
A Case for the Economics of Secure Software
Development

Chad Heitzenrater⇤†
chad.heitzenrater@cs.ox.ac.uk

⇤U.S. Air Force Research Laboratory
Information Directorate

525 Brooks Road
Rome NY 13441, USA

Andrew Simpson†

andrew.simpson@cs.ox.ac.uk
†Department of Computer Science

University of Oxford
Wolfson Building, Parks Road

Oxford OX1 3QD, UK

ABSTRACT
Over the past 15 years the topic of information security eco-
nomics has grown to become a large and diverse field, in-
fluencing security thinking on issues as diverse as bitcoin
markets and cybersecurity insurance. An aspect yet to re-
ceive much attention in this respect is that of secure soft-
ware development, or ‘SWSec’ — another area that has seen
a surge of research since 2000. SWSec provides paradigms,
practices and procedures that o↵er some promise to address
current security problems, yet those solutions face financial
and technical barriers that necessitate a more thorough ap-
proach to planning and execution. Meanwhile, information
security economics has developed theory and practice to sup-
port a particular world-view; however, it has yet to account
for the investments, constructs and benefits of SWSec. As
the frequency and severity of computer misuse has increased,
both areas have struggled to impart a new mindset for ad-
dressing the inherent issues that arise in a diverse, connected
and functionality-driven landscape.

This paper presents a call for the establishment of an
economics of secure software development. We present the
primary challenges facing practice, citing relevant literature
from both communities to illustrate where commonalities lie
— and where further work is needed. Those challenges are
decomposed into a research agenda, deriving from the ap-
plication of principles in both themes a lack of models, rep-
resentation and analysis in practice. A framework emerges
that facilitates discussions of security theory and practice.

CCS Concepts
•Security and privacy ! Economics of security and
privacy; Software security engineering; •Software and its
engineering ! Software design tradeo↵s;

Keywords
information security investment, secure software engineer-
ing, software security economics

Approved for Public Release; Distribution Unlimited: 88ABW-2016-3869 20160803
NSPW ’16, September 26-29, 2016, Granby, CO, USA
c� 2016 ACM. ISBN 978-1-4503-4813-3/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/3011883.3011884

1. INTRODUCTION
There is a growing realisation that many issues faced in

computer security today are rooted in our approach to devel-
oping software and systems. The fields of secure software en-
gineering and information security economics are both built
on this assertion, albeit to di↵erent ends: secure software de-
velopment (otherwise known as ‘SWSec’ or secure software
engineering) leverages software engineering practice and risk
management to raise the quality of security decision mak-
ing in all phases of software and system development [49],
while information security economics identifies the externali-
ties and misaligned incentives that drive how those decisions
are made [2]. An approach to secure software that properly
integrates various processes while aligning these incentives
is thought to be the key to addressing the ‘Three Headed
Cyber Cerberus’ of cyber crime, cyber espionage and cyber
war [52].

Building systems ‘properly’ is di�cult and fraught with
problems that straddle both of the aforementioned fields.
There is growing evidence that cost continues to impede the
implementation of security best practice by corporations1.
This is no wonder, as the additional processes and tools
required for SWSec can be costly, requiring expertise, re-
sources and time often unavailable to the development or-
ganisation (if available at all). At the heart of secure soft-
ware engineering are processes that rely on expert judge-
ment, require specialised expertise, and exhibit variability
in their e↵ectiveness [43]. Even when budgeted for and
successfully executed in a particular project, there will be
dependencies; components not built or owned by the devel-
oper, and the need to connect to systems developed with
less rigour are examples of this phenomenon. Decisions are
made at every step that impact the security balance of the
programme, and current practices aren’t well suited to make
these trade-o↵s — or even articulate when they have been
made. For all of the guidance on what to do in the name of
software security, there is little on applying these precepts
in practice.

This paper attempts to capture the salient concerns when
considering the economics of secure software development.
Following an outline of the paradigm in Section 2, we sys-
tematically develop each aspect of the concept. The nec-

1For example, recent reports have cited cost as a bar-
rier to the adoption of the NIST Cybersecurity Frame-
work; see http://www.darkreading.com/attacks-breaches/
nist-cybersecurity-framework-adoption-hampered-by-
costs-survey-finds/d/d-id/1324901

92

essary elements of the secure software engineering field are
introduced in Section 3, serving as the basis for the remain-
der of the discussion. In Sections 4–6, we investigate the
economic aspects exhibited by software security practice.
These are summarised in Section 7, in which we also present
thoughts on possible future directions in this area.

2. PARADIGM
When considering relevant factors that inform the real-

isation of system security, various aspects spring to mind:
desires to balance functionality and the need to ship prod-
uct, the emergent behaviour of complex systems, and —
most visibly — post-deployment processes (e.g. patching
and detection) that attempt to maintain secure system op-
eration. Threatening each of these factors are errors in sys-
tem design, implementation, or configuration. While the
software engineering community has long understood that
costs to remediate errors escalate as one moves through sys-
tem development [11, 79], security remains largely focused
on post-deployment measures late in the system life-cycle.
Achieving higher returns on security investment by building
security into the software engineering process would seem in-
tuitive, however there is little in the way of proof to support
such an assertion [1].

Even under this assumption, there are significant barri-
ers to realising such a vision. Foremost, most developers
are not security professionals (and vice-versa), resulting in
a lack of understanding as to how development activities re-
late to end-product security [31]. Instead, security is often
presented as a set of theoretical concepts or is overly-focused
on top-10 lists [4]. Prescriptive requirements for implement-
ing security are often lacking — setting up developers for
failure [46]. Management is often reluctant to make invest-
ments in security processes or procedures without a business
case demonstrating a tangible return on investment2. Per-
haps most tellingly, the tools to enable anyone within the
process to make a compelling argument for such investment
are lacking — especially in the case of investments within
secure development processes.

The nature of such tools must then balance the technical
and non-technical (e.g. managerial) concerns that security
raises. Information security economics enables a structured
approach to understanding the current state of software se-
curity through the lens of the various technical and man-
agerial factors that drive practice. Our attention is placed
on three questions that capture the essence of a practice of
secure software development economics and frame the con-
tribution of this paper:

• How can SWSec be better represented within invest-
ment models? To date, investment models have largely
failed to incorporate early life-cycle development costs,
rendering investment into SWSec unaccountable. Al-
though no easy task, the literature pertaining to the
equally di�cult task of enterprise investment is active
and growing; we explore the motivations for, and ap-
proaches to, addressing this paucity.

• What is the proper balance between security and func-
tionality expenditure? A common critique of both in-
formation security investment and SWSec is that se-

2http://www.cio.com/article/3063738/security/
it-leaders-pick-productivity-over-security.html

curity is paramount, yet other factors (such as time-
to-market or system features) often take precedence.
Secure software paradigms fail to address this trade-
space, while investment models incorporate this as-
sumption (often implicitly) into their operation [70].
We examine how this balance may be explored, start-
ing with the question of a su�cient construct for such
an analysis.

• When is security better served by ‘building-in’ rather
than ‘building-around’? As with any other security
construct, SWSec is but part of a larger picture that
addresses security at multiple points. SWSec distin-
guishes application and software security practices that
enable, but cannot replace, the enterprise, IT-oriented
practices that are the focus of standards and practice
today. Nuance in this space is often overshadowed by
condemnation of the current status quo. An approach
that establishes the proper scope and balance while
recognising that today’s security apparatus — as mis-
guided as it may be — will not, and probably should
not, disappear entirely, is required. We consider the
barriers to improved practice in this area.

A framework rooted in utility theory, decision support
and cost-benefit analysis will enable a more systematic and
rational planning of software development, and of security
overall. Through the inclusion of security investments made
during development, the overall security investment is ren-
dered more cost-e↵ective [32], implementation decisions can
be made coherently with security concerns [33], and the ef-
fectiveness of the overall security enterprise can be anal-
ysed [34]. To anchor further discussion, we present a sum-
mary of the current state of secure software engineering prac-
tice.

3. THE STATE OF SOFTWARE SECURITY
While software security as a practice is typically attributed

to post-2000 e↵orts to address the growing rise of computer
intrusions [52], it has roots in the software management field
where cost modelling, defect reduction and reliability have
long been of concern to software practitioners [12]. SWSec
di↵erentiates itself from application security by the latter
placing focus on securing software after it is written (and
therefore being network-centric), while the former is con-
cerned with building better software [49]. While software
management seeks quality as an inherent attribute, software
security recognises the emergent nature of security and ele-
vates security over features and functionality [74]. Yet, little
guidance is provided by the software security community to
guide the implementation of various practices.

3.1 SWSec Practice
Software management and software security unite on the

premise that security within systems fundamentally rests on
the elimination of defects that make an application vulner-
able to attack [73]. To this end, the software security com-
munity has fostered a number of e↵orts to address defect
removal. For example, in 2003 the Open Web Application
Project (OWASP) group3 initiated their ‘Top 10 Project’
to generate awareness of poor coding practices. Organisa-

3https://www.owasp.org/index.php/Main Page

93

Domain Practices

Governance Strategy & Metrics (SM)
Compliance & Policy (CP)
Training (T)

Intelligence Attack Models (AM)
Security Features & Design (SFD)
Standards & Requirements (SR)

SSDL Touchpoints Architecture Analysis (AA)
Code Review (CR)
Security Testing (ST)

Deployment Penetration Testing (PT)
Software Environment (SE)
Configuration Management &
Vulnerability Management (CMVM)

Table 1: The BSIMM domains and practices [54]

tions such as Microsoft4 and Adobe5 have generated their
own development paradigms, as OWASP itself has sought
to codify its own6. Recently, initiatives such as the IEEE
Center for Secure Design’s “Avoiding the Top 10 Software
Security Design Flaws” [5] have extended this concept to
architectural considerations. Despite criticism for failing to
consider security in a global context [75], these initiatives
are widely heralded for bringing security considerations into
the development process.

Perhaps the most prevalent framework for thinking about
software security is the Building Security In Maturity Model
(BSIMM), heralded as supplying“science to security”by way
of a systematic survey of security best practice [54]. BSIMM
decomposes into four domains, each comprised of three prac-
tices that are further comprised of activities that associate
with a level (1 to 3) to indicate the maturity demonstrated
through the execution of the activity. The four domains and
associated 12 practices are summarised in Table 1.

Key within BSIMM are the Secure Software Development
Lifecycle (SSDL) Touchpoints (Figure 1). Originally pub-
lished in [49], Touchpoints is a set of seven practices that
overlap the BSIMM decomposition, directly addressing the
need for ‘building security in’. Unlike BSIMM, which merely
catalogues practice (while supplying a notion of maturity),
Touchpoints takes the additional step of ordering practices
according to their e↵ectiveness7:

1. Code review

2. Architectural risk analysis

3. Penetration testing

4. Risk-based security tests

5. Abuse cases

6. Security requirements

7. Security operations
4The Microsoft Secure Development Lifecycle (MS SDL),
http://www.microsoft.com/en-us/sdl/
5The Adobe Secure Product Life Cycle (SPLC), http://
www.adobe.com/security/proactive-e↵orts.html
6The Comprehensive, Lightweight Application Secu-
rity Process (CLASP), https://www.owasp.org/index.php/
Category:OWASP CLASP Project
7From http://www.swsec.com/resources/touchpoints/

While collectively the Touchpoints are widely identified,
individually they are also well-known, if not standard, soft-
ware engineering practice. The Touchpoints construct sup-
plies an additional emphasis on the security aspects of these
practices, where code review, architectural analysis, testing
and requirements methodologies have long been practised
under the guise of software quality and reliability. Each
Touchpoint is intended to focus recognised engineering steps
to specifically address security concerns. As such, the Touch-
points have their own mapping to standard system and soft-
ware engineering practice (see Table 2). For this discussion
it is not essential to understand the Touchpoints approach
other than as a recognised collection of security-focused soft-
ware engineering practices that is core to SWSec as a disci-
pline.

The tandem of BSIMM and Touchpoints provides a ba-
sis to address the global and emergent nature of software
security, although some will note that collections of ‘best
practice’ do not constitute formally evaluated methodolo-
gies [80]. Touchpoints is often presented as an ordered list
in order to impart e↵ectiveness, and while BSIMM appears
to bear out this ranking, the original basis for this ordering
lies with the experience of the Touchpoints developer [53]. In
addition, these constructs leave to the practitioner the exer-
cise of identifying how much, or how little, to apply to each
activity. This is certainly not to say that such approaches
are without value, but, rather, are incomplete in their de-
piction of security practice. Missing from a complete, ro-
bust SWSec tradition are the measures of e↵ectiveness and
tools for analysis to guide both the research and practice of
SWSec.

3.2 Modelling SWSec
In order to foster discussion, we present a simple model for

discussing SWSec in the context of security economics. As
identified in [84], any e↵ort to model or measure security re-
quires us to identify a relationship with a specific definition
of security. We focus on the SWSec emphasis on software
defects as the root cause of computer security failures writ
large [49], rendering the identification and removal (or mit-
igation) of defects as the measure of successful computer
security.

3.2.1 Types of failure
It is often the case that the term ‘security’ is used to de-

scribe failures that stem from the actions of people, policy,
and systems. Properly scoping the contribution of SWSec to
overall security requires that we are nuanced in our discus-
sion of security failures. For this paper we adopt a version of
the classification presented by Aslam et al. in [6] and later
adopted for economic considerations by Camp and Wolfram
in [16]. This model employs two primary categories, each
with two sub-categorisations:

• Coding faults, introduced during development as a re-
sult of errors in programming logic, missing or incor-
rect requirements, or design errors. This can be fur-
ther decomposed into synchronisation errors and con-
dition validation errors. Note that the definition for
such a category encompasses what the SWSec commu-
nity considers bugs (implementation-level problems)
and flaws (design-level problems) [83]. Bugs such as
bu↵er overflows are a common error (and are the focus

94

Figure 1: The SDDL Touchpoints (figure adapted from [51], and used with permission).

of many SWSec e↵orts such as the OWASP Top 108

list), while flaws such as the failure to employ cryp-
tography are often more subtle (the identification of
which is focus of recent e↵orts by the IEEE [5]).

• Emergent faults, where the software performs to spec-
ification yet still causes failure, due to installation er-
rors, integration incompatibilities, or a misunderstand-
ing of the run-time behaviour. Configuration errors
and environment errors make up this category of fault.
Common examples include the failure to close ports,
or the misconfiguration of cryptography that causes
insecurity (e.g. key re-use). Many standards and ac-
creditation check-lists focus on this type of fault.

Despite the convention — and as apparent in the examples
cited above — it would be a fallacy to assume SWSec is con-
cerned only with coding faults. Conspicuous in the BSIMM
practices and Touchpoints processes are activities related
to the security environment, configuration & vulnerability
management, and operations (Table 1).

3.2.2 SWSec Scope
In order to structure a consideration of SWSec processes

and their implications to security expenditure, a mapping
between the System Development Life-Cycle (SDLC) [61],
software engineering practice, Touchpoints and the BSIMM
has been provided in Table 2. From the BSIMM mapping,
an estimate of the various investment categories can be de-
rived [54], to include:

• (M)anpower, e.g. man-hours of expertise,

• (T)ools, such as specialised software, and

• (E)quipment, or the acquisition of hardware.

The magnitude of these costs vary on many parameters, to
include the size of the organisation, the in-house security
and development expertise, and the risk appetite endured.
We limit focus to the Touchpoints activities, exploiting the
cursory prioritisation they provide as a starting point to
considering the economic implications of SWSec.

These dual concepts of fault categorisation and phase in-
vestment provide the necessary foundation upon which a
8https://www.owasp.org/index.php/Category:OWASP
Top Ten Project

framework for SWSec economics can be examined, analysed
and developed. Although not a definitive categorisation, by
placing our framework within the context of existing prac-
tice we seek to develop the theoretical underpinnings that
unify the empirical research into software engineering with
the applied examination of e↵orts such as BSIMM. This will
be accomplished by considering investment models, utility-
derived analysis, and pre-/post-deployment security balance
in support of the SWSec paradigm.

4. SWSEC INVESTMENT MODELS
We now turn to the consideration of SWSec within secu-

rity investment models. Unfortunately, defending from all
credible threats — being ‘truly secure’ — is prohibitively
expensive, and as a result the optimisation of how to apply
limited resources is a central challenge in unifying software
and systems engineering [22]. Resource allocation, particu-
larly in the face of various incentives and externalities, has
been central to the emerging practice of information security
economics since its inception [2]. Security investment mod-
els have previously been classified into di↵erent types [71],
to include accounting models [27, 38, 13], game-theoretic
models [17, 62], and macroeconomic-focused input/output
models [3]. Unfortunately, these standard cybersecurity eco-
nomic model archetypes are not easily applied to software
security [60].

4.1 The problem of risk
Examining existing model classes (as defined in [71]), we

find a common theme to their quantification approach: risk-
based estimation. While risk serves an important role in
both SWSec and security economics, it is often applied for
purposes beyond its intended use. Risk plays a key role in
modern SWSec and computer security in general; however,
little research in assessing and ranking risks during the early
part of the SDLC, where investment planning is performed,
has been accomplished [85].

Risk-driven security techniques often focus on operational
risk, necessitating a detailed definition of the target system
(in terms of both hardware and software) that is unlikely
to exist during development [14, 86]. More comprehensive
methods, such as the NIST Cybersecurity Framework, rely
on risk estimation in order to gauge resource estimates such
as sta�ng and funding to “achieve cybersecurity goals in a

95

SDLC Software Phase Touchpoints BSIMM Costs

Initiation Scope Abuse cases AM M
Requirements Security requirements SR, CP, SFD M

Acquisition & Architecture Architectural risk analysis AA M
Development Design Code review CR M + T

Code
Implementation & Test Risk-based security tests ST M + T
Assessment Accreditation
Operations & Deployment Penetration testing PT M + T
Maintenance Security operations SE, CMVM M + E + T
Sunset (Disposal)

Table 2: Touchpoints alignment to the NIST SDLC, software engineering practice, the Touchpoints practices
and the BSIMM. Cost types are those identified by the BSIMM sub-activities [54].

cost-e↵ective, prioritized manner” [59]. While this may align
business needs and set overall budget, it inherently assumes
post-deployment investment and provides little guidance on
individual investment priorities. Neither approach provides
guidance at the component or environment level, leaving a
gap between their outcomes (for instance, an Annual Loss
Expectancy (ALE) calculation) and a detailed software se-
curity mitigation definition [50]. As a result, SWSec ap-
proaches based in risk are often necessarily qualitative, ex-
emplified by techniques such as CAIRIS [24], SAEM [15],
and the (Touchpoints-cited) ARA process9. Transforming
such assessments into meaningful and credible qualitative
statements is typically beyond the ability of the develop-
ment team [15]. While critical to security, such analyses
are but a “yardstick by which we can judge our security de-
sign e↵ectiveness” [83]. Any risk assessment is itself risky,
as findings are potentially multiple steps removed from the
environment under analysis [29].

Even good models are useless without good data, and the
challenge of choosing appropriate models and applying them
in practice is compounded by the availability of robust, rel-
evant and reliable data [71]. Fundamental to qualitative ac-
counting measures (such as ALE) is the need to understand
the system’s assets, their costs and the probability of loss
— undetermined quantities in systems still under develop-
ment [57]. E↵ectiveness, an aspect di�cult to characterise
at the operational level [34], becomes even more ambigu-
ous; where most enterprise security investments can be ex-
pected to operate deterministically, investments into SWSec
are largely manpower-focused and compounded by factors
such as expertise [9] and tool(s) employed [28]. The unique-
ness of the vulnerabilities uncovered by each method [7] fur-
ther a↵ects the overall number and balance of coding faults
and emergent faults (Section 3.2.1). Complexity and a lack
of data emerge as a barrier to accurate analysis [14], leading
some to question the ability to quantify security — at least
in an operational sense [84]. As a result, the application of
security investment models in practice is di�cult, even in the
case of post-deployment, enterprise security investment [70].

The pre-artefact, variable nature of software development
renders the modelling of SWSec investment as a risk-based
venture particularly daunting. While appropriate uses of
risk analysis within development remains a best-practice,
SWSec investment requires understanding of what is being

9The Architectural Risk Assessment process, https://www.
cigital.com/presentations/ARA10.pdf

purchased, and what quantity is appropriate — necessitating
a re-evaluation of traditional risk-based models and metrics.

4.2 New models and new thinking
In addition to issues surrounding qualitative risk estima-

tion, existing information security investment models share
common assumptions that undermine their validity when
applied to SWSec investment:

• They assume that investment is made in its entirety,
which may not always be the case [20] — especially
for software security investments, which are process-
oriented and reliant upon both e↵ort and expertise.
SWSec investments occur at di↵erent phases of the
development process (requirements, architecture, de-
sign, etc.), and throughout the SDLC, while current
investment models optimise investment at a fixed point
(generally, post-delivery during Operations and Main-
tenance). As a result, these models do not readily
apply to the incremental investment decisions made
during development (e.g. determining the number of
code reviews to conduct, or the amount of manpower
to devote to security testing during development).

• They require the existence of process artefacts. Alter-
native metrics such as the Cost to Break (CTB) [74] or
the Return on Attack (ROA) [18] are enabled by con-
crete outcomes, such as system designs, attacker mod-
els, or functional systems. During the early phases
of a development e↵ort such artefacts may not exist
(or may be constantly changing), and modern devel-
opment approaches may eschew customary items for
others that are not as easily employable.

• They demand significant amounts of distinct data. Pop-
ulating such models requires access to specific, statis-
tically relevant measures. Software engineering has
a tradition of quantified research in quality, reliabil-
ity and safety (e.g. [12]), but largely absent security-
specific measurement. Recent investigations have high-
lighted the e↵ectiveness of code reviews [23], static
analysis [8, 28, 73] and penetration testing [7, 73] in
eliminating vulnerabilities, but is limited in depth. Ad-
vancements require the resolution of relevant variables
such as project management approach, processes em-
ployed, technology sector, and other project-specific
aspects of security.

96

• They fail to reflect temporal change. By definition,
the state of security within a system will vary during
its construction, rendering fixed point metrics such as
Return on Security Investment (ROSI) [1, 56] prob-
lematic even if probabilities can be assigned. Formu-
lations such as Net Present Value (NPV) and Internal
Rate of Return (IRR) have been employed [55], how-
ever their appropriateness has been called into ques-
tion [67]. Along the way, security expectations may
change, as the requirements, deployment scope, or ad-
versarial environment continue to evolve. Such calcu-
lations must either be continuously re-evaluated with
updated metrics (requiring continuously re-calculated
data), or generalised (e.g. made qualitative). Even
then, such approaches are not guaranteed to be accu-
rate and pose a risk that the small changes naturally
occurring during development will result in vastly dif-
ferent outcomes for the analysis.

Frameworks such as that described in [63] attempt to artic-
ulate how the merits of di↵erent models can be rationalised,
but to date these e↵orts lack the rigour required for e↵ective
SWSec decision-making. In order to overcome the barriers
of risk-based models in this space, it is necessary to con-
ceive of how software security contributes to the ecosystem
outside of risk.

Following from the security model in Section 3.2.1, candi-
date measures that combine SWSec and engineering practice
include ‘security defects removed’ — if only such a measure
could be accurately quantified, given unknowns such as the
number of faults without process or the number of faults
that are exploitable. It is widely accepted that the removal
of defects (security or otherwise) is correlated to improved
security [73], with many advocating the treatment of secu-
rity flaws as a special case of quality flaws [39]. This corre-
lation provides the basis for applying software engineering
measures to augment, rather than replace, the role of oper-
ational or business risk evaluation.

Rather than a↵ecting risk, investments in SWSec could
instead be considered as a↵ecting the endogenous aspects
of the system such as its inherent vulnerability to attack,
or stakeholder valuation of the system in the form of un-
certainty reduction and perception of quality. This view is
separate, but coherent, with the risk-management view of
security investment as a form of risk reduction [14]; how-
ever, such a view provides a quantitative basis upon which
such appraisals can be measured and compared. Exam-
ples of such estimations include the Iterated Weakest Link
model [13], which employs an uncertainty parameter � and
a surrogate for quality (the ‘attack gradient’, �x) as input
parameters. The Gordon-Loeb model [27] employs security
breach probability functions with a vulnerability parameter
v conveying the quality of the system relative to an attacker
class.

However, this perspective requires the development of new
or extended models for the evaluation and optimisation of
SWSec investment. In current models, the establishment
of the identified parameters is an employment choice left
to the security manager to set; this must be replaced with
sound approaches based on SWSec evaluations such as those
identified in Section 4.1. Models that capture the benefit of
SWSec investment in terms relative to the BSIMM prac-
tices — and relate this investment to current and emerging
enterprise models — are necessary for the development in-

formation security investment overall. This, in turn, must
be considered relative to the competitive pressure and op-
portunity costs introduced by the additional development
investment.

Ultimately, the evaluation of several models in concert in
order to define an overall security strategy is likely to be
the best approach [67] — although rational investment de-
mands better definition and orchestration of models to paint
a broader picture inclusive of SWSec. Beyond investment,
achieving a truly complete picture requires the consideration
of security in the context of the system and the derivation of
technical decisions from determined investment objectives.

5. BALANCING SECURITY WITH FUNC-
TIONALITY

The ultimate end goal of investment analysis is to allo-
cate expenditure [31]. However, once targets are set, the ex-
ecution of the security investment is often non-obvious and
easily misguided. There is a recognised di�culty in defining
the goals, expectations and objectives of security [82] that
is tied to the lack of a unified definition for security require-
ments, or even how concrete or verifiable they should be [81].
As a result, it is very rare for organisations to provide de-
velopers with requirements that guide them down the path
towards secure software, resulting in the developers being
set up for failure [46]. More often, security requirements are
confused with architecture and design, leading to premature
(and often sub-optimal) design decisions [72].

5.1 Life-cycle considerations
Contributing to this state of a↵airs is the moving-target

nature of security during system development. While mod-
ern software development has increasingly moved toward
non-traditional approaches to software construction, secu-
rity considerations remain relegated to fixed points within
the life-cycle (e.g. testing, accreditation). Traditional SWSec
processes are di�cult to apply in modern development pro-
cesses, often leading to processes that are repetitive or lack
focus when applied to agile methodologies [40].

In addition to the Touchpoints activities, process-driven
methods such as the aforementioned MS SDL, Adobe SPLC,
and OWASP CLASP specify practices that largely follow
traditional development paradigms. Activities conducted
within these Security Development Life-cycles (SDLs) are
largely focused on addressing coding faults within particu-
lar segments of the overall system life-cycle, and while there
is evidence that they do reduce safety bulletins [45] SDLs
alone are insu�cient for addressing the emergent nature of
security. Robust approaches need to account for the role of
system functionality relative to security concerns, and fail-
ure to consider the architectural context of the enterprise is
a severe limitation of current processes [42]. However, these
activities directly impact the nature of resulting faults, and,
as discussed in the previous section, early security invest-
ment is key to e↵ective security investment.

Only when placed within higher level meta-models (such
as BSIMM or the OWASP OpenSAMM10) do these pro-
cess provide a wider view of security — losing specificity
as processes in return. Such constructs are, by definition,

10The Open Software Assurance Maturity Model, http://
www.opensamm.org/

97

collections of ‘best practice’ in contrast to formally evalu-
ated methods [80]. By the same token, compliance-based
approaches (such as the Common Criteria11 or NIST Au-
tomated Security Self-Evaluation Tool (ASSET)12) could
equally be criticised for focusing only on post-construction
concerns. Such approaches lead only to very simple solu-
tions [40], and have been criticised for being neither dynamic
nor cost-e↵ective [41].

Balancing informal practices with established software de-
velopment process requires a broader view of security. In-
tegrating, conveying and reasoning about security concerns
requires constructs that transcend any one process concept,
providing mechanisms that are employable throughout the
life-cycle and applicable to various actors at every stage —
starting with project inception. Representation and evalua-
tion of secure development investments within the software
engineering process using an economics-based approach pro-
vides a common basis upon which functionality and security
can be compared.

5.2 Security in an economic context
As early process analysis imparts fluctuations during early

development, the ripple e↵ect can be felt throughout the de-
velopment process and beyond — to deployment and main-
tenance. An amount of traceability is required in order
to support change management [19]. Increasingly, there is
recognition that economics plays a role in considering not
only current attacks, but possible future attacks [22]. This
is especially true as the return on per unit investment con-
tinues to shift for both defenders and attackers, who contin-
ually adapt and alter their approaches. We conceptualise a
computable security context that is employable in di↵erent
phases within the system life-cycle such that it incorporates
the technical-economic concerns that encompass security.

As SWSec does not seek to replace, but rather augment,
decades of software engineering, security contexts are like-
wise best considered an extension of current practice. Such a
construct is conceivably captured within development arte-
facts in a manner that is unambiguous, recognised, and un-
derstandable to developers and security managers alike. Ap-
proaches for capturing security contexts could include the
following:

• Within the specification of security requirements as
constraints on functional concerns [72]. These could
be developed as requirements in their own right, or
more likely in the vein of fit criteria [69]. The latter
would necessitate that security requirements are mea-
surable and testable — a challenging task, as there is
no standard measure of security [40].

• Within current attack modelling techniques, such as
attack trees [76], which have been parameterised and
extended to include return on attack/investment con-
siderations and the notion of defence trees (a summary
of work in this area can be found in [44]). However,
proper attack tree generation requires multiple rounds
of iteration to gain fidelity, and expert knowledge to
execute [81].

• Within extended current attack modelling techniques,
such as those advocated by the SWSec community.

11https://www.commoncriteriaportal.org/
12http://csrc.nist.gov/archive/asset/

Within abuse cases, McDermott and Fox call for spec-
ification of the “resources, skills and objectives” [48],
while Sindre and Opdahl propose a Stakeholders and
Risks field within misuse cases to quantify costs and
likelihoods “with more ambition” than the use of tex-
tual descriptions [78]. The latter is taken a step further
in related work, with the integration of misuse case
analysis with risk analysis, costing and formal meth-
ods identified as a potentially interesting direction to
pursue [77]. However, subsequent work has yet to pro-
vide any formalism, constructs, or guidance as to the
incorporation of these concepts into misuse case anal-
ysis processes. As misuse cases serve as a complement
to use cases, these concepts could enable functionality-
security analysis [35].

Specifying security requirements in the language of utility
theory o↵ers a solution. Security expressed as utility rela-
tionships provides calculable constraints, supports param-
eterised assertion of requirements and relationships that is
employable within various modelling constructs, and sup-
plies a common basis by which functional, non-functional
and policy-based demands can be rationalised. This can
be thought of as ‘non-functional fit criteria’, supplying con-
straints on the architectural and design decisions through
explicit statements related to management concerns such
as resources or cost. Preliminary work has demonstrated
how such a construct could be used to choose a compliant
cryptographic mode that balances functionality and secu-
rity in order to foster system resilience in Internet of Things
(IoT) devices [33]. Expressing security requirements and at-
tacker/defender concerns in this way supports the critical
process of refutation [65], and supplies information critical
for extending understanding beyond what needs to be pro-
tected, to include why. This enables continued analysis and
re-evaluation as the system specification, threat picture and
regulatory landscape are clarified over the course of devel-
opment and deployment.

Additional benefit can be found in the potential to form
security constructs that are explicitly tied to system func-
tion. Rectifying the constraints presented by functional,
non-functional, policy and regulatory security concerns re-
quires a common language with the flexibility to support al-
ternative definitions of security that meet the varied goals of
confidentiality, integrity, availability, etc. Forming the basis
for techniques such as game-theoretic analysis, utility theory
provides the ability to directly link requirements and mod-
els to a defined context. The information security economics
literature has examined diverse security goals such as pro-
tection and self-insurance [30] and deterrence [36]; however,
the ability to tie equilibria to software design and develop-
ment practice has proved di�cult, as current utility-based,
multi-attribute and ‘first principles’ approaches (e.g. [10, 66,
68]) have yet to provide widely employed methodologies.

Critically, beyond the security demands of a given sys-
tem, security contexts support overall organisational secu-
rity goals — as defined by the risk, business, and IT decisions
undertaken. This is critical to a comprehensive notion of se-
curity, providing a link between the business enterprise and
the system implementation. Holistic security demands the
existence of the security enterprise, with optimal solutions
requiring methods to examine SWSec within the context of
the greater security picture.

98

Control Summary SDLC Phase BSIMM Activity Fault Target
1 Install and maintain a firewall configuration to Operations SE Emergent

protect cardholder data
2 Do not use vendor-supplied defaults for system Operations CMVM Emergent

passwords and other security parameters
3 Protect stored cardholder data Operations SE Emergent
4 Encrypt transmission of cardholder data across Acq/Devel SR Coding

open, public networks
5 Use and regularly update anti-virus software Operations SE Emergent
6 Develop and maintain secure systems and Acq/Devel CMVM Emergent

applications Operations Coding
7 Restrict access to cardholder data by business Operations CP Emergent

need-to-know
8 Assign a unique ID to each person with computer Operations CP, CMVM Emergent

access
9 Restrict physical access to cardholder data Operations CP, T Emergent
10 Track and monitor all access to network resources Operations SM, SE Emergent

and cardholder data
11 Regularly test security systems and processes Operations ST, PT Emergent
12 Maintain a policy that addresses information security Operations CP Emergent

Table 3: Summary of the PCI-DSS Controls [64], mapped to SDLC and fault target.

6. BUILDING-IN VS. BUILDING-AROUND
Many have come to view the problem of security as one of

insurance rather than one of investment, with the primary
goal being the reduction of potential risk [50]. Given the ne-
cessity of early expenditure with undetermined benefit and
no active adversary, processes underpinning software secu-
rity may be best viewed in this light. While the practices
described in Sections 4 and 5 support improved planning
and understanding of security within the scope of SWSec,
practical security requires more: the means to specify, anal-
yse and justify the security of software within and without
the context of the security enterprise. Central to this are
the standards that define the current security landscape.

6.1 Role of standards and guidance
In spite of their limitations, standards and guidance play

a central role in security: driving accreditation and ‘licence
to operate’ (e.g. Common Criteria13), setting security re-
quirements for industries (e.g. PCI DSS14), and establish-
ing minimal guidance for doing business (e.g. UK Cyber
Essentials [21]). Unfortunately, often they are also taken as
the last word in security (rather than as the starting point),
leading some to elevate conformance to standards as the
“highest degree of confidence” that can be achieved with re-
gard to software security [26]. Such ex ante regulation has
been found to be sub-optimal when those issuing the require-
ment are uncertain about what minimum standards should
entail [58], as is the case in cybersecurity. While confor-
mance is likely to be preferable to the absence of security,
mis-implementation can result in elevated costs [34] and has
not been shown to unilaterally stem the tide of breaches15.

13https://www.commoncriteriaportal.org/
14The Payment Card Industry Data Security Standard,
https://www.pcisecuritystandards.org/pci security/

15Notably, the US retailer Target was PCI DSS compli-
ant prior to their November 2013 breach; see http://
www.computerworld.com/article/2486879/data-security/
after-target--neiman-marcus-breaches--does-pci-
compliance-mean-anything-.html

Best practice dictates that standards must be evaluated for
adoption, rather than blindly accepted [67].

Taking PCI-DSS as an example, we find that such stan-
dards are often narrowly focused. As demonstrated by Ta-
ble 3, this commonly results in an undue emphasis on post-
deployment security and emergent (specifically, configura-
tion) faults. It may be argued that this is due to the scope of
this particular regulation, but it serves to highlight a danger
in designing security to standards: doing so risks a failure
to account for, or at the very least under-represent, entire
classes of threats and vulnerabilities. If the entirety of the
security investment is standards-focused, it becomes evident
how compliance is not su�cient for security. Schemes such
as ISO/IEC2700116 or the NIST Cybersecurity Framework17

o↵er less prescriptive guidance at the price of ambiguity.
This places an onus on system designers to develop, describe
and justify their security architecture, while mechanisms to
incorporate SWSec investment remain a challenge.

6.2 Spanning the life-cycle
The need to consider operational the mitigation supplied

by the deployment environment during development has long
been recognised (even if not quantified) [37]. While a pri-
mary tenet of SWSec is the notion that software bugs and
flaws are at the heart of many security failures, there is
also recognition that overall security is an emergent prop-
erty [49]. Combating the stream of breach reports requires
coordinated e↵ort throughout the system’s life-cycle. This
necessitates methods for reasoning about the overall invest-
ment, placing security within the context of the overall sys-
tem and business requirements, and reasoning about the ap-
plicability and cost of adherence to standards.

Taking these points together, a sketch of an augmented
SWSec process that explicitly incorporates economic con-
siderations emerges. Figure 2 exemplifies the inclusion of

16http://www.iso.org/iso/iso27001
17http://www.nist.gov/cyberframework/upload/
cybersecurity-framework-021214.pdf

99

Figure 2: The Touchpoints process overlaid with the SWSec economic constructs described in this paper.

explicit economic concerns within secure software engineer-
ing, using BSIMM and Touchpoints as a basis in order to
illustrate ties to existing processes.

• The establishment of a security context would occur
within the BSIMM Intelligence domain, in parallel to
the other activities undertaken in that domain. These
activities drive the problem definition and are critical
to the overall security approach. The combined result
forms the basis for the development of the security
context.

• Likewise, the practice of integrating SWSec economic
modelling could also occur as a result of the practices
within the Intelligence domain. This would necessarily
follow the definition of the context, but is also imper-
ative for setting the parameters by which the Intel-
ligence domain activities are conducted. This ‘boot-
strapping’ problem of requiring security expenditure
in order to establish the necessary amount of security
expenditure is an open problem, but conceptually simi-
lar to other problems within software engineering (such
as prototype development) that are generally solved by
the establishment of best practice.

• These constructs are then referenced and enhanced
over the course of the SDDL Touchpoints processes.
Specifically, the security context serves as a reference
for requirements and design decision-making, as well as
a repository for decisions and constraints as they are
identified. Investment modelling guides development
by establishing the amount and type of resources ded-
icated to each of the activities.

• Context and investment come together with the De-
ployment domain activities to inform the development
(or augmentation) of the enterprise, its configuration
and maintenance.

Taken together, this approach constitutes the emergence
of a new consideration within SWSec methodology: the need

for the establishment of a practice of economics, alongside
the current practices of Table 1. A natural fit for such a
practice would be in the Governance domain, as it serves to
inform and define the practices that follow — just as Strat-
egy & Metrics, Compliance & Policy, and Training define the
overall approach governed by BSIMM adherence. We recog-
nise that the introduction of such a practice into a model
such as BSIMM runs counter to its purpose, which is an em-
pirical study of SWSec as opposed to a theoretical approach
to practice. This underscores the earlier point regarding the
use of meta-models to drive software and security engineer-
ing standards: the practice remains reactionary, the state-of-
the-art is slow to adapt, and the possibility for change is hin-
dered. Only through experimentation can we confirm our in-
tuitions regarding security investment. As cross-disciplinary
entities such as the newly-formed IEEE CSD18 gain traction,
the promise for establishing standards and meta-models that
incorporate the best of practice and theory is raised and the
opportunity to fundamentally change security thinking in
such ways becomes tangible.

7. DIRECTIONS FOR THE ECONOMICS
OF SWSEC

We have presented three high-level topics central to es-
tablishing a practice of software security, which come to-
gether in SWSec models (using the Touchpoints processes as
an example) to augment and enhance the security decision-
making process. This vision can be decomposed into key
areas of research, each with challenges to be overcome.

While economics has been applied to various aspects of
the security problem, its application to SWSec has been lim-
ited. Realising economically-informed secure software prac-
tices will require further study into three broad areas.

• Models: SWSec requires the development of models
that capture the essence of software process contribu-

18The IEEE Center for Secure Design (CSD), http://
cybersecurity.ieee.org/center-for-secure-design/

100

tion. Due to the variability and dependency in SWSec
processes, the e↵ects of software process on the preva-
lence of vulnerabilities are more characterisable as ef-
fects on the model conditions (uncertainty, quality,
etc.), rather than as estimates of exogenous properties
or indirect measures. In addition to increasing the ac-
curacy of estimates that rest on the existing software
engineering body of knowledge, this will also require
the integration of investment considerations with cur-
rent enterprise models and risk practices within infor-
mation security economics. Necessary to the validity
of such models are further quantified studies into tools
and processes such as [28, 8, 73], in order to properly
tune and validate model assumptions.

• Representation: Once the targets for SWSec have been
characterised, these must still be rectified against the
overall goals of the project and the enterprise. While
the conveyance of economic considerations within cur-
rent processes is well supported (if not well utilised),
the methods and models for juxtaposing security and
functionality in order to inform investment are under-
developed. As agile methods fail to address these con-
cerns and formal methods remain complex and expen-
sive, utility-based characterisations may provide an al-
ternative that integrates functional and security con-
structs in order to allow reasoning and enable decision-
making within a variety of approaches.

• Analysis: Critical to rationalising SWSec investment
is the ability to identify the contribution. Starting
with the execution of the e↵ort, SWSec investment
must be examined in light of the scope of the overall
context: business, regulatory, technical and process.
This requires not only a common representation for the
various aspects of security (i.e. coding vs. emergent
fault reduction), but also the means to compare contri-
butions against competing objectives. Multi-attribute
and risk-based methods provide such constructs, but
require the careful selection of inputs. SWSec analysis
requires methods that can incorporate the varied indi-
cators more e↵ectively than current risk-based meth-
ods, yet retain compatibility with business practice.

Research in these three areas forms a solid basis for the
establishment of an economics of secure software develop-
ment, rooting the practice within the software engineering
and information security fields while incorporating key in-
formation security economics concepts in the realisation of
security in practice. However, advancement toward this goal
must address the data, usability and abstraction challenges
that have generally plagued information security investment
model adoption. Representing SWSec concerns risks exac-
erbating issues with model complexity and rendering model
selection and usage decisions more di�cult [70]. Just as a
lack of security expertise amongst developers hinders soft-
ware security [81], a lack of software engineering expertise
will hinder the use of such models.

Out of these goals and obstacles come concrete research
directions to pursue, with their own requisite challenges:

• Development of new models, or extension of current
models, to accurately represent the contribution of se-
cure software engineering — which is essential to the
rational allocation of resources by system developers.

Section 4 highlighted issues with current investment
models, which fail to account for incremental invest-
ment, have limited application to systems under de-
velopment, and provide only static perspectives on the
system security state. Models of SWSec investment
must realistically represent the contribution of process
(e.g. the addition of code reviews), resources (e.g. the
number of code reviews, number of reviewers per re-
view and time dedicated to reviews) and technology
(e.g. manual and automated tools used in the code re-
view), and then characterise that contribution in terms
of e↵ectiveness (e.g. the expertise of the reviewers,
number and type of implementation errors found) and
cost. As each of these aspects is dependant on the
others, this may result in complex model relationships.
These may take the form of novel investment models
in their own right, or instead be developed as func-
tions and models that complement existing enterprise
investment models. While the latter may prove a more
e↵ective means to integration with broader system life-
cycle security investment, the ‘correct’ means to model
such investment in current models may be unclear.
The first such attempt at such a model has focused on
SWSec’s potential to increase costs for the attacker,
while reducing defender uncertainty regarding where
to invest [32]; other formulations focused on increased
resistance to vulnerability, reduced attack surface, or
other inherent system properties are possible.

• Further work in security-specific software engineering
practice. Section 4 also identified the problem of a
dearth of software security studies. Inspiration — and
a basis for further work — can be found in years of
qualitative empirical research by the software engineer-
ing community (e.g. [12]), although this has proven dif-
ficult to reproduce and generalise. Absent a multitude
of ideal experiments, techniques to derive meaning-
ful software security development data have been pro-
posed which leverage the abundance of open develop-
ment projects: mining GitHub repositories for vulner-
ability introduction and removal rates, measuring the
timing between CVEs and code updates, examining
development mailing lists and audit logs to identify re-
mediation costs, and identifying ‘natural experiments’
(in the tradition of economic research) by contrasting
similar projects employing di↵erent approaches. Such
strategies hold promise, but o↵er limited perspective
on the diversity of software security practice.

While the contributions cited in Section 4.2 represent
a good start, much more needs to be done. E↵orts
must account for the multitude of programatic, en-
vironmental and technological variables that impact
software security practice e↵ectiveness. Quantifying
the e↵ects of SWSec practices throughout a variety of
projects, management approaches, enterprises and sec-
tors is key to developing employable models and met-
rics, mindful of the challenges posed by control [25],
repeatability and validity [47]. Research must addi-
tionally address the aforementioned issues of process
resource, e↵ectiveness and cost demands, and must re-
sult in published, accessible datasets.

• A means to convey, in a computable but manipulat-
able way, the security context. Section 5 highlighted

101

the need to integrate SWSec throughout the system
life-cycle, with Section 5.2 identifying potential con-
structs that enable SWSec integration with the early
stages of system development. The form of such a
construct must allow for reasoning over a diverse set
of inputs: standards, policy, functional requirements,
managerial constraints, and risk-based probabilities.
In addition, re-evaluation and validation of the secu-
rity expectations throughout the system life-cycle must
be supported. While utility theory o↵ers a potential
language [33], further validation of this approach on
larger and diverse developments is necessary. Applica-
tion of these techniques must then be balanced with
applied engineering experience, and enabled through
the development of analytical and specification tools
and techniques in order to promote adoption. This
inherently requires a change in the security research
mindset, away from ‘absolute security’ and toward a
concept of security based in measurable experimenta-
tion [82].

• Progress toward ‘composable’ decision-making mecha-
nisms, reflecting the means by which security invest-
ments, deployment and management are measured and
analysed. As discussed in Section 6.2, given the phased
nature of software development and the knock-on ef-
fects of decisions made during development, methods
for decision support that weight and manage varied
life-cycle phase inputs are necessary. This runs counter
to much of the information security investment liter-
ature, which assumes complete, instantaneous invest-
ment or single-run games. However, many such mod-
els have shown promise in their ability to optimise
post-deployment security investment; as discussed in
Section 6.1, such investments are crucial to standards
compliance and accreditation techniques that are core
to current notions of computer security. Models that
explicitly incorporate temporal and dependent aspects
from multiple phases of the SDLC o↵er the promise
of coupling independent investment decisions to en-
hance overall return on investment, as demonstrated
in [32]. Further work that analyses various consider-
ations while integrating pre- and post-deployment de-
pendencies will be central to developing a holistic ap-
proach to a firm’s overall security investment strategy.

• Recognition that theory is necessary to the develop-
ment of scientifically-rooted approaches, while secu-
rity is ultimately a practical endeavour. While soft-
ware engineering has long been a practice-oriented dis-
cipline, information security economics su↵ers from a
dichotomy of theory-based concepts punctuated with
devoted empirical studies. Adoption and use of SWSec
economics will require a balance of theory and applica-
tion that will come only with the cross-fertilisation of
data and ideas, necessitating more discussion between
these disciplines. A first step in this direction will be
the coordination of the best SWSec practices — such
as the BSIMM – with further theory to move practice
beyond what can be conceived of today.

As SWSec moves from purely empirical considerations to-
ward the incorporation of theoretical underpinnings, these
research areas support a deeper understanding of how soft-
ware process impacts overall security goals. Applying these

tenets in practical approaches will be essential to their adop-
tion by practitioners, and ultimately drive their adoption
and impact. Incorporation of software engineering, security
practice and enterprise operations provides a basis for a true
science of software security — and increasingly the necessary
conditions for practical security — with economics poised to
supply the enabling insights.

Acknowledgements
The authors would like to thank Christian Probst, the NSPW
reviewers and the workshop attendees for their insightful
questions, comments and discussions, which have apprecia-
bly contributed to this paper and our research.

8. REFERENCES
[1] Al-Humaigani, M., and Dunn, D. B. A model of

return on investment for information systems security.
In IEEE International Symposium on Micro-Nano
Mechatronics and Human Science (2003), vol. 1,
pp. 483–485.

[2] Anderson, R., and Moore, T. The economics of
information security. Science 314, 5799 (October
2006), 610–613.

[3] Andrijcic, E., and Horowitz, B. A
macro-economic framework for evaluation of cyber
security risks related to protection of intellectual
property. Risk Analysis 26, 4 (August 2006), 907–923.

[4] Apvrille, A., and Pourzandi, M. Secure software
development by example. IEEE Security and Privacy
3, 4 (July 2005), 10–17.

[5] Arce, I., Clark-Fisher, K., Daswani, N.,
DelGrosso, J., Dhillon, D., Kern, C., Kohno,
T., Landwehr, C., McGraw, G., Schoenfield, B.,
Seltzer, M., Spinellis, D., Tarandach, I., and
West, J. Avoiding the top 10 software security design
flaws. PDF, 2014.
http://cybersecurity.ieee.org/images/files/images/pdf/
CybersecurityInitiative-online.pdf.

[6] Aslam, T., Krsul, I., and Spafford, E. Use of a
taxonomy of security faults. Tech. Rep. 96-051,
Purdue University, 1996.

[7] Austin, A., and Williams, L. One technique is not
enough: A comparison of vulnerability discovery
techniques. In Proceedings of the International
Symposium on Empirical Software Engineering and
Measurement (ESEM) (2011), pp. 97–106.

[8] Baca, D., Carlsson, B., and Lundberg, L.
Evaluating the cost reduction of static code analysis
for software security. In Proceedings of the Third ACM
SIGPLAN Workshop on Programming Languages and
Analysis for Security (PLAS) (2008), ACM, pp. 79–88.

[9] Baca, D., Petersen, K., Carlsson, B., and
Lundberg, L. Static code analysis to detect software
security vulnerabilities - does experience matter? In
Proceedings of the International Conference on
Availability, Reliability, and Security (ARES) (2009),
IEEE Computer Society, pp. 804–810.

[10] Beresnevichiene, Y., Pym, D., and Shiu, S.
Decision support for systems security investment. In
IEEE/IFIP Network Operations and Management
Symposium Workshops (NOMS) (2010), pp. 118–125.

102

[11] Boehm, B., and Basili, V. R. Software defect
reduction top 10 list. IEEE Computer 34, 1 (January
2001), 135–137.

[12] Boehm, B. W. Software Engineering Economics.
Prentice-Hall Advances in Computing Science and
Technology Series. Prentice Hall, Englewood Cli↵s,
N.J, 1981.

[13] Böhme, R., and Moore, T. The iterated weakest
link – A model of adaptive security investment. In
Proceedings of the 8th Workshop on the Economics of
Information Security (WEIS) (2009).

[14] Böhme, R., and Nowey, T. Dependability Metrics:
Advanced Lectures. Springer Berlin Heidelberg, 2008,
ch. Economic Security Metrics, pp. 176–187.

[15] Butler, S. A. Security attribute evaluation method:
A cost-benefit approach. In Proceedings of the
International Conference on Software Engineering
(ICSE) (2002), W. Tracz, M. Young, and J. Magee,
Eds., ACM, pp. 232–240.

[16] Camp, L. J., and Wolfram, C. Pricing security. In
Proceedings of the CERT Information Survivability
Workshop (2000), pp. 31–39.

[17] Cavusoglu, H., Mishra, B., and Raghunathan,
S. A model for evaluating IT security investments.
Communications of the ACM 47, 7 (July 2004), 87–92.

[18] Cremonini, M., and Martini, P. Evaluating
information security investments from attackers
perspective: the return-on-attack (ROA). In
Proceedings of the 4th Workshop on the Economics of
Information Security (WEIS) (2005).

[19] De Win, B., Scandariato, R., Buyens, K.,
Gregoire, J., and Joosen, W. On the secure
software development process: CLASP, SDL and
Touchpoints compared. Elsevier Information and
Software Technology, 51 (July 2009), 1152–1171.

[20] Demetz, L., and Bachlechner, D. The Economics
of Information Security and Privacy. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2013, ch. To Invest or
Not to Invest? Assessing the Economic Viability of a
Policy and Security Configuration Management Tool,
pp. 25–47.

[21] Department for Business, Innovation and
Skills. Cyber essentials scheme: Overview.
https://www.gov.uk/government/publications/
cyber-essentials-scheme-overview, June 2014.

[22] Devanbu, P. T., and Stubblebine, S. Software
engineering for security: A roadmap. In Proceedings of
the ICSE Conference on The Future of Software
Engineering (2000), ACM, pp. 227–239.

[23] Edmundson, A., Holtkamp, B., Rivera, E.,
Finifter, M., Mettler, A., and Wagner, D. An
empirical study on the e↵ectiveness of security code
review. In Proceedings of the 5th International
Symposium on Engineering Secure Software and
Systems (ESSoS) (2013), Springer Berlin Heidelberg,
pp. 197–212.

[24] Faily, S. A framework for usable and secure system
design. PhD thesis, University of Oxford, Oxford, UK,
2011.

[25] Geer, D. For good measure: The undiscovered.
;login: 40, 2 (April 2015), 50–52.

[26] Gilmore, S., Sondhi, R., and Simpson, S.
Principles for software assurance assessment: A

framework for examining the secure development
processes of commercial technology providers. Tech.
rep., Software Assurance Forum for Excellence in
Code (SAFECode), 2015.

[27] Gordon, L. A., and Loeb, M. P. The economics of
information security investment. ACM Transactions
on Information and Systems Security 5, 4 (November
2002), 438–457.

[28] Goseva-Popstojanova, K., and Perhinschi, A.
On the capability of static code analysis to detect
security vulnerabilities. Information and Software
Technology 68, C (December 2015), 18–33.

[29] Grimes, R. A. Implementing a data-driven computer
security defense. Tech. rep., Microsoft IT Information
Security and Risk Management, November 2015.

[30] Grossklags, J., Christin, N., and Chuang, J.
Secure or insure?: A game-theoretic analysis of
information security games. In Proceedings of the 17th
International Conference on World Wide Web
(WWW) (2008), ACM, pp. 209–218.

[31] Hein, D., and Saiedian, H. Secure Software
Engineering: Learning from the Past to Address
Future Challenges. Information Security Journal: A
Global Perspective 18, 1 (February 2009), 8–25.

[32] Heitzenrater, C., Böhme, R., and Simpson, A.
The days before zero day: Investment models for
secure software engineering. In Proceedings of the 15th
Workshop on the Economics of Information Security
(WEIS) (2016).

[33] Heitzenrater, C., King-Lacroix, J., and
Simpson, A. Motivating security engineering with
economics: A utility function approach. In Proceedings
of the 1st IEEE Workshop on Cyber Resilience
Economics (CRE) (2016).

[34] Heitzenrater, C., and Simpson, A. Policy,
statistics, and questions: Reflections on UK cyber
security disclosures. In Proceedings of the 14th
Workshop on the Economics of Information Security
(WEIS) (2015).

[35] Heitzenrater, C., and Simpson, A. C. Misuse,
abuse, and reuse: Economic utility functions for
characterising security requirements. In Proceedings of
The 2nd International Workshop on Agile Secure
Software Development (ASSD) (2016).

[36] Heitzenrater, C., Taylor, G., and Simpson, A.
When the winning move is not to play: Games of
deterrence in cyber security. In Proceedings of the 6th
International Conference on Decision and Game
Theory for Security (GameSec) (2015).

[37] Hoglund, G., and McGraw, G. Exploiting
Software: How to Break Code. Pearson Higher
Education, 2004.

[38] Hoo, K. J. S. How much is enough? A risk
management approach to computer security. PhD
thesis, Stanford University, Stanford, CA, 2000.

[39] Hoo, K. S. Information security: Why the future
belongs to the quants. IEEE Security & Privacy 1, 4
(July 2003), 24–32.

[40] Jaatun, M. G. Hunting for aardvarks: Can software
security be measured? In IFIP International
Cross-Domain Conference and Workshop (CD-ARES)

103

(2012), G. Quirchmayr, J. Basl, I. You, L. Xu, and
E. Weippl, Eds., vol. 7465 of Lecture Notes in
Computer Science, Springer, pp. 85–92.

[41] James, J. A. Raising the bar for cybersecurity. Tech.
rep., Center for Strategic & International Studies,
Technology & Public Policy, Washington, D.C., USA,
February 2013.

[42] Kárpáti, P., Opdahl, A. L., and Sindre, G.
Investigating security threats in architectural context:
Experimental evaluations of misuse case maps. Journal
of Systems and Software 104 (June 2015), 90–111.

[43] Kemerer, C. F., and Paulk, M. C. The impact of
design and code reviews on software quality: An
empirical study based on PSP data. IEEE
Transactions on Software Engineering 35, 4 (July
2009), 534–550.

[44] Kordy, B., Pietre-Cambacedes, L., and
Schweitzer, P. DAG-based attack and defense
modeling: Don’t miss the forest for the attack trees.
Computer Science Review 13–14 (November 2014),
1–38.

[45] Lipner, S. The trustworthy computing security
development lifecycle. In Proceedings of the 20th
Annual Computer Security Applications Conference
(ACSAC) (2004), IEEE Computer Society, pp. 2–13.

[46] Manico, J., Bird, J., Harris, D., De Vries, S.,
and Van der Stock, A. OWASP proactive controls
for developers 2014. PDF, 2014. https://www.owasp.
org/images/0/07/OWASP Proactive Controls v1.pdf.

[47] Massacci, F., and Nguyen, V. H. An empirical
methodology to evaluate vulnerability discovery
models. IEEE Transactions on Software Engineering
40, 12 (December 2014), 1147–1162.

[48] McDermott, J., and Fox, C. Using abuse case
models for security requirements analysis. In
Proceedings of the 15th Annual Computer Security
Applications Conference (ACSAC) (1999), IEEE
Computer Society, pp. 55–64.

[49] McGraw, G. Software security. IEEE Security &
Privacy 2, 2 (March 2004), 80–83.

[50] McGraw, G. The role of architectural risk analysis in
software security. Website, March 2006. http:
//www.informit.com/articles/article.aspx?p=446451,
last accessed 7 April 2016.

[51] McGraw, G. Software Security: Building Security In,
1st edition ed. Addison-Wesley Professional, 2006.

[52] McGraw, G. Cyber war is inevitable (Unless we
build security in). Journal of Strategic Studies 36, 1
(February 2013), 109–119.

[53] McGraw, G. E-mail, July 2017. Personal
communication with the author.

[54] McGraw, G., Migues, S., and West, J. Building
security in maturity model (BSIMM). PDF, 2015.
https://www.bsimm.com/.

[55] Mercuri, R. T. Analyzing security costs.
Communications of the ACM 46, 6 (June 2003), 15–18.

[56] Mizzi, A. Return on information security investment -
the viability of an anti-spam solution in a wireless
environment. International Journal of Network
Security 10, 1 (January 2010), 18–24.

[57] Mkpong-Ruffin, I., Umphress, ., Hamilton, J.,
and Gilbert, J. Quantitative software security risk

assessment model. In Proceedings of the ACM
Workshop on Quality of Protection (QoP) (2007),
ACM, pp. 31–33.

[58] Moore, T. The economics of cybersecurity:
Principles and policy options. International Journal of
Critical Infrastructure Protection (IJCIP) 3, 3-4
(December 2010), 103–117.

[59] National Institute of Standards and
Technology (NIST). Framework for improving
critical infrastructure cybersecurity. Tech. rep.,
February 2014. http://www.nist.gov/cyberframework/
, last accessed 20 Oct 2016.

[60] Neuhaus, S., and Plattner, B. Software security
economics: Theory, in practice. In Proceedings of the
11th Workshop on the Economics of Information
Security (WEIS) (2012).

[61] NIST Computer Security Division. Information
security: System development life cycle. PDF, August
2004. http://csrc.nist.gov/groups/SMA/sdlc/
documents/SDLC brochure Aug04.pdf.

[62] Panaousis, E., Fielder, A., Malacaria, P.,
Hankin, C., and Smeraldi, F. Cybersecurity games
and investments: A decision support approach. In
Proceedings of the 5th International Conference on
Decision and Game Theory for Security (GameSec)
(2014), Springer International Publishing,
pp. 266–286.

[63] Pandey, P. “Context, content, process” approach to
align information security investments with overall
organizational strategy. International Journal of
Security, Privacy and Trust Management (IJSPTM)
4, 3/4 (November 2015), 25–38.

[64] PCI Security Standards Council. Payment card
industry (PCI) data security standard: Navigating
PCI DSS — understanding the intent of the
requirements. PDF, October 2008.
https://www.pcisecuritystandards.org/pdfs/pci dss
saq navigating dss.pdf, last accessed 20 October 2016.

[65] Peeters, J., and Dyson, P. Cost-e↵ective security.
IEEE Security & Privacy Magazine 5, 3 (May 2007),
85–87.

[66] Peisert, S., Talbot, E., and Bishop, M. Turtles all
the way down: A clean-slate, ground-up,
first-principles approach to secure systems. In
Proceedings of the New Security Paradigms Workshop
(NSPW) (2012), ACM, pp. 15–26.

[67] Pfleeger, S. L., and Rue, R. Cybersecurity
economic issues: Clearing the path to good practice.
IEEE Software 25, 1 (January 2008), 35–42.

[68] Poladian, V., Garlan, D., and Shaw, M. Software
selection and configuration in mobile environments: A
utility-based approach. In Proceedings of the 4th
Workshop on Economics-Driven Software Engineering
Research (EDSER-4) (2002).

[69] Robertson, S., and Robertson, J. Mastering the
Requirements Process, 1st ed. Addison-Wesley
Professional, 1999.

[70] Rue, R., and Pfleeger, S. L. Making the best use
of cybersecurity economic models. IEEE Security &
Privacy 7, 4 (July 2009), 52–60.

[71] Rue, R., Pfleeger, S. L., and Ortiz, D. A
framework for classifying and comparing models of

104

cyber security investment to support policy and
decision-making. In Proceedings of the 6th Workshop
on the Economics of Information Security (WEIS)
(2007).

[72] Salini, P., and Kanmani, S. Survey and analysis on
security requirements engineering. Computers &
Electrical Engineering 38, 6 (November 2012),
1785–1797.

[73] Scandariato, R., Walden, J., and Joosen, W.
Static analysis versus penetration testing: A
controlled experiment. In Proceedings of the 24th
IEEE International Symposium on Software Reliability
Engineering (ISSRE) (2013), IEEE Computer Society,
pp. 451–460.

[74] Schechter, S. Quantitatively di↵erentiating system
security. In Proceedings of the 1st Workshop on the
Economics of Information Security (WEIS) (2002).

[75] Schechter, S. E., and Smith, M. D. How much
security is enough to stop a thief? The economics of
outsider theft via computer systems and networks. In
Financial Cryptography (2003), Springer-Verlag,
pp. 122–137.

[76] Schneier, B. Secrets & Lies: Digital Security in a
Networked World, 1st ed. John Wiley & Sons, Inc.,
New York, NY, USA, 2000.

[77] Sindre, G., and Opdahl, A. L. Capturing security
requirements through misuse cases. In Proceedings of
the 14th Norwegian Informatics Conference (NIK)
(2001).

[78] Sindre, G., and Opdahl, A. L. Templates for
misuse case description. In Proceedings of the 7th
International Workshop on Requirements Engineering:
Foundation for Software Quality (REFSQ) (2001),

pp. 4–5.
[79] Stecklein, J. M., Dabney, J., Dick, B., Haskins,

B., Lovell, R., and Moroney, G. Error cost
escalation through the project life cycle. In
Proceedings of the 14th Annual International
Symposium of the International Council on Systems
Engineering (INCOSE) (2004).

[80] Thomas, R. C., Antkiewicz, M., Florer, P.,
Widup, S., and Woodyard, M. How bad is it? A
branching activity model to estimate the impact of
information security breaches. In Proceedings of the
12th Workshop on the Economics of Information
Security (WEIS) (2013).

[81] Tøndel, I. A., Jaatun, M. G., and Meland, P. H.
Security requirements for the rest of us: A survey.
IEEE Software 25, 1 (January 2008), 20–27.

[82] Tsiakis, T., and Stephanides, G. The economic
approach of information security. Computers &
Security 24, 2 (March 2005), 105–108.

[83] Verdon, D., and McGraw, G. Risk analysis in
software design. IEEE Security & Privacy 2, 4 (July
2004), 79–84.

[84] Verendel, V. Quantified security is a weak
hypothesis: A critical survey of results and
assumptions. In Proceedings of the New Security
Paradigms Workshop (NSPW) (2009), ACM,
pp. 37–50.

[85] Voas, J., McGraw, G., Kassab, L., and Voas, L.
A ‘crystal ball’ for software liability. Computer 30, 6
(June 1997), 29–36.

[86] Woody, C., and Alberts, C. Considering
operational security risk during system development.
IEEE Security & Privacy 5, 1 (January 2007), 30–35.

105

