Searching for Software Diversity

Attaining Artificial Diversity through Program Synthesis

Gilmore R. Lundquist
The University of Texas at Dallas
gilmore.lundquist@
utdallas.edu

ABSTRACT

A means of attaining richer, more comprehensive forms of soft-
ware diversity on a mass scale is proposed through leveraging
and repurposing a closely related, yet heretofore untapped,
line of computer science research—automatic program syn-
thesis. It is argued that the search-based methodologies
presently used for obtaining implementations from specifi-
cations can be broadened relatively easily to a search for
many candidate solutions, potentially diversifying the soft-
ware monoculture. Small-scale experiments using the Rosette
synthesis tool offer preliminary support for this proposed ap-
proach. But the possible rewards are not without danger: It
is argued that the same approach can power a dangerous new
level of sophistication for malware mutation and reactively
adaptive software threats.

CCS Concepts

eSecurity and privacy — Software security engineer-
ing; eSoftware and its engineering — Source code gen-
eration; Automatic programming; Search-based software en-
gineering;

Keywords

Artificial diversity; program synthesis; security

1. INTRODUCTION

For almost a quarter century—since Cohen’s seminal 1993
article on program evolution [13]—the brittleness of software
monoculture has been recognized by the computer security
community as a major root of cyber insecurity. In contrast
to most biological systems, whose chaotic diversity engenders
communal resilience against many threats, such as disease, en-
vironmental change, or species introduction; software systems
tend towards uniformity, championing ideals such as code
reuse, computation replication, and resource sharing. Attacks
that succeed against one of these shared elements therefore

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

NSPW 16 September 26-29, 2016, Granby, CO, USA
(© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4813-3/16/09.

DOI: http://dx.doi.org/10.1145/3011883.3011891

Vishwath Mohan
Google

vishwath.mohan@gmail.com

80

Kevin W. Hamlen
The University of Texas at Dallas
hamlen@utdallas.edu

too often succeed against the entire community, threatening
to eradicate entire software species in a single blow.

Cohen recognized the value of diversity in part because he
had already observed its value for cyber offense. His 1986
dissertation [12] prophetically observes that viral evolution
ultimately dooms static approaches to antivirus detection
due to the limits of computability (a verdict that the an-
tivirus industry recently recapitulated 28 years later under
the mantra “antivirus is dead” [80]). Thus, like competing
biological communities, the most diverse software community
tends to have the greatest survivability.

Over the following decades, scientists responded to these
observations by advocating what might be termed artifi-
cial micro-diversity—the perturbation and randomization of
low-level computer code to produce syntactically different
but semantically equivalent code. For example, Forrest’s
influential 1997 paper [19] promoted dead code introduction,
basic block reordering, and memory layout randomization
as promising implementation strategies for defensive diver-
sity. Such perturbations can probabilistically defeat many
low-level exploits, such as buffer overflows, and have the
advantage of being potentially applicable to existing software
products without requiring redevelopment.

But large classes of attacks remain immune to micro-
diversity. For example, cross-site scripting (XSS)—one of
the historically largest software vulnerability classes—is gen-
erally attributable to a failure to suitably sanitize untrusted
inputs flowing to trusted sinks. Any diversification strategy
that diligently preserves program semantics is likely to pre-
serve the sanitization lapse,’ leading once again to universal
vulnerability of the community. Thus, true software diversity
remains an elusive challenge in many respects.

Concurrently and largely independently, the programming
languages and compilers community has devoted a large body
of research to a different but closely related problem: auto-
matic program synthesis. Synthesis work is motivated by the
observation that humans tend to be much better at describing
what computer programs should do than writing efficient and
correct computer programs that do it. The goal of synthesis
is therefore typically defined as, “the systematic derivation
of a program from a given specification” [48] (cf., [47]).

In this paper, we propose retargeting advances in program
synthesis to the artificial diversity problem by broadening
this goal to “the systematic derivation of a diversity of pro-
grams from a given specification.” All synthesis research
is rooted in search (because there are generally an infini-

!Some XSS cases can be addressed by blocking other aspects
of program behavior than input sanitization (e.g., [21]).

tude of programs that satisfy any given specification), so
broadening the search to multiple programs seems both nat-
ural and potentially feasible. Synthesis algorithms tend to
discard “poor” (e.g., less efficient but still correct) search can-
didates as probably undesirable to users; but from a diversity
standpoint, the synthesist’s dross may be the defender’s sil-
ver. In particular, we consider whether a broadened form
of program synthesis may be a feasible avenue toward more
macro-diverse software communities. Dually, we consider
program synthesis as a potentially dangerous methodology
for aggressively metamorphic malware offense.

Toward exploring these questions, we survey pertinent
research on program synthesis and artificial diversity, and
conduct some preliminary experiments on marrying these
heretofore disparate technologies. The outcomes of these
experiments suggest that diversity is obtainable via program
synthesis and has the potential to replace or outperform
existing diversity techniques currently in use.

The remainder of the paper proceeds as follows. In Sec-
tion 2, we motivate the need for program diversity for both de-
fensive and offensive security by examining recently published
surveys of the literature [3,39]. Section 3 correspondingly
draws upon surveys of the program synthesis literature [22]
to summarize modern synthesis methods and common appli-
cations. Section 4 describes our initial attempts at attaining
program diversity using synthesis. Section 5 outlines dis-
cussions that occurred at NSPW. Section 6 proposes future
work in this area. Section 7 concludes.

2. ARTIFICIAL DIVERSITY

Artificial diversity refers to the creation of semantically
equivalent but syntactically different variants of a given
program for security and reliability purposes. The idea was
initially proposed over two decades ago [13] as a means of
fault-tolerance for mission critical systems. It easy to see
how nature inspires such a proposal. Biological diversity
ensures population-wide resilience against a specific disease
or virus, and forms a critical factor in the survivability of a
species (and even the ecosystem as a whole) [30,46,50].

Although the term “diversity” has traditionally been ap-
plied to defense, we show later in this section that some
popular methods employed by malware to evade detection
are conceptually identical to defensive diversity.

Our focus here is on examining diversity techniques and
methodologies; for a broader discussion of the motivations
of diversity in the context of full system design, we refer the
reader to related works [5,6,60,70,73].

2.1 Defensive Diversity

Software (and hardware) is often intentionally engineered
to be homogenous. Homogeneity simplifies the effort involved
in developing, distributing, maintaining, and updating a
product, making it the commercially advantageous choice.

However, this homogeneity also lowers the bar for exploita-
tion. Malicious actors who obtain and analyze any instance
of a product derive conclusions that reliably apply to all
instances. Vulnerabilities they find can be therefore be de-
veloped into exploits that threaten all copies of the product.

Defensive software diversity aims to introduce uncertainty
between different versions of a software product, requiring
attackers to obtain precise knowledge of the target versions
they wish to exploit. This means that a vulnerability found
in one instance of the product does not necessarily exist in

81

other copies, forcing attackers to tailor exploits to the specific
copy of the product they wish to target. This significantly
raises the bar for both targeted and mass scale attacks.

Various types of diversity have been proposed that oper-
ate at different granularities? and at different points in the
software development and deployment lifecycle.® Larsen et
al. [39] categorize different diversity schemes based on the
level at which they operate, as well as when in the lifecycle
they are utilized. A partial, abbreviated listing of these is
given below.

2.1.1 Diversity by Level

1. Instruction level approaches attempt to replace in-
structions or instruction sequences with semantically
equivalent, but different instructions (or instruction
sequences). Alternately, some approaches also limit
themselves to reordering existing instructions or in-
struction sequences.

2. Basic block level approaches to diversity typically per-
mute the order of basic blocks [79], or obfuscate the
control flow graph [14,44].

3. Function level techniques include in-lining function
code at call sites, extracting code fragments into new
functions and replacing them with calls in the original
code, randomizing the order of parameters to functions,
and randomizing stack layouts.

4. Program level diversity re-orders the layout of functions
or function tables (e.g., the GOT and PLT structures in
ELF binaries), randomizes the base addresses of binary
sections (e.g., ASLR), or reencodes the program in a
different format [26, 35, 66].

2.1.2 Diversity by When

1. Design and implementation stage diversity entails im-
plementing multiple versions of a component using
different algorithms, programming languages, and/or
personnel. This can drastically reduce the chance that
a vulnerability found in one version of a component is
also applicable to other versions.

Diversity at this stage is a costly process, and thus not
widely adopted. It is most often used as a means of
introducing fault-tolerance [1,62] in select domains like
aerospace, where reliability is a critical concern.

2. Compilation and linking stage techniques are largely
automatic, and proposed more for security than for
fault-tolerance. Compilation-based approaches rely on
one or more compiler passes that perform the actual
diversification, while linking-based approaches take ad-
vantage of debugging information from the compiler’s
output to perform diversification just before linking
separately compiled modules.

2For a discussion of the special challenges incurred from
deploying defensive diversity in embedded systems, see
McLaughlin et al. [51].
3For a discussion of deploying defensive diversity at installa-
tion time from a large-scale (“App-store” style) deployment
system, see Franz [20].

3. Post-installation approaches statically rewrite binary
programs after they are installed, but before they are
executed. For the most part, this rewriting does not
perform the actual diversification, but instead prepares
the binary to be diversified when it is loaded. Post-
installation approaches tend to focus mainly on ran-
domizing the relative locations of instructions [26] or
basic-blocks [79], and do not attempt to replace instruc-
tion sequences with semantically equivalent substitutes.

4. Load-time approaches modify the in-memory repre-
sentation of a process before it is executed. Some of
these tend to be secondary stages of post-installation
approaches, but there also exist purely load-time diver-
sification techniques [17].

In general, we observe that implementation and design level
techniques tend to produce changes at the highest conceptual
levels—at a whole program or algorithmic level—while the
remaining pre- and post-installation based approaches tend
to work between the instruction and function levels. This
is offset by the increased cost and difficulty of scaling this
approach.

Additionally, most automated approaches focus on permut-
ing or randomizing code positions at different granularities—
from individual instructions to entire functions. Fewer tech-
niques attempt instruction (or instruction sequence) replace-
ment.

2.2 Offensive Diversity

Program diversity is not just useful as a defensive technique;
it is one of the fundamental methods employed by malware
to evade detection.

End-user detection for malware tends to rely heavily on
various forms of static and syntactic analysis, in addition to
dynamic monitoring, because of the higher costs associated
with dynamic and behavioral analysis [37,38,43,56,67]. This
is reflected in the evasion techniques employed by malware,
which can be broadly split into the following categories:

1. Oligomorphic malware uses simple invertible instruc-
tions, such as exclusive-or, to transform malicious code
bytes and hide distinguishing syntactic features. Before
the code executes, the original contents are recovered by
applying the inverse transformation to the obfuscated
payload.

2. Polymorphism is an evolution of the idea behind oligo-
morphy. In lieu of simple operations, polymorphic
malware encrypts the payload, or applies a similarly
one-way function, leaving only a small decryption rou-
tine behind. When the malware is loaded, the decryp-
tion routine unpacks the payload and transfers control
to it.

3. Virtualization-based obfuscation expresses payloads in
terms of a bytecode language tailored for a custom
embedded virtual machine (VM). The VM executes
the payload by interpreting the bytecode at runtime.
By mutating the bytecode language (and the VM) on
each propagation, a high degree of diversity can be
maintained.

4. Metamorphic malware replaces malicious code sequenc-
es with semantically identical code during propagation.

82

It accomplishes this using a metamorphic engine that
introspects its own binary programming and performs
modification passes. These passes replace instruction
sequences with structurally different but semantically
equivalent sequences, resulting in high diversity without
the telltale entropy produced by polymorphism, or the
potentially distinguishing VM of virtualization-based
malware.

As evident from their descriptions, oligomorphic and poly-
morphic malware obfuscate themselves by hiding the contents
of the payload from analyses syntactically, while malware
that employs virtualization-based obfuscation or metamor-
phism aims to thwart detection using a more semantic style
of diversity.

Of these approaches, metamorphism is potentially the
hardest to detect. Oligomorphic and polymorphically en-
coded payloads exhibit identifiable statistical properties, such
as entropy [45] and byte frequency [77,78], that are unique
from most benign code, and which can be used to detect
such malware in the wild. Virtualization based obfuscation
effectively shifts the malware’s obfuscation burden to hiding
the in-lined, custom VM, and therefore has the potential
to be statically detectable using carefully selected heuristics
that exploit this weakness.

Because metamorphism introduces mutations by replacing
code sequences with equivalent plaintext code, it does not
typically exhibit statistical properties that distinguish it
from non-encrypted benign software. Additionally, there are
no complicated interpreters or JIT-compilers in-lined into
metamorphic malware, allowing it to bypass heuristics that
would detect VM-based approaches.

Most metamorphic engines use a bottom-up approach that
consists of disassembling native code to some intermediate
representation, adding diversity by modifying the intermedi-
ate code in functionally equivalent ways, and finally convert-
ing it back into (now mutated) native code. They generally
perform some combination of the following five phases to
introduce diversity [58]:

1. Garbage insertion adds unreachable code to the original
code.

2. Code substitution replaces instructions or instruction
sequences with semantically identical versions.

3. Code insertion adds dead ineffectual code in between
the actual malicious payload.

4. Register swapping reallocates the registers that instruc-
tions use.

5. Control flow scrambling uses branch instructions to
reorder basic blocks or functions.

Interestingly, we observe that many of these techniques are
identical to the instruction level, basic-block level and func-
tion level transformations used for defensive diversity.
Offensive research has also explored the merits of a top-
down approach to malware obfuscation, as demonstrated
by the Frankenstein system [54]. Frankenstein starts with
a high-level representation of the payload logic, concealed
within its data sections. When deployed on a target system,
it disassembles benign binaries and constructs a database of
gadgets—instruction sequences that perform useful semantic

tasks—and uses the process of unification from logic pro-
gramming to find a sequence of gadgets that is semantically
equivalent to the high-level payload description. The use of
unification imbues Frankenstein with the ability to generate
mutants that more closely exhibit the statistical properties of
benign binaries unique to a given victim machine or network.

A comparison of defensive versus offensive diversification
strategies reveals at least two major differences between the
two: First, offensive diversity is more likely to trigger at
propagation time than at any of the stages described in Sec-
tion 2.1. This makes sense given that the primary purpose of
diversity for malware is to evade static detection during tran-
sit and at rest, while the motivation for defensive diversity
is to eliminate common vulnerabilities or exploitation paths.

Second, the adoption of defensive diversity techniques is
far more constrained by factors such as runtime performance
and maintainability, which are not as high priorities for many
malware authors. For example, most malware can afford
to run with higher overhead if it means increased stealth.
These differences influence how and what kinds of program
synthesis can be used for both purposes.

3. PROGRAM SYNTHESIS

Program synthesis [2,4,8,16,22-24,27,29,31-34,40-42,47—
49,52,61,68,69,71,72,75,76] tackles the problem of system-
atically deriving or discovering a program from a specifica-
tion [22,47,48]. The synthesized program therefore has some
formal guarantee of correctness with respect to the given
specification; however, specifications are usually incomplete
from a security perspective. For example, a specification for
a string sorting computation would typically prescribe or-
deredness of output and one-to-one correspondance of input
to output elements, but would not typically enumerate all
standard library functions that have vulnerabilities, and that
therefore must not be employed in any synthesized imple-
mentation. This is especially the case if some vulnerabilities
are as yet unknown to defenders. Hence, synthesis does not
guarantee security even if the synthesis algorithm is correct.

While compilers and other translators play an important
role in the synthesis problem space, a distinguishing charac-
teristic of synthesis over compiler construction is the former’s
heavy reliance on search techniques to find solutions. These
searches can wander farther afield from the programmer’s
original input specification than traditional syntax-directed
compilation, allowing specifications to be less comprehen-
sive than traditional source code programs, and leading to
solutions farther removed from specfications than object
code is removed from source code. It can also provide new
algorithmic insights in the search results [22].

Program synthesis’ goal of producing a singular program
seems to be prevalent throughout the history of the literature.
For this work, we propose generalizing the goal of generating
“a program” to generating “a diversity of programs”. By so
doing, we hope to capitalize on the capacity of search to
explore a much larger and more diverse space of solutions
than traditional compilers. We feel this could potentially
offer great benefits to cyber security, toward more effective
artificial diversity for cyber defense, and more potent software
polymorphism for cyber offense.

3.1 Synthesis Methods and Applications

Gulwani [22] separates program synthesis methods into
three dimensions: user intent (i.e., the format of the input

83

specification), search space, and search technique.

Input specifications are often based on logic (e.g., [23,29,48,
61,72]) or proofs (e.g., [47]). Other common choices are nat-
ural language [24,42,61], which can be converted via natural
language processing into a logical specification; example in-
puts and outputs [2,41,52], including program traces [4,16,40];
and example programs or reference implementations, as in
the case of sketching (discussed in Section 3.2) and synthe-
sizing program inverses [71].

Of these, we speculate that program traces and program
sketching are perhaps the most promising and relevant ap-
proaches for security applications. Traces have natural links
to security because security policies are often specified in
terms of valid program traces [9]. Alternatively, program
sketches more closely resemble traditional computer pro-
grams, and might therefore be a more feasible approach
to diversifying existing code. Our preliminary experiments
reported in Section 4 therefore adopt a sketching approach.

A synthesis engine typically converts a given input spec-
ification into constraints for some search method, which is
then applied to find a result program from the search space.
Boolean satisfiability (SAT) solvers and satisfiability modulo
theories (SMT) solvers are standard vehicles for search, but
many other search algorithms are also used (e.g., A* goal
directed search, version space algebras [2,41,52], or brute
force search [8,34,49,52]). SAT/SMT solvers are sometimes
combined with other search algorithms.

3.2 Program Sketching

Of the aspects of synthesis systems mentioned in Section
3.1, the most important to the user of the system is the
choice of input specification. In addition to being sufficiently
general (many synthesis systems are domain specific), for our
experiments we wanted a system whose input specification
was easy to work with and allowed control over how much
of the program to synthesize. In particular, we wanted the
ability to influence whether and how much loops and other
control flow constructs are synthesized, since these are often
harder for synthesis engines to handle.

Toward this end, we focused on systems that take a pro-
gram sketch [27,31,68,69,75] as input. A program sketch is
a program with holes to be filled in by the synthesis system.
The sketch both constrains the search space to those pro-
grams that match the sketch, and also provides a correctness
specification in the form of assertions defining correct pro-
gram behavior. Assertions and holes can then be converted
into an integer constraint problem to be solved by an SMT
solver.

For example, consider the code listed below (from [68],
written in the SKETCH language). The program contains
an integer hole, denoted by ‘??’. The assertion formally
specifies the desired behavior of the program.

void main(int x){
int y = x % 77;
assert y == x + Xx;

Synthesis is performed by converting holes into parameters
of the program, and then partially evaluating the sketch
using the results from the solver as static inputs, which fill
in the holes. No assertions may fail for any input to the
program. The synthesized result of the example above is
identical to the input sketch, but with the hole replaced with

the constant ‘2’. In this case there is only one solution, but
in general there may be many possible valid completions.

Parts of the sketch outside of the holes must remain un-
changed in the output, while the synthesis engine may fill
in the holes as it sees fit. This allows the programmer to
provide a template for the structure of the program, and to
constrain the search space as much or as little as desired.
Loops are typically provided outside of holes in the sketch
to avoid the intractability mentioned above.

More complex code may be synthesized by providing a
grammar from which possible completions may be generated.
Alternatives in the grammar are converted automatically
into integer or boolean holes representing the choices made
and then solved as before.

3.3 Diversity in Synthesis

It seems clear that diversity is naturally present, if not
prevalent, in the problem of synthesizing code; in fact, of-
tentimes designers of synthesis systems devote great effort
toward hiding less-than-optimal solutions from users when
selecting a final solution. The presumption is, of course, that
users want to see only the best solution discovered by the
algorithm.

To our knowledge, no prior work has applied program syn-
thesis to the problem of artificial diversity. While security is
occasionally mentioned in the synthesis literature, it tends to
be limited to reverse-engineering and malware de-obfuscation
applications [33,40] and bug fixes [57]. Such applications
still aim to produce a single program as output, and avoid
methods that yield a plethora of solutions.

Evolutionary computation (EC) has recently been applied
to fix security bugs in router firmware [64]. EC is not strictly
the same as program synthesis, however there are similarities.
While EC does create a diversity of mutants internally as
part of the process of evolution, none of these candidate
programs are viable for use since the algorithm terminates
as soon as it finds one able to pass its regression tests. We
believe that this and other non-synthesis search algorithms
which operate on programs may also be able to be adapted
as proposed in this paper to provide a diversity of (viable)
outputs.

Multivariant or N-variant systems detect intrusions or
faults by running a monitored diversity of semantically equiva-
lent programs simultaneously [15]. Diversity in these systems
is typically limited to primarily micro-diverse techniques (see
Section 2.1.1). Richer sources of diversity, including our
proposed approach, can therefore potentially benefit such
approaches by supplying an automated source of more macro-
diverse, yet semantically equivalent variants—perhaps with
different intrusion detection capabilities.

4. PRELIMINARY EXPERIMENTS
4.1 Rosette

For our preliminary experiments in applying synthesis to
diversity, we chose the Rosette language [74,75,76]. Rosette
provides synthesis, verification, and symbolic execution via
solver-aided constructs; symbolic models are converted to
integer constraint problems and solved with an SMT solver
of the user’s choice—Microsoft’s Z3 [55] by default.

Rosette is embedded within Racket [18], a functional lan-
guage that is a successor to Scheme and Lisp. The availability

84

of Racket within Rosette is particularly useful for our inves-
tigation because it provides many tools for extending the
language’s syntax and functionality, giving the developer
the ability to create new programming languages or Domain
Specific Languages (DSLs). The Rosette system provides
two language dialects:

e a safe dialect (#lang rosette/safe), providing some
of Racket’s features, but omitting those which might
interfere with the solver; and

e an unsafe dialect (#lang rosette), providing all of
Racket’s features.

These languages are designed to allow users to create their
own DSLs with synthesis and verification capabilities built in.

Rosette uses program sketching (see Section 3.2) to syn-
thesize code. A library is provided that allows the user to
specify a recursive grammar, or synthax (a portmanteau for
“synthesizable syntax”). Synthax grammars are converted
into binary symbolic variables that encode the grammar
alternatives chosen by the synthesis engine.

4.2 A Simple Synthesis Example

As an example,* consider the following problem: given two
machine registers (r1 and r2) and a pool of small program
fragments, which we term gadgets [65], construct a sequence
of gadgets that stores the value 4 in register 1. While our use
of the term gadget is inspired by offensive security (return-
oriented programming in particular), we use the term here
in a more general sense: A gadget is any code fragment with
known semantics.

First, we use Rosette’s bitvector type to define a subtype
with a given fixed precision, namely 8 bits. This new type
will be used to model 8-bit registers:

#lang rosette/safe

(define bitwidth 8)
(define bv8?7 (bitvector bitwidth))
(define bv8-const (lambda (v) (bv v bitwidth)))

The #lang directive tells the Racket interpreter which lan-
guage should be used to parse this module’s source code.
The bv8? predicate returns true (#t) if the argument is of
our defined type, and bv8-const constructs a constant value
in our defined type.

Next, we define symbolic variables to represent the regis-
ters. Here we use Rosette’s symbolic execution, which lets
us symbolically compute constraints on the possible values
of each register after each step. Function define-symbolic
creates a fresh symbolic value for each name given, with
the final argument determining the type. Since each gadget
destructively updates the value of the destination register,
we save a copy of the unmodified symbolic value immedi-
ately after creation for later use. We also provide a reset
function to restore the value of the registers to their original
(unmodified) symbolic value.

; model 8-bit registers rl and r2
(define-symbolic rl r2 bv87)

“Our example code can be downloaded from https://www.
utdallas.edu/~hamlen/projects.html.

Table 1: Gadgets and their computations

Gadget Operation
Gl rL 411 X2
G2 ro <— 19 + 1
G3 rinry—1
G4 T, 0
G5 ry <6
G6 ro +— 1
G7 T1 < T2
G8 To < T1

; gadgets are side-effectful;
; use (reset) to clear them.
(define ri-symb ril)
(define r2-symb r2)
(define (reset)

(set! rl ri-symb)

(set! r2 r2-symb))

Next, we define our gadget pool, and a helper function to
execute a sequence of them. Here we use the bitvector opera-
tors provided by Rosette, whose names start with the prefix
‘bv’. For example, bvshl performs a shift-left on bitvectors.
While the gadgets presented here are each equivalent to a
single instruction, this need not be the case in general. (We
only show the implementation of a few gadgets; a full list is
given in Table 1):

; Gl: rl *x= 2
(define (gl)
(set! r1 (bvshl r1 (bv8-const 1))))

; G2 r2 += 1
(define (g2)
(set! r2 (bvadd r2 (bv8-const 1))))

; Gb: rl1 <- 6
(define (gb) (set! r1 (bv8-const 6)))

; G8: r2 <-ri
(define (g8) (set! r2 rl))

; given a gadget list, execute each in sequence.
(define (run-code code)
(map (lambda (g) (g)) code))

Here, (run-code (gadget-list)) takes a list of gadgets and
evaluates each gadget as a function, returning a list of results.
This has the useful property of executing the side-effects of
each gadget in order.

Next, we define our desired goal for the synthesized pro-
gram. We do this by asserting the desired properties using
Rosette’s assert function. This has two uses: when called
with a proposition that uses concrete values, assert acts like
an assert in a typical imperative programming language—if
the proposition is false, it causes a runtime failure; other-
wise execution continues with no effect. If called on proposi-
tions containing symbolic values, Rosette adds the (symbolic)

85

proposition to a list of constraints to be checked next time
the solver is exercised.

; GOAL: code that produces the result rl = 4
(define (assert-correct)
(assert (equal? r1l (bv8-const 4))))

(define (code-correct code)
(reset)
(run-code code)
(assert-correct))

Function code-correct prescribes that a given gadget
sequence is correct if, when executed after a reset (i.e., with
any possible starting values in the registers), the desired
property is true (namely that register r1 contains the value 4).

With this infrastructure in place, we’re finally ready to syn-
thesize some code. First, we use require to include a library
for defining synthax. We then define gadget-sequence, a
synthax grammar for generating a list of gadgets of given
depth. The Rosette function choose creates a hole to be
filled with any of the given expression alternatives. This
definition encodes the following grammar:

gadgetSeq ::= (list gadget) | (cons gadget gadgetSeq)

gadget n=gl|g2|g3|g4|eb|e6|g7|g8

We then define® synthesized-sequence, a sketch with a
gadget-sequence hole. The sequence depth is passed as
an argument.® Holes in the sketch determine the choice of
gadgets and therefore the permutation of the sequence.

(require rosette/lib/synthax)

; a grammar for gadget lists
(define-synthax (gadget-sequence depth)
#:base (list [choose gl g2 g3 g4 gb g6 g7 g8l)
#:else (cons [choose gl g2 g3 g4 gb g6 g7 g8l
(gadget-sequence (- depth 1))))

; a sketch with a hole, to be filled
; with gadget sequences of length 3
(define synthesized-sequence (gadget-sequence 2))

; synthesize a correct gadget sequence:
; find a concrete model for the symbolic variables
; that satisfies all of our assertions
(define soln
(synthesize
#:forall (list rl r2)
#:guarantee (code-correct synthesized-sequence)))

(if (sat? soln)
(print-forms soln)
(display "Unsatisfiable"))

We then call synthesize to complete the sketch, asserting
that our predicate code-correct must be true for the gen-
erated sequence. The result of synthesize defines a model
assigning values to all symbolic variables except those given
in the #:forall list. If the model is satisfiable, then the
values in the model are used to complete the sketch, which
synthesizes a particular gadget sequence.

5 At the time of this writing, sketch definitions must be saved
to a file to generate completed sketches.
SA depth of 0 produces a list containing 1 gadget.

Table 2: Synthesized gadget sequences
Depth Order

Synthesized Sequence

0-1 AB none/unsatisfiable

2 AB G5, G3, G3

3 A G5, G3, G8, G3
B G6, G2, G7, G1

4 A G5, G3, G3, G8, G8
B G5, G3, G8, G6, G3

5 AB G6, G2, G4, G2, G2, G7

6 A G5, G8, G3, G2, G2, G3, G8
B G5, G8, G7, G6, G8, G3, G3

4.3 Experimental Results

With the code shown, our program generates the sequence”
G5, G3, G3, which assigns 6 to 1 and then subtracts 1 twice.
This is indeed the shortest solution given the available gad-
gets. But what if we want a diversity of (possibly suboptimal)
solutions? Can the synthesis algorithm discover them for us?

One approach is to increase the requested depth of the
generated sequence. After changing the depth from 2 to
3, Rosette instead discovers the sequence G5, G3, G8, G3,
which assigns 6 to r1, subtracts 1, copies r1 to r2 (spuriously),
and finally subtracts 1 again. This result goes to the heart
of our observation about the nature of diversity in synthesis.
We see that the new sequence is identical to our first answer,
but with an additional copy gadget that acts as a semantic
no-operation. The synthesis engine has thus discovered code
insertion as an approach to the diversity problem.

Continuing the experiment by increasing the depth reveals
more solutions of similar spirit. For example, Rosette’s depth-
4 solution is G5, G3, G3, G8, G&, which uses the semantic
no-operation twice, this time both at the end. But what if we
desire even greater diversity? Is there some way to encourage
the search toward even more exotic regions of the search
space without modifying the internals of the algorithm?

One potential way to do so is by randomly permuting
the order of the gadget list offered to the search engine.
This capitalizes on the fact that search algorithms tend to
consider the available choices in order, in the absence of any
compelling reason to do otherwise. To test this, we changed
the synthax definition slightly to put G6 before G5:

(define-synthax (gadget-sequence depth)
#:base (list [choose gl g2 g3 g4 gb gb g7 g8l)
#:else (cons [choose gl g2 g3 g4 g6 gb g7 g8l
(gadget-sequence (- depth 1))))

The new experimental results are reported in Table 2. In the
“Order” column, the value “A” indicates a result discovered
using our original gadget order, “B” indicates one discovered
using the permuted order, and “AB” indicates the same
answer was arrived at by both versions.

Our first new answer—at depth 3, consisting of G6, G2, G7,
Gl—assigns 1 to 72, adds 1, copies it to r1, and multiplies

"Specifically, it synthesizes the code fragment (cons gb
(cons g3 (list g3))).

86

r1 by 2 to arrive at the answer 4. This shows that we
can get significantly different answers with only a minor
modification in the synthesis. The change in gadget order has
changed the “shape” of the search space—the solver goes down
paths generated by two different grammars which happen to
generate the same language. We conjecture that similarly
low-effort adaptations of program synthesis tools could open
an important new application area for this significant line
of research, and offer far richer forms of artificial diversity
than are presently achieved with ad hoc code obfuscation
strategies.

Our small experiment can be seen as applicable to both
offensive and defensive security. Used for offense, we can
imagine this type of synthesis being used to generate equiva-
lent but different malicious programs, which could reliably
evade signature-based intrusion detection. While the lim-
its of signature-based antivirus are already well-known (see
Section 1), it is still regarded as useful for inoculating comput-
ers against the “background radiation” of the internet [63]—
prevelent yet unsophisticated attacks that threaten most
users on a daily basis. But if unsophisticated attacks can
be effortlessly bred into highly diverse communities through
program synthesis, even the unsophisticated attacks become
highly threatening. In addition, prior work has observed
that technologies that automate significant diversity can im-
bue malware with reactive capabilities—allowing software
attacks to direct their mutations in order to penetrate specific
defenses [25,54].

Conversely, if used as a defensive measure, this sort of code
synthesis could be a way of automatically introducing arti-
ficial macro-diversity into a software population. Synthesis
research has historically sought improved program develop-
ment from scratch, and our experiments illustrate how it
could also be applied to diversify already-developed programs
in meaningful ways. Both modalities seem promising, in that
they offer to leverage decades of powerful scientific advances
in programming language theory toward improving the state-
of-the-art in this notoriously difficult cyber security problem
space.

5. WORKSHOP DISCUSSIONS

We've tried to capture in this section key points discussed
in the workshop, and clarify or address questions and topics
brought up by NSPW participants.

5.1 Bugs and Security Flaws
5.1.1 Specification Problems

As mentioned in Section 1, both bugs and security flaws
that are captured by the specification itself rather than the
implementation will necessarily be present in all variants
generated from that specification.

For example, when using sketching for code synthesis, any
code outside of a hole in a sketch is reproduced exactly; errors
in this part of the sketch will be retained in the final product.
These parts of a sketch may be considered to be part of
the specification (i.e., the parts of the program that are
specified exactly). In particular, since control flow structure
is likely to be outside of the holes in a sketch (as mentioned in
Section 3.2), any control-flow vulnerabilities will necessarily
be retained.

However, the fact that specifications may encode problems
is not unique to sketching; specifications are always by defini-

tion trusted, and any buggy formal specification will produce
buggy results. Further, writing correct formal mathematical
specifications may be seen in the development community as
work requiring more highly trained professionals, and there-
fore as too costly an endeavor to undertake. The hope in the
software synthesis community is that higher level specifica-
tions will be not only be clearer than traditional source code,
but that the guarantee that any generated programs adhere
to the specification provides its own reward.

5.1.2 Hole Complexity

When sketching, since holes are usually described by gram-
mars, the possible contents of a filled in hole will always
be exactly equal to the language generated by the grammar
in question (as restricted by the assertions given). Thus,
controlling the “size” or complexity of a hole is exactly equiv-
alent to adjusting the grammar. The shape of this generated
language exactly controls the search space and therefore the
possible results produced in each variant.

5.1.3 Logistics

During a normal program development lifecycle, bugs (and
to a lesser extent security issues) are found often and must
be dealt with by the developers. Having different variants
distributed to different end-users may complicate the process
of finding and fixing errors.

Once a problem is discovered, the first task will be to de-
termine whether the problem exists in all generated variants
(and is therefore an error in the specification), or whether
only one or a few variants exhibits the issue. In the former
case, repairing the specification will fix the problem. Other-
wise, several courses of action may be taken. The developer
might:

e provide a patch specific to the erroneous variant(s);

e adjust the specification to prevent the error from ever
being generated;

e do nothing; in some sense, statistically limiting security
errors to a few variants is the goal of this work—having
a limited number of deployments that could be ex-
ploited might be tolerable in some cases;

e blacklist the variant(s) in question: a mechanism or
constraint could be added to the synthesis engine or
specification to prevent emission of particular versions.
To assist with this a token uniquely determining the
variant in question could be provided at generation time
(e.g., numbers representing which grammar choices were
made in each hole).

The tokens mentioned in the last point above would be
useful not only in preventing the generation of particular
variants during synthesis, but also in recreating them for
debugging and testing purposes. However, if the synthesis
algorithm and specification are both known to an attacker,
care may have to be taken not to expose token values as well
lest the attacker be able to recreate the version in use by a
particular target.

A further logistical consideration is that of code signing: if
signed code is desired, each variant would have to be signed
by the code producer.

87

5.2 Stone Soup

Workshop participants brought to our attention a large
body of work related to artificial diversity: the STONE-
SOUP [28] project. The project concerns securely execut-
ing potentially untrusted programs; artificial diversity is
a common technique used to achieve this goal. Example
projects in this program include: MINESTRONE [36, 59],
PEASOUP [10], and VIBRANCE [7,11,53].

5.3 Hardware Diversification

It was mentioned in the workshop that diversification
may be desirable not just at the software level, but at the
hardware level as well. This is certainly possible; Rosette has
been applied to synthesize circuit designs [75] in a hardware
specification language, which could be diversified using the
same techniques suggested in this paper.

5.4 Metrics

A metric for determining the degree of difference between
two generated programs would be useful to have, both for the
synthesis algorithm (which might desire a minimum distance
between subsequent outputs), and for program analysis. Such
a metric would be hard to develop for the same reasons that
program equivalence is a hard problem.

It should be noted that any metric for diversity would not
be the same as a metric for security. Finding useful metrics for
security has proved to be a difficult problem as well; however,
future work might determine which security properties (if
any) can be inferred from the degree of difference between
two program variants.

6. FUTURE WORK

Our preliminary exploration of synthesis for diversity raises
many open research questions, which should be investigated
by future work. We discuss several of these below, suggesting
potential avenues of investigation.

Security properties of different synthesis techniques.
Synthesis algorithms are routinely evaluated in terms of
accuracy and performance, but it would be valuable to ad-
ditionally evaluate them from a security perspective (both
defensively and offensively). For example, some techniques
may generate a larger number of more diverse programs when
broadened to admit multiple solutions. Defensive evaluations
should consider whether this variety educes resilience against
attacks typically immune to artificial micro-diversity, while
offensive evaluations should measure its impact on antivirus
detection rates. Trade-offs between diversity and runtime
performance may also be an important consideration.
Meaningful evaluation must also take care to distinguish
security from obscurity. Even if existing attacks and defenses
fail against these more synthetically diverse software com-
munities, we must carefully consider whether an attacker or
defender with knowledge of the synthesis algorithm might
be able to comprehensively adapt their methods to accom-
modate the diversity. For example, if synthesis for malware
obfuscation yields populations with uniquely distinguish-
able structure, then small changes to malware signature
databases will serve to easily mitigate the threat even if
existing databases are inadequate. Similarly, if defensively
synthesized software populations harbor new, yet predictable

vulnerabilities, then we’ve merely replaced one monoculture
with another.

Synthesis as an Arms Race.

Can synthesis technologies be turned backward to reverse
any ostensible security benefits they offer? For example,
could defenders observing a synthetically diverse malware
population reliably infer the synthesis algorithm and its
parameters, and use this information to reliably detect all
members of the population? Dually, could attackers apply
the same synthesis techniques used to harden a software
population to instead craft attacks that succeed against
it with high probability? We consider this an important
question for understanding synthesis’ role in the software
security arms race. Answers may also lend insight into the
following related problems:

1. Understanding malware intent: The capacity to de-
rive general requirements and capabilities specifications
from a subset of known variants of a given malware
family has long been a holy grail of antivirus defense.
Expediting such analyses through greater automation
would grant defenders a significant advantage in the
malware arms race.

2. Clustering similar malware: The requirements specifi-
cations of different malware samples can be compared
as an additional signal when determining malware sim-
ilarity for the purposes of classification into families.

3. Generating new malware from existing samples: An
offensive use of reversible synthesis would be to gener-
ate requirements specifications from known malware
families and to use them to generate diversified variants.
This would be a powerful tool to a motivated attacker,
as they could reuse the vast archives of malware that
already exist to create newer, stealthier versions.

Specification-free Software.

Most widely deployed (and widely attacked) software prod-
ucts have no formal specification. Despite copious software
engineering research underscoring its importance, formal
specification remains an embarrassing omission in most soft-
ware development lifecycles—even in products that find their
way into mission-critical systems. Can program synthesis
nevertheless diversify these specification-free products?

There is good reason to expect the answer might be affir-
mative. For example, program sketches—exhibited by our
experiments in Section 4—are forms of specification that
are relatively easy to derive from reference implementations
(e.g., by replacing portions of the reference implementation
with holes). Future research should therefore investigate the
feasibility of leveraging these approaches to diversify legacy
software.

7. CONCLUSION

In this paper, we make the case for research that combines
two expansive but as of yet separate fields of study—artificial
diversity and automated program synthesis.

Artificial diversity allows different versions of a software
to have identical semantics but different syntactic represen-
tations, and in doing so offers a powerful tool that is used
for both offensive and defensive security.

88

Defensively it introduces uncertainty into a target binary
that provides probabilistic guarantees against multiple classes
of attacks. Offensively it provides a way for malware to evade
detection.

Automated program synthesis attempts to systematically
derive a program from a higher level specification. Many
synthesis algorithms also allow formal assertions to be made
about the correctness of the derived program with respect
to its specification. However, existing literature on synthesis
has not yet explored creating multiple variants from a single
specification.

We use the Rosette language to perform some preliminary
experiments towards the applicability of program synthesis to
introduce diversity into a program population. The results
show that there is indeed promise in this approach, and
motivates the need for further research in this area.

There are multiple open questions that need to be answered
before the utility of this approach can be accurately quan-
tified, but we believe this also has the potential to improve
both the offensive and defensive state of the art.

8. ACKNOWLEDGMENTS

The research reported herein was supported in part by NSF
awards #1054629 and #1513704, ONR award N00014-14-1-
0030, and an NSF I/UCRC award from Raytheon Company.
Any opinions, recommendations, or conclusions expressed
are those of the authors and not necessarily of NSF, ONR,
or Raytheon. Thanks go to Sean Peisert for shepherding
our paper for the workshop and for his help throughout the
process; to our discussion chair Anil Somayaji; to the anony-
mous reviewers for their time spent and helpful comments;
and finally to all the participants at NSPW for their lively
discussion of the topic.

9. REFERENCES

[1] A. Avizienis and L. Chen. On the implementation of
N-version programming for software fault tolerance
during execution. In Proc. 8th IEEE Int. Fault Tolerant
Computing Sym. (FTCS), pages 3-9, 1978.

D. W. Barowy, S. Gulwani, T. Hart, and B. Zorn.
FlashRelate: Extracting relational data from
semi-structured spreadsheets using examples. In Proc.
86th ACM Conf. Programming Language Design and
Implementation (PLDI), pages 218-228, 2015.

B. Baudry and M. Monperrus. The multiple facets of
software diversity: Recent developments in year 2000
and beyond. ACM Computing Surveys (CSUR), 48(1),
2015.

A. W. Biermann, R. I. Baum, and F. E. Petry.
Speeding up the synthesis of programs from traces.
IEEE Trans. Computers, 100(2):122-136, 1975.

D. Bodeau and R. Graubart. Cyber resiliency
engineering framework. Technical Report MTR110237,
MITRE Corporation, 2011.

D. Bodeau and R. Graubart. Cyber resiliency
assessment: Enabling architectural improvement.
Technical Report MTR120407, MITRE Corporation,
2013.

M. Carbin, D. Kim, S. Misailovic, and M. C. Rinard.
Verified integrity properties for safe approximate
program transformations. In Proc. ACM SIGPLAN

[10]

[11]

[12]

[13]

[14]

[15]

Work. on Partial evaluation and program manipulation,
pages 63-66, 2013.

K. Claessen, N. Smallbone, and J. Hughes. QuickSpec:
Guessing formal specifications using testing. In Proc.
4th Int. Conf. Tests and Proofs (TAP), pages 6-21,
2010.

M. R. Clarkson and F. B. Schneider. Hyperproperties.
Journal of Computer Security, 18(6):1157-1210, 2010.
M. Co, J. W. Davidson, J. D. Hiser, J. C. Knight,

A. Nguyen-Tuong, D. Cok, D. Gopan, D. Melski,

W. Lee, C. Song, T. Bracewell, D. Hyde, and

B. Mastropietro. PEASOUP: Preventing exploits
against software of uncertain provenance (position
paper). In Proc. 7th ACM Int. Work. Software
Engineering for Secure Systems (SESS), pages 43-49,
2011.

A. Coglio, M. Becker, S. Fitzpatrick, L. Gilham,

C. Green, E. McCarthy, H. Sipma, M. Barry,

A. Browne, E. Bush, D. Smith, A. Venet, M. Rinard,
J. Perkins, J. Eikenberry, D. Kramm, P. Piselli,

D. Willenson, S. Misailovic, F. Long, M. Carbin,

R. Laddaga, P. Robertson, and P. Manghwani.
Vulnerabilities in bytecode removed by analysis,
nuanced confinement and diversification (VIBRANCE).
Technical Report AFRL-RY-WP-TR-2015-0019,
Defense Technical Information Center (DTIC), 2015.
F. Cohen. Computer Viruses. PhD thesis, University of
Southern California, 1986.

F. B. Cohen. Operating system protection through
program evolution. Computers & Security,
12(6):565-584, 1993.

C. Collberg, C. Thomborson, and D. Low.
Manufacturing cheap, resilient, and stealthy opaque
constructs. In Proc. 25th ACM Sym. Principles Of
Programming Languages (POPL), pages 184-196, 1998.
B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu,

J. Davidson, J. Knight, A. Nguyen-Tuong, and J. Hiser.
N-variant systems: A secretless framework for security
through diversity. In Proc. 15th USENIX Security
Sym., pages 105-120, 2006.

A. Cypher and D. C. Halbert. Watch What I Do:
Programming By Demonstration. MIT press, 1993.

L. V. Davi, A. Dmitrienko, S. Niirnberger, and A.-R.
Sadeghi. Gadge me if you can: Secure and efficient
ad-hoc instruction-level randomization for x86 and
ARM. In Proc. 8th ACM SIGSAC Sym. Information,
Computer and Communications Security (ASIACCS),
pages 299-310, 2013.

M. Flatt and PLT. Reference: Racket. Technical
Report PLT-TR-2010-1, PLT Design Inc., 2010.
https://racket-lang.org/trl.

S. Forrest, A. Somayaji, and D. H. Ackley. Building
diverse computer systems. In Proc. 6th Work. Hot
Topics in Operating Systems (HotOS), pages 67-72,
1997.

M. Franz. E unibus pluram: Massive-scale software
diversity as a defense mechanism. In Proc. New
Security Paradigms Work. (NSPW), pages 7-16, 2010.
A. Guha, S. Krishnamurthi, and T. Jim. Using static
analysis for Ajax intrusion detection. In Proc. 18th Int.
World Wide Web Conf. (WWW), pages 561-570, 2009.

S. Gulwani. Dimensions in program synthesis. In Proc.
12th Int. ACM SIGPLAN Sym. Principles and Practice

89

23]

(24]

[25]

[26]

29]

[36]

of Declarative Programming (PPDP), pages 13-24,
2010.

S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan.
Component based synthesis applied to bitvector
circuits. Technical Report MSR-TR~2010-12, Microsoft
Research, 2010.

S. Gulwani and M. Marron. Nlyze: Interactive
programming by natural language for spreadsheet data
analysis and manipulation. In Proc. ACM SIGMOD
Int. Conf. Management Data, pages 803-814, 2014.

K. W. Hamlen. Stealthy software: Next-generation
cyber-attacks and defenses, invited paper. In Proc. 11th
IEEE Intelligence and Security Informatics Conf. (ISI),
pages 109-112, 2013.

J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W.
Davidson. ILR: Where’d my gadgets go? In Proc. 33rd
IEEE Sym. Security & Privacy (S&P), pages 571-585,
2012.

J. P. Inala, X. Qiu, B. Lerner, and A. Solar-Lezama.
Type assisted synthesis of recursive transformers on
algebraic data types. CoRR, abs/1507.05527, 2015.
Intelligence Advanced Research Projects Activity
(IARPA). Securely taking on new executable software
of uncertain provenance (STONESOUP). https://www.
iarpa.gov/index.php/research-programs/stonesoup.
Accessed: Oct. 2016.

S. Itzhaky, S. Gulwani, N. Immerman, and M. Sagiv. A
simple inductive synthesis methodology and its
applications. In Proc. 10th Int. Conf. Object Oriented
Programming Systems Languages and Applications
(OOPSLA), pages 36-46, 2010.

A. R. Ives and S. R. Carpenter. Stability and diversity
of ecosystems. Science, 317(5834):58—62, 2007.

J. Jeon, X. Qiu, J. S. Foster, and A. Solar-Lezama.
JSketch: Sketching for Java. In Proc. 10th Joint
Meeting on Foundations of Software Engineering (FSE),
pages 934-937, 2015.

J. Jeon, X. Qiu, A. Solar-Lezama, and J. S. Foster.
Adaptive concretization for parallel program synthesis.
In Proc. 27th Int. Conf. Computer Aided Verification
(CAV), pages 377-394, 2015.

S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari.
Oracle-guided component-based program synthesis. In
Proc. 32nd ACM/IEEE Int. Conf. Software
Engineering (ICSE), volume 1, pages 215-224, 2010.
S. Katayama. Systematic search for lambda expressions.
In M. van Eekelen, editor, Trends in Functional
Programming, volume 6, pages 111-126. Intellect Books,
University of Chicago Press, 2005.

G. S. Kc, A. D. Keromytis, and V. Prevelakis.
Countering code-injection attacks with instruction-set
randomization. In Proc. 10th ACM Conf. Computer
and Communications Security (CCS), pages 272-280,
2003.

A. D. Keromytis, S. J. Stolfo, J. Yang, A. Stavrou,

A. Ghosh, D. Engler, M. Dacier, M. Elder, and

D. Kienzle. The MINESTRONE architecture
combining static and dynamic analysis techniques for
software security. In Proc. 1st IEEE SysSec Work.
(SysSec), pages 53-56, 2011.

H.-A. Kim and B. Karp. Autograph: Toward
automated, distributed worm signature detection. In

[41]

[42]

[44]

(45]

[46]

[47]

[50]

[51]

[52]

53]

[54]

Proc. 13th USENIX Security Sym., 2004.

C. Kreibich and J. Crowcroft. Honeycomb: Creating
intrusion detection signatures using honeypots. ACM
SIGCOMM Computer Communication Review,
34(1):51-56, 2004.

P. Larsen, A. Homescu, S. Brunthaler, and M. Franz.
SoK: Automated software diversity. In Proc. 35th IEEE
Sym. Security €& Privacy (SE&P), pages 276-291, 2014.
T. Lau, P. Domingos, and D. S. Weld. Learning
programs from traces using version space algebra. In
Proc. 2nd Int. Conf. Knowledge Capture (K-CAP),
pages 36-43, 2003.

V. Le and S. Gulwani. FlashExtract: A framework for
data extraction by examples. In Proc. 35th ACM Conf.
Programming Language Design and Implementation
(PLDI), pages 542-553, 2014.

V. Le, S. Gulwani, and Z. Su. Smartsynth:
Synthesizing smartphone automation scripts from
natural language. In Proc. 11th Annual Int. Conf.
Mobile Systems, Applications, and Services (MoviSys),
pages 193-206, 2013.

Z. Li, M. Sanghi, Y. Chen, M.-Y. Kao, and B. Chavez.
Hamsa: Fast signature generation for zero-day
polymorphic worms with provable attack resilience. In
Proc. 27th IEEE Sym. Security € Privacy (S€P),
pages 15-47, 2006.

C. Linn and S. Debray. Obfuscation of executable code
to improve resistance to static disassembly. In Proc.
10th ACM Conf. Computer and Communications
Security (CCS), pages 290-299, 2003.

R. Lyda and J. Hamrock. Using entropy analysis to
find encrypted and packed malware. IEEE Security &
Privacy, 5(2):40-45, 2007.

R. MacArthur. Fluctuations of animal populations and
a measure of community stability. Ecology,
36(3):533-536, 1955.

Z. Manna and R. J. Waldinger. Toward automatic
program synthesis. Communications of the ACM
(CACM), 14(3):151-165, 1971.

Z. Manna and R. J. Waldinger. A deductive approach
to program synthesis. ACM Trans. Programming
Languages And Systems (TOPLAS), 2(1):90-121, 1980.
H. Massalin. Superoptimizer: A look at the smallest
program. In Proc. 2nd Int. Conf. Architectural Support
for Programming Languages and Operating Systems
(ASPLOS), pages 122-126, 1987.

R. M. May. Stability and Complezity in Model
Ecosystems, volume 6. Princeton University Press, 1973.
S. McLaughlin, D. Podkuiko, A. Delozier,

S. Miadzvezhanka, and P. McDaniel. Embedded
firmware diversity for smart electric meters. In Proc.
5th USENIX Conf. Hot Topics in Security (HotSec),
2010.

A. Menon, O. Tamuz, S. Gulwani, B. Lampson, and
A. Kalai. A machine learning framework for
programming by example. In Proc. 30th Int. Conf.
Machine Learning (ICML), pages 187-195, 2013.

S. Misailovic and M. Rinard. Synthesis of randomized
accuracy-aware map-fold programs. Technical Report
MIT-CSAIL-TR~2013-031, MIT Computer Science and
Artificial Intelligence Laboratory (CSAIL), 2013.

V. Mohan and K. W. Hamlen. Frankenstein: Stitching

90

[55]

[56]

[58]

[59]

[63]

[64]

[65]

[66]

malware from benign binaries. In Proc. 6th USENIX
Work. Offensive Technologies (WOOT), pages T7—84,
2012.

L. D. Moura and N. Bjgrner. Z3: An efficient SMT
solver. In Proc. 14th Int. Conf. Tools and Algorithms
for the Construction and Analysis of Systems
(TACAS), pages 337-340, 2008.

J. Newsome, B. Karp, and D. Song. Polygraph:
Automatically generating signatures for polymorphic
worms. In Proc. 26th IEEE Sym. Security & Privacy
(S€P), pages 226-241, 2005.

H. D. T. Nguyen, D. Qi, A. Roychoudhury, and

S. Chandra. SemFix: Program repair via semantic
analysis. In Proc. Int. Conf. Software Engineering
(ICSE), pages 772-781, 2013.

P. O’Kane, S. Sezer, and K. McLaughlin. Obfuscation:
The hidden malware. IEEE Security & Privacy,
9(5):41-47, 2011.

V. Pappas, M. Polychronakis, and A. D. Keromytis.
Practical software diversification using in-place code
randomization. In S. Jajodia, A. K. Ghosh, V. S.
Subrahmanian, V. Swarup, C. Wang, and X. S. Wang,
editors, Moving Target Defense II, volume 100 of
Advances in Information Security, pages 175-202.
Springer, 2013.

S. Peisert, E. Talbot, and M. Bishop. Turtles all the
way down: A clean-slate, ground-up, first-principles
approach to secure systems. In Proc. New Security
Paradigms Work. (NSPW), pages 15-26, 2012.

O. Polozov and S. Gulwani. LaSEWeb: Automating
search strategies over semi-structured web data. In
Proc. 20th ACM SIGKDD Int. Conf. Knowledge
Discovery and Data Mining, pages 741-750, 2014.

B. Randell. System structure for software fault
tolerance. In Proc. Int. Conf. Reliable Software, pages
437-449, 1975.

B. Schneier. Is antivirus dead? Schneier on Security,
May 2014.

E. M. Schulte, W. Weimer, and S. Forrest. Repairing
COTS router firmware without access to source code or
test suites: A case study in evolutionary software
repair. In Proc. Companion Publication Annual Conf.
Genetic and Evolutionary Computation (GECCO),
pages 847-854, 2015.

E. J. Schwartz and D. Brumley. Q: Exploit hardening
made easy. In Proc. 20th USENIX Security Sym., 2011.
E. Shioji, Y. Kawakoya, M. Iwamura, and T. Hariu.
Code shredding: Byte-granular randomization of
program layout for detecting code-reuse attacks. In
Proc. 28th Annual Computer Security Applications
Conf. (ACSAC), pages 309-318, 2012.

S. Singh, C. Estan, G. Varghese, and S. Savage.
Automated worm fingerprinting. In Proc. 6th USENIX
Sym. Operating Systems Design and Implementation
(OSDI), 2004.

A. Solar-Lezama. Program Synthesis By Sketching. PhD
thesis, The University of California, Berkeley, 2008.
A. Solar-Lezama. The sketching approach to program
synthesis. In Proc. 7th Asian Sym. Programming
Languages and Systems (APLAS), pages 4-13, 2009.
A. Somayaji, M. Locasto, and J. Feyereisl. The future
of biologically-inspired security: Is there anything left

[71]

[72]

to learn? In Proc. New Security Paradigms Work.
(NSPW), pages 49-54, 2008.

S. Srivastava, S. Gulwani, S. Chaudhuri, and J. Foster.
Program inversion revisited. Technical Report
MSR-TR~2010-34, Microsoft Research, 2010.

S. Srivastava, S. Gulwani, and J. S. Foster. From

program verification to program synthesis. In Proc.
37th ACM SIGPLAN-SIGACT Sym. Principles of

Programming Languages (POPL), pages 313-326, 2010.

C. Taylor and J. Alves-Foss. Diversity as a computer
defense mechanism. In Proc. New Security Paradigms
Work. (NSPW), pages 11-14, 2005.

E. Torlak. The Rosette language.
https://emina.github.io/rosette. Accessed: Apr. 2016.
E. Torlak and R. Bodik. Growing solver-aided
languages with Rosette. In Proc. ACM Int. Sym. New
Ideas, New Paradigms, and Reflections Programming &
Software (Onward!), pages 135-152, 2013.

E. Torlak and R. Bodik. A lightweight symbolic virtual
machine for solver-aided host languages. In Proc. 35th

91

[77]

(78]

[79]

[80]

ACM SIGPLAN Conf. Programming Language Design
and Implementation (PLDI), pages 530-541, 2014.

K. Wang, J. J. Parekh, and S. J. Stolfo. Anagram: A
content anomaly detector resistant to mimicry attack.
In Proc. 9th Int. Sym. Recent Advances in Intrusion
Detection (RAID), pages 226-248, 2006.

K. Wang and S. J. Stolfo. Anomalous payload-based
network intrusion detection. In Proc. 7th Int. Sym.
Recent Advances in Intrusion Detection (RAID), pages
203-222, 2004.

R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin.
Binary stirring: Self-randomizing instruction addresses
of legacy x86 binary code. In Proc. 19th ACM Cony.
Computer and Communications Security (CCS), pages
157-168, 2012.

D. Yadron. Symantec develops new attack on
cyberhacking: Declaring antivirus software dead, firm
turns to minimizing damage from breaches. The Wall
Street Journal, May 2014.

