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ABSTRACT
The orthodox paradigm to defend against automated
social-engineering attacks in large-scale socio-technical
systems is reactive and victim-agnostic. Defenses
generally focus on identifying the attacks/attackers (e.g.,
phishing emails, social-bot infiltrations, malware o↵ered
for download). To change the status quo, we propose to
identify, even if imperfectly, the vulnerable user population,
that is, the users that are likely to fall victim to such
attacks. Once identified, information about the vulnerable
population can be used in two ways. First, the vulnerable
population can be influenced by the defender through several
means including: education, specialized user experience,
extra protection layers and watchdogs. In the same vein,
information about the vulnerable population can ultimately
be used to fine-tune and reprioritize defense mechanisms
to o↵er di↵erentiated protection, possibly at the cost of
additional friction generated by the defense mechanism.
Secondly, information about the user population can be
used to identify an attack (or compromised users) based
on di↵erences between the general and the vulnerable
population. This paper considers the implications of the
proposed paradigm on existing defenses in three areas
(phishing of user credentials, malware distribution and
socialbot infiltration) and discusses how using knowledge of
the vulnerable population can enable more robust defenses.

Keywords
Vulnerable population; cyber intrusions; defense system
design

1. INTRODUCTION
Social engineering is one of the key attack vectors

faced by large socio-technical systems such as Facebook
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and Google [13, 36, 37]. To carry out further attacks,
cyber criminals use social engineering to exploit unsafe
decisions by individual users by tricking them into providing
credentials to phishing websites [37], accepting friendship
requests from socialbots [12], or downloading malware [91].
Such, largely automated, attacks are increasing in frequency,
scale, and sophistication [56, 71]. As a case in point, one
of such attacks, phishing (i.e., a social engineering attack
using fraudulent emails/websites to trick users into leaking
account credentials), causes sizeable financial losses: $1.6
billion only in 2013 [66]. A recent study [67] highlights
the magnitude of the problem: about half of the 1,000
participants actively clicked on a phishing link, and half
of those actually leaked information to phishing websites,
becoming victims of the attack.

State of the art defenses against cyber intrusion
in socio-technical systems are mostly reactive and
victim-agnostic. In general, these defenses do not attempt to
harness user characteristics, and instead focus on identifying
attack entry points, such as phishing emails or friend
requests from socialbots, based on structural, contextual, or
behavioral attributes of the attack(er) [22]1. The commonly
used defense mechanisms, presented in Figure 1 from
a high-level design standpoint, typically employ operator
filters to automatically detect known attacks or anomalies.
However, as attacks do evolve and due to the need to
minimize false positives, a considerable number of attacks
pass through this filter and reach users (e.g., a phishing
email ending up in the user’s inbox).

Once the threat is exposed at the user level, it is then
up to the user to decide how to respond (e.g., by flagging
a phishing email as malicious, ignoring it, or following the
phishing link). This manual vetting process can be thought
of as a second filtering level, marked as a user filter in
Figure 1. Attacks that bypass this filter turn the user into a
victim: A user whose assets, including account credentials,
private data, or personal devices, are compromised.

Usually, the system operator eventually detects some of
the compromised assets, either prompted by the victim, by
other users, or based on the abnormal behavior detected by
an automated incident-response system. Shortly after, the
operator launches a remediation process, which is illustrated
as the remediation filter in Figure 1. After the compromise is

1
Defenses based on anomaly detection also fit here [41].
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Figure 1: High-level schematic presenting the
structure of existing defenses against mass-scale
attacks (left-side feedback loop) and the proposed
paradigm (right-side): augmenting the feedback
loop with information about vulnerable users to
improve the operator filter (1), users’ own decision
making process (2), and the remediation filter (3).

cleared, the resulting attack analysis concerning the involved
assets and attack pattern are generally fed back into the
operator and remediation filters to detect future, similar
attacks and other compromised users.

The reactive and victim-agnostic nature of this defense
paradigm [9, 19, 21, 26, 52, 53, 62, 63, 85, 89, 94] gives
attackers the opportunity to evade detection (by adjusting
their tactics), circumvent the employed defenses, and still
reach the end-users.
We advocate a complementary approach: a

victim-centric defense. We propose to detect the
vulnerable population (that is, the users that are likely to
become victims, e.g., users likely to fall prey to a phishing
attack) and to thwart attacks by: focusing defense e↵orts on
the vulnerable population and, at the same time, using the
information about the vulnerable population to design more
robust defenses. We postulate that the information about
the vulnerable population can be used to build proactive
defenses (the defender identifies the vulnerable users, and
subsequently feeds this information back into the defense
subcomponents to detect new types of attacks that were
not previously observed) or can be used to increase the
robustness of existing reactive defenses.

The feedback loop on the right side of Figure 1 summarizes
the layers where the information about the vulnerable
population can be used. Specifically, this information
can be harnessed to: (1) establish more robust attack
detection at the operator-level filter (e.g., by augmenting
the operator-level filters with a per-user vulnerability
score, or by inferring the likelihood of a request being
malicious based on collected statistics on how vulnerable
and robust users reacted to similar requests in the past),

(2) aid vulnerable users in making better decisions (e.g.,
through user education, personalized interfaces, enforced
hardware/software configuration/restrictions, and/or better
understanding of the decision making process of di↵erent
categories of users), and (3) achieve faster and more accurate
compromise detection and remediation for attacks that were
not previously observed (the intuition is that, a user’s
vulnerability score can be used by the defender to prioritize
monitoring and to make more accurate decisions on whether
an asset is compromised when abnormal behaviour is
observed).

Our contribution. Our proposal draws insights from
multiple areas (including usable security, user-aware security
mechanisms, public health), and is informed by the current
mass-scale attacks in large socio-technical systems and by
existing defenses, some of which do explicitly focus on the
vulnerable population. However, in contrast with existing
ad-hoc, system-specific solutions we approach harnessing the
vulnerable population under a single, unified framework that
encompasses diverse application areas. To the best of our
knowledge, we are the first to propose and discuss such a
framework as a complementary security paradigm.

Note that we do not aim to present in detail concrete
defense mechanisms and algorithms that leverage the
vulnerable population. Our goal is to put forward a new
security paradigm which opens new research opportunities
in thwarting cyber intrusions in socio-technical systems.
For a specific instantiation of this paradigm and a detailed
description of defense mechanisms and algorithms we point
the reader to our recent work on social-bot infiltration
detection [10]. Furthermore, we note that targeted attacks
(e.g., spear phishing attacks) are beyond the scope of the
proposed paradigm.

The structure of this paper. To illustrate the potential
of this paradigm, we develop our ideas in more detail in
the context of three specific application areas: mitigating
phishing-based credential theft (§2.1), malware distribution
(§2.2), and socialbot infiltration (§2.3). For each of
these application areas, we discuss where current defense
mechanisms fail, how identifying the vulnerable population
could proceed, and how information about vulnerable
population can help to build more resilient defense systems.
We then discuss (§3) topics related to the feasibility of
identifying the vulnerable population, factors influencing its
accuracy, and possible issues related to adopting this new
paradigm.

2. COMPARING THE CURRENT AND
THE PROPOSED PARADIGM

To highlight how information on the vulnerable
population can be leveraged we focus on mitigating cyber
intrusion attacks in three di↵erent domains. For each
domain: we first contrast current approaches with our
proposed strategy informed by inferring the vulnerable
population, we then sketch how the vulnerable population
can be identified, and, finally, we present how the filters
illustrated in Figure 1 can be made more e�cient by using
information about the vulnerable population.

Terminology. We refer to users who have fallen prey to
social engineering attacks and had their assets compromised
as victims 2. We refer to users who are more susceptible

2
Note that it is the defender, and not the user, who defines what a
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to fall prey to such attacks in the future as the vulnerable
population 3. We refer to users that are less susceptible to
fall prey to attacks as robust users 4.

2.1 Mitigating the Threat of Phishing for User
Credentials

Online user credentials, especially those provided by email
or social networking services, are becoming increasingly
valuable. This is the case because those credentials are
being used as a single sign-on identity for many other online
services. As a result, large online service operators have
invested heavily in the development of defense systems to
mitigate credential theft, especially credential theft carried
out through phishing [23].

Stolen credentials, or compromised accounts, do not only
impact their owners but the whole socio-technical system.
For example, compromised email accounts are used to spread
spam and phishing emails, as they are likely to have better
reputation (than newly created fake accounts) and to bypass
spam filters [72]. This is also true for social networking
accounts [80].

The Current Approach. At each filtering level
(illustrated in Figure 1), various strategies have been
investigated. At the operator-filter level, the proposed
strategies include: content-based classification [89, 95],
anomaly-based classification [30] and URL character
frequency analysis [85]. At the user-filter level, some
of the proposed strategies include: user education [68],
visual page similarity [18], and o↵ensive defense [17].
Finally, at the remediation-filter level, one proposed strategy
is crowdsourcing [45]. None of these approaches uses
information about the vulnerable population.

The Proposed Paradigm. Instead of focusing only
on identifying attack patterns, we argue below that using
information about potential victims in the decision processes
employed by each filtering level will enable a more robust
defense. For example, a classifier using the email sender’s
vulnerability score as a feature would likely yield better
detection accuracy (i.e., allowing for the detection of
epidemic attacks originating from the victim population).
Such an approach would also support the development of
more e�cient threat detection and remediation strategies
by prioritizing e↵orts on the vulnerable population 5 as we
outline for each filtering level below.

Identifying the Vulnerable Population. Leveraging
the large set of temporal, structural, and behavioral features
collected by online service operators, vulnerable users can be

victim is.

3
While the definition of a victim is deterministic, the definition of

a vulnerable user is probabilistic, in the sense that a vulnerability

’score’ will correlate with the probability that the user becomes a

victim if attacked. A user’s vulnerability will change over time as

the user gains expertise with using a system, and the uncertainty

associated with a vulnerability score will decrease as more data

about the users’ behaviour is gathered. We envisage that ground

truth data is collected continuously, and the prediction models are

periodically retrained.

4
We consider a user robust if her vulnerability score is su�ciently

low. As the score is inferred from user behaviour over a long

period of time, we hypothesize that users who are able to identify

potential risks, e.g., suspicious messages or friendship requests

from suspicious users, are more aware of new threats as well and

can be valuable assets in designing defense strategies.

5
Based on our past experience, we hypothesize that the vulnerable

users represent a fraction of the overall user population. As such,

prioritizing and focusing defensive e↵orts on this subset of users

would allow a more e�cient allocation of defense resources.

identified by training a machine learning classifier on labeled
ground truth of known victims. With a reliable ground truth
and a large set of features, the trained classifier will generate
a vulnerability score to predict the likelihood that a user
will make an incorrect security decision (in the context of
a phishing attack). This score can be used to inform all
defense filters discussed in Section 1 as we outline below.

Operator filters. On the one side, given information
about potential victims, various defensive strategies inspired
by the public health field can be employed during
attack ”outbreaks” (i.e., large-scale attack campaigns) to
”quarantine” the population-at-risk. One approach can be
to throttle down the sending rate of messages proportional
to a user’s vulnerability score during an ”outbreak”
(the intuition is to distribute the cost of an emergency
measure proportionally with perceived user risk rather than
indiscriminately). Another, complementary, approach can
be to delay the delivery of potential phishing messages to
vulnerable users; once those messages are better understood,
possibly based on the reaction of robust users 6 to similar
messages, these messages may get delivered to vulnerable
users as well. Thus, operator-level attack filters employ
knowledge about vulnerable users to mitigate the spread of
attacks within its internal user population.

On the other side, vulnerability scores can be used to make
attack detection more accurate. For example, vulnerability
scores can be used to inform the operator-level filters in case
of epidemic attacks (e.g., attacks where the email account
of the victim is compromised and used for sending out
phishing/spam emails): suspicious outbound tra�c (e.g.,
phishing/spam emails) that is identified across multiple
users with high vulnerability scores may be seen as a signal
of an attack outbreak. The defense system can then take
steps to prevent such attacks from spreading to the rest of
the user population.

User filters. Secondly, an anti-phishing defense
system can leverage users’ vulnerability scores to provide
personalized security advice and controls. A personalized
approach to security can not only better inform users’
decision making process but also improve the usability
of the service as well as the overall user experience [24].
At the same time, through the early identification of
vulnerable users, the service operator can take proactive
measures to ”immunize” them. For example, the service
operator can carry out user education campaigns that are
only targeted to potential vulnerable users (e.g., o↵ering
embedded training [42, 43]). Such a focused approach, on
the one side, reduces the cost of the education campaign by
only targeting at-risk users who are most likely to benefit,
and, on the other side, decreases the overall friction for the
rest of the user population by excluding those who are not
likely to fall victim to such attacks in the first place.

Remediation filters. Finally, we postulate that the
vulnerability score, i.e., the likelihood that a user would fall
victim to a phishing attack, can also be used to enable faster
remediation. First of all, using such a score as a feature
would substantially improve the accuracy of a classifier
trained to identify potentially malicious login attempts
using phished credentials. Second, service operators can

6
We note that, in the context of phishing attacks, identifying robust

users and relying on them to label phishing emails has some

similarities with existing proposals to crowdsource phishing/spam

email labeling [45, 46].
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crowdsource the detection of evolving threats to the robust
portion of the user population. The defense system would
leverage their feedback (i.e., user reported threats) to
more quickly initiate remediation and to prevent attack
propagation. In more details, an email provider could
potentially introduce a delivery delay to bulk email (which
may or may not be malicious) addressed to the vulnerable
subset of the population [83]. The defense system can then
rely on feedback and user reports from those who receive
the unverified bulk email earlier (since they are less likely to
fall victim to attacks) and take action accordingly. A third
avenue is that service operators could potentially launch
regular compromise detection campaigns (either through
manual sampling or through more automated means) on the
small subset of users that are most likely to fall victim to
account compromise. Doing so is much more e�cient in
terms of resources since it is directed to the much smaller
subset of the overall population that is most likely to benefit
from such extra scrutiny.

2.2 Mitigating the Threat of Malware
Distribution

Malware downloads (e.g., viruses, trojans and other
malicious applications) have been a widespread vector
of cyber-attacks. Both traditional Internet Service
Providers (ISPs) and wireless carriers, have invested in the
development of defense systems that aim to protect their
customers and their networks from those threats. However,
despite the widespread use of host- and network-based
malware detection systems, the malware threat is constantly
expanding; security analysts have identified 317 million new
malware variants in 2014 (up from 252 million new variants
identified in 2013) [79]. One of the most prominent malware
spreading strategies is social engineering, where users
are tricked into clicking on malicious URLs or installing
malicious applications.

The Current Approach. At each filtering level
(illustrated in Figure 1), various strategies have been
investigated in the literature. At the operator-filter level, the
proposed strategies include: sandboxing [51], blacklists [31],
vulnerability-based detection [38, 87], signature-based
detection [78], anomaly-based detection [69] and machine
learning [61]. Note that, in spite of major progress, the
rate of false positives and the runtime overheads of the
detection filters put pressure on the accuracy that can be
achieved. As a result, in practice, the user is still exposed
to making decisions over whether to download and run
malicious software. At the user-filter level, a common
strategy employed by most major web browsers is to require
user confirmation before running downloaded executables.
Finally, at the remediation-filter level, some of the proposed
strategies include: honeypots [70, 88] and honeyclients [58].

The Proposed Paradigm. By focusing defensive e↵orts
on the subset of the population that is most vulnerable, the
proposed victim-centric defense paradigm has the potential
to enable the use of advanced malware defense systems in
the context of real-time analysis of high-volume Internet
tra�c. Additionally, this approach would enable a defense
that is more robust to adversarial strategies as opposed
to traditional approaches which can be circumvented using
basic evasion techniques.

Identifying the vulnerable population. ISPs have
deep visibility into all network operations and are thus

uniquely positioned not only to identify users that are
potentially vulnerable to malware threats but also to provide
network-based real-time defense. Based on labeled ground
truth collected by the ISPs and leveraging the large set of
available temporal, behavioral and network flow features, a
classifier can be trained to identify users that are likely to fall
victim to malware downloads. Corresponding vulnerability
scores can be computed for those vulnerable users to inform
the attack filters illustrated in Figure 1 as illustrated below.

Operator filter. First, ISPs can employ graph
analysis techniques (with nodes representing hosts and
edges representing tra�c flow between hosts) to identify
hosts that exhibit spatial or temporal tra�c correlation
with the vulnerable subset of the user population.
These hosts are more likely to be attacker-controlled
(e.g., compromised servers or C&C servers) and can be
subsequently investigated and potentially blacklisted at the
operator-level filter.

User filter. Secondly, by identifying the subset of the
user population with the highest likelihood of falling victim
to malware threats, ISPs can take preventative measures to
reinforce user-level defenses. ISPs can make use of captive
portals to provide targeted educational and remediation
material only to the segment of the user population that
is most at risk. The captive web portal can include basic
training material, personalized security advice as well as
security software downloads (e.g., host-based anti-malware
software) from trusted internal ISP-controlled servers. Such
an approach would minimize both the amount of e↵ort
and resources that must be expended by the ISPs as
well as the amount of friction experienced by the overall
population. Moreover, ISP resources such as Intrusion
Detection Systems (IDSs) can be more e↵ectively used by
prioritizing and focusing on tra�c from/to the subset of the
user population that is most at-risk.

Remediation filter. Finally, information regarding the
likelihood of users falling victim to malware attacks can
be employed by ISPs for faster compromise detection and
remediation. The segment of the user population that
are most likely to fall victim to malware threats could
potentially be treated by ISPs as if they were honeypots.
ISPs can place such ”honeypots” under much closer scrutiny
than typical users in order to detect evolving threats.
Moreover, ISPs can routinely run inspection campaigns on
the vulnerable subset of the user population either through
manual sampling or through more automated methods.
This would allow ISPs to more e�ciently utilize their
available security resources by focusing on the segment of
the user population that would benefit the most from such
inspections.

2.3 Mitigating the Threat of Socialbot
Infiltration

From a security perspective, a socialbot is an automated
user account in a target online social network (OSN) that is
created and controlled by an attacker for various adversarial
objectives [10], including social spamming [80], political
astroturfing [65], and private data collection [12]. To
accomplish these objectives, an attacker has to connect
the socialbots with real user accounts through a social
infiltration campaign, as isolated socialbots cannot freely
interact with or promote content to users in the target
OSN [8, 12, 57, 75]. Making these connections is possible
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because users can be tricked into accepting friend requests
sent by socialbots, especially when the users share mutual
friends with the socialbots [11]. We refer to users that have
accepted friend request from socialbots as victims.

The Current Approach. This multifaceted threat has
spawned a line of research with the goal of designing defense
mechanisms to thwart socialbots. Thus far, most of the work
in this area is at the level of the operator-filter (Figure 1).
On the one hand, some approaches rely on mining the
users’ activity patterns or to control their account creation
proactively [16, 40, 75, 90]. While these techniques are
e↵ective against naive attack strategies, many studies have
shown that, in practice, they introduce usability issues and
can be easily evaded [3, 13, 40, 86]. On the other hand,
while graph-based detection promises desirable security
properties, it hinges on the assumption that socialbots
cannot befriend many real accounts. Past work, however,
showed that it is su�cient for each socialbot to befriend a
single victim in order to evade detection [3, 92]. At the
user-filter level, OSN operators constantly tweak the user
experience concerning friendship requests to better inform
user decisions. Finally, at the remediation-filter level, one
proposed strategy is to use honeypot accounts [77].

The Proposed Paradigm. Defending OSNs against
socialbot infiltration is another problem domain where
predicting the vulnerable population can inform stronger
defenses. We o↵er three key observations. First, since
victim accounts are real accounts that are not controlled
by attackers, identifying potential victims is inherently
more robust against adversarial attacks than identifying
socialbots [7, 50, 84]. Second, since the vulnerable
population represents a small fraction of all OSN accounts [8,
12], restrictive admission control mechanisms can be applied
to only those accounts (and their connections), without
limiting the experience of others. Third and last, as
socialbots are directly connected to victims, the accuracy of
socialbot detection mechanisms can be improved by using
victim prediction as a feature that is hard to manipulate by
the adversary [3, 7, 11].

Identifying the vulnerable population. OSN
operators have access to all user information which forms
a large set of temporal, structural and behavioral features.
Historical data can be used to generate labeled ground truth
that can be used to train a machine learning classifier able to
identify the vulnerable users. We have already investigated
such an approach [10]: even with a small set of strictly
low-cost features, one can train a classifier that is 52% better
than random in predicting the vulnerable users.

Operator filters. First, one way to retrofit existing
graph-based socialbot detection techniques to improve
operator-level filters is to artificially ”prune” friendships
edges adjacent to the vulnerable accounts. As victims
are located at the borderline between the two subgraphs
separating the socialbots from real accounts, an OSN
operator can reduce the number of edges crossing this
boundary by incorporating victim prediction into the
detection process. This improvement can be achieved
by assigning each edge that is incident to a vulnerable
account a significantly smaller weight than to others.
We have investigated this approach in the context of
the Facebook and Tuenti OSNs where our proposed
defense system, Íntegro, employing information about the
vulnerable population was shown to significantly outperform

other state-of-the-art techniques [10].
User filters. Secondly, once identified, the vulnerable

population can be influenced by the OSN operator through
education, personalized user experience, extra restrictions
or watchdogs. The operator can use the vulnerability
score to focus only on the most vulnerable users, thus
relieving the rest of the population from the associated
e↵ort. Also, the user experience in the process of considering
friendship requests can be altered dynamically for vulnerable
users. For example, the operator might o↵er additional
information [64] on the account from which the request is
coming. Alternatively, friendship requests to the vulnerable
users might be delayed to throttle infiltration attacks.

Remediation filters. Finally, the vulnerable population
can be used by OSN operators as ”honeypots” as described
for the prior problem domains. Additionally, OSN operators
can create controlled honeypot accounts that can be used
to sample the activities of user accounts, in particular,
those who contact these honeypots by sending them friend
requests or by sharing content [77]. The sampled activities
can then be analyzed and used to maintain an up-to-date
ground truth for socialbot detection. Once a socialbot is
detected, remediation can be achieved by deleting/disabling
the corresponding OSN account or by warning its friends.

3. DISCUSSION
In this section, we explore a number of interrelated issues:

Does a di↵erentiated vulnerable population actually exist?
Can this vulnerable population be identified? A long stream
of past research in o✏ine worlds has shown that users have
di↵erent likelihoods of making incorrect (security, economic,
or health-related) decisions, and more importantly, it
suggests that it is feasible to identify categories of vulnerable
users [27, 44, 59]. Once identified, preventative actions can
then be directly focused on the vulnerable population that
is most at risk [49]. This research direction, however, has
seen limited uptake in the online world of socio-technical
systems, particularly in the context of large-scale attacks.

In the context of large socio-technical systems, approaches
that aim to predict the likelihood of future compromises
have emerged only recently. We have shown (Boshmaf et
al. [10]) that, using only a small set of relatively cheap
features, it is possible to predict the users vulnerable to
a socialbot infiltration campaign in Tuenti and Facebook.
Soska et al. [74] used tra�c-based and content-based features
extracted from web pages, and trained a classifier able to
predict the likelihood of a web site being compromised
and becoming malicious in the future. The list of
features employed by the proposed classifier include: website
tra�c statistics (as a measure of the popularity of the
website), website file system structure as well as web
page structure and content (to determine the type of used
content-based management system). The extracted features
are dynamically updated over time to keep up with evolving
threats. More recently, Liu et al. [47] applied a similar
approach in order to forecast cyber-security incidents:
using only externally measurable features representing an
organization’s network security posture (i.e., vigilance and
preparedness) they are able to estimate the likelihood that
the organization later becomes victim of a successful attack.
The aforementioned features were demonstrated to be good
predictors in line with the expectation that organizations
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with lax security policies and processes are much more likely
to fall victim to attacks (i.e., organizations with increased
vigilance and preparedness as measured by the employed
external features are less likely to fall victim to attacks).
On a di↵erent take, Thonnard et al. [82] considered targeted
attacks carried out on organizations analogous to a public
health issue and used epidemiological techniques to rank
the risk factors that can be used to proactively identify the
vulnerable organizations.

While these past experiences indicate that predicting
vulnerable users may be feasible; none of those approaches,
however, goes further and develops ways to leverage
the knowledge of the vulnerable population to improve
system-wide or user-level defenses.

Why an approach focused on the vulnerable population
is a key defense element in some situations? For some
attacks, the dynamics of large-scale automated intrusions
are similar to those of epidemics. The reason for this
similarity is the following: for those attacks, becoming an
attack victim (e.g., a compromised user account) is not only
a cost to the user herself (e.g., through potential loss of data
and compromised privacy) and to the system operator (as
the recovery procedures generally involve manual operations
and are thus costly) but, importantly, a cost to the entire
user community as well. The reason is that the assets of
a victim (user account, identity, device) are often used as
stepping stones in multi-stage attacks, or as a platform for
extending the attack on the remaining users (e.g., sending
additional phishing emails, launching friendship requests on
online social networks) [81]. Moreover, in some cases (e.g.,
for socialbot infiltration, phishing) the presence of attack
victims makes it more di�cult for the remaining users to
make correct security decisions. Thus, these large-scale
attacks have an epidemic factor, wherein victims are a factor
that helps with spreading the infection [93]. For these
cases, research in public health suggests that focusing on
the vulnerable population is a key element to limiting the
spread of, and controlling the cost of an epidemic [60].

Why does an approach which includes information about
the vulnerable population have the potential to increase
the robustness of existing defenses (even when epidemic
dynamics are not at play)? Current defense techniques are
predicated on detecting the attack actions (e.g., phishing
emails) based on structural, contextual or behavioral
attributes of the attack/attacker itself. The main problem
with such attacker-centric techniques is that they generally
follow a reactive ”first-detect-then-prevent” approach. This
makes it possible for motivated attackers to employ
adversarial strategies (i.e., modify their attack patterns)
to, often trivially, evade detection by the employed defense
systems. A defense that incorporates information about the
vulnerable population has the potential to be more robust
as, unlike current defense techniques that attempt to detect
behavior that is under the direct control of the attacker (e.g.,
frequency of sending emails to detect likely compromised
email accounts used to send spam), it incorporates features
that are intrinsic to the vulnerable users and not under the
control of the attacker.

Can the proposed approach improve the e↵ectiveness of
user education / security advice? User education / security
advice are the first line of defense against increasingly

sophisticated social engineering attacks [37, 76]. While
many studies show that users tend to reject security
advice because of low motivation and poor understanding
of involved threats [2, 54], others assert that users
do so because it is entirely rational from an economic
viewpoint [28, 33]. In particular, the advice o↵ers to protect
the users from the direct costs of attacks, but burdens
the whole user population with increased indirect costs in
the form of e↵ort. When the security advice is applied
to all users, it becomes a daily burden whose benefit is
the potential saving of direct costs only to the vulnerable
population. When this population is small, it becomes hard
to design a security advice with positive net benefit.

One way to increase the benefit of security advice is to
make it more usable, which in e↵ect reduces its indirect costs
to all users. This has been the focus of a growing community
of usable security researchers who consider user education
essential to securing socio-technical systems such as OSNs [6,
73]. A complementary way to reduce indirect costs is to
engage with the security advice to only the fraction who
might actually benefit from it. This approach is directly
supported by identifying the vulnerable population.

Are the vulnerable users the ”enemy”? There has been
a growing body of work which shows that users, whether
vulnerable or not, make rational choices that attempt
to optimize their individual cost-benefit trade-o↵s (e.g.,
password complexity vs. ease of memorizing) [28, 33? ].
We believe this is true for the vulnerable members of the
user population as well. We acknowledge that some of
our proposed defense measures can be seen as penalizing
vulnerable users (and can be misconstrued as treating
vulnerable users as the ”enemy”). We suggest a shift in
perspective. Instead of focusing on the negative aspects
(i.e., possible lower quality of service o↵ered to vulnerable
members of the population such as delayed/throttled email)
of the defense measures, higher quality service could be
marketed as a reward o↵ered only to robust users. Another
example would be an Internet Service Provider (ISP)
o↵ering a discount to subscribers (i.e., lower subscription
fees) to robust users (i.e., passing the decreased costs onto
the subscribers). This shift in perspective could potentially
create an incentive for non-robust users to invest the
required e↵ort (e.g, training) to become robust themselves
in the future.

Are there other problem domains that can benefit from
the proposed approach focusing on the vulnerable population?
We believe that leveraging information about the vulnerable
members of the user population can be used to improve
upon existing attacker-focused defense systems in a variety
of domains. In this paper, we focused on three such domains:
online credential theft through phishing, malware downloads
and socialbot infiltrations in online social networks. We
believe other socio-technical systems, where an attack based
on influencing users to make incorrect security decisions can
be automated, can benefit from our proposed paradigm.
One such problem domain is enterprise security and risk
management where organizations can employ information
about potential victims (e.g., users or assets) as part of
building a risk-profile for more accurate modeling and,
consequently, more e↵ective management of risk. Moreover,
in regard to password composition and complexity policies
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for users, enterprises can benefit from focusing on the most
vulnerable users (i.e., those with the most easy to guess
passwords) instead of trying to get all users to improve the
strength of their passwords [29]. At the same time we note
that targeted attacks (e.g., spear phishing attacks) are not
in the scope of the proposed paradigm.

Are there legal/ethical implications of the proposed
solution? One issue is ”paternalism”: Our system is
paternalistic in the sense that we try to ”nudge” and
sometimes even force the users into the decisions we believe
are better for them. There is a wealth of work on ethical
issues related to paternalism. In the field of public health,
for example, health education campaigns are treated as
potentially paternalistic but it is considered to be the
responsibility of professionals to justify when and where
such paternalism is justified [39]. In case of conflict with
patient choices, however, ”the patient’s informed choices and
definition of best interests should prevail” [48].

A second issue is fairness - in some of the solutions we
propose users are categorized based on their vulnerability
and served di↵erently. Experience from various consumer
domains, as well as border control and airport security,
indicate that society has already adopted many systems
where people are categorized and served di↵erently. We
point out as well that sensitivity to the fairness issue is
context specific. Some of the contexts where we imagine
the new paradigm will get adopted involve free services
and are provided by a for-profit operator under no formal
obligation to provide fair service (e.g., Google mail). A
further point, is that for the cases where a victim is a
potential cost for an entire community (see the ”epidemic
e↵ects” discussion above), it is already accepted in society
that the loss of fairness is a possible price to pay to balance
risk (for example, mandatory quarantine of travelers that
have symptoms of an infectious disease).

A third issue is unintentional bias - either inherent in
the data used for training or unintentionally introduced by
the learning algorithms themselves [5]. One the one hand,
inherent bias in the data used for training could lead to
certain segments of the population being penalized, or worse
quarantined, due to the use of correlative (i.e., non-causal)
features such as age and/or gender. For example, senior
citizens could potentially be labeled as more vulnerable
to certain types of attacks (e.g., phishing) by using age
as a feature. On the other hand, the learning algorithms
themselves could introduce their own unintended bias. An
example of such algorithmic bias is how online search engines
are biasing queries in the process of o↵ering personalized
results [20]. In such scenarios, where should the line be
drawn between the use of a priori vulnerability signals that
are correlative (e.g., age and/or gender) as features and the
net e↵ect on the a↵ected segments of the population? For
instance, racial discrimination as an unintended consequence
of such biases has been receiving widespread coverage in the
press [4, 35, 55]. We believe that more work is needed to
investigate how to detect and eliminate such hidden biases
as well as their legal and ethical implications.

What are some of the challenges that may prevent
adopting this paradigm? There are a number of challenges
that we foresee ahead:

• Feasibility to develop a vulnerable population classifier.

The success of each instantiation of this paradigm
is predicated on the feasibility of predicting user
vulnerability based on observed online behaviour. In
some contexts, it may be infeasible to store or process
the features required to achieve good prediction
performance due to legal, privacy or operational
constraints. In other contexts, it may be di�cult or
costly to procure ground truth of su�cient quality to
train the vulnerable population classifiers.

• Handling new user sign ups. As previously mentioned,
vulnerability scores are typically dynamically
computed for users based on the history of their
past online behavior and actions. This approach
becomes problematic in the case of new user sign
ups for which insu�cient history is available. To
solve this problem, on the one hand, new users can
be automatically assigned a high vulnerability score
upon sign up. This approach allows the defense
system to apply the highest level of protection to
those users until enough information about their
behavior is collected to generate representative
vulnerability scores. On the other hand, external
login providers (e.g., Facebook Login [25] or Google
OpenID Connect [32]) can be used as a means to
prime the system with information about the new
sign ups. This approach could generate vulnerability
scores for those new users by collecting additional
information from the external provider (e.g., profile
information).

• Inaccuracies in predicting the vulnerable population.
All situations where this paradigm is adopted will need
to be robust to (or, at least, have a low cost due to)
inaccuracies in predicting the vulnerable population.
These inaccuracies are inherent to the classifiers built
based on past user behaviour and may also be a
result of inaccurate ground truth labeling. We make
two additional comments: on the one hand, for some
application domains, it is possible, and even standard
practice, for the service operator to carry out exercises
that simulate common attacks in order to collect
accurate ground truth [1]. On the other hand, our
experience with detecting socialbot infiltrations shows
that predicting the vulnerable population, even if
imperfectly, enabled better socialbot detection than
state of the art systems. We believe that many of
the other techniques we propose here have similar
properties.

• Feature Selection. As part of training the victim
classifier, careful feature engineering and selection
is necessary not only to improve the classifier’s
performance (e.g., its prediction accuracy) but also to
respond to evolving user behaviors and new attacks.
For example, picking features that are ancillary to
actual security decisions, such as correlative but
non-causal features (e.g., slow typing speed), could
potentially lead to an overall poor performance for the
trained victim classifier. Even if a classifier based on
such features performs well initially, the problem could
worsen over time as users figure out what features
are being used to score their behavior and attempt
to manipulate those features (e.g., typing faster).
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We believe an iterative approach where the victim
classifier is evolved over time (i.e., feature engineering
is routinely improved) would solve the aforementioned
problems. The victim classifier can then be re-trained
to improve overall performance as well as to adapt to
emerging user behaviors.

• Some of the mitigation techniques we propose are based
on delays and may violate users’ expectations. While
many online tasks are by design non-interactive (e.g.,
email), users have grown accustomed over the years
to consider emails as interactive and instantaneous
(similar to instant messaging). For example, delaying
a recovery email may be noticed, and will reduce
usability, delaying a friend request or Skype add
contact request may be frustrating. While obviously
there are contexts where delaying techniques can not
be used (e.g., true instant messaging), we believe
that a careful, context-specific calibration of the delay
coupled with allocating proper computational power
to gather and process information can make this
technique useful in many contexts in which mass scale
attacks are launched.

• Targeting some, but not all, of the population for
various protection measures may lead to potential
confusion and additional complexity - both at the
individual user and at the system operator level.
Indeed. The problem is complex even when focusing
on a specific domain: whose benefits should outweigh
whose costs? Should the user’s cost (e.g., incoming
e-mail being delayed) be out-weighted by the benefit
to the service provider, who can spend less money on
defending against a particular attack? How can you
compare these costs with each other? Transparency
can be used to reduce stakeholders’ confusion. As an
example, Gmail used to mark spam without providing
any explanation. Now, if you go into your Gmail spam
folder and click on a message there, Gmail will explain
the reason(s) why that particular message was flagged
as spam.

What are the categories of defenses enabled by adopting
this paradigm? We discuss several defense categories that,
we believe, are enabled by adopting our proposed approach.
These include:

• Targeted Protection. Our proposed paradigm is based
on the idea of segmenting the user population by
means of analyzing their online behavior. This
enables a targeted approach to protection where the
application of security measures can vary across the
user population. For example, email sent out to
potentially vulnerable members of the population can
be placed under additional scrutiny without burdening
the majority of the user population who may be more
robust to such types of attacks.

• Inferring the Origin of the Attacks. Moreover our
proposed paradigm, focusing on victims, can be used
to infer additional information about ongoing attacks.
The anomalous behaviors and interactions exhibited
by victims would demonstrate clear deviations from
the norm and thus allude to the origin of attacks. For

example, malware distribution servers (or botnet C&C
servers) can be identified through their pronounced
interactions with the subset of the user population that
have fallen victim to their attacks.

• Context-Specific Protection. One potential avenue
to explore, as part of our proposed paradigm,
is context-specific user vulnerability. On the one
hand, vulnerability scores could be based on users’
long-term behavior/actions which are a reflection
of the characteristics that are inherent to those
users (e.g., bad security practices). We’ve discussed
how this approach would allow defense systems to
o↵er e�cient targeted protection to the vulnerable
subset of the population. On the other hand, even
robust users can experience increased vulnerability
to attacks in certain contexts which temporarily
a↵ect their short-term behavior/actions. For example,
a severely jet-lagged security professional might be
more vulnerable to clicking on a fraudulent hyperlink
and then leaking important online credentials or
falling victim to drive-by malware download. This
is analogous to how a player’s skill rating changes
in competitive gaming over time and how it may
even be a↵ected by temporary conditions (e.g.,
breaks due to boredom) [34]. We postulate that
our proposed paradigm can be adapted to o↵er
both targeted protection as well as context-specific
protection through the use of long-term and short-term
user vulnerability scores respectively.

Is the proposed paradigm predicated on having a steady
stream of victims to train the system? What happens when
there are no more victims? Our proposed paradigm does
not aim to completely replace existing reactive defense
approaches based on detecting attack/attacker patterns. We
instead aim to augment existing systems with per user
vulnerability scores in order to improve the overall defense.
If we manage to reach a situation where there are no more
victims in the system (e.g., by educating and training all
users so that they become robust) then we would have
achieved our goal of improving the defense for the overall
population. We can simply fallback to current reactive
approaches with the knowledge that there are no more
low-hanging fruits for the attackers to exploit.

What is the potential risk in case an attacker acquires
the user vulnerability scores? We consider two methods by
which an attacker can gain access to the user vulnerability
scores and discuss their impact on a defense system
employing our proposed paradigm.

• Leaked Vulnerability Scores. Attackers can potentially
gain access to the operator’s own list of user
vulnerability scores (e.g., through a leak of the list of
vulnerable users or a breach at the operator). In such
a scenario, the attackers know exactly which users are
classified as vulnerable by the operator and can thus
directly target those users. Even though the operator
is placing vulnerable users under higher scrutiny (i.e.,
with added targeted protection), it can be argued
that there is an asymmetry in cost between exploiting
vs. protecting those vulnerable users. Thus, such an
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attack may have a higher success rate. It is worth
noting, however, that operators are likely to place the
user vulnerability scores under the same (or higher)
level of protection as other important user information.

• Attacker-Developed Vulnerability Classifier. Attackers
can also potentially develop their own vulnerability
classifier using externally accessible user features (e.g.,
information extracted from public profiles on online
social networks). In such a scenario, the attackers
could target those users they classify as vulnerable as a
means of increasing the success rate of their attack. It
is worth noting that the attackers do not have access
to the same level of user information that operators
have. As such, it is highly likely that the attacker’s
victim classifier would perform worse than that used
by the operator.

Both outlined scenarios can be considered as advanced
forms of targeted attacks which are beyond the scope of our
proposed paradigm.

What is the relationship to authors’ past work in this
area? We have started research in the area of security for
large socio-technical systems back in 2011 by evaluating the
feasibility of a victim-centric defense approach in the context
of online social networks (OSNs). We have demonstrated
that large-scale socialbot infiltration campaigns are indeed
a real threat [12–14]. To combat such attacks, we
have developed Íntegro [10, 15], a defense system that
leverages information about the vulnerable population: we
showed that it is possible to identify this population (using
supervised machine learning), and designed a defense that
uses information about potential victims and the social
graph topology to detect socialbots. Íntegro significantly
outperforms other state of the art systems in terms of
detection accuracy, and was deployed at Telefonica, the
largest Spanish telecom, for their OSN Tuenti with over 50
million users in Spain and Latin America.

4. SUMMARY
We argue that information about user vulnerability can

be e↵ectively obtained then harnessed in all phases of a
robust defense against automated, social engineering attacks
in large-scale socio-technical systems: this information can
help improve the accuracy of attack detection (either by
the system operator or by the users themselves), can
make prevention more e↵ective by informing where to
focus resources, and can improve response timeliness and
accuracy.
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