application of
this paper’s findings, the samples selected were wide spread

and/or well documented and had accompanying technical
and incident response documentation. The assistance of an
anonymous information security organization further aided
in the functional analysis of the milware samples for part of
our analysis.

The term milware obfuscates other distinctions between
state developed code, especially between the organizational
structure and culture responsible for deploying code for na-
tional strategic effect, tactical battlefield use, and espionage.
While these three sub-genres of milware each pursues a dis-
tinct end, there is analytic utility obtained from mapping
their broad similarities and differences against malicious
code developed by non-state actors. The paper’s focus is
on the most capable end of code developed by intelligence
and cyber-conflict organizations within states, like CYBER-
COM and GCHQ. This is a sub-set of the larger population
of state code but also one which best represents malicious
software farthest in advance of that employed within the
criminal community. This is a pilot project and so the tech-
nical indicators we’ve identified in the MASS index could be
made more robust with access to a more substantial data
set of both mal- and milware samples as well as some of the
next steps identified below.

Taking a large-N approach, this project could consider a
larger number of milware and malware samples. This would
allow for more rigorous empirical scholarship, integrating
a wider array of target types and styles of code author-
ship. An alternative involves mapping code lineage, seeking
to understanding what distinguishes the evolution of state
and non-state authored malware over time. By collecting
as many directly related samples as possible of 3-5 variants,
both state and non-state authored we can use these lineage
maps to mark changes in exploit and feature selection and
consider how these changes interact with the previously es-
tablished MASS Indexcriteria. A third potential extension
would attempt to trace payload proliferation from state to
non-state code, developing a measure of the time it takes for
state techniques to diffuse into the general criminal market.
Such a measure could aid in the identification of a prolifera-
tion life-cycle and thus provide some evidence of authenticity
when new attack methods are discovered. Using this large-
N approach could help provide insight on the not only the
rates of evolution for state and non-state groups but also
the difference in capability between them. This capability
delta is likely to shift over time and it would be valuable to
understand as each group’s rate of change itself evolves in
response to things like defensive innovations and the avail-
ability of malware components.

There are also other factors which bear consideration for
inclusion in the MASS Index. The design considerations
made in malicious software to limit collateral infection, i.e.
compromising and potentially executing on machines other
than the intended target, may provide evidence of the legal
oversight and propagation specificity associated with states.
Where the limitations appear to provide some operational
disadvantage, their presence is even more compelling evi-
dence of state activity as few non-state groups are likely
to have the capacity to intentionally ignore potentially lu-
crative victims. Another modification for the Index would
categorize exploits by function and the software they’re tar-
geting, to discern patterns in the selection of different vul-
nerabilities between state and non-state groups. The Index
itself is a moving target and will necessarily evolve over time

as the state of the art for mil- and malware changes. Build-
ing a sophistication metric of this sort remains a valuable
exercise both for the potential analytic output and associ-
ated discussion with its production.

8. CONCLUSION
Malicious software has long been used to describe a range

of threats. From the trope of basement bound teen-aged
hackers clutching Mountain Dew to the much marketed, Ad-
vanced Persistent Threat, broad use, even overuse, of the
term malware has impacted researcher’s ability to specify
the range and variety of threats in the information security
space. The idea of state authored code, milware, as a sep-
arate category highlights a set of challenges to the existing
legal architecture and security research paradigm which is
fundamentally oriented to combat individuals and organiza-
tions. This paper proposes the MASS Index and suggests
some policy implications which arise from the existence of a
separate category of code authored and deployed by states.
Through the MASS Index, this paper has described a rudi-

mentary means to differentiate between state and non-state
authored malicious software. Highlighting the implications
of milware as a new category, we find several conventional
assumptions in place for information security which should
be subject to careful review. Milware constitutes a sepa-
rate category of malicious software whose priorities, as a
tool of state influence, and sophistication are different from
code employed by non-state groups. By failing to make a
distinction between milware and malicious code written by
non-state actors, the information security community risks
conflating the capabilities and intentions of criminal groups
with those of states, degrading the ability to successfully
adapt and respond to either. It also denies the policy com-
munity a tool to effectively map and understand this com-
plicated array of threats. Hopefully discussions engendered
by this paper are the first step towards a more developed
conceptual framework.

9. ACKNOWLEDGMENTS
Thank you to Allan Friedman, Lance Hoffman, Costis

Toregas, Herb Lin, Drew Herrick, Ian Wallace, Rob Morgus,
and Tim Maurer for the advice and insight into the project.
Thank you also to the anonymous reviewers of NSPW 2015
and USENIX 2015 for their feedback on drafts leading up
to this one. The authors wish to thank George Washington
University for support through the Cyber Security Policy
and Research Institute and the Columbian College Political
Science department.

10. REFERENCES
[1] Seth Hardy, Masashi Crete-Nishihata, Katharine

Kleemola, and Adam Senft. Targeted threat index:

Characterizing and quantifying politically-motivated

targeted malware. In This paper is included in the

Proceedings of the 23rd USENIX Security Symposium.,

pages 527–541, August 2014.

[2] Trey Herr. PrEP: A framework for malware & cyber

weapons. http://papers.ssrn.com/sol3/papers.cfm?

abstract id=2343798, February 2014.

[3] P Bright. Massive sql injection attack making the

rounds-694k urls so far. http:

//arstechnica.com/security/2011/03/massive-sql-\\
injection-attack-making-the-rounds694k-urls-so-far/,

March 2010.

[4] Ekta Gandotra, Divya Bansal, and Sanjeev Sofat.

Malware analysis and classification: A survey.

http://www.scirp.org/journal/PaperDownload.aspx?

paperID=44440, May 2014.

[5] U Bayer, A Moser, C Kruegel, and E Kirda. Dynamic

analysis of malicious code.

http://dx.doi.org/10.1007/s11416-006-0012-2, August

2006.

[6] I You and K Yim. Malware obfuscation techniques: A

brief survey.

http://dx.doi.org/10.1109/BWCCA.2010.85,

November 2010.

[7] A Moser, C Kruegel, and E Kirda. Limits of static

analysis for malware detection, 2007.

[8] M Schultz, E Eskin, F Zadok, and S Stolfo. Data

mining methods for detection of new malicious

executables, May 2001.

[9] D Ddl F Li, A Lai. Evidence of advanced persistent

threat: A case study of malware for political

espionage. http://ieeexplore.ieee.org/xpl/

articleDetails.jsp?tp=&arnumber=6112333&url=

http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs

all.jsp%3Farnumber%3D6112333, October 2011.

[10] Nikolaj Goranin and Cenys Antanas. Analysis of

malware propagation modeling methods, April 2008.

[11] Andrea Shalal. U.s. firm crowdstrike claims success in

deterring chinese hackers. http://www.reuters.com/

article/2015/04/13/us-cyberattack-usa-china-

crowdstrike-idUSKBN0N41PT20150413, April 2014.

[12] Virustotal. https://www.virustotal.com/cs/file/

39df364a0bb19018127e0a258eb65f1d\
\1ab2d6c86f1b9ab6fc5d93b8ca8c92f5/analysis/,
September 2014.

[13] NightWatcher. http://greatis.com/cleanvirus/remove-

malware/w32lohmys-atr-arquivo solicitado-exe.htm,

December 2014.

[14] David Emm, Maria Garnaeva, Victor Chebyshev,

Roman Unuchek, Denis Makrushin, and Anton

Ivanov. It threat evolution q3 2014.

https://securelist.com/analysis/quarterly-malware-

reports/67637/it-threat-evolution-q3-2014/,

November 2014.

[15] Angelica Mari. Brazil tops banking malware list.

http://www.zdnet.com/article/brazil-tops-banking-

malware-list/, December 2014.

[16] Brett Stone-Gross and Russell Dickerson. Upatre:

Another day another downloader.

http://www.secureworks.com/cyber-threat-

intelligence/threats/analyzing-upatre-downloader/,

October 2013.

[17] Trend Micro. Upatre. http://www.trendmicro.com/

vinfo/us/threat-encyclopedia/malware/upatre, June

2015.

[18] GReAT. ’red october’. detailed malware.

https://securelist.com/analysis/publications/36830/

red-october-detailed-malware-description-1-

first-stage-of-attack/, January 2013.

[19] Symantec Security Response. Symantec protections

for red october. http://www.symantec.com/connect/

blogs/symantec-protections-red-october, January

2013.

[20] Kaspersky. ’red october’ diplomatic cyber attacks

investigation.

https://securelist.com/analysis/publications/36740/

red-october-diplomatic-cyber-attacks-investigation/,

January 2014.

[21] Kim Zetter. Countdown to zero day: Stuxnet and the

launch of the world’s first digital weapon, November

2014.

[22] Richard Lagner. Stuxnet: dissecting a cyberwarfare

weapon. Security & Privacy, IEEE, 2011.

[23] Nicolas Falliere, Liam Murchu, and Eric Chien.

W32.stuxnet dossier. http://www.symantec.com/

content/en/us/enterprise/media/security response/

whitepapers/w32 stuxnet dossier.pdf, February 2011.

[24] Ralph Langer. To kill a centrifuge.

http://www.langner.com/en/wp-content/uploads/

2013/11/To-kill-a-centrifuge.pdf, November 2013.

[25] CrySyS. Duqu: A stuxnet-like malware found in the

wild. https://www.crysys.hu/publications/files/

bencsathPBF11duqu.pdf, October 2011.

[26] Symantec. W32.duqu: The precursor to the next

stuxnet.

[27] Kim Zetter. Attackers stole certificate from foxconn to

hack kaspersky with duqu 2.0. http://www.wired.com/

2015/06/foxconn-hack-kaspersky-duqu-2/, June 2015.

[28] CrySys Lab. Duqu 2.0: A comparison to duqu, June

2015.

[29] Kaspersky Lab. The duqu 2.0, June 2015.

[30] Eduard Kovacs. Newly discovered ’turla’ malware

targets linux systems. http://www.securityweek.com/

newly-discovered-turla-malware-targets-linux-systems,

December 2014.

[31] Jen Weedon and Laura Galante. Intelligence analysts

dissect the headlines: Russia, hackers, cyberwar! not

so fast. https://www.fireeye.com/blog/executive-

perspective/2014/03/intel-analysts-dissect-the-

headlines-russia-hackers-cyberwar-not-so-fast.html,

March 2014.

[32] Kurt Baumgartner and Costin Raiu. The penquin

turla. https://securelist.com/blog/research/67962/

the-penquin-turla-2/, December 2014.

[33] Dave Lee. Russia and ukraine in cyber ’stand-off’.

urlhttp://www.bbc.com/news/technology-26447200,

March 2014.

[34] GReAT. The epic turla operation, August 2014.

[35] Kaspersky. The epic turla (snake/uroburos) attacks.

http://www.kaspersky.com/internet-security-center/

threats/epic-turla-snake-malware-attacks.

[36] https://www.hex-rays.com/products/ida/.

[37] http://bochs.sourceforge.net/.

[38] http://www.windbg.org/.

[39] http://debugger.immunityinc.com/.

[40] http://www.woodmann.com/collaborative/tools/

index.php/SysAnalyzer.

[41] http://www.tcpdump.org/.

[42] https://www.wireshark.org/.

[43] Petar Maymounkov and David Mazieres. Kademlia: A

peer-to-peer information system based on the xor

metric. 2002.

[44] Brett Stone-Gross. The lifecycle of peer-to-peer

(gameover) zeus, July.

[45] Peter Kruse. Threat report: W32.tinba (tinybanker)

the turkish incident. 2012.

[46] Assaf Regev. Tinba malware reloaded and attacking

banks around the world, September 2014.

[47] Fraser Howard. Exploring the blackhole exploit kit.

March 2012.

[48] Stephen Ward. isight discovers zero-day vulnerability

cve-2014-4114 used in russian cyber-espionage

campaign. http:

//www.isightpartners.com/2014/10/cve-2014-4114/,

October 2014.

[49] William Sanchez. Timeline of sandworm attacks.

http://blog.trendmicro.com/trendlabs-security-

intelligence/timeline-of-sandworm-attacks/, November

2014.

[50] NIST. Vulnerability summary for cve-2014-4114.

https://web.nvd.nist.gov/view/vuln/detail?vulnId=

CVE-2014-4114, October 2014.

[51] Cisco. Blackhole exploit kit version 2. http:

//tools.cisco.com/security/center/viewIpsSignature.x?

signatureId=2123&signatureSubId=0&

softwareVersion=6.0&releaseVersion=S715, May 2013.

[52] David Fiser. Tiny banker trojan targets customers of

major banks worldwide.

https://blog.avast.com/2014/09/15/tiny-banker-

trojan-targets-customers-of-major-banks-worldwide/,

September 2014.

[53] FIRST. Common vulnerability scoring system v3.0:

Specification document.

https://www.first.org/cvss/specification-document,

2015.

[54] Kafiene. Blackhole exploit kit goes 2.1.0, shows new

url patterns, June 2013.

[55] Aurelian Neagu. The top 10 most dangerous malware

that can empty your bank account. https:

//heimdalsecurity.com/blog/top-financial-malware/,

August 2014.

[56] Kaspersky Labs. Kaspersky lab statistics: attacks

involving financial malware rise to 28 million in 2013.

http://www.kaspersky.com/about/news/virus/2014/

Kaspersky-Lab-statistics-attacks-involving-

financial-malware-rise-to-28-million-in-2013, April

2014.

[57] Dell SecureWorks Counter Threat Unit(TM) Threat

Intelligence. Top banking botnets of 2013.

http://www.secureworks.com/cyber-threat-

intelligence/threats/top-banking-botnets-of-2013/,

March 2014.

[58] Critical Intelligence. Sans icsthreat briefing.

http://www.critical-intelligence.com/resources/

papers/CI-Sandworm-BE2.pdf, October 2014.

[59] Bruce Schneier. More data on attributing the sony

attack. https://www.schneier.com/blog/archives/

2014/12/more data on at.html, December 2014.

[60] US-CERT. Alert (ta14-353a) targeted destructive

malware.

https://www.us-cert.gov/ncas/alerts/TA14-353A,

December 2014.

[61] Kyle Wilhoit and Jim gogolinski. Sandworm to

blacken: The scada connection. http://blog.

trendmicro.com/trendlabs-security-intelligence/

sandworm-to-blacken-the-scada-connection/, October

2014.

[62] Brian Krebs. Researchers clobber khelios spam botnet.

http://krebsonsecurity.com/2012/03/researchers-

clobber-khelios-spam-botnet/, August 2013.

[63] Tom Fox-Brewster. Russian malware used by

’privateer’ hackers against ukrainian government.

http://www.theguardian.com/technology/2014/sep/

25/russian-malware-privateer-hackers-ukraine,

September 2014.

[64] MITRE. Vulnerability summary for cve-2014-4114.

https://web.nvd.nist.gov/view/vuln/detail?vulnId=

CVE-2014-4114, October 2014.

[65] 4Armed. Galileo rcs running and espionage operation,

July 2015.

[66] Crowdstrike. Putter panda.

http://resources.crowdstrike.com/putterpanda/, June

2014.

[67] Mandiant. Apt1: Exposing one of chinas cyber

espionage units, 2013.

[68] Symantec Security Response. Regin: Top-tier

espionage tool enables stealthy surveillance. http://

www.symantec.com/content/en/us/enterprise/media/

security response/whitepapers/regin-analysis.pdf,

November 2014.

[69] Kaspersky Labs Research Team. Equation: The death

star of malware galaxy.

https://securelist.com/blog/research/68750/equation-

the-death-star-of-malware-galaxy/, February 2014.

[70] Ralph Langner. To kill a centrifuge.

http://www.langner.com/en/wp-content/uploads/

2013/11/To-kill-a-centrifuge.pdf, 2013.

[71] Udi Shamir. The case of gyges, the invisible malware

government-grade now in the hands of cybercriminals.

http://www.sentinel-labs.com/wp-content/uploads/

2014/07/Sentinel-Labs-Intelligence-Report 0714.pdf,

July 2014.

[72] Andy Greenberg. hopping for zero-days: A price list

for hackers’ secret software exploits.

http://www.forbes.com/sites/andygreenberg/2012/

03/23/shopping-for-zero-days-an-price-list-for-

hackers-secret-software-exploits/, March 2013.

[73] Chris Borgen. Regulating the global market for

zero-day exploits. http://opiniojuris.org/2013/07/15/

regulating-the-global-market-of-zero-day-exploits/,

July 2013.

[74] Jaziar Radianti, Eliot Rich, and Jose Gonzalez.

Vulnerability black markets: Empirical evidence and

scenario simulation. IEEE, 2009.

[75] Allan Friedman, Tyler Moore, and Ariel Procaccia.

Cyber-sword v. cyber-shield: The dynamics of us

cybersecurity policy priorities. http:

//www.nspw.org/papers/2010/nspw2010-moore.pdf,

September 2010.

