
Cross-Layer Personalization as a First-Class Citizen for
Situation Awareness and Computer Infrastructure Security

Aokun Chen Pratik Brahma Dapeng Oliver Wu Natalie Ebner Brandon Matthews †

Jedidiah Crandall ‡ Xuetao Wei * Michalis Faloutsos ** Daniela Oliveira
University of Florida MIT Lincoln Laboratory† University of New Mexico‡

University of Cincinnati * University of California Riverside **
{daniela,wu@ece.ufl.edu}, {prprbr,chenaokun1990,natalie.ebner@ufl.edu}, brandon.matthews@ll.mit.edu

crandall@cs.unm.edu, weix2@ucmail.uc.edu, michalis@cs.ucr.edu

ABSTRACT
We propose a new security paradigm that makes cross-layer
personalization a premier component in the design of se-
curity solutions for computer infrastructure and situational
awareness. This paradigm is based on the observation that
computer systems have a personalized usage profile that de-
pends on the user and his activities. Further, it spans the
various layers of abstraction that make up a computer sys-
tem, as if the user embedded his own DNA into the computer
system. To realize such a paradigm, we discuss the design
of a comprehensive and cross-layer profiling approach, which
can be adopted to boost the e↵ectiveness of various security
solutions, e.g., malware detection, insider attacker preven-
tion and continuous authentication. The current state-of-
the-art in computer infrastructure defense solutions focuses
on one layer of operation with deployments coming in a ”one
size fits all” format, without taking into account the unique
way people use their computers. The key novelty of our
proposal is the cross-layer personalization, where we derive
the distinguishable behaviors from the intelligence of three
layers of abstraction. First, we combine intelligence from:
a) the user layer, (e.g., mouse click patterns); b) the oper-
ating system layer; c) the network layer. Second, we de-
velop cross-layer personalized profiles for system usage. We
will limit our scope to companies and organizations, where
computers are used in a more routine and one-on-one style,
before we expand our research to personally owned com-
puters. Our preliminary results show that just the time
accesses in user web logs are already su�cient to distinguish
users from each other,with users of the same demographics
showing similarities in their profiles. Our goal is to chal-
lenge today’s paradigm for anomaly detection that seems to
follow a monoculture and treat each layer in isolation. We
also discuss deployment, performance overhead, and privacy
issues raised by our paradigm.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
NSPW ’16, September 26-29, 2016, Granby, CO, USA
c� 2016 ACM. ISBN 978-1-4503-4813-3/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/3011883.3011888

CCS Concepts
•Security and privacy ! Intrusion detection sys-
tems;

Keywords
Intrusion detection system, Cross-layer personalization

1. INTRODUCTION

Protecting end-user devices and computer system infras-
tructure is an ongoing problem, and today’s solutions have
not evolved significantly over time. Specifically, the indus-
try still mostly relies on antivirus-based solutions, which
are almost exclusively using signature-based detection of
threats [1–3]. Although showing good accuracy for known
malware, these solutions cannot detect zero-day malware
and encounter di�culties in identification of polymorphic
and metamorphic attacks, with a practical detection rate
of 25%-50% [4]. Behavioral-based solutions have also been
adopted [5–12], focusing on identifying behavioral prop-
erties of the device, such as peculiar sequences of system
calls, and use of this information to distinguish patterns
that characterize malware. However, behavioral-based de-
tectors are not always e↵ective, presenting high false-positive
rates [12, 13], because of the increasing complexity and di-
versity of software.

To make matters worse, malware is evolving, and cur-
rent security solutions for computer infrastructure and situ-
ational awareness are not adequate to cope with the increas-
ing level of sophistication of attacks. For example, organiza-
tions are now targets of advanced persistent threat (APTs)
attacks, highly planned and orchestrated infiltrations com-
bining di↵erent types of exploits and malware [14–16], which
can be caused by insiders and outsiders. APT malware is
challenging for current solutions because it blends in with
approved corporate software and tra�c, and because it acts
slowly, based on triggers.

This material is based upon work supported by the As-
sistant Secretary of Defense for Research and Engineering
under Air Force Contract No. FA8721-05-C-0002 and/or
FA8702-15-D-0001. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the As-
sistant Secretary of Defense for Research and Engineering. c�
2016 Massachusetts Institute of Technology.

23

Today’s security solutions have two main shortcomings.
First, they usually come in a ”one-size-fits-all” format, as
they are designed for ”any” computer system, and make de-
cisions about computer system events while ignoring the
unique way di↵erent people use their computers. Second,
these solutions usually operate at a specific layer of abstrac-
tion (e.g., the application, the network or the OS syscall
layer), and thus can miss correlated and insightful observa-
tion from other layers.

Nowadays, it is common for a computer system (e.g., desk-
top, laptop, tablet, mobile phone) to have a single user and
never be shared. Also computer systems’ users are diverse
and have rather di↵erent user profiles when using a com-
puter. For example, some people just use a browser for their
computing needs, while others use computers as part of their
work and run specific applications at specific times, which
might include personal and task-oriented software. For ex-
ample, consider Bob, 72, living in a retirement community
in Florida. His desktop usage pattern is rather di↵erent than
that of Alice, 25, working for a startup in San Francisco. Bob
uses a browser to read the news and e-mails and to check
for events in his community. He also uses Skype to talk to
his son in Illinois. Alice has MS O�ce installed on her lap-
top and regularly uses MS Word to write weekly reports for
her manager. She also uses Chrome browser and regularly
accesses sites hosted not only in the United States, but also
in China. She works from home Mondays and Wednesdays,
and on these days, VPN and VNC client are running for
connection with the company server. While Bob never ac-
cesses his computer past 8 p.m., Alice is usually active on
her computer up to midnight.

The patterns of usage for Bob and Alice suggests that
computer systems behave as if they possess a personalized
”microbiota.” In biology, the microbiota is the large set of
microbes that share our body with our human cells and out-
number human cells by a ratio of 10:1. The large major-
ity of them are benign and influence, for better or worse,
critical functions for our physiology, such as digestion, al-
lergic reactions, and propensity to diseases, such as cancer
or Alzheimer’s. Each human’s microbiota is unique, pro-
viding a signature for the individual, a signature which has
been proposed to be applied even in criminal forensics [17].
The microbiota’s constitution depends on the human’s diet,
lifestyle and geographic location. In spite of that, microbiota
composition form clusters depending on people’s similarity
such as based on share living contexts, shared lifestyle, liv-
ing in the same geographic area, or having similar healthy
conditions.

Going back to Bob’s and Alice’s pattern of computer sys-
tem usage and making an analogy to the human microbiota,
we can compare their computers to the human body and
the events happening in the system to the microbiota. We
hypothesize that the idea of uniqueness and clustering also
apply. While the patterns of usage for Bob and Alice form
a signature that identifies them, their patterns of usage also
form clusters when we compare them with similar computer
users. For example, we hypothesize that Bob’s computer
profile is similar to other older adults, especially if they
live in the same area–for example, a retirement community.
Also, Alice’s pattern of work shares similarities with col-
leagues working on the same project, as they probably use
the same software, access the same files, and work similar
hours.

In this paper, we propose a new security paradigm that
makes cross-layer personalization a first-class citizen
of security solutions for defense of computer in-
frastructure and situational awareness. The phrase
first-class citizen does not contain any form of dis-
crimination, but best expresses our confidence in the
e↵ectiveness of this new paradigm, which we believe
will be a premier component in the future security
system design.

In this paper, we discuss the architecture and the ini-
tial Windows OS implementation of this new paradigm, the
machine-learning challenges for profile building with prelim-
inary results, and our plans for evaluation of the system with
a user study placed in the real world. Our Windows profiling
system combines information from three layers of abstrac-
tion: 1) the user layer(e.g., mouse clicks and frequency of
keyboard activity); 2) the operating system layer, through
process and file events; and 3) the network layer, through
events and metadata associated with network events. The
goal is to create a computer usage profile of a particular
machine based on a particular user that operates it.

In this framework, a kernel module continuously col-
lects the events that constitute the computer system pro-
file. These events are used to build a multi-dimensional
time series for each computer user. Depending on the
goal of the security solution (e.g., malware detection, out-
lier detection, continuous authentication, profiling based
demographics, etc.), a specific machine-learning model is
built using the data from the multi-dimensional time series.
There are many machine-learning challenges for this prob-
lem. First the amount of data produced is very large and
high-dimensional, and some information will be incomplete.
Additionally, users might change the profile dynamically be-
cause of a change of habit, time zone, or projects. Further,
an adversary, which can be the computer user himself, might
also attempt to confuse the model and evade profiling by in-
telligently adding highly correlated noisy data.

Our initial results show that such system requires from
50 to 100 KB/day for generic process-related information
and 3.5 MB/day for network-related information. The per-
formance overhead caused by the extractor was negligible
for a chess benchmark. We also discuss preliminary results
obtained in the context of previously collected data in an
independent user study, in which just the connection time
of participants’ web logs was used to distinguish user profile.
Finally, we discuss the design of a field study to collect eco-
logically valid data to test our hypothesis of the uniqueness
of computer system profiles and the e↵ectiveness of using
these individual profiles to protect organizations’ computer
infrastructure.

While there has been some related work in personaliza-
tion in the areas of secure account login [18], user charac-
terization based on web searches [19], and recommendation
systems [20]. These previous approaches were designed only
for the single-layer analysis and the focus was not on holistic
computer infrastructure defense. We argue that cross-layer
personalization should be a premier component in the de-
sign of any security solution for computer infrastructure.
Furthermore, we argue that the personalization should be
holistic, involving intelligence from all layers of abstraction
(cross-layer). Our intention is to generate discussion on
the full potential of such an approach, but also to debate its
challenges and deployment concerns, which could include

24

privacy issues and the dynamic nature of usage profiles.
This paper is organized as follows. Section 2 describes

our threat model. In section 3, we present the design of our
paradigm. Section 4 describes our vision for the architecture
of a system implementing the paradigm. Section 5 describes
how we characterized the computer system usage profile and
how we are extracting its data for the Windows OS. Section
6 describes the machine-learning methods we are planning
to use and the challenges to be faced: a large, multidimen-
sional, sparse, and dynamic data set. Section 7 describes
preliminary work and outlines the design of a user study
to collect data to validate our paradigm for the problem of
malware detection. Section 8 discusses related work in per-
sonalization and malware detection. Section 9 summarizes
the important topics discussed at the workshop. Section 10
concludes the paper.

2. THREAT MODEL
The target of our paradigm is the protection of organiza-

tions against attacks from outsiders and insiders. Outside
attacks are represented by all types of standalone malware
that can enter the organization perimeter via drive-by down-
loads, malicious links and attachments opened by employ-
ees, etc. For this type of attack, the cross-layer profiling
can triage events for standard malware detectors by filter-
ing events that are normal for a particular employee and
by exposing true outlier events that should be carefully in-
spected, as they can be the result of malware activity.

The paradigm can also protect an organization against in-
sider attacks. Once the profile of a group of employees work-
ing on the same project or mission is created, the runtime
analyzer can expose employee behavior that is incompatible
with the expected behavior of the group.

We envision the core components of our paradigm imple-
mented at the OS-level because the OS has a privileged view
of events occurring at the application, OS, and network lay-
ers. Consequently, the paradigm relies on a trustworthy OS.

Our vision for the implementation of the paradigm does
not involve the recording of keys typed by the user, file con-
tents, or any personal identifiable information. For example,
as later described in Section 5, we propose the recording of
the applications used by the user, their active time intervals,
network activities and filesystem metadata. Our vision does
not advocate the recording of file contents, keys types by the
users, e-mail content, etc.

Furthermore, we assume that solutions based on our
paradigm will be employed in organizations, where employ-
ees already have limited expectations of privacy. It is very
common in modern organizations to monitor the tra�c and
e-mail, and restrict the devices and applications used by
employees. Of note, we are not advocating that organiza-
tions should or should not perform fine-grained monitoring
of their employees. Such discussion goes beyond the scope of
our work. Our main point is that considering that such mon-
itoring is already a reality. The collection of non-personal
identifiable cross-layer data would not impact the current
confidentiality expectations of employees in organizations.

The diversity that cross-layer personalized profiling o↵ers
makes it much harder for an adversary to succeed. The ad-
versary would need to mimic benign events in a personalized
fashion, which greatly increases the e↵ort and the resources
required for a successful attack.

3. THE PARADIGM
Our proposed paradigm makes cross-layer personalization

a premier component in the design of security solutions for
the defense of computer infrastructure and situation aware-
ness.

This paradigm is based on the observation that computer
systems have personalized usage profiles that depend on the
users and their associated activities and the profiles span the
various layers of abstraction that make up a computer sys-
tem. Our paradigm combines: (a) cross-layer and (b) per-
sonalization solutions for computer infrastructure and situ-
ational awareness.

First, we argue that we need to monitor a computer at
multiple layers, including OS, network, and application lay-
ers, whose definitions we refine later. Second, we need user-
specific personalization to better detect atypical behaviors.
We target user devices (or user accounts for multi-user ma-
chines), which are typically used by one or a few people in a
fairly predictable manner. We envision that cross-layer per-
sonalization should be the next generation of security solu-
tions for organizations, especially in the context of malware
& insider attack detection and continuous authentication.

Why are cross-layer personalized security solutions bet-
ter than standard ones? Because events that are typical or
normal for one user might be anomalous for another, and
a standard security solution will err when confronted such
a variability in usage. It will either fail to recognize a ma-
licious event or it will generate a false positive. Also, the
abnormality might be the result of a correlation of events
across more than one layer of abstraction, something that a
standard solution focusing on one layer is not able to cap-
ture.

For example, connections to Chinese IP addresses at 11:30
p.m. are anomalous for Bob, but are normal for Alice. In
contrast, heavy I/O activity and file accesses at 7 a.m. are
anomalous for Alice, but normal for Bob, who wakes up
early and helps with his homeowners’ community a↵airs.
Consequently, an anomaly detector running at Bob’s and
Alice’s computer should learn their usage patterns and use
this knowledge to distinguish typical and atypical events for
Bob and Alice respectively, where atypical events might be
an indication of a security violation.

As another example, consider a working group in an orga-
nization that accesses a set of common files, performs similar
activities on these files, and uses a certain set of primary task
software. If one of the group members starts deviating from
the group profile, such as by accessing files from a directory
the group usually does not access, or by connecting to servers
the group usually does not connect to, this could signal the
presence of a malicious insider credential theft. Thus, cross-
layer personalization allows for the implementation of solu-
tions performing continuous authentication, where the user
profile adds another layer of authentication that is more dif-
ficult for an attacker to evade, because it is dynamic, unique
in isolation, and similar within groups.

4. ARCHITECTURAL DESIGN
This section presents our design for the cross-layer pro-

filing framework. Our architecture (Figure 1) contains an
Event Extractor that continuously records system events re-
lated to user interaction with processes (e.g., timestamps
of mouse clicks and keys typed), and related to process,

25

file system and network activities. The profiler does not
record keys, file contents or personally identifiable informa-
tion. The extractor is located at the OS level because of
the kernel’s visibility of the application layer, network layer,
and even low-level system events.

Figure 1: The architecture of the cross-layer profil-
ing framework. The Event Extractor collects system
events related to user activity, processes, file system
and network, and records these events in Log files.
The Log files are consumed by the Profiler, which
generates a Model tailored to a particular security
problem. The Runtime Analyzer observes the same
events as the Event Extractor at runtime, classifies
them according to the Model, and generates di↵er-
ent types of outcomes depending on the type of se-
curity solution it applies to: anomaly logs, alarms,
reports, intervention, etc.

The Event Extractor records events according to a data
model and generates log files. Then, the Profiler, which is
also located at the OS level, consumes these logs and gen-
erates a target model depending on the particular security
problem at hand, for instance, malware detection, outlier be-
havior detection, user profiling, etc. The Profiler has three
components. The first is the Feature selector, which uses
machine-learning feature-selection algorithms to analyze raw
data and–in combination with the characteristics of the secu-
rity problem and, optionally, domain knowledge–eliminates
features or creates new ones based on the collected data.
For example, depending on the goals of the security solu-
tion to be generated, the Feature selector might disregard
process-memory consumption as feature, and create a new
feature, such as mouse click frequency, based on the time
stamps recorded for mouse clicks. The second component is
the Model. This component is trained by an unsupervised
machine-learning algorithm based on all the features and
pre-defined rules.

The third component is the Runtime Analyzer, which ob-
serves the same events recorded by the extractor at run-
time and classifies them based on the model. Depending on
the security problem at hand, the Runtime Analyzer pro-
duces an outcome (e.g. an alarm, an entry in a report file
or log file, etc). The Runtime Analyzer also generates feed-
back for the Feature selector and the Model. For example,
in insider attack detection or continuous authentication, an
outlier event, depending on how much it deviates from the

model, might indicate a change of routine or a security viola-
tion. Given the dynamic nature of the computer usage, the
Profiler can incorporate acceptable changes into the model.

5. PROFILE EXTRACTION AND CHAR-
ACTERIZATION

The first step toward building the cross-layer profiling
framework is to determine which data to collect across all
layers of abstraction. Ideally, the extractor should collect
all possible data from the system, and should let the Pro-
filer’s feature selector determine which features to consider
and which ones to exclude. In our system, we plan to collect
information at the application, OS, and network layers and
associate all this information within the scope of process,
which is the live entity of any computer system. Table 1
illustrates the data we plan to collect per process. In sum-
mary, we want to know which processes a user’s computer
system runs, which network connections it creates and ac-
cepts, which files it accesses, whether or not it interacts with
a user, and how it utilizes memory. User activities will also
depend on the time of the day and will vary on weekdays
and weekends. For example, Alice strives for a good work-
life balance and does not work on weekends. Bob uses Skype
to talk to his son only on Sunday afternoons.

Each row in Table 1 corresponds to the daily activities
of one process for a period of 24 hours. Process ID (or
a hash based on this value) indexes each table entry on a
given day. Parent Process ID tracks the relationship among
threads belonging to the same process. Active time interval
is a time series corresponding to the time intervals when
the process is active. We consider a process active if it is
issuing system calls. In our design, if five minutes elapse
after the last system call invocation from the process, we
close the last period with the end time corresponding to the
time of the last system call invocation. The goal is to collect
fine-grained information of process activity, which is closely
associated with the invocation of system calls. For example,
suppose that Alice begins her computer activities at 9 a.m.
using Chrome, which starts invoking several system calls
until 9:15 a.m. when Alice begins working on a report for
her boss using Microsoft Word. At 10:00 a.m., Alice checks
her Gmail using Chrome. Because the interval between the
two last system-call invocations for Chrome is greater than
five minutes (9:15 a.m. and 10:00 a.m.), our extractor ends
the last interval at 9:15 a.m. and starts a new time interval
at 10:00 a.m.

The Process Type represents the process category (i.e.,
o�ce software, development, browsing, game, computing,
etc.). Memory represents the memory usage for each time
interval, and List of system calls contains the list of system
calls invoked by the processes. Table 2 shows an example
of the summarized (i.e., showing only fields with general
process information) daily activities for Microsoft Word for
a certain weekday. This shows that the user started activity
no earlier than 8:30 a.m. and finished activities no later than
6:00 p.m. This line could be part of Bob’s profile, but not
Alice’s, who never starts work before 10 a.m.

The data model also records mouse and keyboard activ-
ities in the form of a list of time stamps when the process
receives bytes coming from the keyboard or mouse, which
indicates direct user interaction. File system information
is collected through the File system features data structure

26

Attributes
Process ID

(PID)
Parent PID

(PPID)
Executable
pathname

Active time
interval

Process
type

Memmory

Description
Integer

representing
the process ID

Integer
representing
the parent
process ID

The
pathname

of the
process

executable file

List of
time intervals

when the process
is active

Integer indicating
the process type
(game, browsing
communication

and etc.)

The amount
of memory
currently
held by

the process

Attributes
(continue)

List of
system calls

Mouse
activity

Keyboard
activity

Filesystem
features

Network Features

Description
(continue)

List of
system calls
invoked by
the process

List of
timestamps
representing
mouse clicks
associated
with the
process

List of
timestamps
representing
keyboard
strokes

associated
with the
process

File feature struct:
{File pathname
(string),
Time accessed
(time stamp),
Bytes accessed
(float)}

Network feature struct:
{IP address
(Integer, source and dest.),
Port Number
(Integer, source and dest.),
Average bytes upload &
download (float),
Connection start & end time
(time stamp)}

Table 1: Data collection model. Each entry in this table corresponds to the summarized activity for one
process in a period of 24 hours.

...
Executable
pathname

Time intervals
(start/end)

...

...

C:\Windows\
ProgramFiles(x86)\
Microsoft O�ce 365\

word.exe

8:42
/9.17

...
16:47
/17:50

...

Table 2: Process record sample.

shown in Table 1. For each process, we log a list of records
summarizing information about file system access for the
process, such as pathname, time of access and average bytes
accessed.

The Network features field is a list of records summarizing
network connection or session activities for the process, such
as source and destination IP addresses and ports, average
bytes transferred, and start and end time for the connection
or session. Table 3 shows the data for one network feature for
Chrome. This entry could be part of Alice’s profile, but not
Bob’s, who never connects to 121.294.0.219 (a well-known
news site in China).

To collect this data in a cross-layer fashion, we plan to
develop a Windows kernel module to perform the extrac-
tion. We selected Windows because of its large user base
and popularity among malware writers, but the features and
the main idea can be implemented in any standard OS. We
decided against applying the method of system call hooking
for the development of the Extractor because we did not
want to override the Windows patch guard module, which
protects the system call table from unauthorized modifica-
tion.

We have been using the Object Callback and
Thread/Process CreateNotify routines for the extraction
of general process information. The ProcessCreateNotify
routine identifies the current running process, while the
Object Callback Routine distinguishes whether the process
is active. To record the network features, we have been
using the Windows Filtering Platform Callout to intercept
connections, inbound and outbound Internet tra�c. We

have been extracting file features using the Windows Filter
Platform Minifilter routine, which invokes the Extractor
every time a file is accessed, allowing the collection of file
system-related information.

6. INTELLIGENT PROFILE LEARNING
By combining the di↵erent types of activity logs, we will

end up with multi-dimensional time series data for each in-
dividual. At each time instant t, a particular computer may
be executing a certain set of processes, file accesses and net-
work connections.

One possible objective of a security solution employing
cross-layer personalization could be the identification of the
user or his demographics based on a sample log data for a
certain period of time. The demographics categories can be
given labels based on gender, age, occupation, race, locality,
or even the person’s own identity. The successful authentica-
tion of a user’s identity, however, requires logs of sequential
data for a su�cient period of time. If the log granularity
is taken to be one full day starting from midnight, then the
training data matrix X is essentially d days of daily log of
information for u di↵erent users. Thus, there are u⇥ d rows
in X. Concatenating all the features from activity logs can
lead to a very large value of the dimensionality p (the num-
ber of columns in the data matrix X). Instead of columns,
the features could also be multi-dimensional arrays them-
selves instead of single real-valued entries, which will in turn
make the data matrix a multi-dimensional tensor. For the
problem of identity recognition, Y will be the u ⇥ d target
vector where each entry is an integer ranging from 1 to u.
For example, age classification (old vs. young) would call
for a binary valued Y. The problem can also be framed as
sequential pattern recognition, where overlapping time win-
dows or periods of log data (i.e., the combined activity from
t � �t to t) will act as training observations. If the task of
the security solution is to detect anomalies in a personalized
fashion, we have to identify the time instants t (or time peri-
ods) during which significant deviation is seen from normal
or expected behavior.

27

...... Executable Pathname
Connection
start time

Connection
end time

Source IP Dest IP
Source
port

Dest
port

......

......

C:\Windows\
ProgramFiles(x86)\
Google\Chrome\

Application\Chrome

2016-03-29
10:57:46

2016-03-29
10:58:00

10.255.48.22 121.194.0.239 57323 5355

Table 3: Network record sample.

The problem at hand is not trivial: namely, collecting
personalized computer usage data across multiple layers of
abstraction on a massive scale and relying on a model to
select the right set or projection of discriminating features
from such high-dimensional input. Further, it is known in
the machine-learning literature that outlier detection is very
hard in a high-dimensional space [21] because the data is
sparse and the notion of proximity fails to retain its meaning,
making every point look like an outlier itself. This requires
the application of a robust feature-selection algorithm before
building a model for the problem.

The usual approach to deal with high-dimensional data is
to apply dimensionality-reduction techniques like Principal
Component Analysis (PCA) [22]. For personal profile clas-
sification, however, a discriminate feature-selection method
like RELIEF [23] can extract those features that can help
distinguish the observations better. Further, we can use
kernel methods, such as kernel Support Vector Machines
(SVMs) [24] to incorporate non-linearity in the feature-
projection process. For the problem of malware detection,
various time series outlier-detection methods have been out-
lined in Gupta et al. [25]. An anomaly is detected if the
distance of the state at a particular time instant from its
closest centroid is greater than a threshold. Irrespective of
the methods selected, the training has to be done dynam-
ically to be able to adapt to the change of usage behavior
over time.

The personalization component of the paradigm can
streamline the outlier detection task. For example, if net-
work upload and download size is considered a relevant fea-
ture, a download significantly larger than the group average
may be considered an anomaly by a conventional statistical
anomaly detection-based solution. However, the patterns of
such features vary from user to user. For instance, the profile
of a data analyst working in a big data company will show
a high variance of download and updoad data size, includ-
ing very large downloads. For an analyst in a government
intelligence agency, large downloads and uploads might be
atypical and even suspicious.

Another challenge is that the captured logs will have in-
complete information. For example, a person might use his
computer for a few hours in the morning and then be idle
for a few hours because of a meeting or another o✏ine com-
mitment. The missing information in the training data can
greatly bias the learning model. Also, the model should
take into account benign changes in user behavior, such as
changes of occupation or projects, traveling to di↵erent time
zones, etc. Thus, the model should dynamically update it-
self without explicitly forgetting what has been learned in
the past.

Another consideration is how an adversary can interfere
with the model and evade profiling. This can be done either
by the user themselves to preserve their privacy or by an ad-

versary attempting to evade personalized profiling. We con-
sider this to be the problem of masking or data obfuscation.
The statistical model will be confused if the log files contain
certain activities that do not characterize the person’s nor-
mal behavior. An obfuscation component can, for example,
ask the computer to perform random activities that do not
correspond to the profile, such as opening random files and
making network connection at unusual times, with the hopes
that this will be incorporated by the model. At first instant,
this looks like asking the system to over-perform by running
redundant operations at additional computational cost to in-
troduce noise into the logs. However, small amounts of ran-
dom uncorrelated noise (like white Gaussian noise) or out-
liers will not be able to make the logs anonymous, as modern
machine-learning algorithms can provide enough resistance
against such evasion techniques. It is a common practice
now in computer vision to add salt-and-pepper noise, jit-
ter [26], and occlusion to images while training the model,
especially in deep learning, since this helps increase the al-
gorithm’s generalization capability. Achieving anonymity,
while also reducing the computational burden on the sys-
tem, can be considered an optimization problem, where we
need to add a collaboratively designed sparse-additive out-
lier into the data matrix such that the eventual classifier
will not be able to classify the sample logs. Such constraints
may be a simple `1 norm or any non-convex sparsity enforc-
ing penalty on the additive outlier or noise matrix. Similar
approaches have been adopted in the context of analysis of
medical data [27].

Statistical deviation from a typical pattern in the sequen-
tial data is indicative of possibly malicious activity. This has
been the hypothesis behind all statistical anomaly-based In-
trusion Detection System (IDS) techniques. However, the
distribution that defines normal or usual behavior of net-
works and software in general is very diverse and not easily
explained using limited amount of training data. This is why
many anomaly-detection patterns have a high false-positive
rate. We hypothesize that a user computer-usage profile may
exhibit a more consistent behavior within itself and thus al-
lows for the development of more e↵ective security solutions
based on outlier detection.

7. PRELIMINARY RESULTS AND EVALU-
ATION PLANS

We performed preliminary tests using the Firtze Chess
Benchmark, which simulates an international chess match.
Our test machine had Intel core i7 with Windows 10 in-
stalled. We ran each benchmark ten times with and with-
out the current Event Extractor installed, and averaged the
results for each case. At least a 1-minute interval was en-
forced between each test to cool down the CPU. The results
are shown in Figure 2. For this benchmark, the performance
overhead of the logging extractor was negligible, but we plan

28

to perform more tests with I/O-intensive benchmarks.

Figure 2: Fritze Chess benchmark results.

We also conducted some preliminary analysis on a dataset
our research team obtained in the context of previously col-
lected data in an independent user study 1. This dataset
comprises all the URLs that participants visited over a pe-
riod of 21 days. The URLs were collected by a browser
extension installed in the participants’ computers. Partic-
ipants were 83 Internet users (52 younger; M = 19:9 yrs,
SD = 3:40, range: 18–31, 76.9% females; 31 older; M =
70:7 yrs, SD = 6:63, range: 61–88., 51.6% females). Fur-
ther we had 50.6% (n =42) non-Hispanic White and 33.7%
(n = 28) minority participants (African American, n = 7);
Hispanic/Latino (n = 7); Asian (n = 12); American In-
dian/Alaskan Native (n =1); and Other (n=1; n=13 did
not report their race)

Each entry in the logs were composed of the URL of the
website visited and a time stamp at which the connection
was established. We started by distinguishing the web us-
age behavior of a 25-year-old male graduate student and a
67-year-old retired woman. Figure 3 shows their histogram
of web usage over a period of 24 hours. We notice a peak
during late night hours for the graduate student, and a peak
in the early morning hours for the older woman. These pat-
terns were unique to each of the two participants, while they
were equally active during the afternoon hours. These first
findings suggest that temporal information regarding com-
puter usage, if selected properly, should be able to distin-
guish whether a daily log belongs to the graduate student
or the old woman. More specifically, SVM with a radial ba-
sis function (rbf) kernel achieved up to 93.7% accuracy in
classifying these two individuals based on their daily logs.

However, when trying to distinguish between two students
from the same university (majoring in similar areas; i.e., en-
gineering and computer science), we were not able to obtain
the same accuracy in classification. A two-dimensional PCA
projection (i.e., selecting the two most variant directions in

1This study was IRB approved.

Figure 3: Histograms showing the probability of web
usage for a 25-year-old male graduate student (top)
and a 67-year-old retired older woman (bottom).
The x axis refers to the hours in one full day, i.e.,
from 0 to 24 hours (midnight).

the given data matrix) based scatter plot suggested the ex-
tent to which these two types of classifications were di↵er-
ent. While the data was able to clearly distinguish between
the male graduate student and the older woman (see Figure
4), the scatter plot of web usage was inseparable when dis-
tinguishing between the two male students from the same
university (see Figure 5). This shows that individuals can
have similar profiles based on their demographics. How-
ever, when we look at the top three websites that the two
students visited, the first student had ufl.edu, volleyamer-
ica.com and aol.com as the most frequently visited sites,
while for the second student those were ufl.edu, github.com
and leetcode.com. These preliminary findings are promis-
ing in suggesting that with a large number of features in
multiple layers of abstraction we will be able to build a per-
sonalized profile for computer users based on their computer
activities.

Figure 4: A two-dimensional PCA-projection scat-
ter plot for the web usage of a 25-year-old male
graduate student and a 67-old-woman, showing that
their web usage times were clearly distinguishable.

29

Figure 5: A two-dimensional PCA projection scatter
plot for two male graduate students from the same
university in similar areas of study (i.e. engineering
and computer science), showing that their web usage
times were not su�ciently distinguishable.

7.1 Evaluation
Because of the personalization component of this

paradigm, an evaluation in the context of a robust user study
is warranted. In this section, we discuss one possibility for a
field study to evaluate the user acceptability and e↵ective-
ness of the paradigm in the context of malware detection
and individual profiling.

We envision a field study where the components of the
architecture described in Section 4 (extractor and profiler)
are either installed in the participant’s personal computer or
in a study laptop lend to the participant for at least three
weeks.

The goal of the study is to validate the hypothesis of
uniqueness of the profiles and to discover whether anomaly
events, such as malware, produce su�cient perturbations in
the profile to be captured by the profiler. Another inter-
esting research question that need to be addressed in the
context of a user study, is how well the profiler can adjust
the model on legitimate changes of habit, such as a per-
son traveling and changing her time zones, or projects in an
organization.Examining this question will require a longer
study period to allow for natural changes in the profiles to
occur.

The participants’ machine in the user study would also
have a module that, in the third week of the study, gen-
erates events that resemble malware [28] without incurring
any actual malicious activity in the participant’s computer.
A crucial aspect of the study validation will be the recruit-
ment of participants from di↵erent demographics to allow
for a diverse sample, while making sure that the sample also
includes participants from comparable backgrounds(e.g., a
group of participants that are comparable in their age range
and/or from a similar field of study university students).
Classification of participants from a diverse background will
allow validation of the uniqueness of the extracted computer
system profile. In contrast, classification participants from
similar demographics will allow to confirm the hypothesis of
group profile.

8. RELATED WORK
This section reviews existing literature addressing person-

alization or profiling, as well as malware detection.

8.1 Personalization
Song et al. [29] provided a Gaussian Mixture Model

(GMM) based machine-learning approach for biometric
identification of user behavior for authentication. The au-
thentication was based on capturing and estimating the
expected number of unique system level events like pro-
cess creation, registry key changes, and file creation. Yang
et al. [30] characterized mobile Internet user behavior by
capturing HTTP tra�c data to cluster users into di↵erent
groups based on application categories. The goal was to
equip network operators with information for resource pro-
visioning. Baglioni et al. [31] showed that extracting infor-
mation from the logs of a particular web server can help
identify navigational styles of web users. An interesting
pre-processing technique used in this work was extracting
semantic information such as the category of the site from
the URL name. Nogueira et al. [32] classified individuals
based on their hourly Internet tra�c. A more recent work
by Freeman et al. [18] added user behavior identification in
addition to password authentication based on source IP, geo-
location, browser configuration, and time of day. Another
interesting application, provided by Duarte et al. [19], clas-
sified people on the basis of age by determining correlations
between chronological age and browsing & search behavior
such as ads clicked, click duration and query length.

Another domain where personalization has been re-
searched is the area of creating user-specific recommenda-
tions. A comprehensive account of various content-based
and collaborative filtering techniques for webpage recom-
mendation was shown in Mobasher [20] and Castellano
et al. [33]. Chang et al. [34] addressed website recommenda-
tion using a neural network trained on data gathered from
surveys. Davidson et al. [35] encouraged client side person-
alization at the OS level by implementing a model to learn
a coarse-grained profile for each person using the Windows
phone OS.

Marforio et al. [36] suggested personalized security indica-
tors as a phishing-detection solution by experimenting with
human subjects on a simulated banking environment. Jiang
et al. [37] proposed a personalized malware warning system
or a ”malware recommendation engine,”where a risk ranking
of each malware sample for each user was computed to de-
termine potential types of malware a particular person may
be susceptible to.

In our paradigm, we define the concept of personalization
much more broadly, as the core of computer security solu-
tions for computer infrastructure and situational awareness,
and to be performed holistically across many layers of
abstraction. Barnam et al. [38] discussed the issue of mono-
culture for IT management. They argued that the debate
about the monoculture approach of IT management has
resurfaced [38]: ”It is believed that a collection of identical
computing platforms is easier, hence cheaper, to manage
because making one set of configuration decisions su�ces
for all.” In spite of these discussions, however, to date, most
of the existing IDS systems remain unpersonalized [38].

30

8.2 Anomalous Activity Detection
The research problem of anomalous activity detection has

been well studied under the domain name of IDS which in-
tends to monitor and identify malicious activities. Such sys-
tems can be deployed either in the network or at the host
site. Broadly, all intrusion-detection systems can be classi-
fied into either statistical anomaly-based or signature-based.
A specification or signature-based IDS [1–3] compares the
current behaviour against a pre-determined database of sig-
natures from known malware. These techniques are accu-
rate, but they can be evaded when attackers use polymor-
phism and metamorphism to create malware variants; these
variants have the same behavior, but di↵erent byte signa-
tures. Further, these approaches cannot detect zero-day
malware and have a practical detection rate ranging from
25–50% [4].

Statistical or behavioral approaches, in contrast, are based
on finding anomalies or deviation from statistically decided
normal behaviour. Forrest et al. [5, 6] introduced the idea
of distinguishing self and other in the context of malware
detection. The main idea was that a detector could extract
the normal behavior of programs running in a system (self)
and thus be able to distinguish malware behavior in the
same system (other). Self was extracted based on the set of
system calls invoked by the process. The work was ground-
breaking and inspired a generation of behavioral-based mal-
ware detection solutions [5–12] and automated diversity ap-
proaches [39, 40]. This line of work was also based on the
insight that computers can behave like the immune system
and this unique and diverse architecture can be leveraged
for anomaly detection (e.g., [41, 42]).

This previous works characterized normal behavior by se-
quences of system calls invoked by benign programs. It is
based on the hypothesis that malware invokes a di↵erent
set of system calls than benign software. The approach de-
pends on a training phase that collects sequences of system
calls of size N from various benign processes. A detection
phase compares the sets of system calls of the process under
analysis and raises an alarm if a sequence is not found in
the training set. Somayaji et al. [6] proposed the design of
a malware detection system inspired in the human immune
system. Kruegel et al. [9] analyzed not only sequences of
system calls, but also their arguments. Kirda et al. [10] pro-
posed combining static and dynamic analysis for detecting
spyware. The authors observed that spyware collected sen-
sitive information from a browser and leaked it. They pro-
posed a detector that identifies browser COM functions and
the Windows API calls.

Kolbitsh et al. [11] addressed the problem of malware per-
forming system call re-ordering to evade system-call based
malware detectors. They analyzed malware in a controlled
environment to extract its mission behavior. Then, they
extracted program slices responsible for the malware’s mis-
sion information flows. In a detection phase, the slices were
matched against the behavior of an unknown program.

However, system-call-based malware detectors su↵er from
high positive rates due to the diverse nature of system-calls
invoked by applications. This challenge has worsened as pro-
grams are becoming increasingly diverse [12,13] and malware
more sophisticated [14–16]. Lanzi et al. [12] investigated
the e↵ectiveness of system-call-based malware detectors on
a set of ten hosts and discovered a false-positive rate of ap-
proximately 40%. The authors proposed a system-centric

approach for the analysis of system calls where they also
considered the way programs access OS and its resources.
Canali et al. [13] investigated the accuracy of system-call-
based malware detectors. They analyzed 200 di↵erent mod-
els with 220 million signatures and proposed a method to
measure the quality of a malware detector based on its be-
havioral model. Many models performed very poorly and
the best ones relied on few high-level atoms with their ar-
guments.

Some previous works analyzed the data flow of a program
to extract malware behavior. Panorama [43], for example,
performed system-level taint-tracking to discover how mal-
ware leaks sensitive data. Martignoni et al. [44] leveraged
hierarchical behavioral graphs to infer high-level behavior
of low-level events. The approach traces the execution of
a program, performing data-flow analysis to discover rele-
vant actions such as proxying, data leaking and key stroke
logging. Ether [45] improved on tracing granularity on sin-
gle instructions and system calls via hardware virtualization
extensions. Ye et al. [46] proposed a semi-parametric clas-
sification model for combining file content and file relation
information to improve the performance of file sample clas-
sification. More recently, Bromium [4] proposed the use of
virtualization on a per-process basis to isolate every process
from the system and from each other.

There are very few publicly available databases to test the
e�ciency of detection systems. One such is the KDD Cup
99 dataset [47] where the data is the raw binary TCP dump
packets. Using the binaries, 41 high-level features under
the categories of basic features(e.g. duration, source bytes),
content features(e.g. number of root accesses), time-based
tra�c features (e.g. frequency of connections to same host),
and host-based tra�c features (e.g. windowed connection
rate) were derived. It is a network IDS problem where each
connection is labelled as either normal or malicious. Vari-
ous works like Hoque et al. [48] and Wang et al. [49] have
attempted to do reliable feature selection and anomaly clas-
sification on this dataset. The dataset has also been heavily
criticized for being outdated and hard to use [50,51].

An overview of various machine-learning- and data-
mining-based anomaly-detection techniques was given by
Patcha et al. [52]. In order to reduce the false-positive rate
in malware determination, an ensemble or multiple classifier
system was proposed by Perdisci et al. [53]. The data here
was again the payload binaries. However, when the data
was high-dimensional, such as in our case, outlier detection
became extremely di�cult, as pointed out by Aggarwal [21].

IDSes have been proposed at the network side [54,55]. Mc-
Daniel et al. [55] used K-means to analyze historic network
communication for hosts within enterprise network and gen-
erated malware profiles under di↵erent granularities to de-
tect and block worms. Gates et al. [56] debated the topic of
using the anomaly-detection model for intrusion detection
and the validity of various associated assumptions like spar-
sity and anomalous nature of the attacks. But their research
mainly focused on network tra�c and su↵ered from the loss
of error.

Sommer et al. [57] discuss several challenges that come up
while using machine learning for intrusion detection. Our
approach of personalized cross-layer will still be susceptible
to these concerns because it is based on the same anomaly-
detection premise. However, the use of cross-layer training
data will be more holistic, which can improve the detector

31

e↵ectiveness. Also, a personalized detection shall takes into
account the cyber usage for a single person, which is much
more coherent and informative of normal behavior of a user
than across-participant training data that is characterized
by high variability.

For our paradigm, OS & software updates and user be-
havior changes will present challenges. The implementation
of the paradigm will need to be aware of the start of updates
and deploy dynamic thresholds when a change of pattern is
observed. The implementation can leverage user feedback
to distinguish user behavior change from anomalous attack.

The importance of addressing malicious activity from
a cross-layered perspective was also inspired by Crandall
et al. [58] and Oliveira et al. [59] in their discussion of how
software vulnerabilities cross layers of abstraction. Many
vulnerabilities manifest at several layers of abstraction and
solutions that focus on a single layer are easily bypassed by a
clever attacker who understands the vulnerability well. For
example, at the application layer bu↵er overflows are caused
by an input string that exceeds the bounds of an array. At
the OS layer, it is caused by the way programs are laid out
into the stack with control data in band with data.

Our paradigm has the potential to boost the e↵ectiveness
of behavior-based detectors by reducing false-positive and
false-negative rates that are caused by the diversity of com-
puter system usage. For example, a connection to a Russian
domain from a computer of a Russian descent should prob-
ably be labeled as typical, while such connection coming
from a computer of a user computer with no ties to Rus-
sia should be considered suspicious and flagged. Another
example is an organization’s computer making a great num-
ber of network connections in a short period of time. If
this behavior deviates from the user profile, there is a great
chance that this computer has been compromised and used
as part of a DoS attack. However, if the computer belongs
to an employee whose primary task is to perform stress tests
in a web server, the behavior is typical and legitimate. A
one-sizes-fits-all anomaly detector, which focus on general or
per-malware category rules and operating at a single layer
of abstraction, will usually err in these situations.

9. SUMMARY OF DISCUSSION
The lively discussion at the workshop focused mainly on

five topics: (i) feature selection, (ii) profile stability, (iii)
privacy, (iv) responsibility and (v) user studies.

Feature selection. This was the most discussed topic at
the workshop. The attendees agreed that it will be a critical
part of our research. Tom Longsta↵ pointed out that the
set of useful features will be actually a small fraction of all
the features we will collect. The attendees believed that the
high-dimensional and temporal data set will become one of
the main challenges for the machine-learning classifier.

Further, the feature selection process will greatly depend
on both our target and the user. This selection will not be
completely stable. Paul van Oorschot suggested that the
features needed for detection and prevention could be very
di↵erent. We also believe that the best selection of features
might vary per user but we still need the data from a user
study to test our hypothesis.

Deborah Shands suggested that a large set of features will
enable the development of unlimited feature sets with dis-
tinct features coming from multiple layers. Di↵erent feature
sets may be needed for di↵erent tasks to achieve maximum

performance. Machine-learning methods with built-in fea-
ture selection, such as deep-learning, are promising to ad-
dress these issues, but further research is need to determine
the e↵ectiveness of these solutions.

Profile stability. Marco Carvalho raised the question
of profile stability, or how our proposed approach will with-
stand benign changes in the profile caused by travel, project
changes, etc. We are cognizant of the problem and plan
to apply RNN, which is a category of deep-learning algo-
rithm that takes small windows of data as input. Analysis
of small windows of input could allow us to make decisions
as close to real time as possible. However, we still need to
prove RNN’s e�ciency in this context. Additionally, our as-
sumption is that the protection target are enterprises where
employees’ profiles are relatively stable. We also envision
leveraging user-feedback through an interface to inform the
model about significant profiles changes. Marco Carvalho
also suggested the use of mixture modeling to address the
this question.

Privacy. Many attendees raised the concerns regarding
privacy and cross-country di↵erences of the definition and
expectations of privacy. Although we have not verified it is
possible, we expect that the proposed approach can be fine-
tuned to operate according to the level of privacy required
in a particular country or organization. For example, one
possible but not verified solution is to use a di↵erent set of
data depending on the laws of the country.

Responsibility. The responsibility of handling an alarm,
raised by Hilary Hosmer, is another interesting issue. How-
ever, our research on the practical division of responsibility
under such case is limited. Currently, we expect the alarm
to be handled by either the employee or a system admin-
istrator, in line with the organization’s policies. But the
solution has not shown yet to be practical or e↵ective with
empirical data, and is likely to change based on results of
future research.

Evaluation through a user study. As part of this
research, we will collect profiles from real Internet users in
an IRB-approved user study involving participants from the
Gainesville, FL area. This data will allow us to test our
hypothesis about the uniqueness of extracted profiles and to
determine the extent to which outlier events in the profile
can be distinguished. The number of participants for the
user study will be determined via statistical power analysis
method [60].

10. CONCLUSIONS
Today’s level of sophistication and stealthiness of attacks

in computer infrastructures of organizations and govern-
ment agencies indicates that our cyber security solutions
are outdated. While adversaries are designing attacks that
are targeted, our solutions still operate in a “one-size-fits-
all” fashion. To counter this ”new normal,” we advocate a
novel paradigm where cross-layer personalization is a pre-
mier component in the design of security solutions for sit-
uational awareness and protection of computer infrastruc-
ture. The paradigm revolves around the observation that
computers have been used in a personalized fashion, with
no or very little device sharing, and that individual profiles
can be used to build a signature for a user. We proposed
that personalization should encompass all layers that make
up the computer system: application, OS, and network, so
that di↵erent data can be correlated in a robust profile.

32

Such cross-layer personalization should be the foundation
for the next-generation malware, APT, insider-attack detec-
tion, and for continuous user authentication. We presented
the initial design and preliminary results of the proposed
paradigm, which showed promise of the cross-layer person-
alization approach. There are also intrinsic security and pri-
vacy challenges in collecting computer behavioral data from
citizens’ devices. We hope the cross-layer personalization
paradigm will motivate new research on malware & insider
attack detection, and continuous authentication.

Acknowledgments
We would like to thank our shepherd Mohammad Man-

nan and Paul Van Oorschot for guidance in writing the
pre-proceeding and post-proceeding version of the paper,
and the NSPW 2016 anonymous reviewers for their valu-
able feedback. This research has been supported by DARPA
Trusted Computing Project, grant No. FA8650-15-C-7565,
and MIT Lincoln Laboratory through Air Force Contract
No. A8721-05-C-0002 and/or FA8702-15-D-0001.

11. REFERENCES
[1] S. Kumar and E. H. Spa↵ord, “An application of

pattern matching in intrusion detection,” tech. rep.,
Purdue University, July. 1994.

[2] K. Ilgun, R. A. Kemmerer, and P. A. Porras, “State
transition analysis: A rule-based intrusion detection
approach,” IEEE Trans. Softw. Eng., vol. 21,
pp. 181–199, Mar. 1995.

[3] G. Vigna and R. A. Kemmerer, “Netstat: a
network-based intrusion detection approach,” in
Proceedings of the 14th Annual Computer Security
Applications Conference, pp. 25–34, ACM, 1998.

[4] “Bromium end point protection
(https://www.bromium.com/),” Apr. 2016.

[5] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A.
Longsta↵, “A sense of self for unix processes,” in
Proceedings of IEEE Symposium on Security and
Privacy, pp. 120–128, IEEE, 1996.

[6] A. Somayaji, S. Hofmeyr, and S. Forrest, “Principles
of a computer immune system,” in Proceedings of the
1997 Workshop on New Security Paradigms, NSPW
’97, (New York, NY, USA), pp. 75–82, ACM, 1997.

[7] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion
detection using sequences of system calls,” Journal of
Computer Security, vol. 6, pp. 151–180, Aug. 1998.

[8] C. Warrender, S. Forrest, and B. Pearlmutter,
“Detecting intrusions using system calls: Alternative
data models,” Proceedings of IEEE Symposium on
Security and Privacy, pp. 133–145, 1999.

[9] C. Kruegel, D. Mutz, F. Valeur, and G. Vigna, “On
the detection of anomalous system call arguments,”
ESORICS, vol. 2808, pp. 326–343, 2003.

[10] E. Kirda, C. Kruegel, G. Banks, G. Vigna, and R. A.
Kemmerer, “Behavior-based spyware detection,” in

Delivered to the US Government with Unlimited Rights,
as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014).
Notwithstanding any copyright notice, U.S. Government
rights in this work are defined by DFARS 252.227-7013 or
DFARS 252.227-7014 as detailed above. Use of this work
other than as specifically authorized by the U.S. Govern-
ment may violate any copyrights that exist in this work.

Proceedings of the 15th USENIX Security Symposium,
USENIX-SS’06, 2006.

[11] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda,
X. Zhou, and X. Wang, “E↵ective and e�cient
malware detection at the end host,” in Proceedings of
the 18th USENIX Security Symposium,
USENIX-SS’09, pp. 351–366, 2009.

[12] A. Lanzi, D. Balzarotti, C. Kruegel,
M. Christodorescu, and E. Kirda, “Accessminer: Using
system-centric models for malware protection,” in
Proceedings of the 17th ACM Conference on Computer
and Communications Security, CCS ’10, pp. 399–412,
2010.

[13] D. Canali, A. Lanzi, D. Balzarotti, C. Kruegel,
M. Christodorescu, and E. Kirda, “A quantitative
study of accuracy in system call-based malware
detection,” in Proceedings of the 2012 International
Symposium on Software Testing and Analysis, ISSTA
2012, pp. 122–132, 2012.

[14] T. Wrightson, Advanced Persistent Threat Hacking:
The Art and Science of Hacking Any Organization.
McGraw-Hill Education, 1st ed., 2014.

[15] “Email Attacks: This Time It’s Personal (http://
itknowledgeexchange.techtarget.com/security-detail/
cisco-report-email-attacks-this-time-its-personal/) ,”
Jul. 2011.

[16] “RSA: SecurID Attack Was Phishing Via an Excel
Spreadsheet (https://threatpost.com/
rsa-securid-attack-was-phishing-excel-spreadsheet-040111/
75099/) ,” Apr. 2011.

[17] K. Kupferschmiddt, “A Trail of Microbes - The
Unique Mix of Bacteria You Leave Behind Wherever
You Go Might Be Used to Identify You,” Science,
vol. 351, no. 6278, 2016.

[18] D. M. Freeman, S. Jain, M. Dürmuth, B. Biggio, and
G. Giacinto, “Who are you? a statistical approach to
measuring user authenticity,” in 23rd Annual Network
& Distributed System Security Symposium (NDSS).
The Internet Society, 2016.

[19] S. Duarte Torres, I. Weber, and D. Hiemstra,
“Analysis of search and browsing behavior of young
users on the web,” ACM Transactions on the Web
(TWEB), vol. 8, no. 2, p. 7, 2014.

[20] B. Mobasher, “Data mining for web personalization,”
in The adaptive web, pp. 90–135, Springer, 2007.

[21] C. C. Aggarwal and P. S. Yu, “Outlier detection for
high dimensional data,” in Proceedings of the 2001
ACM SIGMOD International Conference on
Management of Data, SIGMOD ’01, (New York, NY,
USA), pp. 37–46, ACM, 2001.

[22] I. Jolli↵e, Principal component analysis. Wiley Online
Library, 2002.

[23] K. Kira and L. Rendell, “The feature selection
problem: Traditional methods and a new algorithm,”
in Tenth National Conference on Artificial Intelligence
(AAAI-92), pp. 129–134, MIT Press, 1992.

[24] B. Schoelkopf and A. J. Smola, Learning with Kernels.
Cambridge, MA: The MIT Press, 2002.

[25] M. Gupta, J. Gao, C. Aggarwal, and J. Han, “Outlier
detection for temporal data,” Synthesis Lectures on
Data Mining and Knowledge Discovery, vol. 5, no. 1,
pp. 1–129, 2014.

33

[26] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and
P.-A. Manzagol, “Stacked denoising autoencoders:
Learning useful representations in a deep network with
a local denoising criterion,” The Journal of Machine
Learning Research, vol. 11, pp. 3371–3408, 2010.

[27] G. Szarvas, R. Farkas, and R. Busa-Fekete,
“State-of-the-art anonymization of medical records
using an iterative machine learning framework,”
Journal of the American Medical Informatics
Association, vol. 14, no. 5, pp. 574–580, 2007.

[28] A. Gregio, R. Bonacin, A. C. de Marchi, O. F. Nabuco,
and P. L. de Geus, “An ontology of suspicious software
behavior,” Applied Ontology, vol. 1, pp. 1–21, 2016.

[29] Y. Song, M. Ben Salem, S. Hershkop, and S. J. Stolfo,
“System level user behavior biometrics using fisher
features and gaussian mixture models,” in Security and
Privacy Workshops (SPW), pp. 52–59, IEEE, 2013.

[30] J. Yang, Y. Qiao, X. Zhang, H. He, F. Liu, and
G. Cheng, “Characterizing user behavior in mobile
internet,” Emerging Topics in Computing, IEEE
Transactions on, vol. 3, no. 1, pp. 95–106, 2015.

[31] M. Baglioni, U. Ferrara, A. Romei, S. Ruggieri, and
F. Turini, “Preprocessing and mining web log data for
web personalization,” in AI* IA 2003: Advances in
Artificial Intelligence, pp. 237–249, Springer, 2003.

[32] A. Nogueira, M. R. De Oliveira, P. Salvador,
R. Valadas, and A. Pacheco, “Classification of internet
users using discriminant analysis and neural
networks,” in Next Generation Internet Networks,
pp. 341–348, IEEE, 2005.

[33] G. Castellano, L. C. Jain, and A. M. Fanelli, Web
Personalization in Intelligent Environments. Springer
Publishing Company, Incorporated, 1st ed., 2009.

[34] C. C. Chang, P.-L. Chen, F.-R. Chiu, and Y.-K. Chen,
“Application of neural networks and Kanos method to
content recommendation in web personalization,”
Expert Systems with Applications, vol. 36, no. 3,
pp. 5310–5316, 2009.

[35] D. Davidson, M. Fredrikson, and B. Livshits,
“Morepriv: Mobile os support for application
personalization and privacy,” in Proceedings of the
30th Annual Computer Security Applications
Conference, pp. 236–245, ACM, 2014.

[36] C. Marforio, R. J. Masti, C. Soriente, K. Kostiainen,
and S. Capkun, “Personalized security indicators to
detect application phishing attacks in mobile
platforms,” CoRR, vol. abs/1502.06824, 2015.

[37] J.-Y. Jiang, C.-L. Li, C.-P. Yang, and C.-T. Su,
“Poster: Scanning-free personalized malware warning
system by learning implicit feedback from detection
logs,” in Proceedings of the 21st ACM Conference on
Computer and Communications Security, CCS ’14,
pp. 1436–1438, ACM, 2014.

[38] D. Barman, J. Chandrashekar, N. Taft, M. Faloutsos,
L. Huang, and F. Giroire, “Impact of IT monoculture
on behavioral end host intrusion detection,” in
Proceedings of the 1st ACM Workshop on Research on
Enterprise Networking, WREN ’09, (New York, NY,
USA), pp. 27–36, ACM, 2009.

[39] S. Forrest, A. Somayaji, and D. Ackley, “Building
diverse computer systems,” in Proceedings of the 6th
Workshop on Hot Topics in Operating Systems

(HotOS-VI), HOTOS ’97, (Washington, DC, USA),
pp. 67–72, IEEE Computer Society, 1997.

[40] E. G. Barrantes, D. H. Ackley, S. Forrest, and
D. Stefanović, “Randomized instruction set
emulation,” ACM Trans. Inf. Syst. Secur., vol. 8,
pp. 3–40, Feb. 2005.

[41] S. Forrest, S. A. Hofmeyr, and A. Somayaji,
“Computer immunology,” Commun. ACM, vol. 40,
pp. 88–96, Oct. 1997.

[42] S. A. Hofmeyr and S. A. Forrest, “Architecture for an
artificial immune system,” Evol. Comput., vol. 8,
pp. 443–473, Dec. 2000.

[43] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda,
“Panorama: Capturing System-wide Information Flow
for Malware Detection and Analysis,” Proceedings of
the 14th ACM Conference on Computer and
Communications Security, pp. 116–127, 2007.

[44] L. Martignoni, E. Stinson, M. Fredrikson, S. Jha, and
J. C. Mitchell, “A layered architecture for detecting
malicious behaviors,” in Proceedings of the 11th
International Symposium on Recent Advances in
Intrusion Detection, RAID ’08, pp. 78–97, 2008.

[45] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether:
Malware analysis via hardware virtualization
extensions,” in Proceedings of the 15th ACM
Conference on Computer and Communications
Security, CCS ’08, pp. 51–62, ACM, 2008.

[46] Y. Ye, T. Li, S. Zhu, W. Zhuang, E. Tas, U. Gupta,
and M. Abdulhayoglu, “Combining file content and file
relations for cloud based malware detection,” in
Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
KDD ’11, (New York, NY, USA), pp. 222–230, ACM,
2011.

[47] S. J. Stolfo, W. Fan, W. Lee, A. Prodromidis, and
P. K. Chan, “Cost-based modeling for fraud and
intrusion detection: Results from the jam project,” in
DARPA Information Survivability Conference and
Exposition. DISCEX’00. Proceedings, vol. 2,
pp. 130–144, IEEE, 2000.

[48] M. S. Hoque, M. Mukit, M. Bikas, A. Naser, et al.,
“An implementation of intrusion detection system
using genetic algorithm,” arXiv preprint
arXiv:1204.1336, 2012.

[49] K. Wang and S. J. Stolfo, “Anomalous payload-based
network intrusion detection,” in Proceedings of the 7th
International Symposium on Recent Advances in
Intrusion Detection, RAID ’08, pp. 203–222, 2004.

[50] T. Brugger, “KDD Cup ’99 dataset (Network
Intrusion) considered harmful.” KDnuggets News, n18:
item4, 15 Sep 2007.

[51] V. Engen, J. Vincent, and K. Phalp, “Exploring
discrepancies in findings obtained with the kdd cup
’99 data set,” Intell. Data Anal., vol. 15, pp. 251–276,
Apr. 2011.

[52] A. Patcha and J.-M. Park, “An overview of anomaly
detection techniques: Existing solutions and latest
technological trends,” Journal of Computer Networks,
vol. 51, no. 12, pp. 3448–3470, 2007.

[53] R. Perdisci, D. Ariu, P. Fogla, G. Giacinto, and
W. Lee, “Mcpad: A multiple classifier system for
accurate payload-based anomaly detection,” Journal of

34

Computer Networks, vol. 53, no. 6, pp. 864–881, 2009.
[54] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger,

J. Frank, J. Hoagland, K. Levitt, C. Wee, R. Yip, and
D. Zerkle, “Grids – a graph based intrusion detection
system for large networks,” in In Proceedings of the
19th National Information System Security
Conference, pp. 361–370, 1996.

[55] P. D. McDaniel, S. Sen, O. Spatscheck, J. E. van der
Merwe, W. Aiello, and C. R. Kalmanek, “Enterprise
security: A community of interest based approach.,” in
13th Annual Network & Distributed System Security
Symposium (NDSS), pp. 1–3, 2006.

[56] C. Gates and C. Taylor, “Challenging the anomaly
detection paradigm: a provocative discussion,” in
Proceedings of the 2006 Workshop on New Security
Paradigms, pp. 21–29, ACM, 2006.

[57] R. Sommer and V. Paxson, “Outside the closed world:
On using machine learning for network intrusion

detection,” in Proceedings of IEEE Symposium on
Security and Privacy, pp. 305–316, IEEE, 2010.

[58] J. R. Crandall and D. Oliveira, “Holographic
vulnerability studies: Vulnerabilities as fractures in
interpretation as information flows across abstraction
boundaries,” in Proceedings of the 2012 Workshop on
New Security Paradigms, NSPW ’12, (New York, NY,
USA), pp. 141–152, ACM, 2012.

[59] D. Oliveira, J. Crandall, H. Kalodner, N. Morin,
M. Maher, J. Navarro, and F. Emiliano, An
Information Flow-Based Taxonomy to Understand the
Nature of Software Vulnerabilities, pp. 227–242.
Cham: Springer International Publishing, 2016.

[60] P. A. Lachenbruch, “Statistical power analysis for the
behavioral sciences,” Journal of the American
Statistical Association, vol. 84, no. 408, pp. 1096–1097,

abcd1989.

35

