
End-to-End Passwords
Scott Ruoti

MIT Lincoln Laboratory
scott@ruoti.org

Kent Seamons
Brigham Young University

seamons@cs.byu.edu

ABSTRACT
Passwords continue to be an important means for users to authen-
ticate themselves to applications, websites, and backend services.
However, password theft continues to be a significant issue, due in
large part to the significant attack surface for passwords, including
the operating system (e.g., key loggers), application (e.g., phishing
websites in browsers), during transmission (e.g., TLS man-in-the-
middle proxies), and at password verification services (e.g., theft of
passwords stored at a server). Relatedly, even though there is a large
body of research on improving passwords, the massive number of
application verification services that use passwords stymie the diffu-
sion of improvements—i.e., it does not scale for each improvement
to require an update to every application and verification service.

To address these problems, we propose a new end-to-end pass-
word paradigm that transfers password functionality to two end-
points, the operating system (entry, management, storage, and
verification) and the password verification service (verification, and
verification token storage). In this paradigm, passwords are never
shared with applications or transmitted over the network, but are
instead verified using zero-knowledge protocols. There are five key
benefits of this approach that are not possible with the current
password paradigm: (a) a minimal attack surface, (b) protection
from password phishing, (c) protection from malware, (d) consis-
tent password policies, and (e) the ability to more rapidly diffuse
improvements from password research.

KEYWORDS
End-to-end, passwords, password-based authentication, safe pass-
word entry, strong password protocols
ACM Reference Format:
Scott Ruoti and Kent Seamons. 2017. End-to-End Passwords. In NSPW 2017:
2017 New Security Paradigms Workshop, October 1–4, 2017, Santa Cruz, CA,
USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3171533.
3171542

1 INTRODUCTION
Even with years of research into new authentication technologies,
passwords still dominate the authentication landscape. This is due
primarily to a combination of security, deployability, and usability
that has been difficult to match [12].

Despite the persistence and popularity of passwords, there are
serious threats that plague current password-based authentication

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
NSPW 2017, October 1–4, 2017, Santa Cruz, CA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-6384-6/17/10. . . $15.00
https://doi.org/10.1145/3171533.3171542

at every level. First, at the operating system level, passwords can
be stolen by malware that logs users’ keystrokes. Second, at the
application level, users are easily tricked into entering their creden-
tials into phishing applications (e.g., phishing website) [45]. Third,
at the transmission level, passwords can be stolen when in flight;
this is especially true considering that users struggle to identify
when a secure session will be used to transmit their password [28].
Finally, at the password verification service level, passwords are
frequently stolen from storage. This type of attack is especially
worrisome since users have no information, control, or assurance
regarding how the server stores their passwords. Most of the recent
large password database leaks did not properly salt and hash the
passwords [37].

These attacks occurring at all levels of password processing
demonstrate that the attack surface for passwords is extremely
large. There have been many attempts in the research literature
to improve password-based authentication—e.g., strong password
protocols [10, 57, 119], password creation policies [65, 106, 114],
phishing-resistant interfaces [29], advice to administrators [37].
Unfortunately, most of this research has failed to have a tangible
impact on password-based authentication. One key reason for this
lack of diffusion is that there are too many systems to update. It is
not feasible to update every password-based authentication system
every time there is a new suggestion from the research literature.

In this paper, we argue that to make substantial progress to secur-
ing passwordswe need to adopt a new paradigm for password-based
authentication. As such, we propose a new end-to-end password
paradigm, with the operating system and the password verification
service as the endpoints that are responsible for nearly all password
handling. The application and any communication channels act
as untrusted components that only serve to relay messages in the
zero-knowledge proof between the operating system and password
verification service.

Functionality is not split evenly between the operating system
and the password verification service. Instead, the OS assumes
nearly all functionality associated with passwords—including cre-
ation, storage (optional), management (i.e., policy), entry, and veri-
fication. The password verification service is only responsible for
verifying passwords. To further secure users’ passwords, this par-
adigm requires the use of strong password protocols [119]—i.e.,
passwords never leave the operating system’s control, and veri-
fication of the password is accomplished using a zero-knowledge
proof.

In addition to the benefits of using a strong password protocol—
e.g., the verification service cannot store passwords in plaintext—
there are several benefits that are uniquely tied to our new end-to-
end password paradigm:

(1) Reduced attack surface. The use of strong password pro-
tocols obviates the need to trust the communication chan-
nel, rendering any communication-level attacks ineffectual.

https://doi.org/10.1145/3171533.3171542
https://doi.org/10.1145/3171533.3171542
https://doi.org/10.1145/3171533.3171542

NSPW 2017, October 1–4, 2017, Santa Cruz, CA, USA Scott Ruoti and Kent Seamons

Relatedly, by reducing the application to act as only a com-
munication channel, we similarly limit any attacks at the
application level. While the verification service must still
store a verifier token, this token is guaranteed to have prop-
erly protected the underlying password data (e.g., salting
and hashing). Moreover, most other functionality has been
removed from the verification service, substantially limit-
ing viable attacks. Finally, the functionality that is in the
operating system can be hardened using operating system
primitives [25, 110], leaving a smaller attack surface than
when the equivalent functionality was in an application.

(2) Protection from password phishing. By centralizing all
password entry into the operating system, there will be a
single interface for all password entry. By definition, any
other password-entry interface will become a phishing inter-
face. This makes it feasible to automatically detect phishing
attacks, sidestepping the problem of requiring the user to
distinguish between a legitimate and malicious password
entry interface [29].

(3) Protection for malware. To our knowledge, the threat
model for all existing password-based authentication re-
search includes the host environment as part of the trusted
computing base. For example, key logging malware can triv-
ially steal passwords as they are entered. By moving pass-
word entry into the operating system, it will be possible to
run password entry in a protected mode that restricts any
program other than the operating system from observing
user input (e.g., key logging, microphone, camera) [110]. Fur-
thermore, password functionality could be part of the signed
portion of the operating system kernel [25], protecting this
functionality from advanced malware such as rootkits.

(4) Consistent password policies. As the operating system
will be responsible for the creation and entry of all pass-
words, it can help users create passwords in a consistent
manner. No longer will users need to remember a different
password policy for every application they use. Addition-
ally, the operating system can monitor the health of users’
passwords, and give them advice regarding their password
posture—such as notifying a user that they are sharing a
password between a common website and a high-security
website like a banking institution.1

(5) Rapid diffusion of improvements to password-based
authentication. Centralizing most password functionality
in the operating system has the benefit that there are fewer
implementations that need to be updated when improve-
ments or fixes need to be made. For example, if a new pass-
word entry interface is shown to be more usable than the
existing interface, only the implementation in each OS will
need to be updated, and not every single application that has
a password entry interface. Similarly, if a class of passwords
is shown to be insecure, the operating system can detect
insecure passwords when they are entered and notify the
user of this new result.

1Some password managers are starting to provide this type of advice, but it will be
able to be much more comprehensive when a single entity handles all passwords.

We recognize that it would be trivial to create an unusable instan-
tiation of this end-to-end paradigm or associated architecture. To
this end, we stress that any attempt to prototype our paradigm or
architecture must be done based on the principles of user-centered
design [5], usable security [41], and scientific, empirical evaluations.

Roadmap. Section 2 gives an overview of related work. Section
3 describes the end-to-end password paradigm in greater depth,
and Section 4 gives a possible architecture for this new paradigm.
Section 5 discusses a research agenda for end-to-end passwords,
and Section 6 concludes the paper.

2 RELATEDWORK
Passwords are the de-facto standard for authentication. There have
been multiple attempts at either improving them or replacing them:
proxy [36, 83], federated [34, 49, 67, 86, 107], graphical [19, 104],
cognitive [54, 60, 98, 113], paper tokens [47, 69, 116], visual crypto
[84], hardware tokens [32, 56, 89, 99, 121], phone-based [43, 77, 82,
109], biometric [6, 24, 87], and recovery-based [14, 59, 94]. Many
of these offer important security benefits, but none of them has
been able to replace current password-based authentication due to
perceived limitations in usability and deployability [12]. Chiasson
et al. found that even if a non-password-based system is usable,
users are still likely to prefer passwords [18]. Thus, it is imperative
to recognize that for the foreseeable future passwords are not going
away, and research must be done to strengthen password-based
authentication [52].

2.1 Phishing
Dhamija and Tygar [29] proposed dynamic security skins as a solu-
tion to address phishing. In their approach, the browser creates a
trusted window for entering passwords. The browser and the server
each create an image (or skin) that surrounds the password entry
window, and the user should check that they match before trusting
the password prompt enough to enter their password. Unfortu-
nately, dynamic security skins was never evaluated empirically,
and later research suggests that users are unlikely to notice if secu-
rity indicators are missing from a malicious interface [95].

2.2 Password Policies
There has been significant work regarding password policies. Re-
search by Inglesant and Sasse shows that password policies often
place undue burdens on users as they try to cope with managing
too many passwords [55]. Password creation policies is an area that
has been explored to identify how users create secure passwords
and how mechanisms like password strength meters can impact
the process [65, 106, 114], Another vein of research examines the
longstanding practice of forcing users to change their passwords
on a regular basis, finding that it was ineffective [122].

2.3 Password Storage
Best practices for password storage at the server dictate that pass-
words should be salted and hashed before being stored. Florencio
et al. [37] showed that the majority of prominent cases involving
leaked password databases did not follow this practice, making it
easier for the attacker to recover all of the leaked passwords.

End-to-End Passwords NSPW 2017, October 1–4, 2017, Santa Cruz, CA, USA

Almeshekah et al. [7] introduced a novel approach for server-
side password storage that prevents an offline attack. The design of
the password file includes support for dummy passwords that do
not correspond to a valid user. Instead, an attacker is led to believe
they have cracked a legitimate password, and any attempt to log in
to the server provides reliable evidence of a password file leak and
sets off an alarm.

In our work, we put the client in charge of creating the stored,
cryptographically-protected password. This protects the user from
trusting a server that fails to follow best practices for storing pass-
words.

2.4 Password Managers
Cloud-based passwordmanagers have become popular, and ease the
burdens of password management on users that are willing to trust
a third-party to store their passwords. Two recent security evalua-
tions of password managers by Li et al, [75] and Silver et al. [96]
revealed security flaws in popular password managers that can
result in the compromise of user’s passwords. This work illustrates
the challenges of securing web-based password managers.

Password managers are designed to ease the burden of password
management. Recent studies have explored password managers’
usability. Chiasson et al. [20] conducted a 26-person user study com-
paring two password managers: PwdHash and Password Multiplier.
Karole et al. [63] conducted a usability study of three password
managers. The users in their study preferred portable password
managers to a web-based manager. They credited the finding to the
reluctance of users to trust an online password manager.

2.5 Strong Password Protocols
Password authenticated key exchange (PAKE) is awidely-recognized
way to secure password-based authentication. PAKE protocols al-
low a user and a server to establish a session key using a shared
secret derived from the user’s password. The protocols do not re-
quire that a secure channel (e.g., TLS) be established first. PAKE
protocols also prevent an eavesdropper from gaining any informa-
tion that can be used in an offline attack against the user’s password.
Without the password, an attacker is also unable to determine the
session key. Thus, the session key can be used for mutual authenti-
cation. There are a variety of PAKE protocols: EKE [10], PAK and
PPK [13], SPEKE [57], J-PAKE [50], and EC-SAKA [4].

One problem with the original PAKE protocols is that a shared
secret stolen from the server can immediately be used to imperson-
ate the user. To address this problem, augmented PAKE protocols
were created: AMP [71], Augmented-EKE [11], B_SPEKE [58], PAK-
Z [76], AugPAKE [66], and SRP [118, 119]. These protocols are
verifier-based, meaning that even if the shared secret is stolen, an
attacker must still perform an off-line attack on the user’s password
before they can impersonate the user.

In 2005 Abdalla et al. proposed the first provably secure three-
party PAKE (3PAKE) protocol [2]. 3PAKE extends the model of
PAKE by including a trusted third-party (IDP). The user (U) and
server (RP) both share a secret with IDP, but not with each other.
IDP will help them establish a shared key and mutually authenticate
each other. This reduces the number of parties that must share a

secret with any given user. Recent research has continued to create
improved 3PAKE protocols [17, 22, 70, 115].

While 3PAKE requires RP and IDP to share a secret, this is not
always desirable. Abdalla et al. also proposed Gateway-oriented
PAKE (GPAKE), a variant of 3PAKE that does not require a shared
secret between RP and IDP [1]. This original protocol was suscepti-
ble to an undetectable online guessing attack [16, 120], but several
later protocols have addressed this attack [3, 16, 112].

2.6 Safe Password Entry
Strong password protocols provide no protection if users enter their
passwords into phishing applications. As such, it is important to
have a trusted path [85] to the legitimate interfaces, providing safe
password entry [90]. It should be noted that safe password entry
without strong password protocols is still vulnerable to attack; the
core idea of the proposed password paradigm is to demonstrate how
safe password entry and strong password protocols can be used
together to significantly strengthen password-based authentication.

The first step in using a trusted path is to have a secure mech-
anism for instantiating the trusted path. The most widely used
mechanism is the secure attention key [42] (SAK): a special key
or a sequence of regular keys that is detected by the operating
system kernel, after which the operating system creates a secure
channel for the user to interact with the intended interface. SAK
has been used in operating systems (e.g., control-alt-delete in Mi-
crosoft Windows) and has been proposed for use in browsers (e.g.,
PwdHash [88], WebWallet [117]).

The second step is to ensure that users know when they have
instantiated the trusted path, and with which interface they are
currently interacting with. This can be done using hardware—for
example, having an indicator on the hardware that shows when the
user is interacting directly with a secure interface in the operating
system. It can also be done using on-screen elements—for example,
reserving a portion of the operating systems UI for secure inter-
faces [33] or graphically styling applications in a way that cannot
be replicated by an attacker [29].

2.7 Single Sign-on
The problems of easy-to-guess passwords and password reuse hin-
der current password-based authentication. The number of parties
that seek to establish passwords with users aggravates both prob-
lems. Single sign-on (SSO) addresses this problem by requiring
that users only establish passwords with an identity provider (IDP).
IDP assists other websites (RP) in authentication of the user (U).
While U might have several IDPs, the number of IDPs is far less
than the number of RPs. This helps users to avoid password reuse
and encourages them to choose stronger passwords for use at their
IDPs.

The twomostwell-known SSO systems on theweb areOpenID [38,
39, 86] and OAuth [48]. OAuth has become the dominant SSO sys-
tem in recent years, with Facebook Connect being the most promi-
nent OAuth implementation [34]. These SSO systems have weak-
nesses. First, most SSO systems (including OpenID and OAuth)
are built on browser redirects. This approach is both confusing
to users [27, 103] and also provide an attack surface for phishers
[15, 74, 78, 97, 100]. Second, current SSO systems largely ignore the

NSPW 2017, October 1–4, 2017, Santa Cruz, CA, USA Scott Ruoti and Kent Seamons

business implications of SSO on RPs and IDPs, which further limits
their adoption [101]. Facebook Connect is the most widely adopted
system precisely because it gives an incentive to RPs to adopt it
(i.e., sharing information about users). There have been attempts to
address these two problems in OpenID, but these systems have not
seen adoption [102, 103]. We believe that strong password protocols
have the potential to solve the susceptibility to phishing that most
SSO systems experience.

Kerberos [79] has a long history as an SSO solution for enter-
prise and large organizations. Kerberos thwarts eavesdropping and
phishing attacks by not transmitting the password to the server. In-
stead, the password is used to encrypt pre-authentication data sent
to the server, and to decrypt a ticket returned to the client. Unlike
PAKE protocols, Kerberos does not prevent an eavesdropper from
using the encrypted data to conduct an offline attack to recover the
password.

2.8 Multi-Factor Authentication
Passwords are a means of authenticating based on something you
know. Other forms of authentication rely on something you have
(e.g., YubiKey) or on something you are (e.g., fingerprint). While
these other approaches have failed to supplant passwords, they can
be used on top of passwords to provide additional security—i.e.,
multi-factor authentication. In practice, two-factor authentication
based on the user’s password and a device they own is the most
common form of multi-factor authentication.

Authenticating users based on something they own is most com-
monly done by proving possession of a cellular phone. This can
be accomplished by sending users a one-time password (OTP) sent
over SMS [8], having an application which generates one-time
passwords, scanning QR codes with the phone [30], demonstrat-
ing locality using ambient noise [61], etc. Alternatively, users can
purchase specialty hardware that contains cryptographic keying
material that uniquely identifies the users (e.g., YubiKey).

There is also a significant body of research that explores authen-
ticating users based on who they are [111]. Examples include facial
recognition [46], iris scanning [93], fingerprint scanning [21], and
voice recognition. Weaker biometrics are also used for continuous
authentication [105] (e.g., gesture [35] and gait [40] recognition).

The end-to-end password paradigm supports the use of multi-
factor authentication. The non-password factors could be handled
in the applications, or directly in the end-to-end password interface.
The latter is more secure and could provide a consistent user ex-
perience that might lower the bar for the adoption of multi-factor
authentication.

2.9 Pluggable Authentication Module
Pluggable Authentication Module (PAM) [92] is a mechanism that
adds a layer of abstraction between application programs and the
underlying authentication methods that they employ. An appli-
cation developer programs to a standard API, and the operating
system can be configured with alternative authentication mecha-
nisms. One advantage of PAM is that it eases the cost to deploy
new solutions. It may be possible to implement the end-to-end
passwords paradigm using PAM.

3 END-TO-END PASSWORDS
In this section, we describe our threat model and the current para-
digm for passwords and its problems. We then detail why existing
efforts to secure passwords are insufficient to solve these problems.
Next, we describe our new paradigm for passwords—called end-
to-end passwords. Finally, we discuss the benefits unique to this
new paradigm and also list its limitations.

3.1 Threat Model
Our threat model includes common attacks at all the levels of
password-based authentication mentioned earlier. First, any local
attacks involving malware on the user’s device or phishing attempts
that try to trick the user into disclosing their password. Second,
any active or passive network attacker seeking to interfere with
the authentication process in order to obtain the user’s password.
Third, an attacker that breaks into the password verification service
in order to steal passwords or steal material that can be used in
on offline attack. We do not address shoulder surfing or the risk of
audio/video recordings near the user that attempt to discover the
user’s password. We also don’t include hardware keyloggers, but
focus on software attacks only.

3.2 Current Password Paradigm
At a high level, the current password paradigm requires users to
enter passwords into an application, those passwords are then
transmitted over some channel to a password verification service,
which then verifies the authenticity of the password, and reports
back to the application whether authentication succeeded. In prac-
tice, though, a wide range of responsibilities are spread across all
parties—the user, applications, the communication channel, and
the password verification services. This diffusion of responsibilities
also creates a large attack surface. See Figure 1.

Users are responsible for creating passwords, remembering pass-
words, managing their password strategy, and entering passwords
when prompted. Password phishing is a significant problem that
research has been unable to effectively stop. The risk of stolen cre-
dentials is made more severe by poor password hygiene—password
reuse and weak passwords. Furthermore, malicious applications
can trick users into authenticating to a legitimate service, then use
this authenticated session to carry out malicious activities under a
user’s persona.

Applications are responsible for the widest range of responsi-
bilities. They require users to create the password and may also
manage the password that a user may choose (e.g., enforcing a
password policy). Applications also require users to enter their
passwords before transmission to a password verification service in
order to authenticate the user. Finally, in some cases, an application
may also store a user’s passwords (e.g., password manager).

Applications can be directly attacked in order to compromise
passwords as they are entered. Alternatively, if the application
stores the password an attacker can attempt to steal it. Finally,
applications may enforce counter-productive password policies
that weaken a user’s password hygiene, such as requiring frequent
password resets.

The communication channel is only responsible for transmitting
a user’s password, yet it is a relatively easy target for attack. In

End-to-End Passwords NSPW 2017, October 1–4, 2017, Santa Cruz, CA, USA

User Opera�ng System Applica�ons
(e.g., websites)

Communica�on
Channel (e.g., Internet)

Password Verifica�on
Service

Responsibility for
passwords

• Create
• Remember
• Manage
• Enter —

• Create
• Manage
• Enter
• Transmit
• Authen�cate
• Store

• Transmit • Receive
• Verify
• Manage
• Store

A�ack Surface • Phishing a�acks
• Poor password

hygiene
• Authen�cate

malicious
applica�on

• Malware
(e.g., key loggers)

• Compromise
applica�on

• The� of stored
passwords

• Poor password
policy

• Plaintext channel
• Downgrade a�ack

(e.g., TLS MitM)

• Compromise
service

• The� of stored
passwords

• Poor password
policy

Figure 1: Current password model

most systems, the plaintext password is transmitted to the password
verification service, even if the network connection is encrypted. If
the security of the channel can be compromised then an attacker
gains the password. In practice, there are still some communica-
tion channels that are unencrypted, rendering the user’s password
available to an eavesdropper. Additionally, attacks against the com-
munication channel’s security (e.g., TLS man-in-the-middle [81])
can also divulge the user’s password to an attacker.

Lastly, the password verification service is responsible for re-
ceiving the user’s password and then verifying that it matches the
stored password. Additionally, the password verification services
often manage the password that a user may choose (e.g., enforc-
ing a password policy). Attackers can either directly compromise
the verification service to steal passwords during processing, but
more often an attacker will focus on stealing the password database.
Often these passwords are stored in plaintext or with poor secu-
rity [37]. Similar to the application, the verification service may
also enforce counter-productive password policies that weaken a
user’s password hygiene.

Interestingly, even though the operating system is the interface
between the user and the application, it has no responsibilities in
the current password paradigm.2 Regardless, it is still a part of the
attack surface, as malware such as key loggers can be used to steal
passwords as they are entered.

3.3 Inadequate Solutions
The threat space for passwords is well known, and many individual
threats have proposed solutions. For example, password storage at
the verification service can be significantly strengthened by requir-
ing that passwords are hashed with a keyed algorithm executed on
a cryptocard [37]. Alternatively, strong password protocols (e.g.,

2While passwords are used to authenticate to the operating system, in this case the
operating system is acting as yet-another application.

SRP [119]) can obviate the need to transmit the password over the
communication channel to the password verification system.

While it might be tempting to think that these piecemeal so-
lutions can sufficiently strengthen passwords, their lack of adop-
tion indicates that something more is needed. More specifically,
adopting piecemeal solutions to the current password ecosystem is
inadequate for the following reasons:

(1) There are too many password systems. Between all rel-
evant applications and password verification services there
are tens-of-thousands if not hundred-of-thousands of sys-
tems that rely on passwords. As such, updating each of these
applications or verification services every time there is an
improvement to password-based authentication is not scal-
able. Additionally, the large number of implementations is
directly related to the large attack surface for the current
password paradigm.

(2) It is difficult to verify that best practices are followed.
Many applications and verification services claim to have
strong security for passwords, but in practice this often fails
to be true. While it would be ideal to analyze each appli-
cation and verification service to verify whether they use
best-practice, this is infeasible considering the large num-
ber of varied implementations. Moreover, many password
verification services are hosted remotely and are completely
unavailable for black-box analysis. As such, with the cur-
rent paradigm it is unlikely that the security of password
verification services can ever be fully trusted.

(3) Phishing attacks are nearly-impossible to block. No
matter howmuch password-based authentication is strength-
ened, if users can be fooled into entering their password into
a malicious application, that password will still be compro-
mised.While unphishible interfaces have been proposed [26],
they are untested and later research has shown that it is diffi-
cult for users to distinguish between legitimate andmalicious
interfaces [95].

NSPW 2017, October 1–4, 2017, Santa Cruz, CA, USA Scott Ruoti and Kent Seamons

(4) No resilience against a compromisedhost environment.
The current password ecosystem is predicated on the assump-
tion of a clean host environment. If there is malware—such
as a key logger—on the system, then the user’s password
will be stolen whenever it is entered. While this assump-
tion is necessary for the existing paradigm, it does not match
reality—many users are operating in a host environment that
is partially compromised (e.g., keylogger installed, though
no OS rootkit installed).

None of this is to say that the research done to strengthen
password-based systems is wasted. Instead, it means that a new
password paradigm is needed in order to allow existing research to
achieve its full potential.

3.4 End-to-end Passwords
To address these limitations, we propose a novel end-to-end pass-
word paradigm that combines strong password protocols with a
trusted path for password creation, management, and entry. In this
paradigm, the operating system and password verification service,
as the end points of password entry and verification, respectively,
are responsible for handling nearly all password-related functional-
ity. In contrast, the application and communication channel only
serving to facilitate communication between the operating system
and password verification service (see Figure 2).

Critically, passwords never leave the operating system. This
is accomplished through the use of strong password protocols—
instead of transmitting the user’s password, the operating system
executes a zero-knowledge proof demonstrating possession of the
password to the verification service. This zero-knowledge proof
can be executed over an unsecured channel and is impervious to
both eavesdroppers and active attackers.

Because the password verification service is not under the user’s
control or ability to audit, we limit its responsibilities to verifying
the zero-knowledge proofs generated by the operating system, and
storing a verifier tokens needed to validate the zero-knowledge
proof. While these verifier tokens can still be stolen and used to
brute-force the user’s password, they still have one key advantage—
the operating system constructs the verifier token and can ensure
that it is properly salted and hashed.

Finally, the user’s operating system acts as a trusted pathway [85]
for the creation, managing, and entry of user credentials, providing
safe password entry. Safe password entry provides two benefits—
first, it ensures that strong password protocols are used during
authentication and second, it identifies and blocks non-approved
password interfaces. Without safe password entry, strong password
protocols are ineffectual against phishing, as the attackerwill simply
refuse to use a strong password protocol.

In the end-to-end password paradigm, the operating system’s
safe password entry interface handles all stages of the password
life-cycle—for example, verifier token creation and password entry—
becoming the singular locationwhere users interact with passwords.
It is also responsible for detecting other password entry interfaces
and blocking them, protecting users from entering their passwords
into a phishing application.

While the singular password entry interface in the operating sys-
tem may evoke thoughts of single sign-on and password managers,

end-to-end passwords is orthogonal to both of those approaches.
End-to-end passwords can be implemented without single sign-on
or password manager functionality, though it can also include them
as well (see Section 5).

3.5 Benefits
The most important benefit of this new paradigm is a significant
reduction of the attack surface for passwords (see Figure 2). Impor-
tantly, applications and the communication channel can be treated
as fully untrusted entities, removing them from the attack surface.
Similarly, the attack surface of the password verification service
has been significantly reduced, with theft of the stored verifier
being the only residual attack vector. While the operating system
potentially has a larger attack surface, it can be protected through
operating system hardening, requiring an attacker to compromise
the security of the operating system. Finally, as discussed later in
the paper, the new paradigm helps prevent phishing attacks and
can also be used to improve user’s password hygiene.

This new paradigm also addresses each of the four limitations
previously identified for the current password paradigm:

(1) There are toomany password systems. End-to-end pass-
words reduces the number of systems that play a signif-
icant role in password-based authentication. Specifically,
most responsibilities for passwords are centralized in the
operating system. In most cases only a handful of operat-
ing system implementations will need to be updated when
improvements to password-based authentication are dis-
covered. While changes to the strong password protocol
will require modifications to the application, communication
channel, and password verification service, these represent a
small fraction of possible improvements to password-based
authentication.

(2) It is difficult to verify that best practices are followed.
As the operating system is local, it is possible for it to undergo
block-box analysis to determine whether a given implemen-
tation follows best practices. Additionally, the use of a strong
password protocol—which provides mutual authentication—
allows the operating system to verify that the password ver-
ification service is correctly verifying the user’s password.
Furthermore, the operating system controls how the pass-
words are salted and hashed, ensuring that this process is
done correctly for all applications. Finally, even though the
verification service’s storage of the verification token can-
not be audited, the loss of the verifier database is no worse
than the theft of a password database currently is, and is
potentially much less impactful.

(3) Phishing attacks are nearly-impossible to block.As the
operating system hosts the only legitimate password entry
interface, by definition all other password entry interfaces
displayed to the user are malicious. This fact makes it simple
for the operating system to detect phishing attacks, obviat-
ing the need for the user to be ever vigilant against password
phishing. Specifically, the operating system can detect any
other application that is displaying a password entry inter-
face and terminate the application.

End-to-End Passwords NSPW 2017, October 1–4, 2017, Santa Cruz, CA, USA

User Opera�ng System Applica�ons
(e.g., websites)

Communica�on
Channel (e.g., Internet)

Password Verifica�on
Service

Responsibility for
passwords

• Create
• Remember
• Manage
• Enter

• Create
• Manage
• Enter
• Authen�cate
• Store

• Transmit
zero-knowledge
proof

• Transmit
zero-knowledge
proof

• Verify
• Store a

verifier token
(i.e., not the
password)

A�ack Surface • Authen�cate
malicious
applica�on

• Compromise
hardened OS
primi�ves

— —
• The� of stored

verifier

Figure 2: New end-to-end password model

(4) No resilience against a compromisedhost environment.
Using operating system hardening techniques—e.g., TPM,
signed kernels [25], isolated execution contexts [110]—it is
possible to protect password functionality hosted in the oper-
ating system from attackers. For example, the password entry
interface could force the system into an isolated execution
context where traps for user input are ignored, preventing
a key logger from scraping the user’s password. Similarly,
using a signed kernel, we can prevent rootkits from compro-
mising the operating system’s control of passwords. While
these protections are not infallible, they do make it more
difficult for attackers to compromise the system.

3.6 Limitations
While end-to-end passwords can significantly strengthen password-
based authentication, it is not a panacea to all authentication-related
problems. First, it does not remove the need for the verification
service to store a verification token in order to verify the user’s
identity.While this verification token has several important benefits
over existing password storage, it can still be used to perform a
brute-force attack against the user’s password. Second, the end-
to-end password paradigm does not address what an application
does after authentication takes place. If a user authenticates to
a malicious application, then that application can take malicious
action using the authenticated account.

Third, this paradigm requires that when a vulnerability is dis-
covered, applications will need to wait for the operating system to
deploy a mitigation—i.e., the application is unable to independently
deploy a mitigation. While in most cases, operating system patches
are more reliable than application updates, this is not true if patches
are unavailable (e.g., old Android devices) or if users fail to install
those patches. While the latter can be addressed by forcing security
patches and updates to be deployed, the former is more difficult.
Later in the paper we describe potential solutions to this problem,
but these solutions are untested and for now this problem remains
a limitation.

4 EXAMPLE ARCHITECTURE
In this section, we give an example architecture that adopts the
end-to-end password paradigm. It is only an example architecture,
as several portions of the architecture are malleable and could be
changed while still staying within the bounds of the end-to-end
password paradigm.

In our architecture, the strong password protocol is instantiated
using the Secure Remote Password protocol [119] (SRP). The work-
flow for establishing a new account is given in Figure 3. While that
diagram demonstrates account establishment, the process is the
same as authentication, except that steps four and five are omitted.
The detailed steps in this workflow are:

(1) The user indicates to the operating system that they wish to
create an account or authenticate for a given application.

(2) The user is shown a password entry interface by the op-
erating system. While this interface is displayed, no other
applications are shown, and user input is not available to
any entity other than the operating system.

(3) The user enters their password to enter their credentials into
the operating system.

(4) (Account Establishment Only) The operating system gener-
ates a salt and verification token for the entered password.
For password hashing in the SRP protocol, we recommend
the use of PBKDF2.

(5) (Account Establishment Only) Using TLS, the username, ver-
ification token, and salt are sent to the password verification
service. Our architecture uses TLS for simplicity and inter-
operability with existing technologies.

(6) The operating system and the password verification ser-
vice each transmit a single message allowing for the zero-
knowledge proof of password knowledge.

(7) In the next set of messages, the operating system proves
the user’s knowledge of the password, and the password
verification service proves its knowledge of the verification
token.

(8) The user is notified by the operating system that account
creation or authentication was successful.

NSPW 2017, October 1–4, 2017, Santa Cruz, CA, USA Scott Ruoti and Kent Seamons

User
Operating
System Application Communication

Channel
Password Verification

Service

1. Request

2. Display interface

3. Enter credentials

4. Generate salt and
verification token

5. ET LS [username, verification token, salt]

6. Zero-knowledge proof preamble

6. Zero-knowledge proof preamble

7. Proof of password knowledge

7. Proof of verifier token knowledge

8. Confirmation
9. Session key

Figure 3: Account Establishment Flow Diagram

(9) The application is given a session key derived from the zero-
knowledge proof. This session key can be used to authenti-
cate operations created by the application.

In the remainder of this section, we describe the functionality of
each component in greater depth.

4.1 Operating System
The operating system has the lion’s share of the responsibility for
end-to-end passwords. This imbalance is ideal, as consolidation
of features in the operating system instead of in each application
has the potential to speed up the diffusion of improvements for
password-based authentication. Additionally, the operating system
is the most secure part of the user’s operating environment, pro-
viding the best chance of protecting passwords from malware. As
such, we identify several important protections for the operating
system to provide.

First, the operating system should ensure that password function-
ality runs in an isolated, secure context. For example, the system
could restrict access to user input (e.g., keystrokes, microphone)
while the user is entering their passwords. Similarly, the operating
system should put as much of its functionality in the signed portion
of the kernel as a safeguard against privileged malware, including
rootkits.

Second, the operating system should actively detect and block
attempts to phish the user’s password. An advantage of the end-to-
end password paradigm is that it makes it feasible to automatically
detect password phishing. If the system detects a password entry
interface that it does not host, it is a password phishing attack.

The operating system can take defensive actions such as prevent
keyboard input into that application while the interface is present,
remove the interface, kill the application or a specific screen in the
application, etc. Detection of password entry fields can use tradi-
tional methods (e.g., LastPass auto-fill [72]). Alternatively, because
the detection mechanism is located in the operating system, it is
possible to use image detection on the final image displayed to the
user to detect phishing interfaces. This allows detection of phishing
interfaces that are not currently detectable—e.g., applications that
draw their interface instead of using UI widgets, and interfaces
composed from multiple applications that appear to be a single
application interface to the end user.

Third, the operating system should provide a conditioned-safe
ceremony for the user to instigate authentication [62]. This cere-
mony is especially important during the transition to end-to-end
passwords when there are password entry interfaces that have
not yet migrated to the operating system. A conditioned-safe cere-
mony will help ensure that users are typing their passwords into
an interface controlled by the operating system.

Fourth, because the operating system can observe all of the
user’s passwords, it could enforce a coherent password policy. For
example, passwords for all high-value applications must be strong
enough to resist an offline attack.3 For other sites, the operating
system could require passwords that resist only online attacks, not
offline attacks. Furthermore, the operating system could correlate
3While determining whether an application is high-value objectively is difficult, there
are possible workarounds. For example, the operating system could maintain a curated
list of well-known, high-value applications (e.g., banking). Alternatively, users could
self-identify which applications they consider high-value.

End-to-End Passwords NSPW 2017, October 1–4, 2017, Santa Cruz, CA, USA

the passwords used across multiple applications and notify users of
re-used or similar passwords that could compromise their security.

Fifth, the operating system should leverage the mutual authenti-
cation provided by SRP (and strong password protocols in general).
The mutual authentication information allows the operating sys-
tem to know that authentication completed successfully, indicating
that the user had previously established an account with the pass-
word verification service. Presenting this information to the user
in a cogent fashion could help protect users from disclosing sen-
sitive information (e.g., credit card information) to sites that can’t
authenticate themselves to the user.

4.2 Application
Since the application is not an endpoint, it has limited impact on
end-to-end passwords. Its primary function is to relay messages
between the operating system and the password verification service.
After authentication is complete, it also receives a session key that
can be used to sign operations, linking those operations to the
user’s account.

All other functions—for example, showing the state of mutual
authentication—is left to the operating system. If the operating
system detects that the application is trying to assume the operat-
ing system’s responsibilities, it will block the application. This is
essential to ensure that functionality stays at the endpoints, and is
not simulated/moved to the application.

4.3 Communication Channel
Similar to the application, the communication channel is only used
to transmit messages between the operating system and password
verification service (by way of the application). Due to the nature
of strong password protocols, the communication channel does not
need to be encrypted.

4.4 Password Verification Service
The password verification service is the other end-point in this
architecture, and is the only entity with significant responsibilities
other than the operating system. The key responsibility of the pass-
word verification service is to store the verification token and use it
to authenticate the user. While the verification token is guaranteed
to be properly salted and hashed, ideally the verification service
will store it securely. In the best case, the application will store the
verification tokens in a database encrypted by a cryptocard [37].

It is important to note that in contrast to the current paradigm,
the password verification service has no control over the passwords
selected by the user. While this prevents the verification service
from promoting poor password policies, it also prevents verifica-
tion services that are used as part of high-security systems from
enforcing stronger password policies. To address this, during ac-
count establishment, the password verification service is allowed
to inform the operating system the desired level of password secu-
rity. While the operating system ultimately decides the password
policies that it will enforce, it can use this information to guide its
decision.

5 RESEARCH AGENDA
In conjunction with the end-to-end password paradigm and our ex-
ample architecture, we also describe a research agenda. This agenda
has two purposes: first, it identifies research that must be done to
guide the implementation and adoption of end-to-end passwords,
and second, it describes new research questions that exist because of
the new paradigm. This agenda can be split into three topic areas—
usable security research, systems research, and research supporting
the transition from the current password paradigm—though, there
is substantial overlap between all three areas. For each of these
areas, we list several topics of particular note but do not claim that
this list is exhaustive.

5.1 Usable Security
Passwords are a heavily user-centric technology, and any attempt
to change the way users interact with passwords must avoid in-
troducing usability hurdles, or users will reject it. To this end, it is
important that principles of usable security are applied to system
and interface design. Also, design and implementation must be
driven by a systematic application of the scientific method [53] in
order to establish which design elements are essential to the use
and adoption of end-to-end passwords.

User acceptance and mental models. At the outset of this re-
search agenda, it is necessary to conduct studies to evaluate users’
attitudes towards end-to-end passwords, and their willingness to
adopt this system. Specifically, this research would identify what
features end-to-end passwords needs to provide in order to moti-
vate adoption, and what pain-points must be avoided. Additionally,
studies should explore users’ mental models for authentication,
single sign-on, password managers, and trust in the operating sys-
tem. This information would help inform later efforts, leading to
a design and implementation of end-to-end passwords that would
meet users needs and be suitable for adoption by the masses.

Account selection andpassword entry interface.Users spend
a non-negligible amount of time authenticating each day [51]. Op-
timizing the efficiency of password entry and account selection has
the potential to save users a significant amount of time and effort.
One simple approach to streamlining authentication is to allow the
operating system to remember the user’s password and automat-
ically re-authenticate them within a set amount of time (e.g., for
30 days). Still, care must be taken to ensure that efficient password
entry does not compromise the account selection experience, as
users frequently share computers (e.g., between spouses) and have
multiple accounts with a single application.

Accessible authentication. For a variety of reasons, many
users struggle to authenticate using existing password entry in-
terfaces [31]. Even though there have been efforts made to make
authentication more accessible [9, 68], adoption by applications is
nearly non-existent. In the end-to-end password paradigm, there is
only a single authentication interface for all applications, meaning
that accessibility improvements to this interface would benefit all
applications. This provides a much more rapid means of testing
and deploying more accessible authentication. Alternatively, the
end-to-end password entry interface could be made modular, al-
lowing different user groups (e.g., visually impaired, elderly) to use
interfaces specialized to support their particular abilities.

NSPW 2017, October 1–4, 2017, Santa Cruz, CA, USA Scott Ruoti and Kent Seamons

User-initiated authentication. In our architecture, we require
that the user—not the application—starts the authentication pro-
cess. As such, the user needs some method for indicating which
application they want to authenticate to and under which context
(e.g., the domain that is being authenticated against). Identifying
the appropriate mechanism for this action—e.g., key combination,
interface element to click—is a key research problem that needs to
be identified in depth. Additionally, work needs to be done to help
the user ensure that they are authenticating to the application they
believe they are, and not a malicious application that has stolen
focus from the legitimate application (e.g., an invisible application
displayed over the legitimate application).

Safe ceremonies for password entry. Safe ceremonies help
ensure that users are in a safe context when executing a sensi-
tive activity [62]. For example, Microsoft Windows lets users press
control-alt-delete to ensure that they are interacting with the oper-
ating system. Some type of safe ceremony should also be employed
to allow users to initiate password entry. This could be a keyboard
action like in Microsoft Windows or clicking an unspoofable user
interface element. Research should establish which mechanisms
are most usable and help the users accurately indicate which appli-
cation needs to be authenticated. Additionally, if a conditioned-safe
ceremony for password entry could be discovered [62], that would
be ideal.

Monitor and enforce password policies. Because the operat-
ing system has the ability to observe all of the user’s passwords,
it could be used to enforce a cogent password policy. For exam-
ple, for high-value applications, it could enforce a policy requiring
passwords that are sufficiently strong to prevent offline attacks.
For low-value applications, the operating system could require that
passwords are only strong enough to resist online attack, not offline
attack [37]. Furthermore, the operating system could correlate the
passwords used across multiple application and help users identify
re-used or similar passwords that could compromise their security.

Research will need to be done to identify the correct password
policies to enforce for which classes of applications, otherwise
this advice could be ignored, or prove detrimental to users’ overall
security [37, 122]. Similarly, research should guide the presentation
of policy to help users create appropriate strength passwords [65,
106, 114].

Mutual authentication.Mutual authentication allows the pass-
word verification service to know that the user has the correct
password, and it allows the user to know that they previously es-
tablished an account with that password verification service. This
helps prevent a malicious application from pretending to be a legiti-
mate application, as the malicious entity will not have the password
verifier stored by the legitimate password verification service. This
then helps the user, who will not enter sensitive information (e.g.,
credit card, address, social security number) into the application un-
til they have confirmed that they really have a pre-existing account
with the password verification service.

How to inform the users of this mutual authentication is an
open research question. While a naïve solution would be to inform
the user immediately after authentication, it is possible that the
user would struggle to track which applications had been authenti-
cated and which had not. On the other hand, designing unspoofable

security indicators is a hard problem [95]. Still, the benefit of mu-
tual authentication justifies additional research to see if there is a
solution that is usable and secure.

Choosing fewer, but stronger passwords. If users had fewer
passwords to manage it is possible that they would choose stronger
passwords. Other than reusing passwords, which has known prob-
lems, there are two approaches to reducing the number of pass-
words a user needs to remember—password managers (e.g., Last-
Pass [72] and single sign-on (e.g., OAuth [48] or FacebookCon-
nect [34]).

Password Manager. For end-to-end passwords, the operating sys-
tem would become the password manager. When a user creates a
new account, the password manager will generate a password. It
would store these generated passwords in an encrypted password
vault that is protected with a master password. The user would be
required to remember only this master password. Once the master
password is entered, the operating system would select the correct
password from storage and use it for authentication.

The strength of this approach is that the user needs to remember
only one password, yet every password verification service will
have a verifier token for a different password. Moreover, even if
the verifier token is stolen, the user’s account is safe because the
randomly generated passwords will be sufficiently strong to survive
offline brute force attacks. In this way, a password manager is a
weak form of two-factor authentication. The user needs to have
both the device that stores the set of randomly generated passwords
and knowledge of the master password that unlocks them.

The disadvantage is that a user can no longer move to a new
device and immediately authenticate. Instead, the user will be re-
quired to synchronize the new device with the existing password
vault. This can be done device-to-device, but this limits the user
to only using devices which can be brought together and which
have previously been synchronized. This sacrifices a key benefit
of passwords, that they can be used anywhere and at any time.
Alternatively, the password vault can be stored and shared using
the cloud. This allows the user to access their passwords from any
Internet-connected device, but creates a single, Internet-accessible,
point of failure.

Single Sign-on. Single sign-on (SSO) reduces the number of pass-
words a user needs to create by allowing many applications to
authenticate to a single password verification service. Simply, SSO
can be seen as a more secure form of password reuse—even though
the user authenticates to many applications with a single password,
neither these applications or their backend services have access to
the password verification service.

The key benefit of SSO in comparison to password managers is
that users can still authenticate from any device. The disadvantage
is that if the SSO verifier token is stolen, it can then be used to
compromise a wide range of applications. Still, this disadvantage is
tempered by the fact that SSO password verification services (e.g.,
Google, Facebook) are likely to employ much stronger security for
their storage of verifier tokens (e.g., encryption using a cryptocard).

5.2 Systems Research
The separation between systems research and usable security re-
search for password-based authentication is somewhat vague. Still,

End-to-End Passwords NSPW 2017, October 1–4, 2017, Santa Cruz, CA, USA

we have identified several research topics that are more closely
related to traditional systems research.

Safe storage of password verification tokens. Significant re-
search has examined the storage of passwords at the password
verification service [37]. A similarly concentrated research effort
needs to be made for password verification tokens. In each case,
proposed methods should be evaluated to determine their feasibility
both for large corporations and smaller companies. For example,
while cryptocards are likely available in the corporate setting, it is
highly unlikely that they will be used by smaller companies. By ad-
dressing the latter need, it is more likely that these better password
storage behaviors can be widely adopted.

Detecting password interfaces. In order to prevent password
phishing, it is necessary to detect other password entry interfaces.
After detection, these malicious interfaces can be blocked—for ex-
ample, the hosting application could be terminated, or the operating
system could refuse to render the interface to the user’s screen and
block user input to the application until the interface is removed.
For applications that host sub-applications (e.g., browsers), the ap-
plication could be notified of the malicious interface so that that
the hosting application can remove the malicious sub-application
(e.g., website) without requiring the operating system to terminate
the entire application.

Research should be conducted to increase the efficiency of de-
tecting password entry interfaces. This includes the use of tradi-
tional methods such as parsing the application’s document object
model. Additionally, the operating systems vantage point allows
other novel methods for detecting phishing interfaces. For example,
the operating system could employ image detection algorithms
to identify password interfaces. This would allow the detection
of interfaces drawn directly to the screen (i.e., not using UI wid-
gets) or interfaces that visually appear to be a single interface but
are actually cobbled together from multiple malicious applications.
Alternatively, similar to Google’s Password Alert browser exten-
sion [44] the operating system could monitor all keystrokes and
detect if the user ever types their password into a non-operating
system interface. Upon detection, the operating system could at-
tempt to terminate the application receiving the keystrokes or alert
the user of the potential compromise.

Pluggable operating system component. Instead of requir-
ing that the operating system provider implements end-to-end
passwords, the provider could instead provide a pluggable inter-
face allowing for third-party end-to-end password implementations.
There are two key benefits to this approach. First, it would allow
the end-to-end password system to be updated separately from
the operating system. This could address the limitation of running
end-to-end passwords on systems where operating systems updates
are unavailable (e.g., old Android devices). Second, it would allow
users to choose the implementation that they most prefer—e.g.,
if they dislike the Microsoft implementation, they could use the
Google implementation. Research needs to be conducted to explore
whether this approach is viable and how it should be designed.

Alternative strong password protocol approaches. We se-
lected SRP as the strong password protocol in our example archi-
tecture as it is the most efficient strong password protocol, both
computationally and in the number of rounds of communication

required. Due to the use of the SRP, we required that the applica-
tion be handed the session key generated during authentication.
An alternate approach would be to use a gateway-based strong
password protocol [3, 112], treating the application as the gateway,
allowing the gateway to authenticate the user without requiring
the operating system to divulge the session secret it derived during
the authentication process. Similar research could explore alterna-
tive constructions of strong password protocols that might address
other use cases.

Passwords for encryption. In addition to authentication, pass-
words are sometimes used to generate symmetric keys to encrypt a
file. For example, SSH keys are password encrypted when stored on
the user’s device. While the focus of our paradigm was password-
based authentication, research needs to examine how the operating
system can also be responsible for allowing users to enter pass-
words to decrypt files. This research will fully centralize the use of
passwords into the operating system and away from applications.

Continuous authentication. Instead of requiring the user to
frequently re-enter their password, the operating system could in-
stead leverage principles of continuous authentication [80, 105] and
session resumption. Research should examine how the operating
system can make the user aware that continuous authentication is
being used, and help users track which applications are still authen-
ticated. Profoundly, with the end-to-end password paradigm, new
authentication functionality, such as continuous authentication,
can be added to any application without needing to modify the
application.

Application supplied context. Currently, the application’s
functionality is limited to act as an intermediary for the operat-
ing system and the password verification service to execute the
strong password protocol. Potentially, the application could also
be allowed to provide additional context to the operating system
regarding authentication. For example, the application could indi-
cate which domain the application wishes to authenticate or which
account the user needs to authenticate. Research should identify
both what context would be helpful for the application to provide
as well how to ensure that this provided context cannot be used to
trick users into taking unintended actions.

Application initiated authentication. In our architecture, we
require that the user—not the application—starts the authentication
process. While this was done to best exemplify the end-to-end
password paradigm, we also recognize that it might be possible and
advantageous to allow the application to initiate authentication.
Still, research would need to be done to understand what effect
giving this additional responsibility to the application would have
on the attack surface. Similarly, research could also examine a
hybrid approach where both applications and the user can initiate
authentication.

Multi-factor authentication.Multi-factor authentication (MFA)
is entirely compatible with end-to-end passwords. The naïve ap-
proach would be to allow applications to handle the non-password
factors, but it might also be possible to integrate the additional
factors directly into the end-to-end encryption operating system
component. For example, instead of storing salts at the password
verification service, they could be derived using an MFA protocol.
As the salt value is needed to execute the strong password protocol,

NSPW 2017, October 1–4, 2017, Santa Cruz, CA, USA Scott Ruoti and Kent Seamons

authentication would be blocked until MFA-authentication success-
fully completed. This approach could also reduce the information
stored at the password verification service. Usability studies would
be needed to identify which approach is best.

Hardware tokens. Hardware tokens could be used to further
increase the security of end-to-end passwords. For example, a pass-
word vault could be stored in a hardware token, only being unlocked
after the end-to-end password system verified the master password,
providing simple two-factor authentication. The operating system
could prevent any other application from detecting the presence of
the second factor, reducing the risk of leaving the device attached
to the computer. Alternatively, hardware tokens can also be used
to address shoulder surfing and hardware-based key loggers [12].

Trustworthy Password Verification Service.While the end-
to-end password paradigm relies on a secure local environment—
the operating system—future research could attempt to further
secure remote environment—the password verification service. For
example, combining a hardware security module (HSM), a trusted
platformmodule (TPM), and Intel’s Software Guard Extensions [23]
(SGX) could allow the user to verify that the password verification
service was properly storing users’ verifier tokens. Doing so would
mean that passwords are fully protected during their entire life-
cycle, maximizing the security gauntnesses available to password-
based authentication by itself.

5.3 Transition
Currently, password entry is tightly integrated with applications,
plaintext passwords submitted over TLS, and service providers
failing to follow best practices for storing encrypted passwords.
We envision a new password paradigm characterized by password
entry that is tightly integrated with and under the control of the
operating system, zero-knowledge password proofs where plaintext
passwords are never sent to a service provider, and best practices
for encrypted password storage being under the control of the user.
The transition from this current state to a new password paradigm
will not be immediate. Still, there are research opportunities that
could accelerate this process and help incrementally increase the
security of passwords.

Discover incentives for adoption. Research should be done to
identify the incentives that will convince applications and password
verification services to begin adopting the end-to-end password
paradigm. While this might be a simple problem of network ef-
fects [64], it could be that other factors could also speed adoption.
For example, adoption of OAuth is partially driven by the fact that
it allows applications to gather basic information about the user
(e.g., name, age, friends).

Early adoptionpathways.Mobile phones provide a compelling
first platform for deploying end-to-end passwords. Already, mobile
operating systems have begun assisting applications with authenti-
cating users—for example, using Touch ID to unlock applications
on iOS. End-to-end passwords could be added to these mobile oper-
ating systems to provide a universal, standardized, and accessible
method for users to enter their passwords, regardless of the appli-
cation that authentication is taking place in. By also integrating
password manager-like functionality, mobile operating systems

could obviate the need for users to enter passwords, instead lever-
aging more appropriate authentication techniques (e.g., biometrics).
Finally, because there would be a single password entry interface,
mobile interfaces could more easily detect the password phishing
interfaces that have recently begun to plague mobile platforms.4

Additionally, providing an end-to-end passwords Amazon Web
Services (AWS) password verification service would allow develop-
ers to easily build new applications and modify existing application
to support strong password protocols.5 Such a service would have
three primary benefits to developers. First, it would remove the
need for developers to individually implement and maintain the
password verification service, reducing the time it takes them to get
their application to market and allowing more time to be focused
on the application’s core functionality. Second, it would automati-
cally be updated to fix errors and better integrate with advances
in authentication interfaces (i.e., end-to-end passwords). Third, it
would allow the developer to announce that they were providing
strong security for user’s passwords. All of these reasons would
be strong incentives for developers to adopt the AWS password
verification service, accelerating the adoption of strong password
protocols compatible with the end-to-end password paradigm.

Replace existing interfaces. The operating system could im-
mediately begin to detect existing password interfaces. After detec-
tion, the operating system could overlay the existing interface [73,
91, 108] and use this overlay to require the user to enter their pass-
word using the operating system’s interface. The entered password
would then be transferred to the overlayed application and au-
thentication would continue as normal. This would help habituate
user to the correct process for entering their passwords even be-
fore applications have begun to adopt the end-to-end password
paradigm.

Research should identify how to best detect and overlay existing
interfaces. Additionally, care should be taken to gather sufficient
contextual cues to ensure that the user knows which application
they are authenticating too, helping them avoid phishing attacks.

Gradual password guidance.As the number of passwords that
are entered through the operating system increases, the operating
system will be able to give increasingly helpful guidance to the user.
For example, the operating system could monitor user keystrokes
and warn users when they enter a password out of the operating
system that they had previously entered in the operating system.
This could help users recognize when they accidentally divulged a
sensitive password that should have been entered in the operating
system, similar to what is done by Google’s Password Alert [44].
Alternatively, the operating system could begin advising the user of
weaknesses in their password selection strategies and also identify
instances of password reuse, similar to what is beginning to be
done by LastPass [72].

User training. Users are very habituated to the current pass-
word paradigm. During the transition to end-to-end passwords,
it will be essential to properly train users on the new paradigm.
Specifically, users need to be taught how to ensure that the transi-
tional operating system interface (described above) is used to enter

4https://motherboard.vice.com/en_us/article/ne7gxz/
ios-iphone-password-phishing-app-popups
5Such a service would not need to be a single sign-on service, but could properly store
credentials for each application local to that application.

https://motherboard.vice.com/en_us/article/ne7gxz/ios-iphone-password-phishing-app-popups
https://motherboard.vice.com/en_us/article/ne7gxz/ios-iphone-password-phishing-app-popups

End-to-End Passwords NSPW 2017, October 1–4, 2017, Santa Cruz, CA, USA

all passwords; this is needed to protect users from phishing sites
that claim they do not yet support end-to-end passwords. Similarly,
users need to be assisted in building correct mental models for
end-to-end passwords. Importantly, research will need to be done
to explore how this training can happen in-line with users’ tasks,
and without significantly disrupting their workflow.

6 SUMMARY
In this paper, we describe a new paradigm for password-based
authentication—end-to-end passwords. In this paradigm, password
responsibilities are pushed to the endpoints of password-based
authentication—the operating system and the password verification
service. Of these two endpoints, most responsibilities are concen-
trated in the operating system.

The benefits of this paradigm are five-fold. First, it significantly
reduces the attack surface for password-based authentication. Sec-
ond, it has the potential to finally make a significant impact on
password phishing. Third, it offers protection from a compromised
host, which is outside the threat model of other approaches. Fourth,
it supports the consistent enforcement of password policies across
all of a user’s accounts. Finally, concentrating password responsibili-
ties in the operating systemmakes it easier to diffuse improvements
rapidly.

This paper identifies open research questions related to end-
to-end passwords. Specifically, we note the importance that the
development of this paradigm be guided by systematic application
of user-centered design principles and empirical usability analysis.
As such, there are a number of usability issues to be addressed in
this new paradigm. There are also a number of systems research
questions to be addressed to increase the capabilities and strengthen
the security of this new paradigm. Lastly, we briefly describe the
research needed to enable the transition from the current password
paradigm to the end-to-end password paradigm.

7 ACKNOWLEDGMENT
The authors thank Trevor Smith and Ken Reese for helpful feed-
back on an early draft of the paper. The authors also thank the
anonymous reviewers and the workshop attendees for their helpful
feedback that strengthened the paper.

REFERENCES
[1] M. Abdalla, O. Chevassut, P.A. Fouque, and D. Pointcheval. 2005. A Simple

Threshold Authenticated Key Exchange from Short Secrets. Proceedings of the
Twenty-Fourth International Conference on the Theory and Application of Crypto-
graphic Techniques (2005), 566–584.

[2] M. Abdalla, P.A. Fouque, and D. Pointcheval. 2005. Password-based Authenticated
Key Exchange in the Three-Party Setting. Proceedings of the Seventh International
Workshop on Theory and Practice in Public Key Cryptography (2005), 65–84.

[3] M. Abdalla, M. Izabachène, and D. Pointcheval. 2008. Anonymous and Trans-
parent Gateway-Based Password-Authenticated Key Exchange. Proceedings of
the Sixth International Conference on Applied Cryptography and Network Security
(2008), 133–148.

[4] P.E. Abi-Char, A. Mhamed, and B. El-Hassan. 2007. A Fast and Secure Elliptic
Curve Based Authenticated Key Agreement Protocol for Low Power Mobile
Communications. In Proceedings of the The 2007 International Conference on Next
Generation Mobile Applications, Services and Technologies. IEEE, 235–240.

[5] Chadia Abras, Diane Maloney-Krichmar, and Jenny Preece. 2004. User-Centered
Design. Bainbridge W. Encyclopedia of Human-Computer Interaction 37, 4 (2004),
445–456.

[6] P.S. Aleksic and A.K. Katsaggelos. 2006. Audio-Visual Biometrics. (2006), 2025–
2044 pages.

[7] Mohammed H Almeshekah, Christopher N Gutierrez, Mikhail J Atallah, and
Eugene H Spafford. 2015. Ersatzpasswords: Ending Password Cracking and
Detecting Password Leakage. In Proceedings of the Thirty-First Annual Computer
Security Applications Conference. ACM, 311–320.

[8] Fadi Aloul, Syed Zahidi, and Wassim El-Hajj. 2009. Two Factor Authentica-
tion Using Mobile Phones. In Proceedings of the Seventh IEEE/ACS International
Conference on Computer Systems and Applications. IEEE, 641–644.

[9] Shiri Azenkot, Kyle Rector, Richard Ladner, and Jacob Wobbrock. 2012. Pass-
chords: Secure Multi-Touch Authentication for Blind People. In Proceedings of the
Fourteenth International ACM Conference on Computers and Accessibility. ACM,
159–166.

[10] S.M. Bellovin and M. Merritt. 1992. Encrypted Key Exchange: Password-Based
Protocols Secure against Dictionary Attacks. In Proceedings of the Thirteenth IEEE
Symposium on Security and Privacy. IEEE, 72–84.

[11] S.M. Bellovin and M. Merritt. 1993. Augmented Encrypted Key Exchange: A
Password-Based Protocol Secure against Dictionary Attacks and Password File
Compromise. In Proceedings of the First ACM Conference on Computer and Com-
munications Security. ACM, 244–250.

[12] J. Bonneau, C. Herley, P.C. van Oorschot, and F. Stajano. 2012. The Quest to
Replace Passwords: A Framework for Comparative Evaluation of Web Authenti-
cation Schemes. In Proceedings of the Thirty-Third IEEE Symposium on Security
and Privacy. IEEE, 553–567.

[13] Victor Boyko, Philip MacKenzie, and Sarvar Patel. 2000. Provably Secure
Password-Authenticated Key Exchange Using Diffie-Hellman. In Proceedings
of the Nineteenth International Conference on the Theory and Application of Cryp-
tographic Techniques. Springer, 156–171.

[14] J. Brainard, A. Juels, R.L. Rivest, M. Szydlo, and M. Yung. 2006. Fourth-Factor
Authentication: Somebody You Know. In Proceedings of the Thirteenth ACM
Conference on Computer and Communications Security, Vol. 30. 168–178.

[15] S. Brands. 2007. The Identity Corner—The Problem(s) with OpenId.
https://idcorner.org/2007/08/22/the-problems-with-openid/. (2007). Accessed
2017/04/14.

[16] J.W. Byun, D.H. Lee, and J.I. Lim. 2006. Security Analysis and Improvement of a
Gateway-Oriented Password-Based Authenticated Key Exchange Protocol. IEEE
Communications Letters 10, 9 (2006), 683–685.

[17] T.Y. Chang, M.S. Hwang, and W.P. Yang. 2011. A Communication-Efficient Three-
Party Password Authenticated Key Exchange Protocol. Information Sciences 181,
1 (2011), 217–226.

[18] S. Chiasson, R. Biddle, and P.C. van Oorschot. 2007. A Second Look at the Usability
of Click-Based Graphical Passwords. In Proceedings of the Third Symposium on
Usable Privacy and Security. ACM, 1–12.

[19] S. Chiasson, E. Stobert, A. Forget, R. Biddle, and P.C. Van Oorschot. 2012. Persua-
sive Cued Click-Points: Design, Implementation, and Evaluation of a Knowledge-
Based Authentication Mechanism. IEEE Transactions on Dependable and Secure
Computing 9, 2 (2012), 222–235.

[20] S. Chiasson, P.C. van Oorschot, and R. Biddle. 2006. A Usability Study and
Critique of Two Password Managers. In Proceedings of the Fifteenth USENIX
Security Symposium. USENIX, 1–16.

[21] T Charles Clancy, Negar Kiyavash, and Dennis J Lin. 2003. Secure Smartcard-
based Fingerprint Authentication. In Proceedings of the 2003 ACM Workshop on
Biometrics Methods and Applications. ACM, 45–52.

[22] Y. Cliff, Y. Tin, and C. Boyd. 2006. Password Based Server Aided Key Exchange.
In Proceedings of the Fourth International Conference on Applied Cryptography
and Network Security. Springer, 146–161.

[23] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptology
ePrint Archive 2016 (2016), 86.

[24] J. Daugman. 2004. How Iris Recognition Works. IEEE Transactions on Circuits
and Systems for Video Technology 14, 1 (2004), 21–30.

[25] Derek L Davis. 1999. Secure Boot. (Aug. 1999). US Patent 5,937,063.
[26] R. Dhamija. 2007. Security Usability Studies: Risk, Roles and Ethics. In Proceedings

of 2017Workshop on Security User Studies.
[27] R. Dhamija and L. Dusseault. 2008. The Seven Flaws of Identity Management:

Usability and Security Challenges. IEEE Security and Privacy 6, 2 (2008), 24–29.
[28] R. Dhamija, J.D. Tygar, and M. Hearst. 2006. Why Phishing Works. In Proceedings

of the Eighteenth ACM Conference on Human Factors in Computing Systems. ACM,
581–590.

[29] Rachna Dhamija and J Doug Tygar. 2005. The Battle Against Phishing: Dynamic
Security Skins. In Proceedings of the First Symposium on Usable Privacy and
Security. ACM, 77–88.

[30] Ben Dodson, Debangsu Sengupta, Dan Boneh, and Monica S Lam. 2012. Secure,
Consumer-Friendly Web Authentication and Payments with a Phone. Mobile
Computing, Applications, and Services (2012), 17–38.

[31] Bryan Dosono, Jordan Hayes, and Yang Wang. 2015. “I’m Stuck!”: A Contextual
Inquiry of People with Visual Impairments in Authentication. In Proceedings of
the Eleventh Symposium on Usable Privacy and Security. 151–168.

[32] S. Drimer, S. Murdoch, and R. Anderson. 2009. Optimised to Fail: Card Readers
for Online Banking. Proceedings of the Thirteenth International Conference on
Financial Cryptography and Data Security (2009), 184–200.

NSPW 2017, October 1–4, 2017, Santa Cruz, CA, USA Scott Ruoti and Kent Seamons

[33] Jeremy Epstein, JohnMcHugh, Hilarie Orman, Rita Pascale, AnnMarmor-Squires,
Bonnie Danner, Charles R Martin, Martha Branstad, Glenn Benson, and Doug
Rothnie. 1993. A High AssuranceWindow System Prototype. Journal of Computer
Security 2, 2-3 (1993), 159–190.

[34] Facebook. 2017. Facebook Connect. https://developers.facebook.com/blog/post/
2008/05/09/announcing-facebook-connect/. (2017). Accessed 2017/04/14.

[35] Tao Feng, Ziyi Liu, Kyeong-An Kwon, Weidong Shi, Bogdan Carbunar, Yifei Jiang,
and Nhung Nguyen. 2012. Continuous Mobile Authentication Using Touchscreen
Gestures. In Proceedings of the 2012 IEEE Conference on Technologies for Homeland
Security. IEEE, 451–456.

[36] D. Florêncio and C. Herley. 2008. One-time Password Access to Any Server
without Changing the Server. Proceedings of the Eleventh International Conference
on Information Security (2008), 401–420.

[37] Dinei Florêncio, Cormac Herley, and Paul C Van Oorschot. 2014. An Administra-
tor’s Guide to Internet Password Research. In Proceedings of the Twenty-Eighth
Large Installation System Administration Conference. 35–52.

[38] OpenID Foundation. 2017. OpenId. http://openid.net/. (2017). Accessed
2017/04/14.

[39] OpenID Foundation. 2017. OpenId Foundation. http://openid.net/foundation/.
(2017). Accessed 2017/04/14.

[40] Davrondzhon Gafurov. 2007. A Survey of Biometric Gait Recognition: Ap-
proaches, Security and Challenges. In Annual Norwegian Computer Science Con-
ference. 19–21.

[41] Simson Garfinkel and Heather Richter Lipford. 2014. Usable Security: History,
Themes, and Challenges. Synthesis Lectures on Information Security, Privacy, and
Trust 5, 2 (2014), 1–124.

[42] Virgil D. Gligor, C. Sekar Chandersekaran, Robert S. Chapman, Leslie J. Dotterer,
MS Hetch, Wen-Der Jiang, Abhai Johri, Gary L. Luckenbaugh, and N Vasudevan.
1987. Design and Implementation of Secure Xenix. IEEE Transactions on Software
Engineering 2 (1987), 208–221.

[43] Google. 2017. Google 2-Step Verification. https://www.google.com/landing/2step/.
(2017). Accessed 2017/04/14.

[44] Google. 2017. Password Alert. https://github.com/google/password-alert. (2017).
Accessed 2017/04/14.

[45] Anti-Phishing Working Group. 2008. Phishing Activity Trends: Report for the
Month of January, 2008. (2008).

[46] Guodong Guo, Stan Z Li, and Kapluk Chan. 2000. Face Recognition by Support
Vector Machines. In Proceedings of the Fourth IEEE International Conference on
Automatic Face and Gesture Recognition. IEEE, 196–201.

[47] N. Haller, C. Metz, P. Nesser, and M. Straw. 1996. A One-Time Password System.
http://www.ietf.org/rfc/rfc1938.txt. (1996).

[48] E. Hammer-Lahav, D. Recordon, and D. Hardt. 2011. The OAuth 2.0 Authorization
Protocol. (2011).

[49] M. Hanson, D. Mills, and B. Adida. 2011. Federated Browser-Based Identity Using
Email Addresses. In Proceedings of the 2011 W3C Workshop on Identity in the
Browser.

[50] F. Hao and P. Ryan. 2011. Password Authenticated Key Exchange by Juggling.
Proceedings of the Nineteenth International Workshop on Security Protocols (2011),
159–171.

[51] C. Herley. 2009. So Long, and No Thanks for the Externalities: The Rational
Rejection of Security Advice by Users. In Proceedings of the 2009 New Security
Paradigms Workshop. ACM, 133–144.

[52] C. Herley and P. Van Oorschot. 2012. A Research Agenda Acknowledging the
Persistence of Passwords. Proceedings of the Thirty-Third IEEE Symposium on
Security and Privacy 10, 1 (2012), 28–36.

[53] C. Herley and P. Van Oorschot. 2017. SoK: Science, Security, and the Elusive
Goal of Security As a Scientific Pursuit. Proceedings of the Thirty-Eighth IEEE
Symposium on Security and Privacy (2017).

[54] N. Hopper and M. Blum. 2001. Secure Human Identification Protocols. Proceed-
ings of the Twentieth International Conference on the Theory and Application of
Cryptographic Techniques (2001), 52–66.

[55] Philip G Inglesant andMAngela Sasse. 2010. The True Cost of Unusable Password
Policies: Password Use in the Wild. In Proceedings of the Twenty-Second ACM
Conference on Human Factors in Computing Systems. ACM, 383–392.

[56] IronKey. 2017. IronKey. http://www.ironkey.com/. (2017). Accessed 2017/04/14.
[57] D.P. Jablon. 1996. Strong Password-Only Authenticated Key Exchange. ACM

SIGCOMM Computer Communication Review 26, 5 (1996), 5–26.
[58] D.P. Jablon. 1997. Extended Password Key Exchange Protocols Immune to Dictio-

nary Attack. In Proceedings of the Sixth IEEE workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises. IEEE, 248–255.

[59] M. Jakobsson, L. Yang, and S.Wetzel. 2008. Quantifying the Security of Preference-
Based Authentication. In Proceedings of the Fourth ACM Workshop on Digital
Identity Management. ACM, 61–70.

[60] R. Jhawar, P. Inglesant, N. Courtois, and M.A. Sasse. 2011. Make Mine a Quadru-
ple: Strengthening the Security of Graphical One-Time PIN Authentication. In
Proceedings of the Fifth IEEE International Conference on Network and System
Security. IEEE, 81–88.

[61] Nikolaos Karapanos, Claudio Marforio, Claudio Soriente, and Srdjan Capkun.
2015. Sound-Proof: Usable Two-Factor Authentication Based on Ambient Sound.
In Proceedings of the Twenty-Fourth USENIX Security Symposium. 483–498.

[62] C. Karlof, JD Tygar, and D. Wagner. 2009. Conditioned-Safe Ceremonies and
a User Study of an Application to Web Authentication. In Proceedings of the
Fifteenth Network and Distributed System Security Symposium, Vol. 9.

[63] Ambarish Karole, Nitesh Saxena, and Nicolas Christin. 2010. A Comparative
Usability Evaluation of Traditional Password Managers. In Proceedings of the Thir-
teenth International Conference on Information Security and Cryptology. Springer,
233–251.

[64] Michael L Katz and Carl Shapiro. 1994. Systems Competition and Network Effects.
The Journal of Economic Perspectives 8, 2 (1994), 93–115.

[65] Patrick Gage Kelley, Saranga Komanduri, Michelle L Mazurek, Richard Shay,
Timothy Vidas, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, and Julio Lopez.
2012. Guess Again (and Again and Again): Measuring Password Strength by
Simulating Password-cracking Algorithms. In Proceedings of the Thirty-Third
IEEE Symposium on Security and Privacy. IEEE, 523–537.

[66] K. Kobara and S.H. Shin. 2012. Efficient Augmented Password-Only Authentica-
tion and Key Exchange for IKEv2. (2012).

[67] D.P. Kormann and A.D. Rubin. 2000. Risks of the Passport Single Signon Protocol.
Computer Networks 33, 1 (2000), 51–58.

[68] Ravi Kuber and Shiva Sharma. 2010. Toward Tactile Authentication for Blind
Users. In Proceedings of the Twelfth International ACM SIGACCESS Conference on
Computers and Accessibility. ACM, 289–290.

[69] M. Kuhn. 1998. OTPW—A One-time Password Login Package. (1998).
[70] J.O. Kwon, I.R. Jeong, K. Sakurai, and D.H. Lee. 2007. Efficient Verifier-Based

Password-Authenticated Key Exchange in the Three-Party Setting. Computer
Standards and Interfaces 29, 5 (2007), 513–520.

[71] T. Kwon. 2001. Authentication and Key Agreement Via Memorable Password. In
Proceedings of the Seventh Network and Distributed System Security Symposium,
Vol. 20. Internet Society, 31–33.

[72] LastPass. 2017. LastPass. https://lastpass.com/. (2017). Accessed 2017/04/14.
[73] Billy Lau, Simon P Chung, Chengyu Song, Yeongjin Jang, Wenke Lee, and Alexan-

dra Boldyreva. 2014. Mimesis Aegis: A Mimicry Privacy Shield-a System’s Ap-
proach to Data Privacy on Public Cloud. In Proceedings of the Twenty-Third
USENIX Security Symposium. USENIX, 33–48.

[74] B. Laurie. 2007. OpenId Phishing Heaven. http://www.links.org/?p=187. (2007).
Accessed 2017/04/14.

[75] Zhiwei Li, Warren He, Devdatta Akhawe, and Dawn Song. 2014. The Emperor’s
New Password Manager: Security Analysis of Web-Based Password Managers..
In Proceedings of the Twenty-Third USENIX Security Symposium. 465–479.

[76] P.D. MacKenzie. 2002. The PAK Suite: Protocols for Password-Authenticated Key
Exchange. (2002), 2 pages.

[77] M. Mannan and PC van Oorschot. 2011. Leveraging Personal Devices for Stronger
Password Authentication from Untrusted Computers. Journal of Computer Secu-
rity 19, 4 (2011), 703–750.

[78] C. Messina. 2009. OpenId Phishing Brainstorm. (2009).
[79] B Clifford Neuman and Theodore Ts’o. 1994. Kerberos: An Authentication Service

for Computer Networks. IEEE Communications Magazine 32, 9 (1994), 33–38.
[80] Koichiro Niinuma, Unsang Park, and Anil K Jain. 2010. Soft Biometric Traits for

Continuous User Authentication. IEEE Transactions on information forensics and
security 5, 4 (2010), 771–780.

[81] Mark O’Neill, Scott Ruoti, Kent Seamons, and Daniel Zappala. 2016. TLS Proxies:
Friend or Foe?. In Proceedings of the 2016 ACM on Internet Measurement Conference.
ACM, 551–557.

[82] B. Parno, C. Kuo, andA. Perrig. 2006. Phoolproof Phishing Prevention. Proceedings
of the Fourteenth International Workshop on Security Protocols (2006), 1–19.

[83] A. Pashalidis and C.J. Mitchell. 2004. Impostor: A Single Sign-On System for Use
from Untrusted Devices. In Proceedings of the Fifth IEEE Global Telecommunica-
tions Conference, Vol. 4. IEEE, 2191–2195.

[84] PassWindow. 2017. PassWindow. http://www.passwindow.com/. (2017). Ac-
cessed 2017/04/14.

[85] Lili Qiu, Yin Zhang, FengWang, Mi Kyung, and Han Ratul Mahajan. 1985. Trusted
Computer System Evaluation Criteria. In National Computer Security Center.
Citeseer.

[86] D. Recordon and D. Reed. 2006. OpenId 2.0: A Platform for User-Centric Identity
Management. In Proceedings of the Second ACM Workshop on Digital Identity
Management. ACM, 11–16.

[87] A. Ross, J. Shah, and A.K. Jain. 2007. From Template to Image: Reconstructing
Fingerprints from Minutiae Points. IEEE Transactions on Pattern Analysis and
Machine Intelligence 29, 4 (2007), 544–560.

[88] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J.C. Mitchell. 2005. Stronger Pass-
word Authentication Using Browser Extensions. In Proceedings of the Fourteenth
USENIX Security Symposium, Vol. 5. USENIX.

[89] RSA. 2017. RSA SecureID. (2017). Accessed 2017/04/14.
[90] Scott Ruoti, Jeff Andersen, and Kent Seamons. 2016. Strengthening Password-

Based Authentication. In Proceedings of the Second Who Are You?! Adventures in
Authentication Workshop at the Symposium on Usable Privacy and Security.

End-to-End Passwords NSPW 2017, October 1–4, 2017, Santa Cruz, CA, USA

[91] Scott Ruoti, Nathan Kim, Ben Burgon, Timothy Van Der Horst, and Kent Seamons.
2013. Confused Johnny: When Automatic Encryption Leads to Confusion and
Mistakes. In Proceedings of the Ninth Symposium on Usable Privacy and Security.
ACM, Newcastle, United Kingdom.

[92] V. Samar and R. Schemers. 1995. RFC 86.0: Uni-
fied Login with Pluggable Authentication Modules (PAM).
http://www.kernel.org/pub/linux/libs/pam/pre/doc/rfc86.0.txt.gz. (1995).

[93] S Sanderson and JH Erbetta. 2000. Authentication for Secure Environments Based
on Iris Scanning Technology. (2000).

[94] S. Schechter, A.J.B. Brush, and S. Egelman. 2009. It’s No Secret—Measuring the
Security and Reliability of Authentication Via “Secret” Questions. In Proceedings
of the Thirtieth IEEE Symposium on Security and Privacy. IEEE, 375–390.

[95] Stuart E Schechter, Rachna Dhamija, Andy Ozment, and Ian Fischer. 2007. The
Emperor’s New Security Indicators. In Proceedings of the Twenty-Eighth IEEE
Symposium on Security and Privacy. IEEE, 51–65.

[96] David Silver, Suman Jana, Dan Boneh, Eric Yawei Chen, and Collin Jackson. 2014.
Password Managers: Attacks and Defenses. In Proceedings of the Twenty-Third
USENIX Security Symposium. 449–464.

[97] M. Slot. 2008. Beginner’s Guide to OpenId Phishing.
https://blog.rootshell.be/2008/11/05/beginners-guide-to-openid-phishing/.
(2008). Accessed 2017/04/14.

[98] S.L. Smith. 1987. Authenticating Users by Word Association. Computers and
Security 6, 6 (1987), 464–470.

[99] F. Stajano. 2011. PICO: No More Passwords! Proceedings of the Nineteenth
International Workshop on Security Protocols (2011), 49–81.

[100] S.T. Sun. 2012. Simple but Not Secure: An Empirical Security Analysis of OAuth
2.0-Based Single Sign-On Systems. (2012).

[101] S.T. Sun, Y. Boshmaf, K. Hawkey, and K. Beznosov. 2010. A Billion Keys, but
Few Locks: The Crisis of Web Single Sign-On. In Proceedings of the 2010 New
Security Paradigms Workshop. ACM, 61–72.

[102] S.T. Sun, K. Hawkey, and K. Beznosov. 2010. OpenId-Enabled Browser: Towards
Fixing the Broken Web Single Sign-On Triangle. In Proceedings of the Sixth ACM
Workshop on Digital Identity Management. ACM, 49–58.

[103] S.T. Sun, E. Pospisil, I. Muslukhov, N. Dindar, K. Hawkey, and K. Beznosov. 2011.
What Makes Users Refuse Web Single Sign-On?: An Empirical Investigation of
OpenId. In Proceedings of the Seventh Symposium on Usable Privacy and Security.
ACM, 4.

[104] H. Tao. 2006. Pass-Go—A New Graphical Password Scheme. Ph.D. Dissertation.
University of Ottawa.

[105] Issa Traore. 2011. Continuous Authentication Using Biometrics: Data, Models, and
Metrics: Data, Models, and Metrics. IGI Global.

[106] Blase Ur, Patrick Gage Kelley, Saranga Komanduri, Joel Lee, Michael Maass,
Michelle L Mazurek, Timothy Passaro, Richard Shay, Timothy Vidas, Lujo Bauer,
and others. 2012. How Does Your Password Measure Up? the Effect of Strength
Meters on Password Creation.. In Proceedings of the Twenty-First USENIX Security

Symposium. 65–80.
[107] T.W. van der Horst and K.E. Seamons. 2007. Simple Authentication for the Web.

In Proceedings of the Third International IEEE Conference on Security and Privacy
in Communications Networks and the Workshops. IEEE, 473–482.

[108] Timothy W. van der Horst and Kent Eldon Seamons. 2009. Encrypted Email
Based upon Trusted Overlays. (March 2009). US Patent 8,521,821.

[109] Vasco. 2017. Cronto. http://www.cronto.com/. (2017). Accessed 2017/04/14.
[110] Amit Vasudevan, Bryan Parno, Ning Qu, Virgil D Gligor, and Adrian Perrig. 2009.

Lockdown: A Safe and Practical Environment for Security Applications. Technical
Report. Carnegie Mellon University.

[111] James Wayman, Anil Jain, Davide Maltoni, and Dario Maio. 2005. An Introduc-
tion to Biometric Authentication Systems. Biometric Systems (2005), 1–20.

[112] F. Wei, Z. Zhang, and C. Ma. 2011. Gateway-Oriented Password-Authenticated
Key Exchange Protocol in the Standard Model. Journal of Systems and Software
(2011).

[113] D. Weinshall. 2006. Cognitive Authentication Schemes Safe against Spyware. In
Proceedings of the Twenty-Seventh IEEE Symposium on Security and Privacy. IEEE,
6–pp.

[114] Matt Weir, Sudhir Aggarwal, Michael Collins, and Henry Stern. 2010. Testing
Metrics for Password Creation Policies by Attacking Large Sets of Revealed
Passwords. In Proceedings of the Seventeenth ACM Conference on Computer and
Communications Security. ACM, 162–175.

[115] H.A. Wen, T.F. Lee, and T. Hwang. 2005. Provably Secure Three-Party Password-
Based Authenticated Key Exchange Protocol Using Weil Pairing. (2005), 138–
143 pages.

[116] Alexander Wiesmaier, Marcus Fischer, Evangelos G. Karatsiolis, and Marcus
Lippert. 2004. Outflanking and securely using the PIN/TAN-System. (2004).
http://arxiv.org/abs/cs.CR/0410025

[117] MinWu, Robert CMiller, and Greg Little. 2006. WebWallet: Preventing Phishing
Attacks by Revealing User Intentions. In Proceedings of the Second Symposium on
Usable Privacy and Security. ACM, 102–113.

[118] Thomas Wu. 1998. The Secure Remote Password Protocol. In Proceedings of
the Fourth Network and Distributed System Security Symposium, Vol. 98. Internet
Society, 97–111.

[119] T. Wu. 2002. SRP-6: Improvements and Refinements to the Secure Remote
Password Protocol. (2002).

[120] T.C. Wu and H.Y. Chien. 2009. Comments on Gateway-Oriented Password-based
Authenticated Key Exchange Protocol. In Proceedings of the Fifth International
Conference on Intelligent Information Hiding and Multimedia Signal Processing.
IEEE, 262–265.

[121] YubiCo. 2017. YubiKey. http://www.yubico.com/products/yubikey-
hardware/yubikey/. (2017). Accessed 2017/04/14.

[122] Yinqian Zhang, Fabian Monrose, and Michael K Reiter. 2010. The Security
of Modern Password Expiration: An Algorithmic Framework and Empirical
Analysis. In Proceedings of the Seventeenth ACM Conference on Computer and
Communications Security. ACM, 176–186.

http://arxiv.org/abs/cs.CR/0410025

	Abstract
	1 Introduction
	2 Related Work
	2.1 Phishing
	2.2 Password Policies
	2.3 Password Storage
	2.4 Password Managers
	2.5 Strong Password Protocols
	2.6 Safe Password Entry
	2.7 Single Sign-on
	2.8 Multi-Factor Authentication
	2.9 Pluggable Authentication Module

	3 End-to-end Passwords
	3.1 Threat Model
	3.2 Current Password Paradigm
	3.3 Inadequate Solutions
	3.4 End-to-end Passwords
	3.5 Benefits
	3.6 Limitations

	4 Example Architecture
	4.1 Operating System
	4.2 Application
	4.3 Communication Channel
	4.4 Password Verification Service

	5 Research Agenda
	5.1 Usable Security
	5.2 Systems Research
	5.3 Transition

	6 Summary
	7 Acknowledgment
	References

