
Rethinking Operating System Design: Asymmetric
Multiprocessing for Security and Performance

Scott Brookes
Thayer School of Engineering at Dartmouth

College
14 Engineering Dr

Hanover, NH 03755
scott.l.brookes.th@dartmouth.edu

Stephen Taylor
Thayer School of Engineering at Dartmouth

College
14 Engineering Dr

Hanover, NH 03755
stephen.taylor@dartmouth.edu

ABSTRACT
Developers and academics are constantly seeking to increase
the speed and security of operating systems. Unfortunately,
an increase in either one often comes at the cost of the
other. In this paper, we present an operating system de-
sign that challenges a long-held tenet of multicore operat-
ing systems in order to produce an alternative architecture
that has the potential to deliver both increased security and
faster performance. In particular, we propose decoupling
the operating system kernel from user processes by running
each on completely separate processor cores instead of at
di↵erent privilege levels within shared cores. Without using
the hardware’s privilege modes, virtualization and virtual
memory contexts enforce the security policies necessary to
maintain process isolation and protection. Our new kernel
design paradigm o↵ers the opportunity to simultaneously in-
crease both performance and security; utilizing the hardware
facilities for inter-core communication in place of those for
privilege mode switching o↵ers the opportunity for increased
system call performance, while the hard separation between
user processes and the kernel provides several strong security
properties.

CCS Concepts
•Computer systems organization ! Multicore archi-
tectures; •Security and privacy ! Virtualization and
security;

1. INTRODUCTION
Multicore systems have become ubiquitous in every cor-

ner of the modern world, providing the foundation for vir-
tually all modern technology. For many applications, high
security and high performance are both critical. As a re-
sult, the performance of computer systems is increasing at
breakneck speed and security research is more important
than ever. However, the two e↵orts are largely conducted
independently of (and sometimes opposed to) one another.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
NSPW ’16, September 26-29, 2016, Granby, CO, USA
c� 2016 ACM. ISBN 978-1-4503-4813-3/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/3011883.3011886

Often, an increase in security implies a decrease in perfor-
mance, and vice versa. Given the highly developed state of
modern systems, it is rare for any incremental change to the
status quo to increase security without adding work, thereby
decreasing performance. In this paper, we challenge one of
the earliest and most fundamental design choices that led to
the current status quo of multicore operating system design
in order to arrive at a system that we believe can increase
both security and performance, rather than trading one for
the other.

We begin by describing the path that led to the current
accepted standard in operating system design, illustrating
the issues with that design, and introducing an alternative
design paradigm to address these issues in Section 2. In Sec-
tion 3, we discuss the various components of the alternative
design in greater detail. Section 4 provides a brief survey
of related and background literature. In particular, it ex-
amines previous attempts to mitigate privilege escalation,
previous work studying asymmetric multiprocessing, and a
selection of prior attempts to redefine traditional operating
system design. Finally, Section 5 discusses possible next
steps, future work, and methods for evaluating the merits of
the proposed design.

The contribution of this work is the detailed description
of an alternative design paradigm for multicore operating
systems that o↵ers opportunities for improvement in both
performance and security. In particular, the design o↵ers:

• Complete virtual memory isolation and “sandboxing”
of every user application.

• Device drivers with the security of user-space encap-
sulation and the performance of kernel modules.

• Hardware-enforced secure contexts available for application-
specific use.

• Real-time “watchdog” security monitors in the kernel
for intrusion detection in applications.

• Fine-grained security policies enabled by per-core vir-
tualization and separation of the kernel and the appli-
cation.

• Decreased system call performance overhead.

2. MOTIVATION AND OVERVIEW
The fundamental role of an operating system is to provide

an appropriate context for process execution, multiplex pro-
cesses’ access to the hardware, and protect processes from

68

each another. The current state of the art operating system
architecture is the product of many seminal [59, 20, 16, 7,
65, 60] and hundreds of subsequent research e↵orts and ac-
complishes all of these tasks. Current systems provide each
application with a virtual address space in which the kernel
manages the required context. The kernel provides the ap-
plication with functionality for manipulating hardware by
including its own code in the virtual address space of each
process1. In order to protect processes from one another, the
kernel does not share virtual address spaces between applica-
tions and it restricts access to the shared kernel functionality
using hardware-provided CPU privilege levels.

Unfortunately, some characteristics of the current kernel
design lead to security and performance issues. The popular
return-to-user (ret2usr) style attack [35] is enabled by shar-
ing the virtual address space between the kernel and the ap-
plication, despite the CPU privilege levels. Additionally, the
frequent interrupts used to change privilege levels between
the kernel and application generate substantial performance
overhead.

The current relationship between the operating system
and a user application is largely a historical artifact. In the
early days of computing, with just one processing unit, only
one program could run at any given time. There needed to
be a way to pass control from one program to another (in this
case, from the application to the kernel), and some notion
of di↵ering privileges between the two programs. To accom-
plish the first task, system designers simply included both
“programs” in a single computing context. For the second,
the hardware provided the privilege mode switch triggered
by an interrupt (an INT instruction on x86). When the pro-
cessor reached this instruction, it would save the state of the
current operating context to a known location, change the
CPU’s privilege mode, and direct execution to a predefined
kernel entrance routine. Later, when the kernel wanted to
resume execution of the application, it would issue a special
return (IRET on x86), at which point the hardware would
demote privilege and transfer execution to a kernel-defined
location in the application’s code. More recently, the x86
architecture defined SYSENTER and SYSEXIT as alternatives
to INT and IRET for the system call (syscall) interface.

With the advent of multicore processors, the need to share
hardware no longer forced this design onto kernel developers.
However, since each core still provided the functionality of
the unicore processor, it became standard practice to simply
take the established formula and replicate it, instantiating
one instance per core. The only special care needed was
that no two cores would execute the same code at the same
time. Originally, this was accomplished using a simple “ker-
nel lock,” a software mechanism that restricted access to the
kernel to only one processor at a time [41]. More recently,
many kernels have narrowed the granularity of their locked
paths so that two or more fully independent paths through
the kernel may be used simultaneously by two or more dif-
ferent cores [64]. Overall, this scheme of employing a single
mechanism on each available core is known as Symmetric

MultiProcessing (SMP).
We suggest that the decision to replicate the unicore op-

1The few examples of systems that use “strong” rather than
“weak” separation between kernel memory and user memory
include the 4G/4G split Linux patch [49], 32-bit XNU [36],
and certain systems using the hardware facilities provided
by SPARC V9 hardware [46]

erating system design onto each core in multicore hardware
imposed unnecessary limits on the security and performance
attainable on modern systems. In this paper, we revisit
that decision and explain how to replace the unicore oper-
ating system design with one that leverages modern mul-
ticore hardware to address some of the weaknesses found
in modern designs. The unique utilization of hardware re-
sources that we present in this paper fundamentally changes
how systems provide security to their di↵erent components.
While microkernels redistribute system components to in-
crease the security o↵ered by monolithic kernels, they do so
using the exact same hardware abstractions to di↵erentiate
user- and kernel-space. In contrast, our paradigm changes
the underlying hardware abstractions used for coordination
and translation between di↵erent components of the system.
In fact, any current kernel, whether monolithic or micro,
could be implemented using our design. Even cutting edge
virtualization-based security e↵orts use the same hardware
design patterns that operating systems have been using for
years [57]. As argued in [10] this “turtles all the way down”
approach to security is not su�cient. In our design, virtual-
ization is used as a tool for the kernel to protect itself, rather
than as an abstraction that replicates the classic kernel de-
sign paradigm in a new software layer.

Our design explores the idea of using Asymmetric Mul-

tiProcessing (AsMP) on modern x86 hardware. Its main
goal is to divorce the virtual address space of the applica-
tion from that of the kernel. The distinct, decoupled op-
erating environments provided on each processor allow for
the kernel and the application to use completely di↵erent
hardware resources, rather than sharing a common proces-
sor core. Inter-Processor Interrupts (IPIs) will take the role
of the standard INT/SYSENTER and IRET/SYSEXIT function-
ality for system calls2. The application and the kernel will
no longer share hardware, so the hardware-provided CPU
privilege mode switch is not needed, and neither program
has to relinquish its own resources to message or signal the
other. Additionally, virtualization will be utilized to imple-
ment fine-grained security rules on a per-core basis to further
police the software.

This paradigm shift interrupts commonly deployed privi-
lege escalation mechanisms by defining privilege by a physi-
cal location on-chip rather than traditional processor modes.
As a result, more advanced virtualization-based defenses
can be employed because each core is responsible for ei-

ther the kernel or an application - never both. Addition-
ally, the fact that the kernel and the application do not
share hardware resources means that they can operate si-
multaneously. This creates opportunities for techniques such
as using kernel to perform watchdog state checks on appli-
cations while they run or applications utilizing truly asyn-
chronous system calls by signaling the kernel but continuing
to run while the kernel services its request. The combination
of all of these techniques and their derivative features will
deliver strong separation between the kernel and an appli-
cation, fast IPI-based control transfers and messaging, ad-
vanced virtualization-based and application-specific security
features, and new opportunities such as asynchronous sys-
tem calls, kernel-based watchdog processes, and application-
specific hardware-secured subcontexts.

2Future work that seeks to implement this design will ex-
plore polling as a possible alternative to IPIs as suggested
by an anonymous NSPW reviewer.

69

2.1 Threat Model
This work assumes that an adversary has physical or re-

mote user-level access to the system after it has been initial-
ized. He does not have access to the system during initializa-
tion and may not influence the boot process; issues such as
trusted boot are beyond the scope of our work. The attacker
hopes to escalate his privilege in order to gain access to pro-
tected data or code using some privilege escalation mech-

anism, such as return-to-user (ret2usr) attacks [35], rather
than a particular privilege escalation vulnerability, such as
[2, 1, 47]. The attacker may have o✏ine access to the source
and/or binary code of the kernel and any application run-
ning on the system, and arbitrary control of any code/data
to which his privilege allows access.

3. ASMP KERNEL DESIGN PARADIGM
Figure 1 illustrates an overview of our design. Core num-

ber, rather than the traditional CPU privilege level (ring),
di↵erentiates kernel- from user-space. Core-specific security
rules in the virtualization layer and virtual memory isola-
tion for ring 0 processes recover the protection o↵ered by
the traditional ring 3 user-space. Interprocessor interrupts
provide a mechanism for implementing system calls across
cores. With ring 3 no longer used for isolating user-space,
the application can use the hardware protection associated
with ring 3 to provide its own secure sub-contexts.

This section explores the features of our design in detail.
The main factors contributing to increased security are di-
vorcing kernel- and user-space, utilizing user-space drivers
and deploying fine-grained per-core virtualization-based se-
curity policies. The increase in performance will come from
a faster mechanism for signaling from an application to the
kernel, less overhead in driver implementations, and more
e�cient parallelization of computation.

3.1 Separating Kernel and User Cores
The primary characteristic of the proposed design is that

the kernel and the user application do not share a virtual ad-
dress space and are each executed at ring 0, but on indepen-
dent cores. This arrangement will have several implications
on the security of the system.

3.1.1 Ring 3 (and more) Protection in Ring 0
The weak separation between kernel- and user-space in

traditional operating system design allows for even the most
strictly“sandboxed”processes to be used as a stepping stone
for compromising the whole system because privilege escala-
tion compromises the kernel. Since the kernel needs to man-
age all of system memory, it maintains virtual mappings to
all memory; a process that shares its virtual address space
with the kernel can perform arbitrary reads and writes with
su�cient privilege escalation.

When not shared with the kernel, the application’s vir-
tual address space does not need to contain mappings to
all of system memory. Consequently, the application can-
not inspect or modify memory unless the kernel has given
it access, even with arbitrarily high privilege. Naively, this
means that the application can safely be run in ring 0. How-
ever, additional steps are required to recreate the full pro-
tections o↵ered by ring 3 while running in ring 0.

In ring 0, the process is a supervisor on-core and can read
from or write to any memory mapped into its address space.
In order to stop a process from modifying its page tables to

create mappings for arbitrary system memory, we will omit
virtual mappings to the application’s page tables from the
application’s virtual address space. In order to modify its
own page tables, the page tables need to contain a virtual
mapping to themselves; without it, the application cannot
modify the memory used by the memory management unit
to define its own virtual address space. This ensures that
the process is permanently and completely isolated in virtual
memory and enables the process’ page tables to deny access
to memory-mapped devices.

The virtualization layer also helps to recreate ring 3 pro-
tection by denying inappropriate hardware accesses like read-
ing from and writing to processor control registers or exe-
cuting typically privileged instructions. The end result is
an application execution context with the same protections
o↵ered by ring 3, but without the crown jewels of the system
hiding behind a CPU privilege level bit.

3.1.2 Hardware Control from Applications
User-space drivers [26] minimize the amount of potentially

third party and frequently buggy [25, 15, 53] code that runs
with privilege. Unfortunately, this comes at a significant
performance cost. Device drivers need to interact with hard-
ware, for which they need privilege that they do not have
in ring 3. Therefore, they must frequently interact with the
kernel to accomplish their tasks, significantly degrading per-
formance, increasing the kernel’s code base, and widening
the interface between user- and kernel-space.

Although we’ve shown that applications can be run in
ring 0 with privileges less than or equal to those of ring 3,
we can actually increase security by providing drivers with
privileges greater than those available in ring 3. Setting up
the proper operating context for a driver (as suggested in
the virtualization layer on the core being used for a network
driver in Figure 1) will allow the driver to be implemented
in a single context. This is an improvement over traditional
“user-space” drivers that need the kernel to do work on their
behalf. It keeps the kernel’s code base small and interface
narrow.

3.1.3 Application-Specific Secure Contexts
By moving user-space from ring 3 on a shared core to

ring 0 on a user-specific core, we’ve introduced yet another
opportunity to increase security. In particular, ring 3 is no
longer being used by the system. Instead, applications can
(with some kernel support) use ring 3 to provide their own
secure contexts.

For an example of how this feature might be used, consider
a web browser. Although a browser strives to protect web
pages from one another and protect itself from web pages,
cross-site scripting [63] is just one example of a common
attack vector in which a single web page can compromise
an entire web browser. However, if the browser is running
in ring 0, it could manage individual web pages in ring 3
the same way that traditional operating systems manage
user processes. When the user opens a new web page, the
browser could ask the kernel for a fresh address space that
contains itself in ring 0 and a clean context for the new
web page in ring 3. The kernel needs to handle this task,
but the browser could use a local scheduler implementation
(separate from the main scheduler in the kernel) to cycle
through these di↵erent contexts without kernel intervention
during its own scheduled time quantum.

70

Kernel User Process User Process

IPI
IPI

IPIs

Core 0 Core 1 Core N

Allow HLT instructions?
Allow device interrupts?

✓
✓

Ring -1
(VMM)

Ring 0

Allow HLT instructions?
Allow device interrupts?

✗
✓

(e.g. Network Driver)

Allow HLT instructions?
Allow device interrupts?

✗
✗

Hardware-Enforced Privilege
Mode Boundary

INT/SYSENTER

IRET/SYSEXIT

Ring 3

Application-Specific
Secure Context

(e.g. Web Browser)

Figure 1: System design using the proposed paradigm. CPU privilege level (ring) 0, traditionally used for the kernel context,
contains the main code for each core: either the kernel or a user processes. The virtualization layer, commonly referred to as
ring -1, protects the hardware from user processes. With ring 3 no longer being used by the system, individual applications
can use the hardware to provide their own secure sub-contexts.

3.1.4 Watchdog Kernel Processes
In current operating systems, the kernel is invoked strictly

when an application needs work done on its behalf. In other
words, the kernel is never running without a specific task
to handle. In contrast, with the asymmetric multiprocess-
ing solution, the kernel will be running on a dedicated core
whether or not it is servicing a specific process’ request. This
creates an opportunity: time during which the kernel is ex-
ecuting but has no specific task to complete. One possible
way to utilize this opportunity is to implement a watchdog
routine [17, 44] in the kernel. This routine could monitor
system and application invariants in real time. For exam-
ple, it could hash a process’ code to check for code patching,
monitor the stack looking for ROP payloads, or profile sys-
tem components to detect unfamiliar configurations. In the
event that an anomaly is detected, the application can be
suspended pending further action.

The watchdog routine in this implementation is doing its
work with CPU cycles that would otherwise be wasted on
the kernel core. These cycles could also be used for other
tasks in the interest of either performance or security. One
example of the former is pre-computing values that are likely
to be requested by applications in future system calls. In
the case of the latter, the kernel could use these cycles as
a third line of defense (after virtual memory isolation and
virtualization) to restrict user processes being run in ring 0.
For example, if the kernel wants the application to alert it
in the event of a processor fault, the watchdog process can
verify that the process does not modify the fault handlers
mapped into its context.

3.2 Fine-Grained Virtualization
One advantage of the proposed design is the ability to ex-

ercise each core’s virtualization hardware independently to
impose fine-grained security rules on each core based on the
software that that particular core will be executing. Pre-
viously, we discussed why this is necessary to recreate ring
3 protections for user processes in ring 0. Moving beyond
necessity to benefit, this section examines a virtualization-
based security project and shows how it could be further
strengthened with the new design paradigm.

ExOShim [11] is a thin layer of virtualization underneath
the kernel used to mark all memory associated with ker-
nel code as execute-only using the Extended Page Table
(EPT) functionality provided by modern Intel VT-x hard-
ware [30]. This mitigates the risk of kernel-level memory
disclosures that could facilitate reverse-engineering or the
construction of kernel ROP or JIT-ROP payloads. Addi-
tionally, ExOShim does not accept any inputs or tolerate
any permissions violations so that it can provide this pro-
tection for the lifetime of the system, even in the face of
kernel compromise.

Figure 2 illustrates how the physical frames of memory
corresponding to kernel code are marked execute-only in the
EPT, denying kernel-level memory disclosure vulnerabilities.
However, all other memory is marked with the most liberal
possible permissions in the EPT: read, write, and execute.
This is because the applications running on the processor
may need to use this memory. Therefore, the virtualization
layer relies on the kernel to maintain the appropriate mem-
ory management and access control for this memory. Note
that this is consistent with most hypervisors; only the least

71

Process A
Virtual
Memory
Space

Process B
Virtual
Memory
Space

Kernel Process BProcess AUnused

Virtual
Memory
Abstraction

Guest
Physical
Memory

K
er

ne
l C

od
e

K
er

ne
l C

od
e

K
er

ne
l C

od
e

K
er

ne
l C

od
e

ExOShim
Extended
Page Tables

Real System
Physical
Memory

X
-O

nl
y

X
-O

nl
y

K
er

ne
l C

od
e

K
er

ne
l C

od
e

K
er

ne
l C

od
e

K
er

ne
l C

od
e

Figure 2: Overview of the Protections Provided by ExOShim [11]. All kernel code pages are marked execute-only in the
hypervisor’s EPTs. All other memory is marked with the most liberal permissions to allow the kernel to manage memory for
individual applications.

restrictive security rules can be deployed for the lifetime of a
virtual machine. This is an unfortunate byproduct of SMP;
the hypervisor cannot enforce stricter security rules because
it cannot predict which core will need which set of rules.

Unfortunately, the permissive rules applied to this mem-
ory allows for the possibility of a ret2usr [35] or ret2dir [34]
style attack. Intuitively, this is because the security rules
that ExOShim applies to the kernel are not complete. It
enforces a rule that all kernel code is execute-only. How-
ever, it does not enforce the desirable rule that the kernel

may execute only kernel code. This rule would eliminate the
possibility of the processor executing any non-kernel code
with kernel privilege, but the requirement that application
code must be able to utilize this memory from this core
denies the possibility of applying such a strong rule in the
virtualization layer. This rule would be better implemented
with ExOShim than with hardware extensions such as In-
tel’s SMEP [24]. SMEP can be disabled in the event of
kernel compromise, SMEP bypass techniques have already
been demonstrated [58, 33], and SMEP cannot mitigate the
threat of a ret2dir style attack [34] while ExOShim can.

In the proposed design, however, the kernel runs on its
own core; no application code will run on this core. This
means that the ret2usr attack is defeated directly: there
is no user-space to return to in the kernel context. Ad-
ditionally, the kernel core’s virtualization layer can enforce
even stronger security rules than the ExOShim prototype
presented in [11]. In addition to marking all memory cor-
responding to kernel code as execute-only, it will mark all
other memory as non-executable. This will preserve the pro-
tection against memory disclosure vulnerabilities while also
denying ret2dir style attacks by prohibiting the execution of
any non-kernel code from the kernel core.

3.3 Performance Implications
One possible issue facing the performance of the proposed

architecture is the symmetrical nature of hardware resources
in SMP chips. In particular, caches and shared memory or
peripheral busses are optimized for symmetric use by all
cores. Using the cores asymmetrically may result in subop-
timal performance of these hardware facilities which could
only be resolved at the hardware development stage.

The more obvious performance concern is that the pro-
posed design suggests reserving one processor core for the
kernel, decreasing the total number of cores available for si-
multaneous operation of applications by one. Applications
that are optimized to make heavy concurrent use of all avail-
able cores will see a decrease in performance with the fewer
resources available to them. However, Amdahl’s Law [4] sug-
gests that there is a limit to how many processor cores can
decrease the overall time required for an application. There-
fore, in the future (as hardware continues to scale and o↵er
more and more processors) removing any constant number
of cores from those available will not significantly decrease
the performance of any particular application. In fact, in
a future implementation of this architecture deployed on a
system with a very high number of available processor cores,
the design could reserve one core per independently locked
path in the kernel and still have many cores available for
active processes.

Additionally, the proposed design o↵ers several opportu-
nities to increase the performance of an application that will
be immediately evident in most cases. These performance
gains may even help to o↵set the cost of removing a core
from specialized highly-concurrent processes.

72

Time

Application

Kernel

Schedule
New

Process

Schedule
New

Process

1 2 3 4
alarm

1 2

5 6

(a) With the Traditional Syscall Mechanism

Time

Application

Kernel

Schedule
New

Process

Schedule
New

Process

1 2 3 4
alarm

1 2

5 6 7 8 9

(b) With the Proposed IPI-Based Mechanism

Figure 3: Application’s work completed in a given time
quantum. With the proposed IPI-based syscall mechanism,
the clock cycle following the call to the kernel belongs to the
application, not to the kernel. This is not the case with tra-
ditional system call interfaces; even syscalls that claim to be
“asynchronous” suspend the application while it is delivering
its request to the kernel.

3.3.1 Simultaneous Application and Kernel Execu-
tion

Recall that the proposed design will have the kernel and
application operating simultaneously on di↵erent processor
cores. This opens the door for new classes of system call in-
terfaces. In particular, the application does not necessarily
need to stop execution while it makes a syscall. Figure 3
contrasts the work that an application can accomplish with
a traditional syscall and with the proposed IPI-based de-
sign. It illustrates that when the application requests work
from the kernel (in this case, setting an “alarm”) with the
traditional interface, it must wait for the kernel to perform
the requested action prior to continuing its work3. In the
proposed design, however, it can continue its work immedi-
ately because the application and the kernel are not sharing
hardware. As a result, the application is able to complete
more work in a given time quantum.

Note that this truly asynchronous system call interface
is only possible if the kernel is not sharing hardware with
the application. As such, many additional research ques-
tions exist before a full implementation of this feature can
be realized. For example, if the kernel fails to perform the
requested task, it must alert the process; this is nontriv-
ial if the process has changed state since the time of the
syscall. Additionally, the process needs a way to know that
the kernel is prepared to handle a second syscall after the
first has been dispatched. Despite these unanswered ques-
tions, the possibility for this type of system call mechanism
has promising implications for system performance.

3Note that this is true even in the case of the “asynchronous
system calls” [13] used in some current operating systems.
These interfaces may provide the capability for the process
to work while the kernel is servicing its request, but the
process must still relinquish its hardware to the kernel while

it is making the request.

3.3.2 IPIs vs. INT/IRET
In addition to the possibility for doing additional work per

unit time by running the kernel and application simultane-
ously, using IPIs to handle control transfer from the applica-
tion to the kernel is faster than using the SYSENTER/SYSEXIT
or INT/IRET mechanisms. Using the traditional mechanisms,
the hardware goes through context switching routines in
which it saves and restores the appropriate states. In the
proposed design, this type of context switching is not nec-
essary. In the case of a regular system call, the operating
context of the user process is maintained on the user’s core;
not sacrificing the hardware to the kernel means no state
saving is required. Similarly, the kernel does not need its
state restored because it is operating on its own hardware
which maintains its own state.

In the case where context switching is required, namely
during scheduling, some additional work will be done to pre-
form the required state saving. The method to best imple-
ment this additional task will be explored in the future im-
plementation of a prototype implementing this design, but
is likely to require some modification to user applications
within the system call library.

3.3.3 Removing Drivers from the Kernel
In Section 3.1.2 we explained how our design allows us to

give device drivers both privileged access to hardware and
full user-space encapsulation. We suggested that our design
could reveal faster performance than the equivalent driver
in user-space as traditionally defined because the driver can
access hardware from its own context rather than invoking
the kernel.

In addition to the performance increase over traditional
user-space driver implementations, our method also has a
possible performance advantage over kernel-level drivers em-
ployed in monolithic kernels. Without su�ciently fine-grained
locking, even a kernel-level driver locks other cores out of
(at least some part of) the kernel while it is servicing inter-
rupts. In contrast, drivers loaded with privileged access to
the hardware but not into the kernel can service interrupts
as quickly as traditional kernel-level drivers, but without
blocking other cores from entering the kernel.

This e↵ect is similar to that reported in [21] when the
network driver was isolated to its own virtual machine. In
that case, letting a network-specific VM handle all network
interrupts without interrupting the main kernel resulted in
a performance increase, despite the added overhead of inter-
VM communication. Analogous results were also found in
[8, 51]

4. RELATED WORK
There is a substantial body of work that aims to thwart

privilege escalation using design-, compile-, load-, and/or
run-time techniques. Additionally, many e↵orts have ex-
plored the idea of asymmetric multiprocessing for perfor-
mance purposes. Finally, some previous work suggests a new
paradigm for operating system design. A brief summary of
major work in each of these areas follows.

4.1 Privilege Escalation Mitigation
Often assisted by the weak separation of kernel- and user-

space, all of the most popular kernels have been compro-
mised by “rootkits” that give the attacker the highest level
of privilege (i.e. “root”) [66, 37, 56]. Typically, these attacks

73

U
se

r-S
pa

ce
Ke

rn
el

-S
pa

ce

Hardware-Enforced Privilege
Mode Boundary

INT/SYSENTER

IRET/SYSEXIT

fn:
 ...
 JMP kernel_target

attacker_target

attacker_target:
 ...
 execve(shell);

Figure 4: Return-to-User Privilege Escalation Attack

fall into three main categories: kernel code implants [42],
kernel-mode return oriented programming (ROP) [14, 62,
29], and ret2usr attacks [35]. We have published a survey
of techniques used to mitigate the risks of each of these at-
tacks [12]. Since the strong separation between kernel- and
user-space in our proposed operating system design directly
defeats ret2usr attacks, we will summarize existing methods
used to defeat this attack on modern 64-bit x86 architec-
tures.

A return-to-user attack is directly enabled by weak kernel-
and user-space separation. In this attack, illustrated in Fig-
ure 4, a user controlled target associated with some kernel-
code branch is set to an address in the normal user-space
code. The compromised branch creates a path of execution
that leaves kernel-code and enters user-code without chang-
ing the CPU privilege level from supervisor mode to user
mode. This attack results in the execution of user-controlled
code with kernel-level privileges. Although hardware exten-
sions such as Intel’s SMEP [24] aim to mitigate this threat,
these extensions are only slowly being adopted by operating
systems and SMEP bypass techniques have already been
demonstrated [58, 33]. Additionally, SMEP cannot mitigate
the threat of a ret2dir style attack [34].

SecVisor [61] uses physical memory virtualization to mark
only one of kernel- and user-space executable at a time.
When a violation of security rules is detected, the protec-
tions are swapped and execution resumed only if the CPU
has indeed changed privilege level. This defeats ret2usr at-
tacks by ensuring a processor mode switch whenever the
control flow jumps between kernel- and user-space as shown
in Figure 5a. Additionally, SecVisor enforces standard W�X
rules on all kernel code pages that the user has approved.
This mitigates the possibility of a kernel code implant by
verifying that all executable kernel code is non-writable and
has been approved for execution by the user.

The Secure Virtual Architecture (SVA) [19] is a set of ar-
chitecture independent instructions that allow an operating
system to interact with hardware. A kernel is ported to use

these instructions, similar to porting a kernel to any new
hardware architecture. O✏ine, an SVA compiler produces
SVA byte-code from the kernel source code. This compiler
has advanced features to provide memory safety and control-
flow integrity at compile-time, similar to“safe”programming
languages such as Java. The byte-code is distributed to
users and executed on top of a virtualized SVA interpreter
that performs the final step of translating to native target-
dependent machine code.

Kernel Control Flow Integrity (KCoFI) [18] leverages the
mechanics of the SVA implementation discussed previously,
but o↵ers only control flow integrity. Specifically, KCoFI
ensures that function calls always enter at the beginning of
some function’s code, and that all returns from a partic-
ular function target the location of a possible call site. By
verifying all kernel mode branches at run-time, KCoFI man-
ages to deny each of the three primary privilege escalation
techniques.

kGuard [35] aims to deny ret2usr attacks by inserting
guards on the kernel’s control-flow at compile time as shown
in Figure 5b. On the x86 platform, the call, jmp, and
ret instructions are all vulnerable to being hijacked in or-
der to redirect kernel execution into user-controlled code.
kGuard places an inline check before each of these instruc-
tions. kGuard also includes a compile-time code diversifi-
cation mechanism that makes it di�cult for the attacker to
bypass its inline code checks.

4.2 Asymmetric MultiProcessing
Some research has investigated the possible merits of asym-

metrical multiprocessing compared to SMP. Allocating spe-
cific software tasks to specific hardware resources is already
commonly used within computing systems. Hardware units
such as network cards or graphics processing units (GPUs)
demonstrate how matching specific software tasks with spe-
cialized hardware can greatly increase the performance of
normal computation.

In fact, many multiprocessors are built with cores that
have heterogeneous performance. These processors allow
many low-performance cores to lower the heat, power, and
cost of the chip and provide large degrees of parallelization
while a few high-performance cores provide valuable ser-
vice for high-cost serial computation. Examples include the
“Cell”microprocessor architecture used in the Sony Playsta-
tion and the Apple A10 Fusion chipset used in the iPhone
7. Research that examines the application of asymmetri-
cal multiprocessing in these types of processors is plentiful
[50, 5, 48]. However, research that investigates asymmet-
ric application of software to symmetric multicore hardware
resources is particularly relevant.

Early work surrounding the introduction of multiproces-
sors explored a master-slave relationship between proces-
sors, with the operating system running only on the master
core. This is summarized in [23], where Enslow writes that
“[a]lthough the master-slave type of system is simple, it is
usually quite ine�cient in its control and utilization of the
total system resources.” Fortunately, this assessment is un-
likely to persist in the face of the speed and quantity of
modern multiprocessors. Early attempts had limited hard-
ware resources and could not a↵ord to isolate a single core
for the kernel alone; the kernel shared its core with gen-
eral purpose processes. This resulted in delayed servicing of
slave core requests and interruption of software on the mas-

74

U
se

r-S
pa

ce
Ke

rn
el

-S
pa

ce

Hardware-Enforced Privilege
Mode Boundary

INT/SYSENTER

IRET/SYSEXIT

fn:
 ...
 JMP kernel_target

attacker_target

attacker_target:
 ...
 execve(shell);

(a) Using SecVisor

U
se

r-S
pa

ce
Ke

rn
el

-S
pa

ce

Hardware-Enforced Privilege
Mode Boundary

INT/SYSENTER

IRET/SYSEXIT

fn:
 ...
 if target Є kernel
 JMP target
 else
 JMP fault_handler

attacker_target

attacker_target:
 ...
 execve(shell);

(b) Using kGuard

Figure 5: Selected Techniques to Defeat ret2usr Privilege Escalation Attacks

ter core during slave core requests. With the low cost and
high speed of processor cores modern systems, these issues
are unlikely to plague the proposed design.

The master-slave paradigm is also used in [32] to imple-
ment a scheme designed to easily allow a uniprocessor oper-
ating system implementation to manage software on a mul-
ticore processor. In particular, it provides lightweight kernel
implementations that record system calls made by applica-
tions on other cores, and a daemon that scans for these
records and requests the appropriate computation from the
kernel on the main core. This work is similar in its concept,
but because it was designed to shoehorn a uniprocessor ker-
nel onto a multicore processor, it does not realize the se-
curity or performance benefits that we believe are possible
with AsMP.

The Twin-Linux project [31] examined utilizing symmet-
ric multiprocessor cores asymmetrically by running two com-
pletely independent instances of the Linux operating system
on the same CPU - each using its own subset of the proces-
sor’s cores. Their work provides a thorough illustration of
the flexibility of x86 IPIs and processor cores to be used in
a capacity beyond their traditional use in commodity oper-
ating systems.

AsyMOS [51] assigns cores of a symmetric multicore pro-
cessor to specific tasks such as network communication or
disk I/O. These cores run the appropriate device driver and
a Lightweight Device Kernel (LDK) that implements only
the functionality that those drivers might need. The pro-
totype described demonstrated improved performance over
traditional SMP operating systems. Similarly, Corey [8] ex-
plores using specific cores to do application-specific kernel-
intensive work on behalf of an important process in parallel
to the application itself.

4.3 Previously Proposed Paradigm-Shifts
Some approaches, like ours, attempt to o↵er similar secu-

rity benefits by redefining the entire paradigm rather than
simply patching the existing status quo. In particular, mi-
crokernels, exokernels, and unikernels provide case studies
for the possibility of an alternative kernel design.

The idea of a microkernel departs from the standard mono-
lithic kernel architecture by emphasizing a small codebase
for the operating system kernel. There have been several
examples of microkernels presented in the literature such as
Mach [3], Minix [27], L4 [55], QNX [28], Bear [52], and many
others. All microkernels aim to keep the source code mini-
mal in order to decrease the likelihood of vulnerabilities [54].
Additionally, small code bases allow for the possibility of us-
ing formal analysis and formal verification techniques [6, 39].
In order to keep the microkernel small, core functionality
such as device drivers are migrated into user level processes.
Unfortunately, this means that microkernels struggle to o↵er
the same levels of performance as monolithic kernels.

The ExoKernel [22] suggests redefining what the kernel is
entirely. Rather than providing abstractions that the appli-
cation developer can use to interact with hardware, the Ex-
oKernel provides only the thinnest possible layer necessary
to manage the multiplexing of hardware resources. Although
o↵ering more security for a system overall, the ExoKernel
has not become common-place, largely because it compli-
cates the job of the application development significantly.
Many of the tasks that a secure kernel can provide to protect
all processes, such as virtual memory management, become
the responsibility of the application developer. Even when
this is handled in a library, controlling access to shared re-
sources without a centralized authority is particularly chal-
lenging. The proposed design could actually augment the
capabilities of an ExoKernel architecture, since applications
would have native access to the hardware from ring 0.

Unikernels trade flexibility for security and performance
by running a single process within a single address space [43].
Eliminating the requirement to support multiple processes

75

and/or multiple users simplifies the code base required to
implement a unikernel and reduces the overhead required to
complete a single unit of useful work. Several examples have
been deployed alongside virtualization technologies in cloud
applications [9, 38, 45]. Despite their proven usefulness for
providing fast, highly focused applications, unikernels don’t,
in isolation, provide protection from most of the attack vec-
tors discussed in this paper. Additionally, in order to sup-
port the multiple-user multiple-job paradigm that conven-
tional applications require to operate e↵ectively, they require
a hypervisor for scheduling and other process-management
type tasks. This is an obvious instance of the often criticized
“turtles all the way down” approach to system security [10,
57].

5. NEXT STEPS
The design paradigm we’ve described has the potential

to substantively increase both performance and security. In
order to measure its validity, we will develop a prototype
kernel that employs it. The platform for our prototype is a
research microkernel called Bear [52]. It is very small, but
still supports full 64-bit multicore Intel hardware, including
the Intel VT-x and VT-d virtualization features. Its small
size and full feature set make it a perfect candidate for the
type of aggressive kernel redesign necessary to implement a
prototype of our design.

Developing the prototype will involve many challenging
research and design questions. Utilizing Intel’s SMP archi-
tecture to implement an unconventional AsMP design in-
volves several challenges including:

• Using IPIs in a considerably di↵erent way from their
standard uses in the bootup process, interrupt propa-
gation, and cache coherency.

• Using the virtualization layer on a given core to stop
malicious or confused privileged user processes from
inappropriately manipulating hardware.

• Using the virtualization layer and IPIs to force pro-
cesses to comply with the commands of the kernel.
Without the kernel sharing a core, a failure to police
delinquent processes might lead to spamming the ker-
nel with syscalls or refusal to cooperate when the ker-
nel wants to switch processes on a core.

• Bootstrapping user applications on cores without a
loaded kernel.

• Merging the virtualization rules required in the pro-
posed design with existing type-1 or type-2 hypervisors
to support running this operating system in a cloud, or
deploying commercial virtualization products on top of
this system.

• Verifying the identity of each core during intercore
communication.

We will measure the prototype’s success with an estimate
of its complexity, a detailed security study, and a thorough
performance evaluation.

Executable size and lines of source code provide an esti-
mate of the prototype’s complexity. A small prototype is

expected to be more secure, since the number of vulnera-
bilities in a project is directly related to its size [54]. Secu-
rity is notoriously di�cult to measure, but a detailed secu-
rity study will consider the prototype’s capabilities against
known attack vectors and speculate on its possible resiliency
to previously unknown “zero day” attacks.

Evaluating the performance impact of the proposed de-
sign is more straight-forward. Bear comes packaged with
a suite of benchmark tests that perform CPU and mem-
ory intensive software tasks, including an adaptation of the
malloc benchmark test presented in [40]. Additionally, the
industry-standard AIM9 benchmark suite has been ported
to Bear. The performance of these test suites will be com-
pared between our prototype and the standard Bear build in
order to estimate the overall performance impact of the de-
sign. We will also conduct micro-benchmarks to investigate
specific system tasks instead of overall system throughput.

6. CONCLUSION
Over the past several decades, few have attempted to

change the traditional operating system design methods. We
believe that symmetric multiprocessing is imposing unnec-
essary limits on the security and performance of operating
systems. In this paper, we’ve shown an alternative design
paradigm based on asymmetric multiprocessing to o↵er pos-
sibilities for increased security and performance.

Our design abandons the traditional weakly-separated ker-
nel and user virtual address spaces in favor of a strongly
separated kernel- and user-space. In particular, this ap-
proach will execute the kernel on one core and applications
on other cores, with the two pieces of software never sharing
hardware. System calls and other communication between
the kernel and the application will be conducted using IPIs
instead of the traditional INT/IRET or SYSENTER/SYSEXIT

methods. Finally, the processor’s virtualization layer will
be utilized on a per-core basis to protect the hardware from
malicious processes.

We expect an implementation of our design to o↵er sev-
eral contributions to the current state of the art. Divorc-
ing virtual address spaces will enable complete sandboxing
of each user application. Redefining “user-space” will al-
low for device drivers with the security of user-space encap-
sulation and the performance of kernel modules, and will
make the ring 3 hardware protection mechanisms available
for use within applications. Simultaneous operation of the
kernel and applications introduces the possibility for real-
time kernel watchdog security monitors for intrusion de-
tection in applications. The asymmetric multiprocessing
paradigm allows for uniquely fine-grained security policy en-
forcement enabled by per-core virtualization. Finally, the
increased concurrency and faster system call interface sug-
gest increased overall performance.

We plan to build a prototype kernel that uses the design
presented in this paper. In order to measure its success, the
prototype will be evaluated in terms of its complexity, its
security, and its performance. We hope that this design and
any future prototype implementation will provide a valu-
able case study in the sparse world of alternative operating
system designs.

76

Acknowledgments
Many thanks to Jason Dahlstrom, Steve Kuhn, and espe-
cially Rob Denz and Martin Osterloh for support during the
development of the ideas described in this paper; and to Ross
Philipson, Sergey Bratus and Michael Locasto for agreeing
to provide feedback on a draft of the paper. Finally, thanks
to the NSPW community including, but not limited to, our
anonymous reviewers and our shepherd, Matt Bishop.

This material is based on research sponsored by the De-
fense Advanced Research Projects Agency (DARPA) under
agreement number FA8750-11-2-0257. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright no-
tation thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as nec-
essarily representing the o�cial policies or endorsements, ei-
ther expressed or implied, of the Defense Advanced Research
Projects Agency (DARPA) or the U.S. Government.

7. REFERENCES
[1] CVE-2013-2094, May 2013.
[2] CVE-2016-0728, January 2016.
[3] M. Accetta, R. Baron, W. Bolosky, D. Golub,

R. Rashid, A. Tevanian, and M. Young. Mach: A New
Kernel Foundation for UNIX Development. pages
93–112, 1986.

[4] G. M. Amdahl. Validity of the Single Processor
Approach to Achieving Large Scale Computing
Capabilities. In Proceedings of the April 18-20, 1967,

Spring Joint Computer Conference, AFIPS ’67
(Spring), pages 483–485, New York, NY, USA, 1967.
ACM.

[5] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai.
The Impact of Performance Asymmetry in Emerging
Multicore Architectures. SIGARCH Comput. Archit.

News, 33(2):506–517, May 2005.
[6] C. Baumann, B. Beckert, H. Blasum, and T. Bormer.

Formal Verification of a Microkernel Used in
Dependable Software Systems. In B. Buth, G. Rabe,
and T. Seyfarth, editors, Computer Safety, Reliability,

and Security, volume 5775 of Lecture Notes in

Computer Science, pages 187–200. Springer Berlin
Heidelberg, 2009.

[7] K. J. Biba. Integrity considerations for secure
computer systems. Technical report, DTIC Document,
1977.

[8] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao,
F. Kaashoek, R. Morris, A. Pesterev, L. Stein, M. Wu,
Y. Dai, Y. Zhang, and Z. Zhang. Corey: An Operating
System for Many Cores. In Proceedings of the 8th

USENIX Conference on Operating Systems Design

and Implementation, OSDI’08, pages 43–57, Berkeley,
CA, USA, 2008. USENIX Association.

[9] A. Bratterud, A.-A. Walla, P. E. Engelstad,
K. Begnum, et al. IncludeOS: A minimal, resource
e�cient unikernel for cloud services. In 2015 IEEE 7th

International Conference on Cloud Computing

Technology and Science (CloudCom), pages 250–257.
IEEE, 2015.

[10] S. Bratus, M. E. Locasto, A. Ramaswamy, and S. W.
Smith. VM-based Security Overkill: A Lament for
Applied Systems Security Research. In Proceedings of

the 2010 Workshop on New Security Paradigms,
NSPW’10, pages 51–60, New York, NY, USA, 2010.
ACM.

[11] S. Brookes, R. Denz, M. Osterloh, and S. Taylor.
ExOShim: Preventing Memory Disclosure using
Execute-Only Kernel Code. In Proceedings of the 11th

International Conference on Cyber Warfare and

Security, ICCWS’16, pages 56–66, April 2016.
[12] S. Brookes and S. Taylor. Containing a Confused

Deputy on x86: A Survey of Privilege Escalation
Mitigation Techniques. IJACSA, April 2016.

[13] Z. Brown. Asynchronous System Calls. In Proceedings

of the Ottawa Linux Symposium (OLS), pages 81–85,
2007.

[14] E. Buchanan, R. Roemer, S. Savage, and H. Shacham.
Return-Oriented Programming: Exploitation without
Code Injection, 2008.

[15] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler.
An Empirical Study of Operating Systems Errors. In
Proceedings of the Eighteenth ACM Symposium on

Operating Systems Principles, SOSP ’01, pages 73–88,
New York, NY, USA, 2001. ACM.

[16] F. J. Corbató and V. A. Vyssotsky. Introduction and
Overview of the Multics System. In Proceedings of the

November 30–December 1, 1965, Fall Joint Computer

Conference, Part I, AFIPS ’65 (Fall, part I), pages
185–196, New York, NY, USA, 1965. ACM.

[17] P. Crawford. Linux Watchdog Daemon - Overview.
http://www.sat.dundee.ac.uk/psc/watchdog/
watchdog-background.html, January 2016.

[18] J. Criswell, N. Dautenhahn, and V. Adve. KCoFI:
Complete Control-Flow Integrity for Commodity
Operating System Kernels. In Proceedings of the 2014

IEEE Symposium on Security and Privacy, SP’14,
pages 292–307, May 2014.

[19] J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve.
Secure Virtual Architecture: A Safe Execution
Environment for Commodity Operating Systems. In
Proceedings of Twenty-first ACM SIGOPS Symposium

on Operating Systems Principles, SOSP ’07, pages
351–366, New York, NY, USA, 2007. ACM.

[20] R. C. Daley and J. B. Dennis. Virtual memory,
processes, and sharing in Multics. Communications of

the ACM, 11(5):306–312, 1968.
[21] R. Denz. Securing the Cloud with Utility Virtual

Machines. PhD thesis, Thayer School of Engineering
at Dartmouth College, July 2016.

[22] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr.
Exokernel: An Operating System Architecture for
Application-level Resource Management. In
Proceedings of the Fifteenth ACM Symposium on

Operating Systems Principles, SOSP ’95, pages
251–266, New York, NY, USA, 1995. ACM.

[23] P. Enslow, Jr. Multiprocessor Organization – a Survey.
ACM Comput. Surv., 9(1):103–129, Mar. 1977.

[24] S. Fischer. Supervisor Mode Execution Protection.
NSA Trusted Computing Conference and Exposition,
2011.

[25] A. Ganapathi, V. Ganapathi, and D. Patterson.
Windows XP Kernel Crash Analysis. In Proceedings of

the 20th Conference on Large Installation System

Administration, LISA ’06, pages 12–12, Berkeley, CA,

77

USA, 2006. USENIX Association.
[26] J. N. Herder. Towards a true microkernel operating

system. PhD thesis, Vrije Universiteit Amsterdam,
February 2005.

[27] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S.
Tanenbaum. MINIX 3: A Highly Reliable,
Self-repairing Operating System. SIGOPS Oper. Syst.

Rev., 40(3):80–89, July 2006.
[28] D. Hildebrand. An Architectural Overview of QNX. In

Proceedings of the Workshop on Micro-kernels and

Other Kernel Architectures, pages 113–126, Berkeley,
CA, USA, 1992. USENIX Association.

[29] R. Hund, T. Holz, and F. C. Freiling. Return-oriented
Rootkits: Bypassing Kernel Code Integrity Protection
Mechanisms. In Proceedings of the 18th Conference on

USENIX Security Symposium, SSYM’09, pages
383–398, Berkeley, CA, USA, 2009. USENIX
Association.

[30] Intel. Intel 64 and IA-32 Architectures Software

Developer’s Manual Combined Volumes: 1, 2A, 2B,

2C, 3A, 3B, and 3C, June 2014.
[31] A. Joshi, S. Pimpale, M. Naik, S. Rathi, and

K. Pawar. Twin-Linux: Running independent Linux
Kernels simultaneously on separate cores of a
multicore system. In Proceedings of the Ottawa Linux

Symposium, 2010.
[32] S. Kagstrom, L. Lundberg, and H. Grahn. A novel

method for adding multiprocessor support to a large
and complex uniprocessor kernel. In Parallel and

Distributed Processing Symposium, 2004. Proceedings.

18th International, pages 60–, April 2004.
[33] keegan. Attacking Hardened Linux Systems with

Kernel JIT Spraying, June 2011.
[34] V. P. Kemerlis, M. Polychronakis, and A. D.

Keromytis. Ret2Dir: Rethinking Kernel Isolation. In
Proceedings of the 23rd USENIX Conference on

Security Symposium, SEC’14, pages 957–972, Berkeley,
CA, USA, 2014. USENIX Association.

[35] V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis.
kGuard: Lightweight Kernel Protection Against
Return-to-user Attacks. In Proceedings of the 21st

USENIX Conference on Security Symposium,
Security’12, pages 39–39, Berkeley, CA, USA, 2012.
USENIX Association.

[36] D. Keuper. XNU: a security evaluation, December
2012.

[37] J.-J. Khalife. MS15-010/CVE-2015-0057 win32k Local
Privilege Escalation, December 2015.

[38] A. Kivity, D. Laor, G. Costa, P. Enberg, N. Har’El,
D. Marti, and V. Zolotarov. OSv-optimizing the
operating system for virtual machines. In 2014 usenix

annual technical conference (usenix atc 14), pages
61–72, 2014.

[39] G. Klein, J. Andronick, K. Elphinstone, T. Murray,
T. Sewell, R. Kolanski, and G. Heiser. Comprehensive
Formal Verification of an OS Microkernel. ACM

Trans. Comput. Syst., 32(1):2:1–2:70, Feb. 2014.
[40] C. Lever and D. Boreham. Malloc() Performance in a

Multithreaded Linux Environment. In Proceedings of

the Annual Conference on USENIX Annual Technical

Conference, ATEC ’00, pages 56–56, Berkeley, CA,
USA, 2000. USENIX Association.

[41] R. Lindsley and D. Hansen. Bkl: One lock to bind
them all. In Ottawa Linux Symposium, page 301, 2002.

[42] A. Lineberry. Malicious Code Injection via/dev/mem.
2009.

[43] A. Madhavapeddy and D. J. Scott. Unikernels: Rise of
the virtual library operating system. Queue, 11(11):30,
2013.

[44] A. Mahmood and E. J. McCluskey. Concurrent error
detection using watchdog processors-a survey. IEEE

Transactions on Computers, 37(2):160–174, Feb 1988.
[45] J. Martins, M. Ahmed, C. Raiciu, and F. Huici.

Enabling fast, dynamic network processing with
clickos. In Proceedings of the second ACM SIGCOMM

workshop on Hot topics in software defined

networking, pages 67–72. ACM, 2013.
[46] R. McDougall and J. Mauro. Solaris internals: Solaris

10 and OpenSolaris kernel architecture. Pearson
Education, 2006.

[47] metasploit. Chkroot Local Privilege Escalation,
November 2015.

[48] J. C. Mogul, J. Mudigonda, N. Binkert,
P. Ranganathan, and V. Talwar. Using Asymmetric
Single-ISA CMPs to Save Energy on Operating
Systems. IEEE Micro, 28(3):26–41, 2008.

[49] I. Molnar. 4G/4G split on x86, 64 GB RAM (and
more) support, July 2003.

[50] T. Morad, U. Weiser, A. Kolodny, M. Valero, and
E. Ayguade. Performance, power e�ciency and
scalability of asymmetric cluster chip multiprocessors.
Computer Architecture Letters, 5(1):14–17, Jan 2006.

[51] S. Muir and J. Smith. AsyMOS-an asymmetric
multiprocessor operating system. In Open

Architectures and Network Programming, 1998 IEEE,
pages 25–34, Apr 1998.

[52] C. Nichols, M. Kanter, and S. Taylor. Bear – A
Resilient Kernel for Tactical Missions. In Military

Communications Conference, MILCOM 2013 - 2013

IEEE, pages 1416–1421, Nov 2013.
[53] Y. Padioleau, J. L. Lawall, and G. Muller.

Understanding Collateral Evolution in Linux Device
Drivers. In Proceedings of the 1st ACM

SIGOPS/EuroSys European Conference on Computer

Systems 2006, EuroSys ’06, pages 59–71, New York,
NY, USA, 2006. ACM.

[54] R. K. Pandey and V. Tiwari. Article: Reliability
Issues in Open Source Software. International Journal

of Computer Applications, 34(1):34–38, November
2011. Full text available.

[55] D. Potts, S. Winwood, and G. Heiser. Design and
Implementation of the L4 Microkernel for Alpha
Multiprocessors, 2002.

[56] rebel. issetugid() + rsh + libmalloc osx local root,
July 2015.

[57] T. Roscoe, K. Elphinstone, and G. Heiser. Hype and
Virtue. In Proceedings of the 11th USENIX Workshop

on Hot Topics in Operating Systems, HOTOS’07,
pages 4:1–4:6, Berkeley, CA, USA, 2007. USENIX
Association.

[58] D. Rosenburg. SMEP: What is it, and How to Beat it
on Linux., June 2011.

[59] J. H. Saltzer and M. D. Schroeder. The protection of

78

information in computer systems. Proceedings of the

IEEE, 63(9):1278–1308, 1975.
[60] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.

Youman. Role-based access control models. Computer,
(2):38–47, 1996.

[61] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor:
A Tiny Hypervisor to Provide Lifetime Kernel Code
Integrity for Commodity OSes. SIGOPS Oper. Syst.

Rev., 41(6):335–350, Oct. 2007.
[62] H. Shacham. The Geometry of Innocent Flesh on the

Bone: Return-into-libc Without Function Calls (on
the x86). In Proceedings of the 14th ACM Conference

on Computer and Communications Security, CCS ’07,
pages 552–561, New York, NY, USA, 2007. ACM.

[63] K. Spett. Cross-site scripting. Technical report, SPI
Labs, 2005.

[64] A. Starke. Locking in os kernels for smp systems.
Citeseer, 2006.

[65] K. Thompson. Reflections on Trusting Trust.
Commun. ACM, 27(8):761–763, Aug. 1984.

[66] K. Way. Lastore-Daemon in Deepin 15 results in
privilege escalation, February 2016.

79

