
Content-Based Security for the Web

Alexander Afanasyev
University of California, Los Angeles

aa@cs.ucla.edu

J. Alex Halderman
University of Michigan, Ann Arbor

jhalderm@eecs.umich.edu

Scott Ruoti
Brigham Young University

ruoti@isrl.byu.edu

Kent Seamons
Brigham Young University

seamons@cs.byu.edu

Yingdi Yu
University of California, Los Angeles

yingdi@cs.ucla.edu

Daniel Zappala
Brigham Young University

zappala@cs.byu.edu

Lixia Zhang
University of California, Los Angeles

lixia@cs.ucla.edu

ABSTRACT
The World Wide Web has become the most common plat-

form for building applications and delivering content. Yet

despite years of research, the web continues to face severe

security challenges related to data integrity and confidential-

ity. Rather than continuing the exploit-and-patch cycle, we

propose addressing these challenges at an architectural level,

by supplementing the web’s existing connection-based and

server-based security models with a new approach: content-

based security. With this approach, content is directly signed

and encrypted at rest, enabling it to be delivered via any

path and then validated by the browser. We explore how

this new architectural approach can be applied to the web

and analyze its security benefits. We then discuss a broad

research agenda to realize this vision and the challenges that

must be overcome.

CCS Concepts
•Security and privacy ! Key management; Web pro-
tocol security; Usability in security and privacy; Dig-
ital signatures; Public key encryption; Browser security; Web
application security; •Networks ! Naming and address-
ing;

Keywords
content-based security; web security; end-to-end encryption

1. INTRODUCTION
The World Wide Web is the most popular platform for

building client-server applications and for delivering online

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
NSPW ’16, September 26 - 29, 2016, Granby, CO, USA
c� 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4813-3/16/09. . . $15.00
DOI: http://dx.doi.org/10.1145/3011883.3011890

content; it is a major factor in the Internet contributing over

$1.6 trillion to the world economy every year [46]. Unfortu-

nately, despite decades of research, the web continues to be

plagued by security problems. Attacks on web servers result

in the theft of passwords (e.g. [40, 44]) and confidential data

(e.g. [5,29,72,78]), resulting in billions of dollars in economic

losses [59]. Vulnerabilities in TLS—the cryptographic pro-

tocol that underlies HTTPS—and its implementations have

regularly and infamously undermined the security of mil-

lions of websites [1, 6, 12,24, 38]. Classic web vulnerabilities,

such as cross-site scripting (XSS), remain among the most

commonly reported security problems worldwide [16,58,76].

Perhaps most alarmingly, nation-state attackers have recently

begun injecting their own code into third-party websites to

hijack visitors’ bandwidth for distributed denial-of-service at-

tacks [47]. Left unchecked, these security problems threaten

to undermine the web’s potential as an engine of commerce,

communication, and economic growth.

Many of the security problems a↵ecting the web are due

to a fundamental mismatch between its semantics and those

of existing defenses. The web is a content-oriented system

by nature: HTTP has two types of messages, requests for

content at a particular URL and responses containing the

requested data. In contrast, the most important web security

mechanisms apply either a connection-oriented or server-
oriented architecture that focuses on protecting connections

between the browser and particular servers. For example,

HTTPS [61] provides a confidential and authenticated chan-

nel between browsers and servers, and the same-origin pol-

icy [11,54] isolates content loaded from di↵erent servers on

the client side. This approach was not the result of research

but historical convenience, since the web is constructed on

top of the TCP/IP protocol stack, which can only provide

point-to-point connections between clients and servers; thus

security was patched onto these connections.

This mismatch contributes to a spectrum of security prob-

lems. The threat model behind these defenses assumes that

web servers are secure; consequently, attackers who compro-

mise a server can arbitrarily intercept or modify the content

contained there, and so servers become a highly desirable

target. This problem is compounded because, due to the

web’s scalability and performance demands, web requests

49

are increasingly being fulfilled by network intermediaries,

such as content delivery networks (CDNs), caches, and other

middleboxes [2, 14, 19, 57]

1
. Under today’s secure channel

model, these middleboxes are able to see and modify the

data passing through them, so they too can be attacked to

compromise data and websites. Moreover, HTTPS servers

and middleboxes have to safeguard their private keys, yet

these keys need to be kept accessible to the servers and

middleboxes continuously in order to satisfy TLS connection

requests.

At the same time, more websites are integrating resources

from third parties, ranging from analytics tools to advertise-

ments to user-generated content. Intermingling content from

di↵erent sources must be accomplished under strict server-

oriented security rules to prevent XSS and other attacks, but

existing protections (such as the same-origin policy) provide

only coarse isolation and are complicated for developers to

use correctly [34]. Although the web’s power comes from

the rich interconnection of hyperlinks, where any content

may reference any other, the server-oriented security model

is simply incapable of expressing sophisticated semantic and

security relations among content.

We propose to address the security challenges facing to-

day’s web applications using a fundamentally di↵erent ap-

proach: content-based security. This approach is influenced

by our work with Named Data Networking [36, 56, 87], a

clean-slate design of a new Internet architecture. Under a

content-centric security model, each piece of web content can

be signed for authenticity and encrypted for confidentiality

independently of how it is delivered to end users. Policies

about who can modify or access content, and about what

executable content is allowed to do in the context of a site,

can be tightly bound to the content itself, rather than merely

to the server or domain at which it is hosted. Clients can ver-

ify the authenticity of items of content with fine granularity,

potentially down to the level of individual user comments on

a forum. Content-based security is an approach that is well

suited to providing secure communication over a network

that is increasingly considered hostile [4].

In this paper we explore the design space that is created by

the principle that all content on the web should be secured,

independent of (in addition to) the channel over which it is

carried. This represents a new paradigm for web security.

The principles of information-centric design have been well

explored for network architecture, resulting in a wealth of re-

search related to forwarding, routing, transport, and caching,

with new frontiers still being explored for networks with

intermittent connectivity and for the “Internet of Things”.

These principles have not yet been explored in the area of

web security; this paper is a first exploration of the advances

that can be made under this new paradigm.

We begin by analyzing the web’s current security problems,

focusing on limitations inherent in the web’s architecture.

We then argue that a web architecture with content-based

security at its core can solve many of these problems. Finally,

we lay out a research agenda that spans issues from trust

management for content producers to secure cryptography in

the browser, along with key management at both ends. Our

work in this space is in an early, exploratory phase, so our

designs at this point are preliminary in nature and reveal

more questions than answers.

1
Cisco predicts that browsers will get the majority of their

content through CDNs by 2019 [17].

2. SECURITY PROBLEMS AFFECTING
THE WEB

There is a fundamental mismatch between the web’s content-

centric architecture and the connection-oriented and server-

oriented approaches taken by existing web security mecha-

nisms. This leads directly to a number of limitations and

weaknesses that contribute to many urgent security prob-

lems.

One family of examples stem from HTTPS, the crypto-

graphic transport used to secure websites. HTTPS is an

entirely connection-oriented protocol; the abstraction that it

provides is a secure channel between the browser and server,

with no awareness of the content itself. This results in a

number of problems, including:

• Although HTTPS secures the connection from the

server to the browser, servers themselves remain a cen-

tral point for attack. Data is often stored unencrypted

at rest, leaving it vulnerable once server security is

broken.

• HTTPS servers authenticate themselves to browsers by

using their private keys during the connection hand-

shake. This requires the private key to be accessible

to the front-end web server at all times, exposing it to

theft or leakage via side channels.

• HTTPS makes it di�cult to follow the principle of

least privilege, since a single key is normally used to

safeguard all connections to a domain name.

• Although computational advances have reduced the

cost of deploying HTTPS encryption for traditional

servers, it can still be prohibitive for low-power and

low-resource embedded systems and for the growing

“Internet of Things.”

These issues are further compounded because, at the same

time that the security community is pushing for wider adop-

tion of HTTPS, a growing fraction of web content is being de-

livered via CDNs and middleboxes [17]. These intermediaries

violate HTTPS’s model of an end-to-end secure connection,

exposing sites and their users to several problems:

• CDNs need to terminate HTTPS connections in order

to provide their services, allowing them to see or modify

data on its way from the server to the user. Compro-

mise of a single CDN box can expose confidential user

information, as content is completely unprotected out-

side the HTTPS channel.

• CDNs tend to hold the private keys for large numbers

of servers, making them an extremely high value target

for attackers. This dangerous concentration of key ma-

terial is a symptom of the mismatch between HTTPS’s

connection-oriented security model and the modern

web’s content-oriented performance demands.

• Secure connections to CDNs or middleboxes can mask

insecure back-haul connections. For instance, Cloud-

Flare recently introduced free, one-click SSL support

for all its customers [18], but this only protects the

connection from CloudFlare to the browser. The con-

nection from CloudFlare to the back-end web server

often operates over unencrypted HTTP, exposing data

50

to theft or tampering with no indication to the user.

Middleboxes too can weaken HTTPS by failing to prop-

erly implement TLS or adequately validate certificate

chains [43].

Another family of security problems stem from the web’s

server-oriented isolation model. Web applications enforce

the same-origin policy, under which scripts running on one

page can only access data contained on a second page if both

pages were loaded from the same hostname and port. The

same-origin policy maps poorly onto the content-oriented

semantics of the web, making it both too inflexible and too

coarse:

• The same-origin policy grants identical privileges to

any script on a server, with no provision for assigning

fine-grained levels of trust. This makes it extremely

di�cult to safely isolate user-generated content from

other content on the same server, such as in the case of

personal homepages on a university site or customizable

profiles on a social network.

• Websites frequently incorporate scripts from external

servers, for purposes such as advertising and analyt-

ics, and these scripts gain unrestricted access to any

data within the site’s origin. If the external server is

compromised, it can deliver a malicious version of the

script that attacks all sites that use it.

• Within a page, the same-origin policy has no concept

of who originated each piece of data. This leads to

frequent cross-site scripting attacks (XSS): an attacker

embeds a malicious script by posting data that gets

incorporated into the content of the page, allowing it

to be executed inside the site’s origin.

The urgency of these problems is reflected in several re-

cent World Wide Web Consortium proposals that attempt

to mitigate them. For instance, Content Security Policy [83]

defends against XSS using an HTTP header that specifies a

whitelist of approved sources from which a page may load

content—a simple form of reduced privilege. Subresource

Integrity [3] defends against attacks that tamper with exter-

nally hosted scripts by letting a page specify their hashes—a

simple form of control-centric integrity. These defenses point

in a promising architectural direction, but they do not go

far enough. In this paper, we introduce a comprehensive

approach to fine-grained and content-centric security that

has the potential to mitigate all of the problems described

above without introducing unnecessary complexity to users,

developers, or system administrators.

Although previous systems research has touched on ways to

secure web content directly, there has yet to be a systematic

architectural exploration of this approach. SSL Splitting [41],

SINE [27], HTTPI [15], HTTPi [73], and iHTTP [28] intro-

duce a variety of cryptographic mechanisms for e�ciently

providing content integrity in the face of hostile networks

and malicious intermediaries, but all focus on the familiar

model of proving that content came from a particular server.

Spork [53] goes further, using remote attestation to allow the

client to verify that the server was operating properly when

it generated the content. S-HTTP [62] was an early attempt

to secure web content directly, but it focused primarily on

the HTTP protocol and did not address the numerous key

management hurdles that adoption would face. Closest to

our approach is WebTrust [8], a recently proposed framework

that combines finer-grained cryptographic integrity protec-

tions with a clean separation between servers and content

generators. While WebTrust shows one way that a content-

based approach to integrity can be made workable from a

cryptographic perspective, there is far more to be done to

understand how to build a comprehensive content-based se-

curity architecture for the web that supports both integrity

and privacy while being usable for publishers and end-users

alike.

3. CONTENT-BASED SECURITY
In this section we argue that the drawbacks of the web’s

connection-based and server-based security models can be ad-

dressed by using principles developed for information-centric

network architectures. We first provide an overview of the

Named Data Networking (NDN) [36, 56, 87] architecture,

which provides content-based security at the network layer.

We then analyze how this approach can be used to address

many of the web’s security problems.

3.1 Overview of NDN
NDN is a new network architecture that supports content-

based networking as a fundamental part of the network

layer

2
. A host requests content by sending an interest packet,

which specifies the name of the desired content, and the

network responds by sending back a data packet containing

the requested content. Since the requester only specifies what

it wants (i.e., the data name), the network has the freedom

to make intelligent decisions on where to forward an interest

packet. It could be satisfied using an available replica of the

data hosted by the original data producer or by a third-party

storage provider, or even by an in-router cache containing

the requested data.

Figure 1 illustrates the basic operation of an NDN network

using the New York Times website as an example. NDN

names are structured hierarchically and can refer to any

piece of content—a chunk of a video that is being streamed,

a portion of an article, or even an actuation command. For

example, data for an NY Times article about NDN may

have the name “/nytimes/tech/2015/08/20/ndn”, where ‘/’

delineates name components in text representations, simi-

lar to URLs. When the article about NDN is ready to be

published, the website editor creates data packet(s) with

the content of the article, splitting content into multiple

segments if necessary. Each piece of NDN data has a unique

name and is signed at the time of its production, crypto-

graphically binding the name and the data. Therefore, NDN

data packets can be stored and retrieved from anywhere in

the network. For content that may change dynamically, the

name must include additional components to disambiguate

di↵erent versions. In our example, the NY Times could add

a versioning component, such as a hash of the content, a

timestamp indicating when the last revision was made, or

simply a version number (e.g., “/nytimes/tech/2015/08/20
/ndn/_v=42”).

The website makes its content reachable in the network

by announcing its name, “/nytimes”, to the global routing

2
The original principles of Content-Centric Networking

(CCN) were first described by Van Jacobson in 2006 [35].

When the National Science Foundation funded the work in

2010, the project was renamed Named Data Networking

(NDN) [87].

51

Interest:
/nytimes/tech/2015/08/20/ndn

Data:
/nytimes/tech/2015/08
/20/ndn/_v=42/_s=1

Interest:
/nytimes/tech/2015/08/20/ndn

Figure 1: Example of NDN communication

table. A consumer that wants to view the NDN article

sends an interest packet to the network (e.g., “/nytimes
/tech/2015/08/20/ndn”), with metadata indicating that the

latest version is requested. The interest is forwarded through

the network to the nearest replica of the website. Once the

interest packet meets a data packet with the matching name,

the network returns the data packet back to the original

requester or requesters along the reverse path of the interest

packet. The data packet carrying the article can be cached

by routers along the path, so that when a router receives

another interest for the same article, it can immediately

satisfy the interest with the cached copy.

In NDN every named piece of content (data packet) must

be signed. This ensures that the data can be authenticated

regardless of how/where it is retrieved. Besides the signature,

each data packet also carries additional metadata including

the signing key name. To authenticate a data packet, one

needs a trust model that defines which keys are authorized

to sign which data (trust rules) and one or more trusted

keys to bootstrap the trust (trust anchors). Any entity—

applications, dedicated network storage elements, and even

network routers—that learns the trust model for a given

piece of content can verify its authenticity, and may perform

necessary actions when the authentication fails (e.g., discard

the packet, or try an alternative path to retrieve). Keys

in NDN are just another type of data, thus they also have

unique names and can be fetched and authenticated in the

same way as any other data packets; data packets carrying

public keys are e↵ectively NDN certificates.

NDN can also support content confidentiality by encrypt-

ing content at the time of production. The encrypted data

packets can be stored anywhere in the network as needed,

and delivered to requesters through any path without com-

promising their confidentiality. Only the authorized parties

are given the correct decryption keys to access the original

content.

3.2 A Content-Based Architecture for the Web
We believe that NDN’s content-oriented security model is a

natural fit for securing the web. Both NDN and the web use a

hierarchical namespace that is application-dependent, deliver

data associated with these names using a request–response

model, and cache content to improve performance.

Figure 2 explores a design for integrating content-based

security into the web. A producer generates content on a

back-end web server, signing and potentially encrypting the

content with its private keys. It then uploads this content

onto its front-end server. A web browser issues an HTTP

Figure 2: Content-based security for the web

request for the content and is directed to a CDN server. This

service fetches the signed (and possibly encrypted) content,

loads the content into is cache, and delivers the content to

the browser. Any additional content, such as third-party

JavaScript or advertising, is likewise loaded from additional

servers. This content is signed using authorized keys from

those domains. Finally, any user generated content, such

as a payment details or social networking posts, is signed

and possibly encrypted by the user’s authorized keys. Note

that each of the paths shown in this figure can be addition-

ally secured using an HTTPS connection. When content is

only signed, and not encrypted, this provides confidentiality

during transport.

Bringing the advantages of content-based security to the

web requires supporting content signatures and encryption

within HTTP. Although there are ongoing research e↵orts

to add content-based security semantics into HTTP, the

provided solutions are largely piece-meal, such as the stan-

dardization e↵ort [10] to define data structures and encoding

formats for signed and encrypted JSON objects. We envision

adding relevant HTTP headers, such as a header that con-

tains the signature and another that provides the validation

key name. Note that keys are simply another piece of named

content.

An important feature of NDN is that content is immutable,

so a unique name must be used to refer to content that does

not change once it is signed. In HTTP, on the other hand,

URIs are usually not unique, rendering di↵erent content if

requested at di↵erent times or using di↵erent HTTP request

headers (cookies, accepted language, etc.). We propose ad-

ditional syntax and semantics be added to URIs to define

persistent names, such as using parameters to provide version

numbers or other context that converts a URL into a unique

name.

While signing every piece of content appears to impose a

high overhead, we believe this approach is feasible. Many

web pages are static, and even dynamic pages are often com-

posed from largely static elements. For example, the Amazon

home page consists of numerous elements, but nearly all of

them are static HTML, images, CSS, or Javascript. Likewise,

validating signatures for many content items is feasible, even

on mobile devices. Encryption operations on mobile devices

are currently accelerated, with typical devices able to stream

HD movies from Yahoo over encrypted connections. The ap-

proach is even feasible with today’s modern web applications,

which are often highly dynamic, such as video chatting and

mapping. Dynamic services ultimately deliver data—voice

or video packets, map data—and this could all be signed

and potentially encrypted on the fly, as it is with current

52

TLS connections. Live video streaming has already been

developed for NDN, demonstrating the feasibility of signing

live content [52,81].

We have built several prototypes to experiment with this

architecture, including a web server that inserts content

signatures in HTTP headers and a Chrome extension that

validates the signatures. Because Chrome extensions cannot

access the body of a response, the validation is done via a

SOCKS proxy. Our next prototype will integrate validation

directly into the Chrome browser.

3.3 Analysis of Benefits
Based on our experiences with the NDN architecture and

with content-based security prototypes for the web, we believe

bringing content-based security to the web would provide

the following benefits:

• All content is signed, providing both integrity and au-
thentication directly for the content. Web pages can

be signed by the content-creator’s key, then delivered

by CDNs over an encrypted channel that is protected

by the CDN’s separate key. This avoids the current

dangerous situation where CDNs must use each site’s

private key for its content, concentrating high-value key

material in one location. This also solves the problem

of CDNs transferring content among their back-end

servers using unencrypted connections. Finally, this

provides a way to combat cross-site scripting attacks,

since the browser would only run scripts that are signed

by the originating domain or an authorized third party.

• Sensitive content is encrypted at rest. It is not possible

to steal or tamper with content simply by breaking

into the server where it is housed. This is particularly

important because content is increasingly being hosted

at CDNs. While this can be accomplished today, it

must be done on a per-application basis. Because so

many applications are built on the web, resulting in a

new narrow waist for the Internet [60], we gain a great

deal of leverage by building content-based encryption

into the web.

• Private keys are kept o✏ine. Static content is signed

and encrypted o✏ine before being placed on a server

or CDN. This allows private keys to be kept o✏ine,

where they have much stronger protection.

• The principle of least privilege is followed. Currently

web content is generally protected by a single key for

each server. With content-based security, a hierarchy of

keys is established, enabling di↵erent sets of resources

within a site to be protected by independent keys. This

can significantly limit the damage from key compro-

mise.

• Embedded systems can host secure content. Content

that rarely changes could be protected more e�ciently

by signing and encrypting it once, rather than every

time it is requested. Our work has demonstrated that

name-based networking is a very good fit for the “In-

ternet of Things” [13,68–70].

4. RESEARCH AGENDA
Our research agenda to validate these ideas spans a variety

of issues from content creation on the back end to content

validation in browsers, including trust management, support

for cryptography in the browser, key management for both

content providers and users, and overall usability studies.

4.1 Trust Management
An important question for content-based security is which

keys to trust when validating signed and encrypted content.

This is a critical weakness in the current Internet; the Cer-

tificate Authority (CA) system requires browsers to trust a

very large number of authorities by default (1,832 signing

certificates, in one recent study [25]), and any of these cer-

tificates can sign for any domain. Thus the authentication

guarantees provided by the system are only as strong as

the weakest CA. This weakness has been exploited mul-

tiple times; for example, in 2011 DigiNotar’s servers were

hacked and more than 500 certificates were fabricated by the

intruder, including a certificate for Gmail that allowed the

intruder to access stored email for 300,000 Iranians [37]. This

happened despite the fact that Gmail does not use DigiNotar

to sign its certificates. This problem is exacerbated by CAs

that do not follow best practices [23,48] and governmental

ownership and access to CAs [25,75].

Content-based security provides a way to upgrade this

security so that a content provider can indicate which keys

may sign for di↵erent portions of the namespace it controls.

In addition, a provider can securely link to content, so that

any navigation from the provider’s namespace to another is

also done securely. As content-based security spreads, it thus

creates a separate web of stronger trust, overlayed on the

existing web.

This relationship between the URI of the content and

the URI of its associated keys—which keys are valid for

which parts of the namespace—can be formalized in a trust

schema [85]. A trust schema includes a set of linked trust rules

and one or more trust anchors. For example, the namespace

for a tech blog (/nytimes/tech/blog/*) could be linked

to the anchor for the editor (/nytimes/editor/tam/KEY/1),

who can sign keys for individual authors. A generalized

syntax allows further refinements.

This notion of a trust schema frees the web from its re-

strictive channel-based security model, which restricts trust

to content from the same origin [54], or from di↵erent origins

with a coarse (e.g., end-host, content type) granularity [83].

For example, a web page may need to include some specific

advertisement scripts from an advertisement website, while

excluding all the other scripts from the same website. Ex-

isting attempts to address this problem introduce a variety

of cryptographic mechanisms for e�ciently providing con-

tent integrity in the face of hostile networks and malicious

intermediaries [15, 27, 28, 73], but all focus on the familiar

model of proving that content came from a particular server.

With a trust schema, on the other hand, a site that includes

advertising or other content from third parties can provide

a separate trust anchor and hierarchy of permitted keys for

each third party. User-provided content such as comments

on a blog can be relegated to being self-signed or signed by

a separate trust anchor, so that browsers know to treat it

di↵erently.

For the trust schema to be validated by the browser, it

must depend on one or more trust anchors, similar to a web

site needing its key to be signed by some key in the browser’s

root store. An open question is how to ensure that trust

anchors can be distributed reliably to browsers without the

53

weaknesses of the CA system. One possibility is to adopt

some of the mechanisms being proposed to strengthen the

CA system, such as Certificate Transparency [67]. A variety

of alternative distribution methods are possible that would

allow greater freedom from the CA system, including models

that follow the strict naming hierarchy, such as DANE [9,32],

a public certificate log [67], pinning [26,49], and evidentiary

trust models such as Perspectives [82]. To explore these alter-

natives, we are building a certificate authentication platform

that makes it easy to develop and deploy new authentication

systems, as well as aggregate results among them. Of partic-

ular concern is the scalability of these authentication systems

to large numbers of sites and anchors, especially if individual

users (or their devices) sign the content they generate. It

may be possible to gain increased security by distributing

trust among many anchors, provided the compromise of a

single anchor doesn’t grant significant privileges.

One issue relates to the timeliness of content: a browser

needs to get the most recent content for a page, and avoid the

possibility of a man-in-the-middle providing signed but stale

content. This is currently handled on the web by relying on

TLS to ensure the browser is connected to the appropriate

server. As mentioned in Section 3.1, NDN content names

should include versioning information, and a content request

can specify that it desires the latest version. With content-

based security, the browser could use similar versioning in

the names (URIs) or in HTTP headers, and the browser

could use HTTP headers to request a response that includes

a recent timestamp (e.g. within the past minute).

Likewise, browsers need a way to validate the signatures of

long-lived content, when the lifetime of the content may out-

live the lifetime of the signature. An approach developed for

NDN is to use a publicly audited timestamp service, which

maintains proof of the date when content was signed [86].

This approach does not scale to all web pages being validated

long into the future, but can work for selected documents that

are considered important or for signing daily or weekly man-

ifests of published content. Alternatively, content providers

can re-sign content with new signatures as needed, potentially

updating the version of the content at the same time.

Finally, an interesting area to pursue is interaction between

the trust schema and existing privilege separation mecha-

nisms that regulate interactions among various JavaScript

applications. There is a wide variety of work in this area,

including object capability systems [22,45,51] and those that

rely on aspect oriented programming [50,79], or various other

techniques [20,21,33,77]. When the trust schema is validated

and enforced by the browser, these decisions should inform

the privilege separation mechanism so that untrusted code

is properly sandboxed if it is allowed to run.

4.2 Supporting Cryptography in the Browser
Users will need end-to-end encryption to sign and encrypt

their own content in a variety of scenarios. At a minimum,

content uploaded from users must be signed with their public

key, or a delegated key if the user manages a hierarchy of

keys. In addition, encrypted information uploaded by users

must be encrypted with their private key.

For encrypted information, there are two important cases.

First, users may need to communicate privately with the web

server to transmit sensitive information, such as a credit card

for a financial transaction. Second, users need end-to-end

encryption to protect their data from honest-but-curious

service providers, from governments that coerce or cooperate

with service providers, and from miscreants who break into

service providers. For example, secure messaging and secure

webmail apps use end-to-end encryption between users, while

the site that provides the messaging or webmail service is

not necessarily trusted, even though it may have a strong

reputation. In both cases, plaintext must be kept private

from all scripts loaded from the server. Scripts may be

controlled by a third party (threatening privacy in the first

case) or by the web service (threatening privacy in the second

case).

Meeting this challenge requires support for cryptography

in the browser that guarantees user privacy from code that

may not be completely trusted with personal information.

The browser needs a method for signing/validating and en-

crypting/decrypting data so that it can be safely delivered

to the authorized party—either the web server or another

end user. We particularly need systems that can provide

ubiquitous support for any site on the web, rather than those

that require special configuration for each site.

A variety of approaches have been used in this area, includ-

ing copy-and-paste from an external app into the browser [66],

using a ShadowDom [30], and using IFrames [77]. We have

found several fundamental security flaws with the Shadow-

Dom approach [65], so we have focused on on using IFrames

to provide a secure space that cannot be accessed by code

downloaded from the origin web server. We have used this

approach to develop a system called MessageGuard that pro-

vides ubiquitous encryption for all web applications [65]. As

shown in Figure 3a, MessageGuard uses secure overlays to

provide a generic interface for encrypting web content that is

uploaded in form fields, with customized interfaces available

on a per-application basis. We have used MessageGuard to

implement Private WebMail, which uses security overlays to

tightly integrate with webmail services like Gmail [64].

Figure 3b shows the architecture of MessageGuard. To

provide secure overlays, MessageGuard uses IFrames, which

allow an HTML document from the overlay’s origin to be

displayed as part of an HTML document from the web ap-

plication’s origin. Due to the same-origin policy used by

browsers, content in the overlay will be inaccessible to the

web application [54]. Communication between the overlay

and the web application occurs through the web messag-

ing API [31]. As long as the overlay never passes plaintext

data to the web application and never executes JavaScript

sent to it from the web application, it will remain secure.

Other approaches have used the ShadowDom [30], but this

approach has several security flaws, illustrating the danger

of building on a mechanism this is not intended to provide

security features. Using IFrames avoids this problem, be-

cause it is explicitly intended to be a security mechanism for

the browser; vendors pay significant attention to patching

vulnerabilities quickly when they are found.

Another approach that is complementary to MessageGuard

is to implement secure cryptographic operations and key stor-

age as an external component, separate from the browser.

This can strongly isolate keys from the browser, so that any

vulnerabilities in the browser do not compromise the user’s

keys. Web Cryptography (WebCrypto) API [74] is an on-

going standardization work at W3C to define a JavaScript

API for securely performing common cryptographic opera-

tions such as hashing, signing, verification, encryption and

decryption. However, there are several critical limitations

54

(a) Concept: Portions of the web application (left) have been
overlayed with secure interfaces (right).

(b) Architecture: Plaintext is present only within the Mes-
sageGuard origin, preventing the web application from ever
accessing it.

Figure 3: MessageGuard

of the WebCrypto API: web applications can still gain full

access to the decrypted messages and existing implementa-

tions of secure storage are browser-specific [55]. An open

area for research is in cross-browser/cross-device security

environments where private keys may be stored in a variety

of ways—within a local database, via a flash drive, through

devices connected via bluetooth, etc.

4.3 Key Management for Content Providers
Transitioning the web to content-based security will put a

premium on key management, a central challenge for applied

cryptography and usable security. Content providers need

mechanisms to manage the key lifecycle, including generating

keys, establishing a hierarchy of signing authority, establish-

ing expiration periods, and revoking keys that have been

compromised. They likewise need assistance developing trust

schemas that express desired security properties.

Automation will play a key role in helping providers man-

age security policies that follow the least-privilege principle.

It is highly desirable to limit the scope of keys in order to

limit exposure of cryptographic keys and reduce the damage

of key compromise. We envision software that provides auto-

mated management of complex hierarchies of keys with their

associated privileges. A system administrator identifies the

principals (authors, editors, web designers, user experience

engineers, etc.) and their roles, and notifies the system when

these roles change over time. With this input, the system can

automatically update a trust schema and generate/update

keys for the roles as needed. Likewise, the administrator may

need to identify keys that have been compromised, using

input from intrusion detection systems.

We assume that principals will generate and store their

own keys, since in some cases they may be only loosely

a�liated with the content provider (e.g. a freelance writer).

The principals then need to prove their identity to the key

management system so that their keys can be authorized as

part of the trust schema. We believe this process should be

automated as much as possible, to simplify administration

for large organizations.

Our experience developing the automated Let’s Encrypt
certificate authority [7,42] provides a path to explore auto-

matic key validation. With Let’s Encrypt, a system adminis-

trator runs software that automatically validates ownership

of a domain by meeting challenges, such as adding a DNS

record or publishing an HTTP resource under a well-known

URI. Once the challenges have been satisfied, the certifi-

cate authority issues a certificate, which is automatically

configured at the site’s web server. Certificate renewal and

revocation are accomplished via simple commands, again

with the process automated.

We envision adapting this process to provide automated

validation of a user’s identity within the context of an or-

ganization. The method for validating a user will di↵er,

depending on the organizational context. For example, an

organization may use an LDAP server to provide password-

based access to an identity server, where users can upload

keys. In other cases, an institution may want to prove own-

ership of an email address, and our software could automate

the process of reading a challenge email and then uploading

a key using an authorization code in the email. Some institu-

tions may want to use facial recognition. Multiple methods

can be combined to provide increased security.

Using automation also opens the possibility of issuing short-

lived certificates, rather than relying on certificate revocation,

with its accompanying challenges. Short-lived certificates

limit the scope of a key compromise because of the short

expiration period. With suitable automation, the overhead

for frequent (e.g, daily, weekly) certificate issuance may be

acceptable.

4.4 Key Management for Users
Key management is an especially important challenge for

users in a web with content-based security. To decrypt con-

tent being received from a server, users need help identifying

which keys are valid. Much of this can be automated through

the use of a trust schema, similar to how TLS is automated

today. However, when signing content with their own key,

for transmission to a server, users need help managing their

identity among the various devices they own. Likewise, users

need assistance when authenticating keys for other users.

Unfortunately, we have been stuck in a decades-long situa-

tion where “Johnny can’t encrypt” [84]. For secure email, our

ongoing research indicates that users have significant success

encrypting email using an automated mechanism based on

Identity-Based Encryption (IBE), which removes many of

the responsibilities from users but requires trust in a third

party to store and manage keys [63,64]. IBE enables users

to immediately interact with each other, for example to send

email to a user who has not yet established a public key

with their identity. IBE also enables users to easily recover

their keyed data (and thus all their past encrypted data) if

they lose a password or other identifying material. Manual

mechanisms, such as PGP, require users to manage their

own keys, potentially with help from well-designed software.

This approach provides increased security and limited risk

by removing any trusted third parties, but leads to other

challenges such as distributing and validating keys, trans-

55

ferring keys between devices, and the lack of key recovery

if the user loses the key or forgets the password protecting

the key. There has been a significant lack of well-designed

software that helps ordinary users e↵ectively manage their

own keys [71,84].

One way to move forward on this challenge is to recognize

that users rarely need to find or validate keys for complete

strangers. Rather, people are more likely to need the key

for a friend, colleague, or well-known public figure (e.g., a

journalist or politician). Accordingly, we plan to tackle key

discovery and validation using evidence and social connec-

tions. By evidence, we mean the collection of data that can

be used to make a trust decision. By social connections we

mean the existing relationships people share, both online and

in person.

We are developing a method for social authentication [80],

in which users upload their public keys to their social me-

dia accounts—either directly in their profile where this is

enabled, or by embedding their key in a post. Users can

easily find the keys of their friends by downloading them

from their social media profiles or pages. This approach has

significant benefits. First, it aligns a common use case for

key distribution (finding keys for your friends) with existing

trusted relationships on social networks. Second, validating

keys can leverage the existing trust users already place in

their friendships. People have already developed a shared

history of posts, pictures, and personal communication that

enables them to trust their friend’s social media presence,

and hacking of these profiles is readily apparent because au-

thentic posts and pictures are di�cult to fake. Keybase uses

a similar idea, but lacks usable tools for people to directly

leverage social connections, and instead requires people to

primarily use Keybase as a trusted identity server [39].

We are additionally interested in methods that automati-

cally collect and present evidence that can be used for a trust

decision—from personal web pages, Google Scholar profiles,

published articles, and so forth. Evidence-based software

could enable users to more easily make decisions on who to

trust, with automatic download and configuration of keys

once that decision is made.

An additional problem to study is transferring private

keys to other devices, focusing on deployability, security,

and usability tradeo↵s. One design could store the key

on a trusted server, encrypted with a password, similar to

LastPass [40]. This will be helpful for users who are familiar

with password-style authentication. Other designs could

transfer keys among devices via bluetooth or a flash drive.

Finally, users need help protecting them from the conse-

quences of key loss. A master key could be kept o✏ine, with

delegation of subkeys to authorized devices. The master key

could be stored on a USB drive or a QR code printed on

paper, giving users an analogue to physical keys they are

used to safeguarding. Still, this raises new challenges to

help users manage a hierarchy of keys and the revocation or

expiration subkeys.

4.5 Usability
Usability must be addressed for content-based security

to be successfully deployed. Our prior work with secure

webmail indicates that careful design can improve usability

significantly [64]. Four design choices helped in this case: (1)

using an artificial delay

3
to show users their message being

3
We believe this delay can be eliminated over time as users

encrypted enhances user confidence in the strength of the

message encryption while simultaneously instructing users

on who can read encrypted messages; (2) using email com-

position interfaces to show users which emails are encrypted

helps them avoid mistakenly sending sensitive information

in the clear, reducing the mistake rate from 10% to 2% in

our lab experiments; (3) including contextual clues to help

users understand how to use secure email correctly; and (4)

implementing inline, context-sensitive tutorials to instruct

users, improving view rates for tutorials from less than 10%

to over 90%.

A broad range of usability methods can be applied to eval-

uate solutions for a content-secure web. This process begins

with surveys and interviews to better understand user prefer-

ences and attitudes toward security. Cognitive walkthroughs

and heuristic evaluation are then used during the prototyp-

ing phase to emphasize usability from the perspective of

the user. Interface design needs to ensure that users know

what actions are available to them, that these actions will be

appropriate for the e↵ect they are trying to achieve, and that

they receive positive feedback after taking an action. Lab

usability studies provide feedback on more complete systems,

gathering both quantitative and qualitative user feedback.

Finally, long-term studies of use in the wild validate that

user needs are in fact being met.

Usability studies are necessary to evaluate whether admin-

istrators can create e↵ective trust schemas and automatically

validate content authors, content authors can correctly sign

their data, users can take e↵ective action based on warning

messages when data validation fails, users can properly use

a public/private key pair to manage their identity across

devices, and so forth.

There are a number of usability challenges to address in

content-based security:

• What kinds of high-level data sharing policies do orga-

nizations need to be enforce, and can these be easily

and automatically expressed in trust schemas?

• Can we e↵ectively validate a user’s identity automati-

cally online?

• Can short-lived certificates eliminate usability prob-

lems associated with revocation or do they introduce

additional complications?

• When content is loaded from multiple web servers and

some of it fails verification, how is this communicated

to users?

• Can evidence and social connections help users make

choices regarding who to trust and provide automated

or semi-automated key discovery and validation?

• Can users manage a master key and a hierarchy of

keys in order to cope with key loss for an authorized

device, or are they better served with key escrow using

a trusted third party?

• What security features can be hidden from users and

what features need to be visible in order to provide

become adapted to the system. There are also numerous

possible alternatives, such as showing ciphertext alongside

plaintext, using explanatory text in the composition interface,

etc.

56

users with an accurate model of the security that is

being provided? Do users need an accurate security

model? How much do users need to know about public

key cryptography to e↵ectively use these tools?

• When a problems occurs, what notification is e↵ective

at informing users what is happening and leading them

to make appropriate decisions to address the problem?

5. CONCLUSION
Bringing content-based security to the web will make it

easier for content providers to publish secure content that can

be delivered over any path and automatically validated by

browsers. This approach can solve many of the problems that

plague today’s web. Signing content mitigates man-in-the-

middle and cross-site scripting attacks, and encrypting data

at rest enables content to be protected from theft regardless

of where it is hosted. Private keys can be kept o✏ine and

the principle of least privilege can be followed.

A number of research issues must be solved to make this

new approach a reality, and we have identified the follow-

ing major problems. Content providers need automated

trust management for a hierarchical collection of authorized

keys and the relationships among their data and third-party

scripts. Browsers need methods for securely integrating cryp-

tography so that the trust schema published by a site is

followed and so that a user’s keys and private data are iso-

lated from untrusted JavaScript. Content providers need help

managing keys for a variety of principals, with automation

of identity verification. Users need help validating the keys

of other users and managing their own private keys. Many

usability challenges must be met so that users will be able

to adopt technology that requires regular interaction with

public key cryptography. There may well be other issues that

we have missed; we are looking forward to the community’s

input to help move this research agenda forward.

Acknowledgements
We’re grateful for feedback from the reviewers and our shep-

herd, Sarah Meiklejohn, and for formative discussions with

kc cla↵y and other members of the NDN project.

This material is based in part upon work supported by

the National Science Foundation under grants CNS-1345254,

CNS-1409505, CNS-1345318, CNS-1518888, and CNS-1528022,

and by an Alfred P. Sloan Foundation Research Fellowship.

This material is also based in part on research sponsored

by the Department of Homeland Security (DHS) Science

and Technology Directorate, Cyber Security Division (DHS

S&T/CSD) via contract number HHSP233201600046C. Any

opinions, findings, and conclusions or recommendations ex-

pressed in this material are those of the author(s) and do

not necessarily reflect the views of the sponsors.

6. REFERENCES
[1] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry,

M. Green, J. A. Halderman, N. Heninger, D. Springall,

E. Thomé, L. Valenta, B. VanderSloot, E. Wustrow,

S. Zanella-Béguelin, and P. Zimmermann. Imperfect

forward secrecy: How Di�e-Hellman fails in practice.

In 22nd ACM Conference on Computer and
Communications Security (CCS), Oct. 2015.

[2] Akamai. Akamai website. https://www.akamai.com/.

Accessed: September 23, 2015.

[3] D. Akhawe, F. Braun, F. Marier, and J. Weinberger.

Subresource integrity.

http://www.w3.org/TR/2015/WD-SRI-20150916/,

Sept. 2015. Accessed: September 23, 2015.

[4] J. Angwin, J. Larson, C. Savage, J. Risen, H. Moltke,

and L. Poitras. NSA spying relies on AT&T’s ‘extreme

willingness to help’.

https://www.propublica.org/article/

nsa-spying-relies-on-atts-extreme-willingness-to-help,

2015. Accessed: September 18, 2015.

[5] Anthem. Statement regarding cyber attack against

Anthem. https://www.anthem.com/health-insurance/

about-us/pressreleasedetails/WI/2015/1813/

statement-regarding-cyber-attack-against-anthem,

2015. Accessed: September 23, 2015.

[6] N. Aviram, S. Schinzel, J. Somorovsky, N. Heninger,

M. Dankel, J. Steube, L. Valenta, D. Adrian, J. A.

Halderman, V. Dukhovni, E. K

¨

asper, S. Cohney,

S. Engels, C. Paar, and Y. Shavitt. DROWN: Breaking

TLS with SSLv2. In 25th USENIX Security Symposium,

Aug. 2016.

[7] C. Babcock. ‘Let’s Encrypt’ will try to secure the

Internet. InformationWeek, 2015.

[8] M. Backes, R. Gerling, S. Gerling, S. N

¨

urnberger,

D. Schr

¨

oder, and M. Simkin. WebTrust—a

comprehensive authenticity and integrity framework for

HTTP. In 12th International Conference on Applied
Cryptography and Network Security (ACNS), volume

8479, pages 401–418, 2014.

[9] R. Barnes. DANE: Taking TLS authentication to the

next level using DNSSEC. IETF Journal, 2011.

[10] R. Barnes. Use cases and requirements for JSON object

signing and encryption (JOSE). RFC 7165, 2014.

[11] A. Barth. The web origin concept. RFC 6454, Dec.

2011.

[12] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud,

C. Fournet, M. Kohlweiss, A. Pironti, P.-Y. Strub, and

J. K. Zinzindohoue. A messy state of the union:

Taming the composite state machines of TLS. In 36th
IEEE Symposium on Security and Privacy, pages

535–552, 2015.

[13] J. Burke, A. Horn, and A. Marianantoni. Authenticated

lighting control using named data networking.

Technical Report NDN-0011, NDN, October 2012.

[14] B. Carpenter and S. Brim. Middleboxes: Taxonomy

and issues. RFC 3234, Feb. 2002.

[15] T. Choi and M. G. Gouda. HTTPI: An HTTP with

integrity. In 20th International Conference on
Computer Communications and Networks (ICCCN),
2011.

[16] S. Christey and R. A. Martin. Vulnerability type

distributions in CVE. https://cwe.mitre.org/

documents/vuln-trends/index.html, 2007. Accessed:

September 23, 2015.

[17] Cisco. Cisco visual networking index: Forecast and

methodology, 2014-2019. White Paper

http://www.cisco.com/c/en/us/solutions/collateral/

service-provider/ip-ngn-ip-next-generation-network/

white paper c11-481360.html, 2015. Accessed:

September 23, 2015.

57

[18] CloudFlare. CloudFlare one-click SSL.

https://www.cloudflare.com/ssl. Accessed: September

23, 2015.

[19] CloudFlare. CloudFlare website.

https://www.cloudflare.com/. Accessed: September 23,

2015.

[20] D. Crockford. Adsafe. http://www.adsafe.org/.

[21] W. De Groef, D. Devriese, N. Nikiforakis, and

F. Piessens. Flowfox: a web browser with flexible and

precise information flow control. In 19th ACM
Conference on Computer and Communications Security
(CCS), pages 748–759. ACM, 2012.

[22] J. B. Dennis and E. C. Van Horn. Programming

semantics for multiprogrammed computations.

Communications of the ACM, 9(3):143–155, 1966.

[23] Z. Durumeric, J. Kasten, M. Bailey, and J. A.

Halderman. Analysis of the HTTPS certificate

ecosystem. In 13th ACM Internet Measurement
Conference (IMC), 2013.

[24] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman,

M. Payer, N. Weaver, D. Adrian, V. Paxson, M. Bailey,

and J. A. Halderman. The matter of Heartbleed. In

14th ACM Internet Measurement Conference (IMC),
2015.

[25] P. Eckersley and J. Burns. The (decentralized) SSL

observatory. Invited talk at 20th USENIX Security

Symposium, 2011.

[26] C. Evans and C. Palmer. Certificate pinning extension

for HSTS. http://tools.ietf.org/html/

draft-evans-palmer-hsts-pinning-00. Accessed: March

22, 2013.

[27] C. Gaspard, S. Goldberg, W. Itani, E. Bertino, and

C. Nita-Rotaru. SINE: Cache-friendly integrity for the

web. In 5th IEEE Workshop on Secure Network
Protocols (NPSec), pages 7–12, 2009.

[28] J. Gionta, P. Ning, and X. Zhang. iHTTP: E�cient

authentication of non-confidential HTTP tra�c. In

10th International Conference on Applied Cryptography
and Network Security, pages 381–399, 2012.

[29] D. Grandon. Ashley Madison, a dating website, says

hackers may have data on millions.

http://www.nytimes.com/2015/07/21/technology/

hacker-attack-reported-on-ashley-madison-a-dating-

service.html, 2015. Accessed: September 23, 2015.

[30] W. He, D. Akhawe, S. Jain, E. Shi, and D. Song.

ShadowCrypt: Encrypted web applications for

everyone. In 21st ACM Conference on Computer and
Communications Security (CCS), pages 1028–1039,

2014.

[31] I. Hickson. HTML5 web messaging. http://

www.w3.org/TR/2015/REC-webmessaging-20150519/.

Accessed September 23, 2015.

[32] P. Ho↵man and J. Schlyter. The DNS-based

authentication of named entities (DANE) transport

layer security (TLS) protocol: TLSA. RFC 6698, 2012.

[33] L. Ingram and M. Walfish. TreeHouse: JavaScript

sandboxes to help web developers help themselves. In

2012 USENIX Annual Technical Conference. USENIX

Association, 2012.

[34] C. Jackson and A. Barth. Beware of finer-grained

origins. In Web 2.0 Security and Privacy (W2SP), 2008.

[35] V. Jacobson. A new way to look at networking.

https://www.youtube.com/watch?v=oCZMoY3q2uM,

2006.

[36] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F.

Plass, N. H. Briggs, and R. L. Braynard. Networking

named content. In 5th ACM International Conference
on emerging Networking EXperiments and Technologies
(CoNEXT), 2009.

[37] G. Keizer. Hackers spied on 300,000 Iranians using fake

Google certificate. Accessed: 27 October, 2015.

[38] G. Keizer. Apple’s OS X ‘Rootpipe’ patch flops, fails to

fix flaw. http://www.computerworld.com/article/

2912619/mac-os-x/

apples-os-x-rootpipe-patch-flops-fails-to-fix-flaw.html,

2015. Accessed: September 23, 2015.

[39] Keybase. https://keybase.io/. Accessed: September 23,

2015.

[40] LastPass. LastPass security notice.

https://blog.lastpass.com/2015/06/

lastpass-security-notice.html/, 2015. Accessed:

September 23, 2015.

[41] C. Lesniewski-Laas and M. F. Kaashoek. SSL splitting:

Securely serving data from untrusted caches. Computer
Networks, 48(5):763–779, 2005.

[42] Let’s Encrypt. https://letsencrypt.org/. Accessed:

September 23, 2015.

[43] J. Liang, J. Jiang, H. Duan, K. Li, T. Wan, and J. Wu.

When HTTPS meets CDN: A case of authentication in

delegated service. In 35th IEEE Symposium on Security
and Privacy, pages 67–82, 2014.

[44] LinkedIn. An update on LinkedIn member passwords

compromised. http://blog.linkedin.com/2012/06/06/

linkedin-member-passwords-compromised/, 2012.

Accessed: September 23, 2015.

[45] S. Ma↵eis, J. C. Mitchell, and A. Taly. Object

capabilities and isolation of untrusted web applications.

In 31st IEEE Symposium on Security and Privacy,
pages 125–140. IEEE, 2010.

[46] J. Manyika and C. Roxburgh. The great transformer:

The impact of the internet on economic growth and

prosperity. McKinsey Global Institute report, 2011.

http://www.mckinsey.com/industries/high-tech/

our-insights/the-great-transformer.

[47] B. Marczak, N. Weaver, J. Dalek, R. Ensafi, D. Fifield,

S. McKune, A. Rey, J. Scott-Railton, R. Deibert, and

V. Paxson. An analysis of China’s “Great Cannon”. In

5th USENIX Workshop on Free and Open
Communications on the Internet (FOCI), 2015.

[48] M. Marlinspike. SSL and the future of authenticity.

Black Hat USA, 2011.

[49] M. Marlinspike and T. Perrin. Trust assertions for

certificate keys. Internet Draft, 2012.

https://tools.ietf.org/html/draft-perrin-tls-tack-00.

[50] L. Meyerovich and B. Livshits. ConScript: Specifying

and enforcing fine-grained security policies for

JavaScript in the browser. In 31st IEEE Symposium on
Security and Privacy, pages 481–496, 2010.

[51] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and

M. Stay. Caja: Safe active content in sanitized

JavaScript. http://google-caja.googlecode.com/files/

caja-spec-2008-01-15.pdf, Jan. 2008.

[52] I. Moiseenko. Fetching content in named data

58

networking with embedded manifests. Technical Report

NDN-0025, NDN, September 2014.

[53] T. Moyer, K. Butler, J. Schi↵man, P. McDaniel, and

T. Jaeger. Scalable web content attestation. IEEE
Transactions on Computers, 61(5):686–699, 2012.

[54] Mozilla. Same-origin policy.

https://developer.mozilla.org/en-US/docs/Web/

Security/Same-origin policy. Accessed September 23,

2015.

[55] Mozilla. SubtleCrypto. https://developer.mozilla.org/

en-US/docs/Web/API/SubtleCrypto. Accessed:

September 23, 2015.

[56] NDN Team. Named Data Networking (NDN) Project.

Technical Report NDN-0001, Named Data Networking

Project, Oct. 2010. http://named-data.net/wp-content/

uploads/TR001ndn-proj.pdf.

[57] Netflix. Netflix Open Connect.

https://openconnect.netflix.com/. Accessed: September

23, 2015.

[58] OWASP. OWASP top 10 project. https://

www.owasp.org/index.php/Top 10 2013-Top 10, 2013.

Accessed: September 23, 2015.

[59] Ponemon Institute. 2015 cost of data breach study:

Global analysis, May 2015.

http://www-03.ibm.com/security/data-breach/.

[60] L. Popa, A. Ghodsi, and I. Stoica. HTTP as the narrow

waist of the future Internet. In 9th ACM SIGCOMM
Workshop on Hot Topics in Networks. ACM, 2010.

[61] E. Rescorla. HTTP over TLS. RFC 2818, May 2000.

[62] E. Rescorla and A. Schi↵man. The secure hypertext

transfer protocol. RFC 2660, Nov. 1999.

[63] S. Ruoti, J. Andersen, S. Heidbrink, M. O’Neill,

E. Vaziripour, J. Wu, D. Zappala, and K. Seamons.

“We’re on the same page”: A usability study of secure

email using pairs of novice users. In 34th ACM
Conference on Human Factors and Computing Systems
(CHI), San Jose, CA, 2016. ACM.

[64] S. Ruoti, J. Andersen, T. Hendershot, D. Zappala, and

K. Seamons. Private Webmail 2.0: Simple and

easy-to-use secure email. In 29th ACM User Interface
Software and Technology Symposium (UIST), Tokyo,

Japan, 2016. ACM.

[65] S. Ruoti, J. Andersen, T. Monson, D. Zappala, and

K. Seamons. Messageguard: A browser-based platform

for usable, content-based encryption research. arXiv
preprint arXiv:1510.08943, 2016.

[66] S. Ruoti, N. Kim, B. Burgon, T. Van Der Horst, and

K. Seamons. Confused Johnny: when automatic

encryption leads to confusion and mistakes. In 9th
Symposium on Usable Privacy and Security (SOUPS),
2013.

[67] M. D. Ryan. Enhanced certificate transparency and

end-to-end encrypted mail. In 2014 ISOC Network and
Distributed System Security Symposium (NDSS).
Internet Society, 2014.

[68] W. Shang, A. Afanasyev, , and L. Zhang. The design

and implementation of the NDN protocol stack for

RIOT-OS. Technical Report NDN-0043, NDN, July

2016.

[69] W. Shang, Y. Yu, R. Droms, and L. Zhang. Challenges

in IoT networking via TCP/IP architecture. Technical

Report NDN-0038, NDN, February 2016.

[70] W. Shang, Y. Yu, T. Liang, B. Zhang, , and L. Zhang.

NDN-ACE: Access control for constrained

environments over named data networking. Technical

Report NDN-0036, NDN, December 2015.

[71] S. Sheng, L. Broderick, C. A. Koranda, and J. J.

Hyland. Why johnny still can’t encrypt: evaluating the

usability of email encryption software. In 2nd
Symposium On Usable Privacy and Security (SOUPS),
2006.

[72] J. Silver-Greenberg, M. Goldstein, and N. Perlroth.

JPMorgan Chase hacking a↵ects 76 million households.

The New York Times, 2014.

http://dealbook.nytimes.com/2014/10/02/

jpmorgan-discovers-further-cyber-security-issues/.

Accessed: September 23, 2015.

[73] K. Singh, H. J. Wang, A. Moshchuk, C. Jackson, and

W. Lee. Practical end-to-end web content integrity. In

21st International World Wide Web Conference
(WWW), pages 659–668, 2012.

[74] R. Sleevi and M. Watson. Web cryptography API.

http://www.w3.org/TR/2014/

CR-WebCryptoAPI-20141211/, 2014. Accessed:

September 23, 2015.

[75] C. Soghoian and S. Stamm. Certified lies: Detecting

and defeating government interception attacks against

SSL. In Financial Cryptography and Data Security,
pages 250–259. Springer, 2012.

[76] Symantec. Symantec Internet security threat report.

http://eval.symantec.com/mktginfo/enterprise/

white papers/b-whitepaper exec summary internet

security threat report xiii 04-2008.en-us.pdf, 2008.

Accessed: September 23, 2015.

[77] M. Ter Louw, K. T. Ganesh, and V. Venkatakrishnan.

AdJail: Practical enforcement of confidentiality and

integrity policies on web advertisements. In 19th
USENIX Security Symposium, pages 371–388, 2010.

[78] C. Terhune. UCLA Health System data breach a↵ects

4.5 million patients. Los Angeles Times, 2015.

http://www.latimes.com/business/

la-fi-ucla-medical-data-20150717-story.html. Accessed:

September 23, 2015.

[79] S. Van Acker, P. De Ryck, L. Desmet, F. Piessens, and

W. Joosen. WebJail: Least-privilege integration of

third-party components in web mashups. In 27th
Annual Computer Security Applications Conference
(ACSAC), pages 307–316, 2011.

[80] E. Vaziripour, M. O’Neill, J. Wu, S. Heidbrink,

K. Seamons, and D. Zappala. Social authentication for

end-to-end encryption. In 2nd Workshop on “Who Are
You?! Adventures in Authentication” (WAY) at the
Symposium on Usable Privacy and Security, 2016.

[81] L. Wang, I. Moiseenko, and L. Zhang. NDNlive and

NDNtube: Live and prerecorded video streaming over

NDN, April 2015.

[82] D. Wendlandt, D. G. Andersen, and A. Perrig.

Perspectives: Improving SSH-style host authentication

with multi-path probing. In USENIX Annual Technical
Conference, pages 321–334, 2008.

[83] M. West and D. Veditz. Content security policy.

https://w3c.github.io/webappsec/specs/

content-security-policy/, 2015. Accessed: September 23,

2015.

59

[84] A. Whitten and J. D. Tygar. Why Johnny can’t

encrypt: A usability evaluation of PGP 5.0. In 8th
USENIX Security Symposium, 1999.

[85] Y. Yu, A. Afanasyev, D. Clark, V. Jacobson, L. Zhang,

et al. Schematizing trust in named data networking. In

2nd International Conference on Information-Centric
Networking, pages 177–186. ACM, 2015.

[86] Y. Yu, A. Afanasyev, and L. Zhang. NDN DeLorean:

An authentication system for data archives in named

data networking. Technical Report NDN-0040, NDN,

May 2016.

[87] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson,

k. cla↵y, P. Crowley, C. Papadopoulos, L. Wang, and

B. Zhang. Named Data Networking. ACM SIGCOMM
Computer Communication Review (CCR), 44(3):66–73,

July 2014.

60

