Trusted Execution Environment-Based Authentication
Gauge (TEEBAQG)

Ranjbar A. Balisane
Department of Computer Science
University of Oxford

Andrew Martin
Department of Computer Science
University of Oxford

Robert Hooke Building, Parks Road, Oxford, UK Robert Hooke Building, Parks Road, Oxford, UK

ranjbar.balisane@cs.ox.ac.uk

ABSTRACT

We present a new approach to authentication using Trusted
Execution Environments (TEEs), by changing the location
of authentication from a remote device (e.g. remote authen-
tication server) to user device(s) that are TEE enabled. The
authentication takes place locally on the user device and
only the outcome is sent back to the remote device. Our
approach uses existing features and capabilities of TEEs to
enhance the security of user authentication. We reverse the
way traditional authentication schemes work: instead of the
user presenting their authentication data to a remote device,
we request the remote device to send the stored authentica-
tion template(s) to the local device. Almost paradoxically,
this enhances security of authentication data by supplying
it only to a trusted device, and so enabling users to au-
thenticate the intended remote entity. This addresses issues
related with bad SSL certificates on local devices, DNS poi-
soning, and counteracts certain threats posed by the pres-
ence of malware. We present a protocol to implement such
authentication system discussing its strengths and limita-
tions, before identifying available technologies to implement
the architecture.

CCS Concepts

eSecurity and privacy — Trusted computing; Hardware-

based security protocols;

Keywords

Authentication; Trusted Computing; Trusted Executing En-
vironment; TEE; SGX; TrustZone.

1. INTRODUCTION

In traditional remote authentication architecture, authen-
tication occurs on a remote device against a remotely held
template (we summarise this as remote-remote authentica-
tion). Using a remote service, the user provides their au-
thentication data (password, fingerprint, one-time password,
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

NSPW ’16, September 26 - 29, 2016, Granby, CO, USA

(© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4813-3/16/09. . .$15.00

DOI: http://dx.doi.org/10.1145/3011883.3011892

61

andrew.martin@cs.ox.ac.uk

keystroke biometrics, etc.) to the remote device. The au-
thentication takes place on the remote device by comparing
the user provided authentication data with the authentica-
tion template(s) stored on the remote device. Based on the
outcome of the comparison, a decision is made whether to
grant or deny user access.

One of the problems with this authentication architec-
ture is that the user is unable to authenticate the remote
device. Therefore, users are vulnerable to phishing attacks
carried out by attackers masquerading as a legitimate service
provider (in order to obtain their authentication data).

Another problem arises from the user transmitting their
authentication data from their device to a remote device.
An attacker that has control of the user’s local network, can
manipulate local security measures making the transmitted
data vulnerable to capture in its raw format. The absence
of provenance information regarding the authentication data
provided poses further issues. Malicious code can replay
captured authentication data, or attempt to brute force the
remote device in order to discover the authentication data
with minimal cost to an attacker.

There have been a number of attempts to address these is-
sues and will be discussed in the related work section, which
are mainly built on top of the current architecture.

In this paper, we propose a new paradigm for authenti-
cation, changing the authentication location from a remote
device to the local device (remote-local authentication). We
provide an architecture and protocol where these attacks
conceivably become ineffective using features and capabili-
ties provided by Trusted Computing.

In our approach, instead of asking the user to send their
authentication data to a remote device, we ask the remote
device to send a previously stored authentication template(s)
to a Trusted Execution Environment (TEE) available on a
local device. The user then provides their authentication
data to the TEE on their local device. The TEE carries out
the authentication by comparing the two inputs and informs
both parties of the outcome; we call this an authentication
gauge. The decision could either be a binary or a confi-
dence value depending on the matching algorithm specified
and used.

The template(s) provided by the remote device will not
be leaving the TEE, and it will therefore not be revealed to
the user (nor to an impostor). The user-provided authenti-
cation data will be compared locally within the TEE, also
not leaving the device. The template is encrypted so that it
can only be accessed within a TEE.

TEE is a trusted computing platform, a hardware backed

secure environment, able to “strongly identify themselves”
and “strongly identify their current configuration and run-
ning software” using strong cryptography [24].

It is worth noting, that the term TEE thus far, has been
associated with ARM TrustZone, a secure area within mo-
bile phones using ARM processors that meets the require-
ments for a trusted computing platform. According to ARM!,
TrustZone is “used on billions of chips” in a “diverse range of
end markets, including smartphones, tablets, personal com-
puters, wearables and enterprise systems”. The new Intel
Software Guard Extensions (SGX) also enables applications
on PC platforms to meet the requirements of a trusted com-
puting platform and will therefore be referred to in this pa-
per as TEE enabler.

2. RELATED WORK

Bellovin and Merritt [4] present a protocol, Encrypted
Key Exchange (EKE), with the aim of protecting weak pass-
words against brute force attacks by not sending the pass-
word to a remote location/entity. In the EKE a password is
used by both parties to encrypt their own public key before
sending it to the other party, or for encrypting parts of Diffie-
Helman message exchanges. In order to establish a session
key. The EKE protocol relies on the fact that encrypted
data using a password is randomised, such as public keys.
Therefore, an attacker cannot obtain a verifiable plain-text
even if they were to brute force EKE encrypted data (en-
crypted using a weak password found in basic dictionaries).

One of the issues with this protocol is that the passwords
have to be stored in plain text on the authentication server,
or that the salt has to be sent in clear text to the user oth-
erwise the initial encryption keys will not match [5]. Also,
if an attacker is able to obtain the salt, they then gain ac-
cess to the salted hash in the database, they will be able to
discover the password with ease.

The EKE architecture is similar to our proposed architec-
ture in that the authentication template is stored in a remote
location. However, it differs from our approach since in the
EKE, neither the authentication template, nor the authen-
tication data is exchanged for the comparison to take place.
Furthermore, the EKE and other password-authenticated
key agreement protocols, are designed to work with pass-
words only, whereby the proposed architecture is meant to
work with all existing authentication methods such as, fin-
gerprints, keystroke dynamics, passwords, etc. This is rather
important for service providers that do not wish their users
to authenticate from places that they are not present, through
the use of unsharable biometrics data.

Other approaches to enhancing authentication security
rely on asymmetric cryptography, such as Fast Identity On-
line (FIDO) Alliance [23, 12], CBAT [7], PICO [29] and
Apple Touch ID [1]. For these, asymmetric key pair is gen-
erated for the user account storing the private key locally,
while sending the public key to a remote location. A random
nonce is cryptographically signed using the stored private
key and then sent to the remote location each time a user
wishes to authenticate.

In these systems, the private key is unlocked to sign the
random nonce using one or more authentication mechanism
such as a password, fingerprint, etc. Legacy systems are

'ARM - TrustZone, http://www.arm.com/products
/processors/technologies /trustzone, (10/05/2016).

62

used to enrol new devices and bind the user account to the
device by associating and storing a private key on the lo-
cal device. This approach removes the need for confiden-
tiality of the transmitted authentication data as it is being
transmitted. When anti-replay attack measures are imple-
mented, an attacker obtaining the transmitted public key
or the authentication data, will not be able to use it to
authenticate themselves.

Generally, these approaches are used with devices that are
already associated with a particular account, or a legacy au-
thentication system is used to enrol a new device. For users
who have accounts through a traditional system, enrolling a
device with such architecture still relies on legacy systems,
making legacy systems of authentication the least common
mechanism for authentication.

Again, this authentication architecture (local-local authen-
tication) differs from the proposed architecture here (remote-
local authentication). It is a local-local architecture as the
master authentication template is stored locally and the ac-
tual authentication (the matching) takes place locally, too.
These approaches also permanently associate a user account
with a particular device(s). In our approach, the template is
stored remotely, and the remote device will have to send the
template to the local device. The authentication takes place
locally and only the outcome of the authentication leaves the
TEE. Furthermore, our design allows the user to use any de-
vice without the need to enrol a user account associating it
with a particular device.

There have been a number of attempts to address the
provenance issue with authentication data. One approach
is to use a physical security token and two factor authenti-
cation [21]. Physical security tokens are usually expensive
to implement and the user is burdened with carrying the
token with them at all times [17]. Considering an average
user has around 25 accounts [15], having such a system for
all accounts is impractical and costly.

Another approach is to use a challenge response mech-
anism, such as the Completely Automated Public Turing
test to tell Computers and Humans Apart (CAPTCHA) [21].
The most commonly used CAPTCHA are text-based, image-
based and sound-based schemes [36]. They are meant to
obscure messages from malicious code but remain identifi-
able to humans. However, some researches have shown that
achieving this is difficult in practice. First, the messages
can be too obscure for an average user to identify them [36].
Secondly, sophisticated malicious code might be able to do
just as good a job (if not better) than an average user [6].
Since our approach uses a Trusted Path between the user
and the TEE, it removes the need for CAPTCHA in order
to prove that a physical entity has interacted with the input
peripheral, and the authentication data was not generated
or sent by malicious code.

3. ADVERSARY MODEL

The main aim of our architecture is to keep user authenti-
cation data secure. Though our approach addresses a large
number of adversaries, it was designed to address the specific
challenges discussed below. Physical attacks on the various
chips supporting TEE are out of scope of this paper.

3.1 Phishing Attacks

The proposed approach can resist an adversary aiming to
obtain authentication data through spoofing attack or DNS

poisoning [10]. These attacks are often mitigated by using
site certificates with an indication on the browser address
bar indicating to the user that a particular site has a le-
gitimate certificate and that they are who they claim to
be. However, research has shown that users routinely ignore
warnings presented by browsers regarding certificates [28,
30], as well as failing to notice visual indicators regarding
certificates displayed within the browser URL bar. In mo-
bile apps, this information is often not presented to the user.

3.2 Malicious Root Certificate

Attacks can be mounted by an adversary that is able to
install an illegitimate root certificate on the user’s device.
The adversary is then able to generate fake certificates to
decrypt captured communication from the device, including
the user authentication data [19]. Our approach is designed
to resist this attack.

This type of attack is commonly coupled with spoofing [11]
or DNS poisoning [9] attacks to mislead the user into be-
lieving that the data leaving their device is encrypted and
that they are visiting a legitimate site. Such adversaries in-
clude state-level actors which force their citizens to install
an invalid root certificate authority or companies that own
devices used by their users, and these certificates are pre-
installed by the administrator controlling the network.

3.3 Brute Force Attack

Our proposed approach can resist an adversary who is
using malicious code to carry out brute force attacks against
a server seeking to obtain the authentication template for a
user [33]. There are well known, freely-available tools such as
Hydra, Medusa, Wfuzz, John The Ripper, etc. which brute
force remote devices in order to discover the authentication
template. Being freely available on the Internet, these tools
have almost no cost for an adversary.

3.4 Malware on Local Device

Many approaches to authentication can be defeated by an
adversary who is able to place malicious code on the user
device aiming to steal their authentication data [18]. Our
approach described here intends to defeat this attack, also.

4. APPLICATIONS

This protocol has a number of applications in contexts
where a traditional authentication system might put users’
authentication data at high risk.

An example includes users’ transmitting their authentica-
tion data through a free open Wi-Fi hot-spot in airports and
other similar places. Open Wi-Fi hot-spots can be malicious,
set-up with the intention of stealing the authentication data
of those connecting to the Internet through them. In such
circumstances, it would be particularly useful for users to be
able to authenticate the service provider first. This archi-
tecture will enable users to do so even in the absence of SSL
certificate on the service provider’s website. The identity of
the service provider’s site will be established by proving to
the user that they have the correct authentication template,
which matches the user authentication data. Also, since the
authentication data will not leave the device, such attacks
can be mitigated.

There are tools freely available on the Internet enabling
attackers with a low powered computer and two wireless
cards to hijack an auto-connect probe from a wireless inter-

63

face. In this attack they use a ‘SSL strip proxy’ forcing the
device to use HTTP instead of HTTPS and capturing the
raw data with a packet dumping program, before relaying
the data back to the intended remote service provider.

This protocol can assist service providers in keeping user
authentication data secure, even when the user is authen-
ticating from a known ‘bad’ location. A bad location can
be a country or a company, intrusively monitoring and de-
crypting their users’ communication in order to obtain their
authentication data. A user travelling to a country which
implements such intrusive digital communication monitor-
ing can be assured that even if their session is hijacked while
they are in the foreign country, their authentication data will
remain secure.

This protocol can be used instead of using a CAPTCHA
challenge response to differentiate between malware and a
human to mitigate brute force attacks, since it uses a Trusted
Path to the user. This architecture ensures that a physi-
cal entity is interacting with the peripheral (such as a key-
board) and guarantees that the response is not coming from
malicious code. This will minimise the burden on the user
whilst providing stronger guarantees. Through the Trusted
Path, the user can be sure that their authentication data
will remain secure even if a keylogger or malware is present
on a device.

In addition to the intended uses highlighted above, this
protocol can also be used to establish a TLS session key
using RSA when a remote destination, such as a website,
does not have a SSL certificate. Instead of having a random
number generated by the user’s device sent to the remote
device encrypted with the remote device’s public key to be
used as a session key. Using our approach, the remote entity
can generate a session key, encrypt it with the TEE’s public
key and send it to the TEE, to establish a TLS session key.

S. TRUSTED EXECUTION ENVIRONMENT
PROPERTIES

The properties of TEE have been explored in a num-
ber of academic publications [24, 25, 26, 32]. Furthermore,
several organisations outline these properties in documents
such as the US National Institute of Standards and Tech-
nology (NIST) draft guidelines on hardware-rooted security
in mobile devices (SP 800-164) [8], and the GlobalPlatform
TEE specifications [16].

The most common properties described across the sur-
veyed literature are summerised below, and listed in the
same order as by Vasudevan et al [32].

Isolated Execution: An application must be able to
run in complete isolation from other code inside or outside
of the TEE. This is to protect the integrity and confiden-
tiality of the application, and its data at run-time. The
TEE isolated execution must not depend on the rich OS
(normal OS) security.

Secure Storage: Secure storage ensures the integrity
and confidentiality of the application and its data at rest.
The secure storage key must be protected by hardware se-
curity components.

Remote Attestation: The TEE must be able to send
strong attestation to remote parties regarding the system’s
identity and the identity of current configuration and run-
ning software. It must be able to attest the entire trusted
computing base (TCB) of a given application. The attesta-

tion is made using a private key that is stored using hardware
backed secure storage and accessible by a small TCB.

Secure Provisioning: TEE must be able to provide se-
cure provisioning for data to be sent to a specific application
within a specific device, providing protection for the confi-
dentiality and integrity of the data.

Trusted Path: The TEE must be able to establish a
Trusted Path to the input peripherals to ensure the authen-
ticity of input data, and its confidentiality, when required,
from other code running on the system. In the smartphone
arena, GlobalPlatform is aims to standardise TEE proper-
ties in general and Trusted Path in particular[16]. Further-
more, the W3 Web Security Context have aimed to take a
similar approach on the web [34].

6. SYSTEM DESIGN

The architecture consists of three entities, the client de-
vice, a TEE environment within the client device, and the
service provider device (server device).

A: client device; its general computing environment.

B: server device; holds ‘master copy’ of (generally hashed)
credentials - aka authentication template.

TEE: trusted execution environment present in the client’s
(Alice’s) device.

Typically, A wants to authenticate to use a service pro-
vided by B. B sends the authentication template to A’s
TEE; the TEE has a Trusted Path to the user; receives
input; checks it against the template; and returns (authen-
ticated) answer to B.

This system does not output any authentication data or
template by design and it only receives such data. The
authentication application can only output requests, pub-
lic keys, and confirmations.

It is designed to work with users already enrolled that
have provided a remote device (e.g. service provider) with
their authentication template(s) securely. The architecture
can be used for any authentication method and mechanism.
The main idea for the proposed architecture relies on the
existing security features and properties of a TEE.

The isolated execution protects the authentication appli-
cation from other code that is present within the TEE or in
the rich world. Since applications are isolated during execu-
tion and at rest, other applications present will not be able
to view or even be aware of transactions carried out by the
authentication application within the TEE.

Using the remote attestation capabilities the TEE will at-
test to Bob (the service provider) of the identity of the TEE
and the authentication application within the TEE and their
current configuration to provide assurances of their integrity.

The use of trusted input by the TEE creates a Trusted
Path for Bob, since Bob knows only a physical entity could
have provided the authentication data and it was encrypted
using an OTP generated by Bob.

The following simple message exchange highlights how the
system works:

1. TEE generates a random public key/private key pair,
FE4 and D4, and signs the public key using asymmet-
ric cryptosystem using the TEE private key, yielding
{EA} Drgg and sends it to B.

2. B verifies the Drgg signature, then generates a nonce
OT Pg, and encrypts the authentication template Pgp

64

Table 1: Notation

A Alice, user device.

B Bob, server device.

TEE Trusted Execution Environment.

P Authentication data/template, shared se-
cret.

oTP Random nonce, Onetime-Password.

Ex(X) Asymmetric (public-key) encryption of X
with (public) key Fk.

Dk (X) Asymmetric (private-key) decryption of X
with (private) key Dg.

{X}Dgk Asymmetric (private-key) signing of X
with (private) key Dp.

OT P(info) Symmetric (secret-key) encryption of
‘info’ with key OT P.

OT P~ '(info) | Symmetric (secret-key) decryption of

‘info” with key OTP.

and OT Pg using E4 producing E4 (Pg, OT Pg), then
sends it to the TEE.

3. The TEE decrypts the message D4 (P, OT Pg). Then
it will ask A to provide P4 using a trusted input.

4. A provides P4 using trusted input.

5. TEE compares Pgp and P4 and informs the user of
the outcome. TEE will also encrypt the outcome us-
ing OTPg yielding OT Pg(Outcome), as well as in-
formation regarding trusted input before sending it
back to B.

6. B decrypts the message OT PB~'(OT PB(Outcome)
= Outcome).

A simple diagram depicting the message flows for the au-
thentication operation is shown in Figure 1.

Figure 1: Abstract protocol message flow.

A typical TEEBAG architecture and authentication mes-
sage flow is shown in Figure 2.

It is worth noting that we are using an OT' P only known to
a TEFE and B to encrypt the outcome sent back to B. This
will serve as a nonce to prove the freshness of the session,
and it will prevent an adversary from knowing the outcome
of the authentication even if a bad certificate is present and

User Device Remote Service

TEE - I Senice(s) -
Authentication Template Authentication

|
q@— Encryted with TEE Pubickey | Templte |
€ € mmmmemmenen | Silo)

@ I
|

|

|

|

Authentication Secure
Template/Data | ~ Channel |
Verification

2

»

> g
[

TEE Signed Authentication
Confirmation |

8

Figure 2: Abstract authentication message flow.

DNS poisoning is in progress. However, if we were to use a
bad public key for B with its private key known to the adver-
sary, they will not be able to see or know the authentication
template/data but they will know the outcome of the au-
thentication. A real life protocol is, of course, not as simple
as the one presented above: for example, it is important for
the service provider to have the integrity and identity of the
trusted applications verified before sending it the authenti-
cation template. It is crucial that the service provider knows
the public key came from the intended application within a
TEE. A technical report detailing a full message sequence
diagram for the architecture can be found online [3].

6.1 Available Hardware Primitives

The aim of this section is to demonstrate the feasibility of
implementing the proposed architecture without limiting it
to a particular technology or point in time.

All the main chip manufacturers support TEE implemen-
tation: Intel SGX, ARM TrustZone (TZ), and AMD Plat-
form Security Processor (PSP).

ARM TZ splits the system into two different worlds: se-
cure and normal [35]. TEE is implemented in the secure
world of TZ. Meanwhile, SGX creates ‘enclaves’, a form
of user-level TEE [2]. PSP is similar to TZ, since it uses
an integrated coprocessor next to the AMDG64 cores, and
it has an ARM processor with TZ security extension as a
dedicated micro-controller.

Based on this, our proposed system has the potential of
being implemented on most consumer electronic devices,
such as PCs, laptops or smartphones.

One good candidate currently in the market to imple-
ment such system would be the Samsung Knox. It is an
Android OS based solution, designed to enhance security
through secure containerisation technology [27]. The tech-
nology is implemented on various types of Samsung hand-
sets currently available which have ARM TZ support in the
ARM Cortex-A processors series. Samsung Knox makes use
of TZ through Trustonic Technologies that resides in the
secure world of TZ.

Samsung Knox provides the security features required for
the proposed architecture, including remote attestation, key
generation, isolated execution, and Trusted Path. It makes
use of the Trusted User Interface specification by Global
Platform and is implemented by the trusted OS, Kinibi, re-
siding in ARM T7Z [27].

65

6.2 Challenges

There are a number of challenges that need to be consid-
ered when the proposed architecture is implemented.

These are not necessarily introduced by this architecture
however they are partially orthogonal to this work and are
being addressed by other researchers.

The main challenge is to enable the user to identify or
authenticate the trusted application within the device they
are using to differentiate it from an impostor. This is a
well-known, difficult challenge [20, 22] with early work ad-
dressing some of the issues described in the early 199s [13,
14], however it is largely orthogonal to the issues described
here. For example, it is possible to have a coloured LED
(similarly to how an active webcam LED is lit) indicating
when an application is executed in the TEE and presented
to the user through a Trusted Path [37]. This will enable
the user to identify when a trusted application is executed
within a TEE and it is using a Trusted Path to interact
with the peripheral. However, this does not indicate that
the running trusted application is the intended application.

To solve the issue of authenticating the application on a
device owned by the user, the user can enrol the trusted ap-
plication by providing a visual cue. The first time a user
opens a trusted application, they are prompted to draw
something unique on the screen or upload a unique picture;
each time the application is opened in the future, the user is
presented with the same drawing or image. Since the image
is stored within the TEE and only displayed using a Trusted
Path when the application is executed, malicious code will
not be able to view the image and later spoof the user. This
will address the challenge for sole users of the device used
for authentication.

However, this issue is more challenging when considering
shared devices. One solution would be for the user to se-
lect a random image and store it on the remote device [21].
Whenever the user wishes to authenticate, the user selected
image, along with a number of other images or part of that
image is presented to the user. This way, the user can be sure
that the request came from the intended trusted application
which their identity must have been validated by the service
provider. However, this solution has the apparent flaw that
an attacker attempting to brute force an account might be
able to identify the user’s image after a number of failed
attempts. Therefore great attention must be paid to ensur-
ing that the image is not easily replicated or obtained by
an attacker. This approach is similar to how graphical pass-
words work [31]. It is worth noting that this approach will
also address fake clone attacks. A well-resourced adversary
capable of creating a fake look-alike device will not be able
to deceive the remote device by claiming it is a legitimate
TEE in order to receive the graphical password. This will
enable the user to identify fake cloned devices. Nonethe-
less, this approach will put extra burden on the user and
introduce extra overhead due to the extra data that needs
to be transferred. One solution would be to have this as a
non-mandatory option for users.

It is worth noting that we have addressed issues arising
from malware through the use of a Trusted Path. The re-
mote party is assured that a physical entity has interacted
with an authenticating interface to provide the authentica-
tion data. However, the physical entity does not necessarily
have to be human or the intended person, but this does raise
the cost of brute force attacks and limit their capability.

Similar to EKE in our architecture, the salt of a template
has to be sent to the user device (the TEE) by the service
provider. Nevertheless, the salt or extra data does not have
to be sent in clear text. It is encrypted using the TEE
public key and it can only be decrypted, as well as used,
within the TEE.

Finally, capturing the authentication template in transit
is possible, but it will always be encrypted using asym-
metric cryptography. An attacker in control of the local
network will not be able to weaken the encryption method
used for the authentication template or data. Using asym-
metric cryptography, it should not be feasible to decrypt
the template even if captured. An active man-in-the-middle
using a legitimate TEE will not be able to view the au-
thentication template. The template is only sent after the
attestation of the TEE identity and its running configura-
tion has been provided. Therefore the template can only
be decrypted and used within a TEE, and it cannot be ex-
ported or displayed to the outside. The user will also be
using a trusted input, meaning the authentication data pro-
vided by the user will be obtained directly by the TEE,
defeating man-in-the-middle/malware.

7. CONCLUSIONS

Our main contributions presented in this paper are: a
novel architecture that addresses a number of difficult is-
sues and a protocol designed to implement the architecture.
We have also identified currently accessible technologies to
implement such architecture.

The proposed architecture can enhance the security of au-
thentication data by addressing issues related to user au-
thentication of remote servers, rendering bad SSL certifi-
cates and DNS poisoning useless, and addressing issues re-
lated to the presence of malware attempting to steal authen-
tication data. Preliminary formal analysis was carried out on
the protocol design and no security weaknesses were found,
but more work on fully formalising the adversary models has
to be done.

Although the proposed system addresses some difficult se-
curity challenges, it is not however a silver bullet and there
are a number of issues that need be considered when im-
plementing this architecture. Even without these challenges
being fully addressed, the architecture is still valuable.

Future work seeks to implement the proposed approach
and analyse it.

8. REFERENCES

[1] Apple. iOS Security. Technical Report May, Apple
Inc, 2016.

[2] A. Atamli-Reineh and A. Martin. Securing
Application with Software Partitioning: A Case Study
Using SGX. In B. Thuraisingham and V. Wang,
XiaoFengand Yegneswaran, editors, Proceeding of the
11th International Conference on Security and Privacy
in Communication Networks, SecureComm ’15, pages
605621, Dallas, TX, USA, Oct 2015. Springer
International Publishing.

[3] R. Balisane. The introduction to TEEBAG. Technical
Report 10/16, Oxford Research Archive, 2016.

[4] S. M. Bellovin and M. Merritt. Encrypted Key
Exchange : Password-Based Protocols Secure Against
Dictionary Attacks. In Proceedings of the IEEE

(14]

(15]

(16]

Computer Society Symposium on Research in Security
and Privacy, SP 92, pages 72-84, Oakland, CA, USA,
May 1992. IEEE.

S. M. Bellovin and M. Merritt. Augmented Encrypted
Key Exchange: A Password-based Protocol Secure
Against Dictionary Attacks and Password File
Compromise. In Proceedings of the 1st ACM
Conference on Computer and Communications
Security, CCS 93, pages 244-250, Fairfax, Virginia,
USA, Nov 1993. ACM.

E. Bursztein, J. Aigrain, A. Moscicki, and J. C.
Mitchell. The End is Nigh: Generic Solving of
Text-based CAPTCHAs. In Proceedings of the 8th
USENIX Workshop on Offensive Technologies,
WOOT ’14, San Diego, CA, USA, Aug 2014. USENIX
Association.

C. P. Cahill, J. Martin, M. W. Pagano, V. Phegade,
and A. Rajan. Client-based Authentication
Technology: User-centric Authentication Using Secure
Containers. In Proceedings of the 7th ACM Workshop
on Digital Identity Management, DIM 11, pages
83-92, Chicago, Illinois, USA, Oct 2011. ACM.

L. Chen, J. Franklin, and A. Regenscheid. Guidelines
on Hardware-Rooted Security in Mobile Devices
(Draft). Technical Report SP 800-164, National
Institute of Standards and Technology (NIST), Oct
2012.

R. Clayton, S. J. Murdoch, and R. N. M. Watson.
Ignoring the Great Firewall of China. In G. Danezis
and P. Golle, editors, Proceedings of the 6th
International Workshop on Privacy Enhancing
Technologies Revised Selected Papers, PET ’06, pages
20-35. Springer Berlin Heidelberg, Cambridge, UK,
Jun 2006.

H. Crawford, K. Renaud, and T. Storer. A framework
for continuous, transparent mobile device
authentication. Computers € Security, 39, Part
B:127-136, Nov 2013.

T. Dinev. Why Spoofing is Serious Internet Fraud.
Communications of the ACM, 49(10):76-82, Oct 2006.
J. Ehrensvird and J. Kemp. FIDO U2F HID Protocol
Specification. https://fidoalliance.org/specs/
fido-u2f-v1.0-nfc-bt-amendment-20150514/
fido-u2f-hid-protocol.html, 2015. Accessed:
2016-03-22.

J. Epstein, J. McHugh, R. Pascale, H. Orman,

G. Benson, C. Martin, A. Marmor-Squires, B. Danner,
and M. Branstad. A prototype B3 trusted X Window
System. In Proceeding of the 7th Annual Computer
Security Applications Conference, CSAC 91, pages
44-55, Dec 1991.

J. Epstein and R. Pascale. User Interface for a High
Assurance Windowing System. In Proceeding of the 9th
Annual Computer Security Applications Conference,
CSAC ’93, pages 256-264. IEEE, Dec 1993.

D. Florencio and C. Herley. A Large-scale Study of
Web Password Habits. In Proceedings of the 16th
International Conference on World Wide Web, WWW
'07, pages 657-666, Banff, Alberta, Canada, May
2007. ACM.

K. Gillick. GlobalPlatform made simple guide:
Trusted Execution Environment (TEE) Guide.

[17]

18]

21]

22]

23]

https://www.globalplatform.org/mediaguidetee.asp,
2012. Accessed: 2015-05-11.

E. Grosse and M. Upadhyay. Authentication at Scale.
IEEE Security and Privacy, 11:15-22, Jan 2013.

T. Holz, M. Engelberth, and F. Freiling. Learning
More about the Underground Economy: A
Case-Study of Keyloggers and Dropzones. In

M. Backes and P. Ning, editors, Proceedings of the
14th European Symposium on Research in Computer
Security, ESORICS ’09, pages 1-18, Saint-Malo,
France, Sep 2009. Springer Berlin Heidelberg.

L. S. Huang, A. Rice, E. Ellingsen, and C. Jackson.
Analyzing Forged SSL Certificates in the Wild. In
Proceedings of the IEEE Symposium on Security and
Privacy, SP ’14, pages 83-97. IEEE, May 2014.

M. Lange and S. Liebergeld. Crossover: Secure and
Usable User Interface for Mobile Devices with
Multiple Isolated OS Personalities. In Proceeding of
the 29th Annual Computer Security Applications
Conference, ACSAC ’13, pages 249257, New Orleans,
Louisiana, USA, Dec 2013. ACM.

B. Laurie and A. Singer. Choose the Red Pill and the
Blue Pill: A Position Paper. In Proceedings of the
Workshop on New Security Paradigms, NSPW ’08,
pages 127-133, Lake Tahoe, California, USA, Sep
2008. ACM.

W. Li, M. Ma, J. Han, Y. Xia, B. Zang, C.-k. Chu,
and T. Li. Building Trusted Path on Untrusted Device
Drivers for Mobile Devices. In Proceedings of 5th
Asia-Pacific Workshop on Systems, APSys ’14, pages
1-7, Beijing, China, Jun 2014. ACM.

R. Lindemann, D. Baghdasaryan, and E. Tiffany.
FIDO UAF Protocol Specification v1.0. https:
//fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/
fido-uaf-protocol-v1.0-ps-20141208.html, 2014.
Accessed: 2015-01-28.

A. Martin. The ten-page introduction to Trusted
Computing. Technical Report RR-08-11, Oxford
University Computing Laboratory, 2008.

J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter,
and H. Isozaki. Flicker: An Execution Infrastructure
for TCB Minimization. In Proceedings of the 3rd ACM
SIGOPS/EuroSys European Conference on Computer
Systems, Eurosys ’08, pages 315-328, Glasgow,
Scotland UK, Apr 2008. ACM.

B. Parno, J. M. McCune, and A. Perrig.
Bootstrapping Trust in Commodity Computers. In
Proceedings of the IEEE Symposium on Security and
Privacy, SP 10, pages 414-429. IEEE, May 2010.
Samsung. White Paper: An Overview of Samsung
KNOX. Technical report, Enterprise Mobility
Solutions Samsung Electronics Co., Ltd., Jun 2013.

67

(28]

29]

(30]

S. E. Schechter, R. Dhamija, A. Ozment, and

I. Fischer. The Emperor’s New Security Indicators. In
Proceeding of the IEEE Symposium on Security and
Privacy, SP ’07, pages 51-65. IEEE, May 2007.

F. Stajano. Pico: No More Passwords! In

B. Christianson, B. Crispo, J. Malcolm, and

F. Stajano, editors, Proceedings of the 19th
International Workshop on Security Protocols XIX,
volume 7114, pages 49-81, Cambridge, UK, Mar 2011.
Springer Berlin Heidelberg.

J. Sunshine, S. Egelman, H. Almuhimedi, N. Atri, and
L. F. Cranor. Crying Wolf: An Empirical Study of
SSL Warning Effectiveness. In Proceedings of the 18th
USENIX Security Symposium, pages 399-416,
Montreal, Canada, Aug 2009. USENIX Association.
X. Suo, Y. Zhu, and G. S. Owen. Graphical Passwords:
A Survey. In Proceeding of the 21st Annual Computer
Security Applications Conference, ACSAC’05, pages
10 pp.—472, Tucson, AZ, USA, Dec 2005. IEEE.

A. Vasudevan, E. Owusu, Z. Zhou, J. Newsome, and
J. M. McCune. Trustworthy Execution on Mobile
Devices: What Security Properties Can My Mobile
Platform Give Me? In Proceedings of the 5th
International Conference on Trust and Trustworthy
Computing, TRUST ’12, pages 159-178, Vienna,
Austria, Jun 2012. Springer Berlin Heidelberg.

J. Vykopal. A Flow-Level Taxonomy and Prevalence
of Brute Force Attacks. In Proceedings of the First
International Conference on Advances in Computing
and Communications (Part II), ACC ’11, pages
666-675, Kochi, India, Jul 2011. Springer Berlin
Heidelberg.

W3C. W3C Web Security Context Wiki - Shared
Secret Trusted Path. https:
//www.w3.org/2006/WSC/wiki/RobustSharedSecret,
2016. Accessed: 2016-06-15.

J. Winter. Experimenting with ARM TrustZone Or:
How I met friendly piece of trusted hardware. In
Proceedings of the 11th International Conference on
Trust, Security and Privacy in Computing and
Communications, TrustCom 12, pages 1161-1166,
Liverpool, United Kingdom, Jun 2012. IEEE.

J. Yan and A. S. El Ahmad. Usability of CAPTCHASs
or Usability Issues in CAPTCHA Design. In
Proceedings of the 4th Symposium on Usable Privacy
and Security, SOUPS 08, pages 44-52, Pittsburgh,
Pennsylvania, USA, Jul 2008. ACM.

Z. Zhou, V. D. Gligor, J. Newsome, and J. M.
McCune. Building Verifiable Trusted Path on
Commodity x86 Computers. In Proceedings of the
IEEE Symposium on Security and Privacy, SP ’12,
pages 616—630, San Francisco, CA, USA, May 2012.
IEEE.

