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ABSTRACT
Our goal is to refocus the question about cybersecurity research

from ‘is this process scienti�c’ to ‘why is this scienti�c process pro-

ducing unsatisfactory results’. We focus on �ve common complaints

that claim cybersecurity is not or cannot be scienti�c. Many of

these complaints presume views associated with the philosophical

school known as Logical Empiricism that more recent scholarship

has largely modi�ed or rejected. Modern philosophy of science,

supported by mathematical modeling methods, provides construc-

tive resources to mitigate all purported challenges to a science of

security. Therefore, we argue the community currently practices

a science of cybersecurity. A philosophy of science perspective

suggests the following form of practice: structured observation to
seek intelligible explanations of phenomena, evaluating explanations
in many ways, with specialized �elds (including engineering and
forensics) constraining explanations within their own expertise, inter-
translating where necessary. A natural question to pursue in future

work is how collecting, evaluating, and analyzing evidence for such

explanations is di�erent in security than other sciences.
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1 INTRODUCTION
There has been a prominent call to improve the research and prac-

tice of information security by making it more ‘scienti�c’. Its propo-

nents claim a science of security is needed for ongoing progress. Per

the historian of science Dear, scienti�c is used here as “a very pres-

tigious label that we apply to those bodies of knowledge reckoned

to be most solidly grounded in evidence, critical experimentation

and observation, and rigorous reasoning” [20, p. 1]. We take our

de�nition of security from RFC 4949: “measures taken to protect

a system” [81]; of course see the RFC for the meaning of measure,
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Experiments
are untenable

Structured observations of the empirical

world

Reproducibility
is impossible

Evaluate by repetition, replication, variation,

reproduction, and/or corroboration

No laws of
nature

Mechanistic explanation of phenomena to

make nature intelligible

No single
ontology

Specialization necessitates translation

‘Just’
engineering

Both science and engineering are necessary

Table 1: Five common complaints raised by the science of
cybersecurity community and positive reframing from the
philosophy of science literature.

protect, and system. As a starting point, then, we consider a sci-

ence of security to be the label we should apply to the most solidly

grounded bodies of knowledge about measures one can take to

protect a system.

The following items have resonated as serious obstacles to the

practice of a science of security:

• Experiments are impossible in practice, because they are

unethical or too risky;

• Reproducibility is impossible;

• There are no laws of nature in security;

• Information security will not be a science until we all agree

on a common language or ontology of terms;

• Computer science is ‘just engineering’ and not science at

all: questions of science of security are misplaced.

We will argue that a philosophy of science perspective shows

these obstacles are either misguided or can be overcome. The pur-

ported obstacles are frequently not genuine challenges because they

rely on outdated conceptions of science, which yields a simplistic

idea of evaluating evidence for claims (falsi�cation) and a naïve

reductionism to universal laws that supposedly underpin all scien-

ti�c endeavors. Alternatively, modern philosophy of science tends

to describe, if applied adequately to security, what good security

practitioners already do. Security is, as practiced, already a kind of

science. Table 1 summarizes our positive perspective on executing

a science of security.

Section 2 provides a brief background on the logical empiricist

movement within philosophy of science. Section 3 examines prior

statements to detail the obstacles to practicing a science of security.

Section 4 explains how philosophy of science informs the scienti�c
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process already taking place in cybersecurity research, and Sec-

tion 5 suggests some constructive steps forward for improving the

reliability and growth of general, sharable knowledge in security.

2 PHILOSOPHY OF SCIENCE PRIMER
Philosophy of science is a �eld that has developed as a discourse

on top of science: a second-order re�ection upon the �rst-order

operation of the sciences [89]. For three centuries, the scholars

we now recognize as scientists were called ‘natural philosophers’,

and there was no separate group of philosophers of science. In

inter-war Vienna, a group of thinkers who identi�ed as ‘the Vienna

Circle’ came to challenge both the prevailing metaphysics and

political Romanticism (i.e., the Church and European facism).
1

This

movement emphasized themes of observation of the world, trust

in science, high value on math and logic, and modernism. A key

movement of the Circle has come to be called logical empiricism,

for its reliance on logical rules based on empirical observations.
2

We brie�y introduce two of the main tenets of logical empiri-

cism: (i) empiricism and veri�cation and (ii) unity or reduction

of scienti�c �elds [15]. These tenets coalesced in the 1930s, were

re�ned through the 50s, and by 1970 had su�ered ample critiques to

be changed beyond recognition. This historical trajectory makes it

intellectually dangerous to rely upon logical empiricist arguments

or concepts uncritically. Yet, Section 3 �nds much logical-empiricist

work uncritically assimilated in current statements on science of

cybersecurity.

Empiricism and veri�cation. Statements testable by observation

were considered to be the only “cognitively meaningful” state-

ments [89]. Although logic and mathematics are the most reliable

forms of reasoning, logical empiricists did not take them to rely

on observation but instead accepted them as true by de�nition,

following Russell and early Wittgenstein. Therefore, according to

the logical empiricist view, the key scienti�c challenges are how

to verify a statement is in fact about the world, and how to mean-

ingfully integrate observations into logic and mathematics. Such

integration is necessary for science to be useful. Integrating ob-

servations into deductive logical statements is also a response to

Hume, two centuries earlier, and his famous problem of induction.

Hume, in broad strokes, argues that no matter how many times we

observe the sun to rise, we cannot prove (in the sense of deductive

proof) that the sun will rise tomorrow based on the observations.

Consistent with logical empiricism, Carnap proposed a method

for veri�cation by working on atomic elements of logical sentences,

and expanding observational sentences out based on rules from

atomic observations [15]. The goal of empiricism is to be grounded

in observations. The goal of veri�cation is to integrate those ob-

servations into a framework of general knowledge, in the form of

statements in �rst-order logic, that can justify predictions. Carnap

thus links induction and deduction, bypassing Hume’s complaint.

Yet it became clear that veri�cation might not always be achiev-

able. It is against this backdrop that Popper proposed the more

limited objective of falsi�cation [74], which claims we cannot verify

1
There is a compelling argument that 1880–1930 Vienna produced the most vital

intellectual movements in science, art, and philosophy that dominated the 20th cen-

tury [88].

2
Logical empiricism is closely related to logical positivism and neopositivism; we will

not distinguish these at our level of analysis [15, 89].

logical statements at all. Instead, Popper asserts that the best we

can do is hope to falsify them.
3

Even the more limited goal of falsi�cation was shown to be

untenable with Kuhn’s challenge to Popper in 1962 [54]. Kuhn

refutes the premise that scientists operate on logical statements.

Rather, he argues that key examples, literally ‘paradigms’, are sci-

entists’ operative cognitive model. Later work in philosophy of

science has re�ned the shape of these cognitive models —- one

prominent method is as mechanistic explanations (see, e.g., [37]) —

and improved understanding of how data are processed to provide

evidence for phenomena (see, e.g., [7]).

Even ignoring Kuhn’s socio-scienti�c critique, falsi�cation is

about mapping observations into logic. Popper is silent on design-

ing reliable observations and choosing what logic or conceptual

framework in which we should reason. These two problems are

more important, and would provide more actionable advice, than

whether something is falsi�able. More useful than falsi�cation are

modern discussions of investigative heuristics for scientists [4],

models of when a conclusion from observations is warranted [69],

and accounts of causation that make use of intervention and statis-

tics rather than logical implication [96].

Reduction of science to �rst principles. The other tenet of logical

empiricism often unwittingly inherited by debates in science of

security regards the unity of science or the reduction of science

to single �rst principles. There are two senses of unity here that

are not often properly distinguished: methodological unity and

unity of content by reduction to a single set of models. A unity

of methods would mean that, although individual sciences have

distinctive approaches, there is some unifying rational observation

and evaluation of evidence among all sciences. This view was de-

emphasized within logical empiricism. With confusing terminology,

modern arguments often return to this idea under mosaic unity

or pluralism: the sciences are about widely di�erent subjects, but

there are important shared social and methodological outlooks that

unify science as an enterprise.

The traditional idea of reductionism is that the set of laws of one

science can be logically reduced to that of another [66]. This notion

requires the conception of laws as logical rules of deduction. As

famously critiqued by Cartwright, the laws of physics are not true

explanations of the world, but rather of the models we build of the

world [8]. If laws are about models, and models can be diagrams

or small-scale physical replicas, it is unclear how reduction could

be de�ned. Bickle [5] de�nes reductionism (in neuroscience) as

when a lower-level mechanism contains all the explanatory power

necessary to intervene on a higher-level mechanism. Merits of

Bickle’s view aside, he has disposed of all logical-empiricist ideas

of laws, deduction, and veri�cation and uses the modern concepts

of mechanistic explanation and intervention.

Reductionism is dangerous because it tends to blind us from

using the appropriate tool for the job. If everything reduces to

physics, then we just need a physics-hammer, and everything looks

like a nail. But we shall need a more diversi�ed toolbox in a �eld

3
Popper published the idea in German in 1935 though the popular English translation

appeared in 1959. Carnap’s work on veri�cation, though done in 1956, is done in

knowledge of and contrary to Popper. Earlier veri�cationists, stricter than Carnap and

against whom Popper reacted, include Wittgenstein as early as 1929 [15].
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such as cybersecurity. Social sciences play an equally important

role as technical sciences [2]. The modern terms in philosophy

of science are integrative pluralism [62] or mosaic unity [14]. The

core of these terms is that �elds cooperate on adding constraints

to coherent explanations according to their particular tools and

expertise. Such inter�eld explanations are what is valuable, not

reductions [17]. We explore challenges due to reductionism and its

alternatives further in Section 4.3 and Section 4.4.

Science as a process. A common pitfall treats the terms ‘scienti�c’

and ‘correct’ as synonyms. Science is a process; it yields answers.

Answers are correct or not based on facts of the world. However,

one calls a process ‘correct’ if it follows an agreed, human-de�ned

form. The question about a process should be whether it is satis-

factory in e�ciently producing adequate answers. We should not

assume answers are reducible to one ‘correct’ answer; many an-

swers may adequately satisfy a purpose [83]. Con�ating ‘scienti�c’

with ‘correct’ and ‘correct answer’ with ‘adequate’ results from

logical-empiricist assumptions in the common complaints.

Removing these faulty assumptions is not a panacea. A sound

scienti�c process may produce unsatisfactory results if the sub-

ject matter is di�cult to study for undiagnosed reasons. One may

construct a model of a system or phenomenon using scienti�cally

rigorous methods. The model constructed will have certain proper-

ties that are considered correct if it captures su�ciently adequately

the properties of the system or phenomenon that are required to

address the questions that the model is intended to explore. Ulti-

mately, the goal of this paper is to refocus the question from ‘is

this process scienti�c’ to ‘why is this scienti�c process producing

unsatisfactory results’.

As we shall see in Section 3, logical empiricist threads pervade ex-

isting discussions of science of security. With this basic history and

the risk to uncritically adopt these ideas both established, we shall

continue to tie in the critical re�ection from modern philosophy of

science.

3 EXISTING STATEMENTS OF SCIENCE AND
SECURITY

Many organizations have proposed problem statements and solu-

tions regarding the state of information security research. Since

2008, these statements are frequently phrased using the language

of a science of security. The motivation and goals are complex, but

one important consideration is policy makers asking for intelligible

explanations that can inform their decisions. In this section, we

survey �rst the problem and then proposed solutions.

There seems to be broad agreement that there is a problem

with the state of information security. That sense predates the

arguments that science is the answer; education and standardization

e�orts predate the focus on science. More accurately, developing a

science of security is part of a multi-pronged approach by the US

government, later picked up by others, to respond to threats to IT

infrastructure. As early as 2001, the National Science Foundation

(NSF) funded both student scholarships and academic capacity

building (e.g., designing courses) to universities designated by the

National Security Agency (NSA) as a Center of Academic Excellence

(CAE) in Information Assurance Education [68]. The NSA CAE

program began in 1998. The National Institute of Standards and

Technology (NIST), and its predecessor the National Bureau of

Standards, have been involved in information security standards

for decades. The IETF and IEEE are at least as prominent as NIST.

The study of how security standards require di�erent features than

usual information technology standards has only just begun [53].

However, around 2008, there seems to have been a shift emanating

from the US Department of Defense (DoD) that brought the question

of science to bear on information security problems.
4

The DoD expresses the motivation for its scienti�c shift in its

tasking to MITRE, quoted by MITRE’s JASON o�ce in its �nal

report. The reason for the timing is less clear, but the concern

that precipitates the question of science and security is clear. This

concern is worth quoting at length:

“The Department of Defense, the Intelligence Community,

and the planet have become critically dependent on the In-

ternet for services, transactions, social interactions, commu-

nications, medical treatments, warfare; virtually everything.

Cybersecurity is now critical to our survival but as a �eld of

research does not have a �rm scienti�c basis. Clearly, there

is a scienti�c basis for the infrastructure of the internet such

as computation, communications, and integrated circuits but

its security attributes are often vague or un-measurable. ...

There are concerns that future damage could be catastrophic

to major components of our core infrastructures such as

power and water distribution, �nance and banking, even the

ability to deploy forces to defend the country.

Our current security approaches have had limited success

and have become an arms race with our adversaries. In order

to achieve security breakthroughs we need a more fundamen-

tal understanding of the science of cyber-security. However,

we do not even have the fundamental concepts, principles,

mathematical constructs, or tools to reliably predict or even

measure cyber-security. It is currently di�cult to determine

the qualitative impact of changing the cyberinfrastructure

(more secure now or less secure?) much less quantify the im-

provement on some speci�c scale. We do not have the tools

to do experiments that can produce results that could be com-

pared to theory, models, or simulations. Request the JASONs

consider whether cyber-security can become or should be

a science. If so, identify what is needed to create a science

of cyber-security and recommend speci�c ways in which

scienti�c methods can be applied to cyber-security. If not,

what can we learn from the practice of science that would

enable us to improve the security of our cyber infrastructure

and assure the integrity of information that resides in the

information technology infrastructure?” [63, p. 9-10]

Note three key aspects of the problem statement. First, informa-

tion security is of critical societal importance. Secondly, a desire

4
The �rst use of ‘science of cybersecurity’ or ‘science of information security’ is elusive.

Google Scholar searches for these terms (with quotes) on Mar 1, 2017, restricted to

1990-2007, yield exactly one plausible result: a 2004 work on critical infrastructure

policy [95]. Perhaps [95] borrowed from the 2004 U.S. House Subcommittee on Cyber-

security, Science, and Research & Development, which she cites. However, besides

in the subcommittee title, its report does not mention ‘science of cybersecurity’ or

security science.
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to predict and measure security via “concepts, principles, mathe-

matical constructs, or tools.” Third, the purpose of this prediction

is to prevent future catastrophic infrastructure damage. Science

is positioned as a possible answer, but is not presumed. The real

question is not whether security is a science, but “what can we

learn from the practice of science that would enable us to improve

the security of our cyber infrastructure.”

Much government-centric or government-funded science of se-

curity work seems to accept this problem statement, including the

Air Force MURI project. There is one recent voice with which to

compare. The inaugural event for the working conference Art into

Science: A Conference for Defense (ACoD) in early 2017 held the

goal:

“Push the art to a science: Creating a professional discipline.
To mature our practice, we need to be able to share our

methodologies in a systematic and consistent way. We have

many professionals in the security industry, but do not have

a professional discipline. We’d like to philosophically discuss

concepts in security, push them forward, and model them”

(emphasis original) [26].

Interpreting slightly, we can see this goal as a problem statement.

Security practitioners cannot share methods satisfactorily. Science

is taken as a way to systematize knowledge at the appropriate

level of generality that it can both be shared and remain useful.

Sharing generalized knowledge would support the prediction and

measurement of security, as identi�ed in the DoD statement. The

two statements do not disagree, but the di�erent focus may lead to

di�erent kinds of solutions. However, the ACoD community is too

new to evaluate the results of this di�erent perspective.

We now switch to six statements of the current status of the

science of security, positioned as a method to solve the problems

as laid out by the DoD. First, we examine the direct response to

DoD’s problem statement in [63]. We then turn to a powerful DoD

agency—the NSA—in its funding priorities. Third, we examine a

speech by Dan Geer, head of the Central Intelligence Agency’s

public venture capital �rm In-Q-Tel. Fourth, we inspect the mission

statement of the UK Research Institute in Science of Cyber Security

(RISCS). Fifth, we study the 2016 cybersecurity strategy laid out by

the President of the United States. Finally, we consider a systemati-

zation of academic knowledge recently published by Herley and

van Oorschot [43].

MITRE—JASON. Although the DoD does not presuppose science

as the answer to their challenge statement around cybersecurity

(above), the problem statement does presuppose a conception of

science. This received conception directly impacts the answers

possible. For example, the report concludes “There are no intrinsic

‘laws of nature’ for cyber-security as there are, for example, in

physics, chemistry or biology” [63, p. 79]. As we shall see in Sec-

tion 4, the claim that there are laws in biology is highly contested,

and the notion of unquali�ed, universal laws anywhere has been

challenged with general success.

The implicit goal of science as putting forward unifying theories

perhaps leads to the recommendation that “the most important

attributes would be the construction of a common language and

a set of basic concepts about which the security community can

develop a shared understanding” [63, p. 3, cf. p. 15]. MITRE is

responsible for several language ontologies, including Malware

Attribute Enumeration and Characterization (MAEC) at the time

of the JASON report.

JASON does not provide a concise statement of what science

means within the report, or what the report is hoping to provide.

The report searches for “guidance” from other sciences, namely

economics, meteorology, medicine, astronomy, agriculture, model

checking, and immunology. Thus we presume the authors judge

all these �elds to be sciences worthy of emulation. The report

notes that sciences need not conduct experiments and may be ob-

servational. The “crucial feature” is that data be “generalizable” [63,

p. 34]. Unfortunately, the report is silent on how to achieve this.

The closest JASON gets to a formulation of what science of security

would contain is to say “it is not simple to de�ne what the ‘secu-

rity’ in cyber-security means” and to call for precise de�nitions [63,

p. 22]. One gets the sense that the authors explained what exist-

ing sciences may contribute to security, rather than how scienti�c

methodology could be adapted to cybersecurity as an independent

�eld.

NSA. The NSA uses a de�nition of ‘Security Science’ to guide

research funding considerations. Although this was posted rather

obscurely to an online community forum of security researchers,

the NSA operates the forum, and the description is by the technical

director emeritus:

“Security Science – is taken to mean a body of knowledge

containing laws, axioms and provable theories relating to

some aspect of system security. Security science should give

us an understanding of the limits of what is possible in some

security domain, by providing objective and qualitative or

quanti�able descriptions of security properties and behaviors.

The notions embodied in security science should have broad

applicability – transcending speci�c systems, attacks, and

defensive mechanisms. The individual elements contained

within security science should contribute to a general frame-

work that supports the principled design of systems that

are trustworthy, they do what people expect it to do – and

not something else – despite environmental disruption, hu-

man user, and operator errors, and attacks by hostile parties.

Trustworthy system design may include contributions from a

diverse set of disciplines including computer science, systems

science, behavioral science, economics, biology, physics, and

others” [61].

This de�nition of science of security seems to be what the Sym-

posium on the Science of Security (HotSoS) CFP has in mind when

it refers to building “a foundational science of security” [48]. The

CFP does not otherwise de�ne science of security, but the confer-

ence is funded largely by NSA. The de�nition has also in�uenced

academic work, such as that summarized in a special issue of S&P

Magazine in 2011 [25].

The NSA de�nition de�nes the characteristics of an answer,

not a process. The science is a “body of knowledge,” it provides

“objective...descriptions,” and should support “principled design of

systems that are trustworthy.” Such goals describe the outputs of

a process, not how to conduct the process so as to achieve these

results. Advice would be more actionable for practitioners if it

guided how to act in order to bring about an end goal instead. This
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observation does not make the NSA statement wrong, just less

useful than it may �rst appear.

Security academics informed the NSA de�nition. The NSA col-

lected its in�uential thinkers for a special issue in “The Next Wave”

on a “blueprint for a science of cybersecurity.” The magazine high-

lights emerging trends salient to the NSA. The issue entrenches

a logical empiricist position on a science of security, especially

Schneider’s article [60]. Like the JASON report, some articles men-

tion biology or engineering, but nothing systematic and with no

true departure from the inherited logical empiricist world view.

Dan Geer. Related to HotSoS, the NSA also runs an annual ‘sci-

ence of security’ award for best paper. One of the distinguished

experts that review the nominations, Dan Geer, provides the fol-

lowing insight into the reviewers’ decision making:

“Amongst the reviewers our views of what constitutes a, or

the, Science of Security vary rather a lot. Some of us would

prioritize purpose... Some of us view aspects of methodology

as paramount, especially reproducibility and the clarity of

communication on which it depends. Some of us are ever on

the lookout for what a physicist would call a unifying �eld

theory. Some of us insist on the classic process of hypothesis

generation followed by designed experiments” [33].

The disagreement highlighted by this statement is that cyber-

security experts may view the area with which they are familiar

as the area that makes security into science. This bias is natural,

any expert has likely pursued what they view as the most impor-

tant topics. However, this strikes us as strange: why would any of

Geer’s listed possible priorities take primacy? All contribute to a

wider understanding of the world and its mechanisms via di�erent

methods. There are unifying aspects, and important di�erences,

between di�erent biological sciences, as one example. However,

reducing the decision to one or another feature, as [33] indicates the

reviewers of the best ‘science of security’ paper are disposed to do,

collapses away the nuance necessary for a constructive perspective

on a science of cybersecurity.

RISCS. For a perspective outside North America, we use the Re-

search Institute in Science of Cyber Security (RISCS), established

in 2012 and funded by the UK EPSRC (Engineering and Physical

Sciences Research Council), GCHQ (Government Communications

Headquarters), and BIS (Department for Business, Innovation, and

Skills). Further, RISCS is cited by The Royal Society in their strate-

gic plan for cybersecurity research in the UK generally [78]. The

statement of purpose summarizes the Institute’s mission:

“RISCS is focused on giving organisations more evidence, to

allow them to make better decisions, aiding to the develop-

ment of cybersecurity as a science. [RISCS] collects evidence

about what degree of risk mitigation can be achieved through

a particular method – not just the costs of its introduction,

but ongoing costs such as the impact on productivity – so

that the total cost of ownership can be balanced against the

risk mitigation that’s been achieved. [RISCS]’s main goal is

to move security from common, established practice to an

evidence base, the same way it happened in medicine” [90].

The emphasis on science is much more pragmatic in this British

context. The primary goal of the Institute is to provide evidence

for improved decision making; this in itself is taken to advance

a science of cybersecurity. This approach neatly sidesteps many

of the questions about what makes a science scienti�c that bog

down the previous discussions. RISCS issues annual reports about

its work, and we may consider this to be leading by example, but

it is not self-re�ective about how the work advances a science of

cybersecurity [76]. It is not enough to say we need to use evidence,

like in medicine. That statement is true, and we agree that the work

done by RISCS certainly is scienti�c and does advance a science

of cybersecurity. Similarly, the work presented at HotSoS and

otherwise supported by US DoD has a positive impact on the �eld.

We would like to extract the reasons why. For this explanatory task,

the pragmatic statement of RISCS is not enough.

White House. We return to North America and the highest levels

of government. The White House has developed a ‘cybersecurity

research and development (R&D) strategic plan’ [80, p. 2]. To a large

extent, the plan takes the de�nition of science for granted. The

plan is much more about what types of work the agencies should

prioritize funding. However, these priorities explicitly include rein-

forcing a scienti�c foundation and a research infrastructure that

are deemed to be lacking.

“Cybersecurity...needs sound mathematical and scienti�c

foundations with clear objectives, comprehensive theories

(e.g., of defense, systems, and adversaries), principled de-

sign methodologies, models of complex and dynamic sys-

tems at multiple scales, and metrics for evaluating success

or failure. ...[Currently,] most techniques are domain- and

context-speci�c, often not validated as mathematically and

empirically sound, and rarely take into account e�cacy and

e�ciency. Thus, the state of the practice consists of heuris-

tic techniques, informal principles and models of presumed

adversary behavior, and process-oriented metrics” [80, p. 30].

“Research Infrastructure: Sound science in cybersecurity

research must have a basis in controlled and well-executed

experiments with operational relevance and realism. That

requires tools and test environments that provide access to

datasets at the right scale and �delity, ensure integrity of the

experimental process, and support a broad range of interac-

tions, analysis, and validation methods” [80, p. 13].

The strategic plan emphasizes certain aspects of security to focus

on, for example defense should focus on deter, detect, protect, and

adapt. This is unobjectionable as far as practical direction goes.

However, we take these to be the subject-areas about which to do

science, but not related to any de�nition of science. The scienti�c

foundations and research infrastructure are cross-cutting issues of

methodology to be applied to the subject matter of priority. In this

way, the strategic plan plausibly separates the desire for answers

from the method by which reliable answers are derived. At the same

time, the prescriptions will come to seem overly rigid in our analysis.

Why are domain-speci�c techniques not scienti�c? The statement

“most techniques are domain-[speci�c]” above seems to imply that

this state of a�airs is unacceptable compared to “comprehensive

theories,” but this argument is unclear. Does the fact that specially-

designed radio telescopes for �nding pulsars in the centers of distant

galaxies cannot be used to analyze toxicity in marsh ecosystems

make �nding pulsars unscienti�c somehow? Clearly not.
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Academic Survey. Herley and van Oorschot provide a compre-

hensive academic perspective in a recent paper [43]. Their main

thesis takes a pessimistic outlook:

“[T]he security community is not learning from history lessons

well-known in other sciences. ... What is [hard] to accept is

[The security community’s] apparent unawareness or inabil-

ity to better leverage such lessons” [43, p. 16].

“...practices on which the rest of science has reached con-

sensus appear little used or recognized in security, and a

pattern of methodological errors continues unaddressed” [43,

p. 1].

“...The failure to validate the mapping of models and as-

sumptions onto environments and systems in the real world

has resulted in losing the connections needed to meet [the

goal of improving outcomes in the real world]” [43, p. 16].

The belief underlying this assessment seems to be that security

researchers are unfamiliar with scienti�c methods or philosophy

of science. This claim motivates an argument that the science of

security initiative is essentially too vague to be useful. The solution

Herley and van Oorschot advocate is to introduce the philosophical

literature and draw practical lessons for security researchers. We

concur with this general assessment, and the direction of the dis-

cussion and solutions. However, we believe the solution does not

focus on the most relevant or helpful segments of the philosophical

literature. Instead, they rely on historical framings emphasizing

logical deduction and the problem of induction. This framing inher-

its a world view from logical empiricism, Hume, and Kant. While

historically important in philosophy of science, this perspective

does not provide adequate tools for solving the modern challenges

of a science of security. Modern philosophy of science judges the

science of security less harshly than the failings identi�ed by Herley

and van Oorschot, while providing more actionable positive advice.

Here, we focus on the philosophical summary and argue why the

proposed solutions in the SoK are inadequate; Section 4 provides

the positive advice from modern philosophy of science.

Supposed failures to apply lessons from science are the core ar-

gument. Some are novel compared to the government and industry

positions explored above; for example, “failure to seek refutation

rather than con�rmation” and “reliance on unfalsi�able claims” [43,

p. 11,13]. Unfortunately, these observations require logical empiri-

cist views, notably Popper and Ayer. As explained in Section 2,

logical empiricism is an outdated view that has been supplanted by

more recent scholarship in the philosophy of science. Relying upon

logical empiricist arguments has unfortunately led the authors to

draw conclusions that are often unhelpful or incorrect.

Consider the criticism of failure to seek refutation rather than

con�rmation. What do we refute in security? If it could be logical

sentences somehow implying authorization, perhaps this is a useful

criticism. However, authorization is a policy decision; in the terms

of logic, it is a semantic property. We need to de�ne the model struc-

ture, satisfaction condition, and domain before we can interpret any

sentences and check semantic properties. Such de�nitions can be

argued for or justi�ed, but are always contextual and not something

we usually talk about as refuting or con�rming. Like all of security,

it cannot be done according to absolutes. This logical-empiricist

drive for logical absolutes confounds security just as quickly as

it has confounded other sciences. A better expression of these

worries is that generalizations from particulars should be properly

evidenced and that reasoning from existing knowledge should be

justi�ed appropriately. We take the mechanism discovery litera-

ture as a better framework in which to discuss generalization [85].

While the philosophical aspects are not made explicit, this emphasis

on evaluating evidence and warranted generalization is consistent

with the arguments put forth by Shostack and Stewart [82].

Because [43] takes falsi�cation as central, it is silent on how to

draw useful generalizations in the social sciences. Since a social

science perspective is needed to understand cybersecurity [2], this

is a signi�cant shortcoming. To see this, consider the statement

“refuting evidence is [always de�nitive]” [43, p. 16]. This statement

assumes the item being refuted has certain properties; namely, it

must be a decidable, valid logical sentence in a sound proof system

with excluded middle that is satis�ed in a relevant model structure.

Common, useful biology and sociology statements do not have these

properties. Instead, sociologists [24] and biologists [36] tend to talk

about mechanisms. We expand on such alternatives in Section 4.3.

Two other failures, “to bring theory into contact with observa-

tion” and “to make claims and assumptions explicit” [43, p. 12],

are already represented by complaints from other sources about

reproducibility, challenges to experimentation, and a common lan-

guage. Making claims explicit is generally good advice, though [43,

p. 12] wants explicitness so observations will �t into a common-

language of a logical theory. Thus we wish to dispense with the

common-language critique while retaining the recommendation

of explicitness. Explicitness has been recommended in science of

cybersecurity previously by Maxion, under the term “structure”

or argument clarity [57], and by Hatleback and Spring as “trans-

parency” [40].

Despite our criticism, many recommendations in [43, §5] are

good. We agree that physics-envy and crypto-envy are counterpro-

ductive, for example. So why do we care that they rely on outdated

philosophy – logical empiricism – to get there? For one, the reasons

we arrive at these conclusions matter. Physics- and crypto-envy

are counterproductive because there is nothing special about them

to envy. From a logical-empiricist perspective of logical laws of

nature, falsi�ed by observation presenting contradiction, physics

and crypto are especially well-suited. Rejecting crypto-envy would

not make sense if it were actually well-suited to our de�nitions of

science. It matters that we do not merely say ‘do not worry you

are not as good as physics’ but instead ‘physics is not as unique as

you think it is’. Craver’s conception of mosaic unity in the mech-

anisms literature [14] is a more useful framework to understand

why crypto-envy is counterproductive. Each �eld participates in a

multidisciplinary endeavor like security by contributing constraints

on complex mechanistic explanations. Crypto is just one such �eld,

and all �elds produce constraints that are, a priori, of equal value

to the overall explanation.

Summary. These six broad statements highlight common themes.

All agree that we have a problem: cybersecurity is vitally important

to society, yet not su�ciently understood to produce reliable sys-

tems. Each account on the source of that problem directly informs

proposed solutions. The academic SoK uses historical philosophy of

science to suggest what security needs. The other North American
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statements, from the US DoD and MITRE especially, implicitly use

this logical-empiricist view heavily. Dan Geer’s view highlights a

naïve reductionist philosophy of science closely related to logical

empiricism. RISCS’s pragmatic statement carries little philosophi-

cal baggage, but provides little advice on how to adequately gather

and evaluate evidence. A common mistake is to confuse evaluation

of the process of doing science with the evaluation of the answers

the process provides.

The common thread is to look to biology, physics, or other sci-

ences for advice. This search may be misplaced. Philosophy of

science is the independent �eld that discusses how to execute other

sciences and such issues. As we shall see in Section 4, we can

disqualify all of the complaints extracted from the above that cy-

bersecurity is not a science. Security is a science, and should look

to philosophy of science to address the genuine challenges of a

science of cybersecurity.

Some claim a science of security is not possible; some there is no

science of security yet (see Hatleback [41] for a recent expression

of this view); some just that too few people practice it. By contrast,

we disassemble the argument that such a science is impossible by

explaining how modern philosophy of science supports the practice.

4 PRACTICING SCIENCE OF SECURITY
We have seen a broad selection of complaints that security is not

scienti�c enough. In this section, we contrast those complaints

with alternatives based on a more comprehensive view of science

according to the philosophy of science literature. The immediate

aim is to clear away these unjusti�ed complaints that security is

unscienti�c. We do not claim, nor imply, that clearing this ground

directly grants a science of cybersecurity. We must cast away these

ghosts before we identify and tackle genuine challenges. Table 2

lists the �ve common complaints and summarizes how to defuse

each with the positive advice in the philosophy of science literature.

4.1 Scienti�c methods
Claim: Experiments are untenable. The inability to conduct ex-

periments, at least in many contexts, is held to be a major strike

against a science of cybersecurity. The received view is of an ex-

plicit evidence hierarchy, with randomized control trials (RCTs) at

the top [10, p. 135�]. This view is rooted in medicine, in�uenced

public policy generally, and in turn security. A critical study of

proper evidence-based policy summarizes the received view suc-

cinctly: “You are told: use policies that work. And you are told:

RCTs—randomized controlled trials—will show you what these are.”

And yet, they immediately follow with “[RCTs] do not do that for

you” [10, p. ix].

Nevertheless, experiments generally, and RCTs speci�cally, hold

a high status. High enough status that many statements from Sec-

tion 3 present lack of experiments as su�cient grounds to demon-

strate security is not a science. Ultimately, this high status reaches

back to a conception of science as falsifying logical statements in-

herited from logical empiricism, for which RCTs are well-suited.

We counter three common reasons for the claim experiments are

untenable in security: lack of suitable control, privacy constraints,

and rapid technological change.

However, �rst we show that untenable experiments, narrowly

understood, is not the right complaint in the �rst place. Section 2

expanded our view of scienti�c explanation beyond falsi�able logi-

cal statements. Therefore, we need broader methods of evaluation

than experiments, which are designed primarily to evaluate logical-

empiricist-style claims.

Alternative: structured observations of the empirical world. Ex-

periments simply are not a necessary condition for a �eld to be a

science. We cannot induce controlled hurricanes, yet meteorology

remains a science. Similarly for astrophysics—we do not induce

supernova—and paleontologists, as we do not induce extinction via

meteor impact. Social sciences abound that rely on case studies;

an individual case is “a speci�c, a complex, functioning thing” [86,

p. 2].

We prefer the term ‘structured observation’ over experiment

as a necessary feature of science. Structured observations include

both experiments and case studies. Robust research methods pro-

vide the structure, for example as described by [34, 86]. Structured

observations are empirical, and this includes both qualitative and

quantitative studies. Let us rephrase the complaint, then, as struc-

tured observations are untenable in security. Nonetheless, we will

clearly demonstrate how those practicing a science of security can

and already have been overcoming objections in the context of

structured observations.

Overcoming: Lack of Control Groups. There are surely some situa-

tions in studying security in which randomized control trials (RCT)

are not possible. Such a trial involves dividing a group of subjects

such that the only statistically-meaningful di�erence between the

two groups should be the intervention of interest. This structure

permits statistical determination of the truth of the intervention’s

impact, granted various properties about the design hold.

Randomized control trials have come to be considered a corner-

stone of evidence-based medicine, and there is prestige associated

with RCTs. However, recent projects challenge this perception of

RCTs as standing alone at the top of a strict evidence hierarchy.

For example, without mechanistic evidence, one cannot decide the

details of what RCT to design and conduct [94]. Such arguments

do not cast doubt on the use of RCTs when they are plausible, but

rather cast doubt on the undisputed primacy of RCTs as the best
evidence. Various interlocking kinds of evidence are necessary for

evidence-based medicine; we see no reason why security should dif-

fer in this regard. Case studies, natural experiments, model-based

reasoning, and RCTs all have important, interdependent roles to

play. This insight helps sharpen what is actually needed in security

research to make it more like medicine, as called for by the UK’s

RISCS.

There are instances where RCTs have a role to play in security,

particularly where security interfaces with psychology, e.g., in

usable security. Examples are success in studying alternatives to

passwords [6] or biometric uses of keystroke dynamics [49]. Usable

security experiments do have pitfalls essentially unique to the �eld;

for example, to make sure users have a realistic sense of risk in the

lab environment [52]. And like in medicine, evidence is needed to

link the experimental result to cases outside the lab.

To see a variety of approaches to structured observations in ac-

tion, we now brie�y review research involving passwords. Case

study methods yield insights into how people select passwords and
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Untenable experiments

Structured observations more broadly, not just experiments, are necessary for science. Qualitative

research methods [34] such as case studies [86], and natural experiments [64], provide usable intellec-

tual structure. Privacy and ethical concerns have been adequately addressed by the Menlo report [21].

Rapid technological change makes generalization of results a genuine challenge, but generalization

tactics should help [65, 85].

Reproducibility is impossible

Reproduction comes in many forms (corroboration, statistical power, repetition, etc.) and usually

several, though rarely all, work [27, 87]. The misconception is requiring all forms simultaneously,

which is overkill. For a historical touch point, see [9]. Traditional scienti�c work sometimes covers

non-replicable events, e.g., the extinction of the dinosaurs [35].

No laws of nature

‘Law’ interprets how scientists explain or generalize knowledge, but is too rigid even to describe

physics [8]. Causal explanation as intervention is well-developed [38, 39, 96]. Philosophy of science

provides access to a rich set of mechanism discovery heuristics used in other sciences [4, 14, 16]

that can be productively ported to security [84]. These heuristics for designing and interpreting

observations are not available with ‘laws’ as our goal.

No single ontology

A single language does not de�ne a �eld. Within physics, the sub�elds communicate via trading

zones in which specialized languages enable exchanges between the jargons of two sub�elds [28].

Trading zones apply in security as well [30]. Neuroscience provides a better metaphor for demarcating

a science of security: the mosaic unity coheres from multiple sub�elds providing constraints on

multi-level mechanistic explanations [14].

‘Just’ engineering

Subsuming engineering under science [83] or science under engineering [50] is not satisfying. En-

gineering as usually practiced depends on science [92], while at the same time science as usually

practiced depends on engineering [20]. Our tentative working de�nition di�erentiates based on

the goals: engineering is forward-looking, but science tries to generalize models from structured

observations. By this de�nition, a science of cybersecurity clearly exists.

Table 2: Summary of �ve common complaints raised by the science of cybersecurity community and recommendations on
positive actions from the philosophy of science literature to counteract these complaints.

what motivates their behavior. An example of a qualitative case

study comes from Wash, who conducted in-person interviews to

identify the mental models people use when thinking about secu-

rity, including passwords [93]. Wash found that while everyone

agreed that selecting good passwords was important, articulat-

ing why or how was much harder. Gaw et al.’s quantitative case

study of 49 undergraduate students documented widespread pass-

word reuse, along with incorporating non-private attributes such

as phone numbers into passwords [32]. These case studies are

complemented by later observational studies carried out at a larger

scale. For example, Das et al. analyzed hundreds of thousands of

leaked passwords to quantify the prevalence of password reuse

and other insecure activities [18]. This study corroborated earlier

case studies. Motivated by this and other studies, researchers have

proposed new mechanisms to enable better password selection,

which can then be evaluated empirically. For example, Ur et al. ran

an experiment in which users selected passwords with the aid of

14 deployed strength meters [91]. While the most stringent meters

did elicit stronger passwords, they also required longer interactions

and stirred greater resentment among users. Egelman et al. pro-

posed a strength meter, then evaluated it using both a laboratory

experiment and �eld study conducted over a much longer period

for selecting a lower value password [23]. Interestingly, while in

the experiment users selected better passwords using the meter, in

the �eld experiment on low-value passwords, the meters had no

discernible e�ect. Finally, governments are now basing recommen-

dations for password selection and use informed by the academic

literature [67].

What lessons can we draw from this brief survey through the

passwords literature? First, that many methodological approaches

can be used. Second, that structural observations can improve our

understanding of a problem and produce better technology.

Overcoming: Ethical Constraints. A further concern is that ex-

periments are impracticable in security for privacy and ethical

reasons, rather than simply being impossible to design properly as

the foregoing argument held. The ethical considerations of security

studies have been traced in detail by the Menlo Report [21]. In the

biological and social sciences, the Belmont Report established the

ethical guidelines by which experiment design should be held, in

the US and UK some of these guidelines have been put into law.

Universities enforce these policies via review boards that oversee

experiment design before the experiment can be run. The Menlo

Report updates the three classic considerations – respect for per-

sons, bene�cence, and justice – for an internetworked world. A

fourth, respect for law and public interest, is added. Privacy plays

in all four of these organizing principles.

Ethical restrictions are a basic part of research in many scienti�c

�elds. Neuroscientists cannot open up the brains of human test sub-

jects and apply electrical shocks. Physicists should not wantonly

release radioactive particles to test atomic phenomena. Virologists

cannot test the spread of disease by releasing a pathogen in an air-

port and tracking its progress. All these �elds make do by designing

ethical observations that get to the necessary explanatory insights.

We already have a thorough update to these ethical considerations



Practicing a Science of Security NSPW 2017, October 1–4, 2017, Santa Cruz, CA, USA

for information and communication technology in the Menlo Re-

port [21]. Engaging with ethical review boards may slow down

security researchers at �rst. But it has not stopped other sciences,

and it should not stop security from being viewed as a science.

There is some nuance to this privacy challenge to experiments,

which is that participant data being private means that experi-

ments are not reproducible; the data cannot be shared with other

researchers. Using our language developed in Section 4.2, this is

only a problem for rerunning statistical tests. In the other seven

senses, the data is re-collected. If all the other artifacts for ex-

periments are available, including the code to collect and analyze

data, repetition, reproduction, and so on should be possible with-

out knowing the original participants. And even then, in many

cases the original data may be anonymizable. Therefore, the cost

in terms of reproducibility for the researcher to comply with ethics

and privacy appears to be minimal.

Overcoming: Rapid Change. The third critique on the tenability

of structured observations in security concerns the longevity or

generalizability of results due to the pace of technological change.

The critique runs, roughly, that although experiments are plausible,

their results are not useful because the results are outdated by the

time they are compiled and published.

This critique rests on a combination of selecting the phenomenon

of interest and a conception of who culturally is doing science. Some

phenomena are more ephemeral than others, in the sense that the

phenomenon only exists for a short time. The extinction of the

dinosaurs was an ephemeral event in this sense [35]. Ephemeral

is not to be con�ated with quick. Chemical reactions may happen

fast, but the phenomenon of gunpowder exploding is a robust

chemical phenomenon, for example. If we select an ephemeral

phenomenon of interest in security science, we cannot be surprised

that the resulting explanation has short-lived relevance. We are

especially likely to do so when doing forensics, a key function

within security, because to investigate the speci�c details of past

events is almost always to investigate ephemeral mechanisms. This

focus is no di�erent from the di�erence between paleontology and

contemporary biology, for example.

The selection of ephemeral phenomena interacts strongly with

who is considered a scientist in the security landscape. Beyond uni-

versities, many government organizations and private companies

have security research labs. Even beyond sta� with ‘research’ in

their job description, our notion of engineering as satis�cing to cre-

ate artifacts and science as crafting generalized knowledge induces

some interesting perspectives. A software developer writing code

is building something, therefore engineering. But this distinction

no longer applies when the developer is doing a code review of a

colleague’s code, or trying to �nd the point in the code responsible

for a bug. Surely, the developer is following established practice

in these tasks, not inventing new modes of experiment [72]. But

we do not say that a high-school student following textbook steps

for a chemistry experiment is not participating in the scienti�c

enterprise, just because the steps are known. The line blurs further

for older students, following known procedures but with slightly

varied chemicals in order to measure any potential di�erences. A

developer may follow textbook steps for establishing a hypothe-

sized source of a bug, making an intervention in the system, and

taking measurements to establish evidence for whether or not the

intervention con�rmed the hypothesis. But the code is new, so the

answer is not known a priori.

We consider developers, or more likely for security malware

reverse engineers investigating the functionality of unknown code

based on hypotheses, operating in this mode to be participating in

science. Therefore, the longevity-of-results picture changes. Exper-

iments may have a short window of application, but cybersecurity

experiments may also be quite quick to execute and apply. An

experiment might be automated malware reverse engineering that

runs the malware in a sandbox, extracts suspicious domain names

and IP addresses from connection attempts, and publishes those net-

work elements to a blacklist. The time frame between the beginning

of the experiment and operational impact on defender networks

may be 15 minutes. Just because it takes the US FDA 15 years to

approve a drug does not mean anything scienti�c takes years. The

network elements may have a short lifetime of usefulness, but it is

at least proportional to the duration of the experiment.

The critique that experiments in security are untenable because

of rapid technological change takes an unacceptable combination

of options – that these miniature experiments are not science, but

that science must cope with highly ephemeral phenomena without

such experiments. There is no reason to conceptualize science

in this contradictory way. In either other conception of science’s

relation to automation and the expectations we have for its results,

the challenge that rapid technological change makes it impossible

simply evaporates. There may be methodological or generalization-

based challenges to a science of cybersecurity so conceived, but we

can confront them directly once recognized.

Structured observations via mathematical modeling. Another crit-

ically important purpose of structured observation is to support

the construction of mathematical models of systems, perhaps in-

corporating representations of policies. The use of mathematical

modeling in supporting the practice of science and engineering

is well established. The process by which mathematical models

are constructed can be summarized conveniently by the diagram

given in Figure 1. Observations of the world are performed; by a

process of induction, the construction of a model is commenced;

using deductive reasoning, the properties of the model are derived;

those properties are interpreted in the observed world; and further

(structured) observation of the world is used to assess the accu-

racy or utility of the model as constructed so far. This process

of observation, construction, deduction, and interpretation is it-

erated until the modeler is satis�ed that the constructed model is

�t for purpose. This process by which mathematical models are

constructed makes use of both inductive reasoning, in which we

draw conclusions about the empirical world using observations and

inferences from those observations, and deductive reasoning about

the mathematical model itself. The process seeks to constrain each

type of reasoning by reference to the other.

Both during the construction of a model and during the use of a

completed model in an engineering process, two kinds of reason-

ing about the properties of models are used. First, models can be

explored intensionally, in the style of experimental mathematics;

that is, the space of evolutions of the model is explored system-

atically using simulation methods, such as Monte Carlo [12, 46],
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Figure 1: The mathematical modeling cycle

and absolute and expected properties can be observed and deduced.

For example, [11] explores the consequences of di�erent levels

of resourcing for the e�ectiveness of access control to buildings

and consequent information security breaches. Second, proper-

ties of the model can be explored extensionally; that is, the full

range of logical and mathematical tools can be used to reason about

the properties of the model considered as an object of mathemat-

ical study. This latter form of reasoning can be illustrated in the

context of program veri�cation by the set-up of Separation Logic

[45, 75, 77]. There it can be seen that the natural mathematical

model of computer memory — derived by direct observation of the

architecture of computers — can also be understood as a model of a

certain kind of mathematical logic that is appropriate for reasoning

about resources (e.g., [13, 31, 70, 75]), with the consequence that

full range of tools from mathematical logic can be brought to bear

on understanding the behavior of programs.

We would argue that the mathematical modeling method applies

in the science and engineering of security just as it applies, for

example, in civil, electrical, and mechanical engineering and their

supporting sciences.

4.2 Evaluating Results
Claim: Reproducibility is impossible. This complaint requires con-

siderable unpacking. There are some intuitive challenges; for exam-

ple, if reproduction of phenomena under controlled conditions is an

absolute requirement, then astrophysicists and paleontologists are

not scientists. This complaint inherits a �avor from logical empiri-

cism; reproducible experiments are necessary to repeatedly test and

increase con�dence in falsi�able (but not yet falsi�ed) statements

of universal law. Fragile or contextual conclusions in biology—

conclusions that were not readily reproducible—historically led to

serious claims that biology was not a science [8].

Complaints of irreproducibility, at heart, strike out at the gen-

uine observation that conclusions in cybersecurity research are

often fragile or contextual. Philosophy of biology countered simi-

lar logical-empiricist attacks by creating a more nuanced idea of

evaluating explanations and results. Philosophy of security shall

leverage this work about biology to do the same. Reproducibility is

a complex term in itself; we �nd no fewer than eight di�erent senses

of the term that discuss di�erent aspects of evaluating evidence

from structured observations. One way to view these di�erent

senses is as selecting a perspective at which phenomena are not

too fragile.

Alternative: Evaluation takes many forms. Although the distinc-

tion between replication and repetition is not new [9], recent work

provides actionable advice to scientists. We focus on the family

of �ve terms suggested by [27], plus the notion of statistical re-

producibility [87]. We discuss three distinct senses of statistical

reproducibility, for a total of eight distinct methods to support the

robustness of evidence. When one complains that cybersecurity

lacks reproducibility, usually what is meant is that one or two of

these eight senses is impossible. All sciences similarly struggle to

achieve reproducibility in all these senses at once. Thus, cybersecu-

rity is no worse o� than other sciences.

Feitelson suggests �ve distinct terms for a computer science

discussion of evaluating results [27]:

Repetition – to rerun exactly, using original artifacts

Replication – to rerun exactly, but recreate artifacts

Variation – repetition or replication, but with a measured

intentional modi�cation of a parameter

Reproduction – to recreate the spirit, in a similar setting with

similar but recreated artifacts

Corroboration – to aim to obtain the same or consistent

result as another study via di�erent means

Each of these strategies has its uses, one is not strictly preferred

over the others. Throughout this subsection, we use an extended

example of evaluation of intrusion detection systems (IDS). One

may question whether evaluating an IDS rule is scienti�c, in the

sense desired. IDS rules may be very speci�c and not widely gen-

eralizable, but the same could be said for determining whether a

particular enzyme in the blood of some rare Amazonian �sh actually

selectively binds to some speci�c parasite.

Repetition. Even in the restricted context of evaluating a single

IDS rule, these strategies all have a sensible interpretation. If we

have a recorded stream of tra�c, if we play the stream back through

the same IDS with the same network con�guration, the same rules

should �re. A failure of repetition would be indicative of race

conditions or performance bottlenecks, or perhaps an architecture

with multiple distinct IDS hardware and a network switch that

randomly assigned packets to IDS interfaces, meaning any rule

that required correlation between packets would not reliably �re

across repetitions. It is because of repetition experiments such as

this that Bro, Snort, or Surricata work on �ows, not packets. When

load-balancing any of these IDS tools, tra�c is balanced based on

�ows, so that all packets in one conversation go to the same thread.

Flow-based balancing is needed because a network IDS works to

reassemble application-level, or at least transport-layer, information

[79]. Any network architecture that randomized packets among

IDS instances, as opposed to maintaining �ow-based balancing,

would lead to un-repeatable observations because application-level

reconstruction would fail to be the same, and the IDS tests would

be applied to di�erent information.

Replication. Replication might mean to use a di�erent IDS soft-

ware and re-write the rule in its language to get identical detection.

Replication might also mean using the same IDS architecture and

rules on tra�c that is arti�cially generated to have the same ma-

licious features as a prior experiment; or perhaps it is simply to

recreate the same network architecture at a di�erent physical lo-

cation and replicate that the IDS works on a pre-recorded tra�c
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stream to provide evidence the newly setup sensor architecture has

been installed correctly.

Let us pause here; we have claimed that creating a new IDS rule

and testing it on a pre-recorded tra�c stream is an experiment.

Are we abusing the use of experiment here, in a way that is not

consistent with other sciences? We think not. Certainly, the objects

of the experiment are artifacts, and software artifacts at that. But

if cybersecurity is a science of anything, certainly it is of software

(and how people interact with it). Therefore, the IDS analyst making

a rule has an untested specimen (the IDS rule), a hypothesis about

how it should behave (what she designed it to do, in this case), and

establishes a controlled environment in which to test the properties

of the specimen of interest. This matches all the usual hallmarks of

an experiment.

From repetition and replication, variation is straightforward and

we will not discuss it in detail.

Reproduction and Corroboration. Reproduction of IDS alert e�-

cacy is something practitioners measure often; with the same rule

in a di�erent network architecture, they evaluate the outcomes.

Corroboration is similarly useful. Perhaps against di�erent tra�c

patterns, do di�erent IDS systems see similar but distinct alerts

about exploitation of Heartbleed, for example, that allow us to

corroborate wider claims about internet-wide abuse of the vulnera-

bility.

Statistical properties. Stodden distinguishes several failures of

statistical reproducibility [87]. Lack of statistical reproducibility

may result from poor design of observations, namely issues with

low statistical power or sampling bias. Even if the sample design

is appropriate, the statistical tests applied may be inappropriate.

For example, a test may be applied despite requiring assumptions

that the situation does not meet. Finally, results may be generalized

beyond the bounds of what statistics justi�es. A rough translation

of these three problems is with design, analysis, and interpretation

of observations.

If an observation is poorly designed, it will not be able to be

reproduced. Poorly designed means either there is a consistent,

unknown confounding factor in the design (sample bias) or that

the number of elements is not large enough to produce results

independent of natural random variation. Sampling bias happens

quite naturally across various organizations that might deploy the

same IDS rule – di�erent adversaries attack banks than attack

militaries than attack universities. In security, this reduces to a

challenge of comparing like with like. In medicine, it is understood

that patients from di�erent age groups or income brackets have

di�erent health outcomes. But these di�erences are measured, and

then can be controlled for when observing the impact of a treatment

on a varied population. The sampling bias is controlled by knowing

the shape of bias with su�cient precision. Security su�ers from

an additional layer of evidence-gathering bias. Organizations may

not report or disclose vulnerabilities, for example, due to ignorance,

fear of �nancial risk, legal obligations, or to improve the reputation

of their brand [82, p. 52�]. Such social and cultural biases apply to

many types of security evidence. Adequately understanding these

biases, and how to mitigate them, remains an area for further work.

The statistical analysis and tests performed after data are col-

lected can also impact whether a compatible result can be obtained

in any of the �ve strategies for con�rming results. One common

problem is for researchers to selectively report results, and even

tests performed. If a researcher runs “many tests until one of them

yields a p-value of less than 0.05 and then report[s] this result as

if the other tests had never been run” then the result is actually

a statistical outlier, even though it is being reported as a reliable

result [87, p. 6]. The researcher essentially misrepresents the robust-

ness of the result, which of course impacts con�rmation attempts.

A science of cybersecurity must guard against such misapplications

of statistics just like any other science.

The �nal area of statistical reproducibility we discuss relates

to the data collection and generation process. Problems with data

generation lead to a lack of generalizability of the results. For

example, studies commonly report a linear regression establishing

a relationship between two measurements, such as deploying an IDS

rule and the number of intrusions. Strictly speaking, unless the data

generation is very strictly constrained, one may not safely use that

relationship anywhere outside the data collected – the result may

not be generalized [87, p. 6]. Generalizability is indeed a problem

in cybersecurity. However, to the extent that this challenge is due

to failure to meet known statistical constraints on data collection,

cybersecurity is not distinct from other sciences.

Forensics and Reproducibility. One intuitive objection about re-

producibility stems from the idea that security is forensic, and so

necessarily considers single events. By de�nition, if some security

event only happened once, it cannot be repeated. We treat forensics

as importantly di�erent from science (see Section 4.5); however,

there is not a sharp distinction. Establishing evidence for a par-

ticular series of events at a particular time in the past is forensics.

Sometimes sciences require such evidence as part of knowledge

creation, generalization, and application to new scenarios. It seems

implausible to claim that astrophysics, paleontology, and macroe-

conomics are unscienti�c. Yet they are largely historical, in a way

very similar to digital forensics.

A science of security can integrate forensics in an analogous

way to how biology integrates paleontology and physics integrates

astrophysics. Paleontologists build evidence for the mechanism

of what killed the dinosaurs, for example. Glennan refers to these

one-time events of interest as being driven by “ephemeral” mecha-

nisms, as opposed to say chemistry where mechanisms have a more

robust, repetitious nature [35]. The reason for unifying ephemeral

mechanisms, as studied in paleontology, with other sciences is be-

cause mechanism discovery strategies and mechanistic explanation

provide a coherent account of scienti�c activity. Bringing paleon-

tology into that fold brings the philosophical account of scienti�c

explanation via mechanisms in line with the obvious similarities

between astrophysics and paleontology on one hand and physics

and biology on the other. Biology is not unscienti�c because it con-

tains a sub-�eld focused on single events in the past – paleontology;

similarly, a science of cybersecurity is not totally scuttled simply

because it contains a sub-�eld that focuses on forensics.

Summary. The thrust of this argument is that observations in cy-

bersecurity appear, to a large extent, to be amenable to the various

senses of reproduction. We consider these senses as evidence evalu-

ation terms. However, we have not attempted to refute the fragility

of conclusions in cybersecurity, as this fragility appears genuine.
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We believe the question can be more productively answered by

selecting the correct level of analysis than naïvely insisting against

reproducibility.

Questions of reproduction skip the important issue of what phe-

nomenon is to be reproduced. Which phenomenon is of interest

will impact which evidence evaluation strategies (repetition, sta-

tistical tests, etc.) are most valuable. We as scientists are generally

interested in discovering the mechanism responsible for a phenom-

enon in order to better explain the phenomenon. De�ning the

phenomenon di�erently will change the mechanism of interest. For

example, most models of computer network attacks have a step for

exploitation of the target. Attacks are a high-level phenomenon

and exploitation is one activity within the mechanism. At a lower

level, there are various mechanisms by which exploitation could

occur, for example drive-by downloads or social engineering to run

untrusted code [84].

4.3 The nature of scienti�c inquiry
Claim: No laws of nature. The critique that there is no science

of cybersecurity until there are laws of security, or mathematical

rules which permit deductions from observations to consequences,

comes presumably from the received view that this is how physics

works. The importance of laws in the received view is to provide

predictive power. However, we go too far if we claim we need

laws in order to make reliable predictions. Many sciences make

reliable predictions without laws; in fact, many philosophers argue

physics does not have laws in the sense commonly understood.

Yet, many predictions of physics have a reliability that surely a

security researcher envies. This section introduces philosophical

perspectives on how to create and evaluate predictive models.

Some science of cybersecurity work has noted that not all sci-

ences have laws. The Army Research Lab is more thorough, prag-

matically de�ning a science of security by specifying its subject

matter, and taking models generally as central [51]. However, no

prior work goes nearly far enough in breaking the preconception

about laws nor providing alternatives. We shall do both. First, biol-

ogy has faced and refuted this conception of laws being a necessary

criterion for science in detail; we provide a brief summary. Second,

we adapt to security the modern conception of explanation that

has supplanted that of laws – mechanistic explanation.

First, let us summarize of what a laws-based explanation is in-

tended to mean. The DoD takes laws as “the basis of scienti�c

inquiry” in its request to MITRE [63, p. 4]. Hempel provides a con-

cise de�nition that provides a historical basis: a law is “a statement

of universal conditional form which is capable of being con�rmed

or discon�rmed by suitable empirical �ndings” and a law, as op-

posed to a hypothesis, refers to such a statement that “is actually

well con�rmed by the relevant evidence available” [42, p. 35]. In

this 1942 de�nition we see all the famous features; for example, we

see Popper’s falsi�ability criterion in di�erent words (“capable of

being discon�rmed”). We pull hard on this logical-empiricist, laws-

based conception of explanation with a detailed unpacking of the

meaning of the term followed by critiques by the modern philoso-

phers of science Mitchell, Cartwright, Bogen and Woodward, and

Woodward following Pearl.

To understand ‘law’ in this sense one must focus on the technical-

philosophical meaning of three terms: universal, conditional, and

capable of being con�rmed. Universal means that the statement of

law applies to all things, at all times, without exception or additional

precondition. Conditional means an if-then statement in classical

�rst-order logic. For a statement to be capable of being con�rmed

or refuted, it needs to have semantic content, or meaning, and be

about the universe in which we live. The challenge here is captured

by the aphorism ‘all models are wrong, some are useful.’ While

models and statements may be semantic, they are also necessarily

simpli�cations of our universe and there are always conditions in

which that simpli�cation is wrong. But how can a simpli�cation be

con�rmed or refuted – it may be useless, but that is a far di�erent

thing than absolutely refuted. Many logical empiricists side-stepped

such questions by saying that laws were true universally, so they

must be independent of human arti�ce or language. This history

makes it particularly strange to ask whether there are ‘laws’ of

man-made system security.

Mitchell, a philosopher of science, has deconstructed a laws-

based, unity of science. For example, she argues that “nature is

complex and so, too, should be our representations of it” and that

complexity and the resulting pluralism of models “is not an em-

barrassment of an immature science, but the mark of a science of

complexity” [62, p. 115]. She advocates that the relevant aspect is

not how theories are de�ned, but used. Thus, any theory that func-

tions as an e�ective generalization might pragmatically be called a

‘law’ in physics, or a ‘model’ in biology. What we should care about

is e�ective methods for generating and scoping generalizations so

we know where and to what they apply.

Cartwright identi�es various problems with laws-based concep-

tions. These include that usual laws-based conceptions cannot

make sense of causal statements, and that laws explain the behav-

ior of mathematical models of the world, rather than the world

directly [8]. She calls this a simulacrum account of explanation.

Further deconstructing the logical positivist in�uence on philos-

ophy of science, Bogen and Woodward [7] identify the mediating

in�uence of data and observation on our ability to make theories.

We care about the phenomena in the world, and our theories apply

to phenomena. However, we observe data, and data collection is

mediated by tools we build and their norms of use. The canonical

example is the melting point of lead. We do not observe lead melt-

ing at 327°C. We observe many thermometer readings, with both

known and unknown equipment errors and limitations, from which

we statistically derive the value 327°C with some acceptably small

margin of error and assign it to the phenomenon of lead melting.

The argument goes on, with some nuance, that there is no law or

even single theory that explains lead melting at this temperature,

much less any of the individually-observed thermometer readings.

The whole apparatus of experiment, including the engineering of

the tools, the statistics, the metallurgical purity of the sample, and

so on, are all necessary to explain the phenomenon. This perspec-

tive accords with Mitchell’s proposition that complicated theories

are a sign of maturity, not immaturity; as well as Cartwright’s

simulacrum account of explanation.

Woodward provides an alternative account of causal explanation

to supplant a laws-based account. This account is known as an

interventionist account because, roughly, it is based on the idea
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that the only way to determine causation is by an intervention that

could, in practice or in a thought experiment, make a change [96].

Woodward relies on Pearl’s statistical account of causality [73],

which has been updated since Woodward’s treatment but with

some modi�cation is a sound statistical approach and language for

discussing causation [19]. Causal explanation is not about laws of

nature, but about building an explanation of the organization of

elements of a phenomenon in such a way that one may intervene

reliably on the outcome by changing the elements. Again, like

Mitchell, there is a theme of what makes an adequate generalization

of a system.

Alternative: Mechanistic explanations of phenomena. The most

convincing account within the philosophy of science community is

that of a mechanism [36]. The current consensus de�nition is that

“a mechanism for a phenomenon consists of entities (or parts) whose

activities and interactions are organized so as to be responsible for

the phenomenon” [37, p. 2].
5

This mechanistic conception of the

result of scienti�c reasoning is useful because it provides a basic

structure on which we can build and borrow mechanism discovery

strategies.

The literature on mechanism discovery strategies examines how

scientists develop hypotheses to test, and the constraints they build

into experiments and observations in order to test them. Mechanis-

tic thinking is more helpful than a laws-based approach because it

provides hints as to what to do and what to look for in order to build

a useful explanation. Bechtel and Richardson base their initial strat-

egy of decomposition and localization on Herb Simon’s work. Their

work is speci�cally positioned as a strategy for scienti�c discovery

“well suited to problems that are relatively ill de�ned, problems in

which neither the criteria for a correct solution nor the means for

attaining it are clear” [4, p. 7]. This description is encouraging for

security practitioners beset with ill-de�ned problems.

The other main contributor the mechanism discovery literature

is Darden. She provides strategies used on slightly better-de�ned

problems. If a general mechanism is known, but details of a particu-

lar entity or activity are hazy, a reasonably hypothesis is to attempt

to resolve the hazy element more clearly (‘schema instantiation’).

If a mechanism is understood, but not its set-up or termination

conditions, we can chain our reasoning either backwards or for-

wards from the known mechanism to constrain our hypotheses

about what must exist either before or after the mechanism we

know about [16, ch. 12].

Hatleback and Spring have begun to adapt mechanistic reason-

ing from these other sciences to computer science generally and

security speci�cally. In [40], they discuss and resolve the apparent

di�culty of discussing mechanisms that have been engineered, or

created by humans, such as computer code. This di�erent origin

does not present any conceptual di�culty in understanding the

function of the code as a mechanism. Like with any di�ering �elds

the exact tools used to examine mechanisms in computing would

not be identical to biology, any more than radio telescopes for stars

are useful in investigating mechanisms of frog ecology. In [84],

they present incident response and intrusion analysis as a kind

of mechanism discovery task. They show the heuristic of schema

instantiation, from Darden [16], to be analogous to the heuristic

5
Past de�nitions with which to compare are [4, 44, 56].

that an incident responder uses when resolving the ‘exploitation’

step in the kill chain to a drive-by download, for example, and then

again when the drive-by download mechanism is instantiated to

clarify what particular domains and web services participated in

the exploitation and could be blocked.

Science of cybersecurity stands to bene�t from refusing to con-

sider explanation as laws-based and instead focusing on scienti�c

investigation as mechanism discovery. The question of whether

there are laws of cybersecurity is fundamentally the wrong ques-

tion to ask. Both philosophy of science and mathematics have

better perspectives on generating intelligible explanations of phe-

nomena than a laws-based explanation. The modern philosophy of

science literature provides heuristics for mechanism discovery that

should be helpful in orienting scienti�c investigations in security.

The mathematical modeling cycle described in Figure 1 provides a

complementary heuristic process.

When using mathematical models, the situation is clear. We

identify not laws but rather properties of models. The properties of

a model are used to assess its value and to support its re�nement.

4.4 Scienti�c Language(s)
Claim: No science without a common language. In this section we

argue against the idea that a single language or ontology of security

would be a de�ning feature of a science of cybersecurity, although

we agree that clarity of expression is necessary. Our main departure

point is the insistence on uni�cation into a single language, and

advocate instead for a kind of integrative pluralism—which is what

actually exists in all other major sciences anyway.

JASON identi�es a “common language” as the “most important”

attribute necessary for a successful science of cybersecurity [63,

p. 3]. The other statements we reviewed are less direct, but there

is a similar drive towards uni�cation. Phrases that we interpret as

sympathetic to uni�cation of language and explanations include

“contribute to a general framework” from the NSA’s de�nition, “com-

prehensive theories” as opposed to “domain- and context-speci�c”

ones in the White House plan, and the negative tone in which Geer

relays the diversity of opinion among the best paper judges.

The implicit assumption amongst these statements is that, at

least within security, a variety of disparate phenomena can be re-

duced to a relatively compact set of de�nitions and statements.

In [71], the authors cite the JASON reasoning and make this desire

to compact the semantic space explicit. The traditional statement

of uni�cation into a common language was ‘reductionism,’ as dis-

cussed in Section 2 to be logical deduction of one �eld’s laws to

those of another [66].

This reductionist idea of a common language implies an explana-

tory hierarchy. It seems more realistic to admit that explanations

are about di�erent topics, and each topic develops its own spe-

cialized language. A variety of �elds contribute understanding to

security mechanisms, from economics to electrical engineering to

elliptic curves. We need translations between these �elds. But that

does not create a common language any more than translating

between German and French creates a combined language; it just

creates a translation.

Alternative: Trading Zones, Pluralism, and Mosaic Unity. A more

convincing account of interdisciplinary collaboration comes from
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physics. Galison, a historian of physics, borrows the anthropolog-

ical term trading zone to describe the contact between sub�elds

of physics, such as experimental and theoretical particle physi-

cists [28, 29]. The analog is in merchant towns, cultural anthropol-

ogists observe people from di�erent cultures coming together and

creating just enough of a shared language such that commerce can

happen. As commerce grows and the communities bene�t, the trad-

ing zone becomes more robust. This occurs linguistically as well as

materially. Galison’s insight is that the same process happens be-

tween sub�elds of physics. There are members of each community

who specialize as traders, go to places where the communities inter-

face, and develop specialized languages (pidgins, creoles, etc.) that

are incomplete mash-ups of each traders’ home language. Theoreti-

cal physicists and experimental physicists do not, in fact, speak one

common language. They speak importantly di�erent languages,

with their own jargons and evaluations of what features of explana-

tion and evidence are most important. However, the two sub�elds

can productively exchange ideas because there is a developed trad-

ing zone where ideas can be translated into a shared language from

both directions and then re-translated back out to the respective

communities.

Galison’s insights on trading zones and subcultures seem to have

been misunderstood by JASON. In his presentation about science

in cybersecurity, Galison writes “in these choices of basic objects

and their relation lie the basis of separation of subcultures and

the robust power that that division o�ers” [30, p. 20]. Partiality

of language is how Galison envisions these various subcultures of

security communicating, just as in physics. The sense in which we

need a common language is that we need various trading zones in

which security researchers can communicate. We are not to wait for

a single common language to emerge which then we can all speak

unambiguously. It’s not that such a goal may be slow or arduous to

achieve; more importantly, it fundamentally undermines the robust

power that division in specialties o�ers.

In biology, Mitchell has argued against reductionism for what

she calls integrative pluralism [62]. For Mitchell, the units of sci-

ence here are theories, understood as idealized models of various

phenomena. There are many models, hence ‘pluralism,’ and models

are neither totally isolated from each other nor usually reducible

so that one supplants another [62, p.192]. Since each model comes

with its own terms and speci�c usage of terms, if we could produce

a common language that would be tantamount to unifying all our

theories within security. Integrative pluralism, as a model of biol-

ogy at least, informs us that we should not expect this uni�cation

of terminology to be possible except in localized, purpose-built

contexts—that is, trading zones.

The most convincing analog for de�ning a �eld of science of

cybersecurity comes from Craver’s description of the mosaic unity
of neuroscience [14]. The sub�elds making up neuroscience collab-

orate by adding constraints, based on their own individual methods

and viewpoints, on mechanistic explanations. Like the stones in a

mosaic, each sub�eld has its own unique structure and identity, but

if we step back we see each stone contributes to a bigger picture.

Security has a similar arrangement of diverse �elds contributing

constraints on explanations. Economics constrains explanations

of what users can be asked to do based on how they spend their

money in situations of information asymmetry. Usable security

constrains explanations of what users can be asked to do based on

how they spend their attention. Craver is more helpful than Mitchell

for security in that, for Craver, the explanations are mechanistic

explanations, and that structure allows him to elaborate on how

the sub�elds are interrelated and provide constraints. Di�erent

�elds work on di�erent parts of a mechanism or on a di�erent

level of a mechanism. There are a plurality of mechanisms, which

are idealizations as theories are for Mitchell, and mechanisms are

integrated via levels of explanation.

These three related conceptions of communication and explana-

tion in science all go against the need for a common language for a

science of cybersecurity. All three also support the importance of

clarity of expression. If context is important, because there are a

plurality of theories and contexts, it is vital for researchers to make

their assumptions clear and use terms consistently. Pluralism is

not an excuse for sloppiness of explanation. If anything, it mili-

tates for the importance of thorough, careful explanation. Perhaps

the push for the importance of a common language in security is

actually a push for clarity of expression. Certainly, methodology

sections of published papers are vital. Maxion [57], for example,

has argued strongly for structure and clarity as an aid to good sci-

ence. However, as Maxion does, structure and clear expression are

a separate problem that should not be con�ated with the idea of

creating a common language before science can commence. As we

have demonstrated, sciences do not operate on a single common

language, and it is misleading to pursue a common language for its

own sake.

4.5 Engineering or Science?
Claim: Security is ‘just’ engineering. One might ask, if the goal is

to produce reliable systems, why discuss science at all? Producing

systems to a certain standard of usefulness is engineering. While

engineering certainly leverages scienti�c knowledge, it also uses

other kinds of knowledge [92, p. 229]. Indeed, the government call

for a science of security looks similar to Anderson’s description of

security engineering:

“Security engineering is about building systems to remain

dependable in the face of malice, error, or mischance. As a

discipline, it focuses on the tools, processes, and methods

needed to design, implement, and test complete systems, and

to adapt existing systems as their environment evolves” [1,

p. 3].

“[Security engineers] need to be able to put risks and

threats in [context], make realistic assessments of what might

go wrong, and give our clients good advice. That depends

on a wide understanding of what has gone wrong over time

with various systems; what sort of attacks have worked, what

their consequences were, and how they were stopped (if it

was worthwhile to do so)” [1, p. 5].

We resist both the assertion that there is no science to be done

in cybersecurity as well as the pejorative connotation of placing

engineering somehow below science. Sciences that study technol-

ogy or human artifacts do have their own nuances and distinct

concerns [58], but this is no reason to collapse security entirely

under engineering any more than it would make sense to collapse
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medicine entirely under engineering just because it is not pure

biology.

Mathematical models are a key mechanism by which science is

transmitted to engineering practice. A forensic investigation of a

computer security incident considers a mathematical model of the

computer security system and explores what sequence of events,

as represented in that model, led to a certain observed outcome,

as represented in that model. Thus the e�cacy of the forensic

investigation depends on the model providing a su�ciently good

representation of the system and its associated security policies.

Alternative: Science, Engineering, and Forensics. E�orts have been

made to draw boundaries and classify the relationship between

engineering and science. In the two extreme viewpoints, Simon tries

to subsume engineering under science as a science of design [83],

and Koen tries to subsume science under engineering as a special

case of heuristic problem solving [50]. There are also more nuanced

views. Engineering as usually practiced generates understanding

and depends, in part, on science [92]. At the same time science

as usually practiced generates artifacts and depends, in part, on

engineering [20]. Therefore, it seems unjusti�ed to place science

over engineering or vice versa. If we are going to engineer secure

systems, in the sense of Anderson [1], we will need a science of

cybersecurity to extract and generalize the knowledge with which

we will build. Both building artifacts and extracting knowledge

will face their own challenges, making it sensible to distinguish

the tasks. Security should continue the traditional, close interplay

between science and engineering.

For our purposes, we will make the following distinction between

science, engineering, and forensics. This distinction is tentative,

but will help us move the conversation forward by making sense of

the di�erence between science of security and security engineering.

Engineering is fundamentally forward-facing. It is about using

models to build systems that satisfy certain goals in the future. Sci-

enti�c practice produces more general, more shareable knowledge.
6

Such scienti�c knowledge is often expressed as models, but it also

may be a catalog of well-documented cases. Forensics is about the

past, or is backwards-facing. It is about reconstructing a historical

explanation for some event of interest that we know occurred, but

not how or why.
7

We leave for future work a more detailed exposition of the re-

lationship between science, engineering, and forensics. But as an

example, we are sympathetic to Leonelli’s conception of scienti�c

understanding:

“Understanding can only be quali�ed as ‘scienti�c’ when

obtained through the skillful and consistent use of tools,

instruments, methods, theories and/or models: these are the

means through which researchers can e�ectively understand

a phenomenon as well as communicate their understanding

to others” [55].

6
Dear [20] exposes a duality within science: between natural philosophy and instru-

mentality as twin, mutually indispensable, explanatory strategies for making nature

intelligible. This duality blurs a divide between science and engineering, one reason

our discussion here is pragmatic but tentative.

7
One might say historical investigation, rather than forensic, unless the event is some

sort of (security) policy violation. Glennan [35] discusses paleontology as a science

that also extensively employs historical explanations; for our rough three categories,

we would include paleontology as a largely forensic enterprise.

Even without detailing the precise relationship, clearly science,

forensics, and engineering interact tightly. When our systems break,

we conduct forensics to learn why and how. We then employ sci-

ence to update our knowledge, improve our models, or document

edge-cases based on this why and how. Adequate updates may in-

clude further, purpose-designed structured observations. We then

employ engineering to adapt this new knowledge to build a better

system, less likely to break. Therefore, we have a feedback loop from

engineering to forensics and science back to engineering which con-

tains no sharp distinction between a science of cybersecurity and

security engineering. Our focus is the scienti�c enterprise,where

science is understood as generalized-knowledge, evidence-based,

explanation-generation activities.

5 CONCLUSION
In general, the thesis we forward is that security is, as practiced, a

science with its own unique challenges. This statement contrasts

with the surveyed views, which posit that whatever makes security

hard also makes it a qualitatively di�erent sort of enterprise than

science. These detractors often accidentally over-emphasize some

scienti�c �eld in conceiving science generally. Of course security

is not particle physics, nor molecular biology. This conception of

science is too narrow. This overly-narrow view can, in may cases,

be traced back to outdated views related to Logical Empiricism.

The common complaints against a science of security are: ex-

periments are impossible, reproducibility is impossible, there are

no laws of nature, there is no common ontology of terms, and it

is ‘just’ engineering. We have forwarded more e�ective perspec-

tives on all these complaints that already accommodate security:

structured observations of the empirical world, multiple methods

for evaluating evidence, mechanistic explanation of phenomena,

specialization necessitates scienti�c translation, and the interplay

between science, engineering, and forensics.

We argue that cybersecurity su�ers from the same sorts of chal-

lenges as other sciences. It is not qualitatively di�erent. However,

di�erent �elds of science are de�ned, to a large extent, by the

characteristic challenges of their subject matter and how those

challenges are approached. We should not confuse a search for

interdisciplinary collaboration with a search for how to execute

a science of security. Cybersecurity must learn from challenges

common with other sciences while at the same time pushing for-

ward with novel solutions to those challenges and approaches in

fact unique to cybersecurity.

Also like other sciences, a science of security faces important

social questions. We largely leave these for future work. Three

candidates to explore are the gap between research and practice;

who are the customers or recipients of knowledge produced by a

science of security; and how the secretive nature its practice al-

ters the science being done. Both Dykstra [22] and Metcalf and

Casey [59] attempt to narrow the knowledge gap between practi-

tioners and scientists; but the nature and social function of the gap

should also be studied. Some customers are policy makers; future

work would likely build on Jasano� [47]. Perhaps some knowledge

customers are practitioners, but as Vincenti [92] argues, academia

also receives knowledge from practitioners. Systemic secrecy has

caused di�erent scienti�c practice in the case of biological weapons
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development [3]; something related may happen in information

security. We might ask how students with a classi�ed PhD thesis

di�er from those with a publicly published thesis, for example.

We view challenges in security as challenges to building gener-

alized, sharable knowledge. In many cases, the science of cyberse-

curity community has hinted at this conception of the challenge.

Generalization is woven through the discussions of the di�culty of

con�rming observations, designing experiments, and developing a

common language. Generalization is implicit in the discussion of

laws because, traditionally, laws are a formal vehicle for expressing

generalizations. These descriptions may accurately identify that

generalization is hard in science of cybersecurity, but the diagnosis

of the cause of this challenge misses the mark, as Section 4 demon-

strates. This conception of generalization as the core problem of

a science of cybersecurity makes particular sense with our tenta-

tive de�nition of engineering-science-forensics. Engineering and

forensics are about applying knowledge or discovering particulars,

whereas science is the aspect of security concerned with abstract-

ing knowledge. Justi�ed generalization is also the key to accurate

prediction.

We can tackle the problem of building general, sharable knowl-

edge better if we see it clearly for what it is: a problem shared

by all sciences, with particular strategies more or less transferable

between �elds depending on the details of what a �eld studies.

Part of the solution is to integrate other �elds into security, as ad-

vocated by [82]. But simply bringing in new perspectives is not

enough. Morgan [65] argues that generalization, which she han-

dles under the umbrella of resituating knowledge, is hard because

knowledge is always produced locally. Knowledge transfers must

be painstakingly warranted. She provides three generic strategies

for this warranting process: directly local-to-local, local-to-many

via abstraction followed by resituation, and constructed via exem-

plar representatives. Future work could fruitfully investigate how

these strategies are best evidenced in security.

More speci�c to security, Illari and Spring [85] discuss strategies

for building general, shareable knowledge used by security prac-

titioners through examples of theft using a botnet, the intrusion

kill chain, and malware reverse engineering. From these examples,

they extract three challenges: the changeability of software, active

adversaries, and justi�ed secrecy among friends. These three in-

teract to make building general, shareable knowledge particularly

hard. However, such knowledge is built and shared by all three

examples. Understanding explanations as mechanisms provides a

good structure, though not the only one, for explaining the positive

strategies used in cybersecurity. Mechanisms are clustered, both

within and across �elds of study, along similarities among their en-

tities, activities, organization, etiology (history), and phenomenon

of interest [85]. Further work is needed to adapt these generaliza-

tion strategies to other areas of security. Another generalization

strategy is mathematical modeling. Pym, Spring, and O’Hearn [75]

discuss how merging logico-mathematical models and conceptual

models, such as mechanistic models, improves results in program

veri�cation. Indeed, mathematical modeling, supported by both

experimental and exact reasoning, can provide the same degree of

support for information security engineering as it can for other,

longer established forms of engineering.

It is less important to quibble over whether information security

is a science than it is to lay out a satisfactory decision-making

process for studying information security. It is certainly the case

that information security has moved to the forefront of societal

concerns. We seek to move past the debate over science or non-

science. Our concern should be to identify robust decision-making

and evidence-gathering tools that will allow us to make satisfactory

decisions about a topic of crucial social importance. We �nd that

none of the concerns in Section 1 are unique to security. For each,

there are precedents in other scienti�c �elds to which we can turn

for advice on robust strategies.

Cybersecurity science has matured to the point that it requires

specialists who re�ect on the scienti�c enterprise itself, its own

‘philosophy of’ to navigate challenges of methodology, ethics, mod-

eling choices, and interpretation of results. The importance that

forensics of past events as well as building shareable, stable knowl-

edge from particulars both play in security have few well-developed

precedents in other sciences. We see great potential for future work

on how to integrate these aspects of cybersecurity with modern

philosophy of science. The community should move past current

complaints in order to focus on questions of why the scienti�c

process studying security may produce unsatisfactory results.
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