
Panel: Empirically-based Secure OS Design
Sam Weber

samweber@acm.org
Adam Shostack

adam@shostack.org

Jon A. Solworth
solworth@rites.uic.edu

Mary Ellen Zurko
mez@alum.mit.edu

ABSTRACT
This NSPW panel discussed how we, as a community, should pur-
sue evidence-based research on designs for commoditizable mass-
market secure operating systems. This panel did not discuss what
features or architectures should be adopted, but instead focused
on how we evaluate competing features and designs. How can,
or should, we gather data about the usability and resilience of se-
cure OS designs without requiring massive implementations and
deployments?

CCS CONCEPTS
• Security and privacy → Operating systems security;

KEYWORDS
OS Security, science
ACM Reference format:
Sam Weber, Adam Shostack, Jon A. Solworth, and Mary Ellen Zurko. 2017.
Panel: Empirically-based Secure OS Design. In Proceedings of New Security
Paradigms Workshop 2017, Santa Cruz, California, USA, October 1-4, 2017
(NSPW’17), 4 pages.
DOI: 10.1145/3171533.3171543

1 INTRODUCTION
The design of secure operating systems is one of the oldest topics in
cybersecurity. Unfortunately, since Multics, there has been an enor-
mous divide between the research community and the commodity
OS vendors, and we all pay the cost of the resulting attacks. This
should not be interpreted as criticism of OS venders — Microsoft in
particular has made great strides in incorporating security into Win-
dows — but rather a statement that our community has di�culties
in transitioning its research to practice.

Our community has a plethora of ideas about features and ar-
chitectures that would contribute towards a more secure operating
system, but there is little empirical evidence to which combination
of features and architectures would lead to a usable OS which has
enough functionality to compete with existing popular operating
systems. It is our belief that this is a major cause of our poor history
of transition to practice. It is one thing to show that a small research
OS is able to securely execute a small command-line program, but
another to demonstrate that it would be able to securely and usably

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
NSPW’17, Santa Cruz, California, USA
© 2017 Copyright held by the owner/author(s). 978-1-4503-6384-6/17/10. . . $15.00
DOI: 10.1145/3171533.3171543

host a modern spreadsheet application which includes a powerful
macro language able to execute queries on remote databases and
support third-party plugins. It is only to be expected that a commer-
cial OS vendor will be reluctant to adopt a major departure from
established practice without considerable evidence.

Alas, this isn’t just an academic exercise. Every once in a while
a disruptive event happens in which an opportunity for a new
OS arises. The introduction of smartphones was one such recent
opportunity. When such an event arises, practitioners do not have
time to undertake lengthy research projects to come up with an
ideal design, but have to quickly adopt the best-argued ideas that
come to hand. The multitude of sessions on mobile security in the
major cybersecurity conferences demonstrate that our community
failed the smartphone OS designers: could we not have antipated
and prevented many of the security �aws of, for instance, Android,
before they were in�icted on millions of users? Can we be prepared
the next time an opportunity takes place?

Another avenue which increases the likelihood of adoption is
Virtual Machines (VMs) which enable more specialized OSs to
coexist with more general OSs on the same hardware. Operating
Systems such as Qubes [3] and before that VMM [1] use VMs to
provide security properties beyond what their supported operating
systems do.

To be clear, this panel was not focused what features, designs or
architectures should be part of a secure OS: we do not want to take
a stance on capabilities vs access-control lists, various information
�ow mechanisms, or any other such technical feature. Instead, we
discussed how we should conduct empirically-based research in
this �eld. It is easier to do proofs that a particular mechanism or
feature implements some formal policy than to determine whether
regular users can use it, or whether developers can e�ectively build
secure enterprise-scale applications on top of it. How can, or should,
we gather data about secure OS designs without requiring massive
implementations and deployments?

2 SCOPE OF PANEL
In order to be productive and to avoid endless side discussions we
scoped the topic of this discussion. Firstly, we wished to only discuss
research methods, not the bene�ts or lack thereof of various security
features or architectures. For example, we didn’t want to discuss
the relative merits of capability systems versus ACLs. However,
metrics by which one could compare capabilities and ACLs, and
experimental designs to evaluate them, were a valid discussion
topic.

Secondly, we de�ned what we mean by a reasonable commodi-
tizable operating system. There is a tendency to consider highly
constrained systems, making security easier. Although there are

NSPW’17, October 1-4, 2017, Santa Cruz, California, USA S. Weber

many real-world instances of such systems, considering them would
make the discussions less interesting.

An operating system is supposed to provide services to users
and applications. We want to design systems which are supposed
to support the general public, running applications such as inter-
net browsers and o�ce applications (like word processors and
spreadsheets). We also want to consider web application servers
and databases.

Perhaps more controversial is what we meant by “supporting
applications”. Many OSes de�ne security so that the OS protects
only its own resources, and provides minimal support for appli-
cation developers to secure their applications. To an average user,
their applications and associated data is all they care about. The
fact that in many systems a compromised application is allowed to
do anything that the user can do makes the situation even worse.
If a user’s tax and health information is stolen because of single
application’s �aw, it is of little consolation that the OS’s security
policy was not violated. Even though it is surely impossible for
an OS to absolutely prevent application security vulnerabilities (at
least for any useful de�nition), the OS should assist developers to
create secure applications. To put it another way, a secure OS is
one which provides security services to its users, and application
developers are users too.

3 DISCUSSION TOPICS
3.1 Usable and E�ective Access Control
Most widely-used commercial operating systems use variations of
the classic access control model in which “subjects” are given rights
over “objects” in the system, and where programs are implicitly
given the rights of the application’s user. We know that this model
is quite inadequate for the modern world: a spreadsheet is hardly
a passive entity when it contains an executable script, and it is
not clear if the spreadsheet application is continuing to operate
on behalf of the user when it is executing that script. Alternative
models exist. Capability systems, in particular, are quite good at
capturing information �ow. However, whether these systems are
mathematically better is only part of the story. It is also necessary
to judge whether users and programmers are able to e�ectively
understand and use these models. What evidence can we gather to
evaluate the usability of competing access-control models?

In particular, capability systems have had a long history of been
supported by various academic arguments: they correspond better
to information �ow than ACLs do, they allow one to implement
con�nement, and so on. However, generally they’ve not met with
commercial success, except in less global ways (ie, �le handles
in many �lesystem APIs are essentially capabilities). Why is this
so? Is it because programmers and system architects are simply
unfamiliar with capabilities, and therefore stick to what they know?
Is it because ACLs better correspond to their mental models? Or, in
practice, do programmers using capability system end up having
to manage a confusing pile of capabilities, making the problem no
easier?

There are di�culties in trying to gather empirical evidence to
answer these questions. Most lab studies end up being quite time-
limited, due to budget concerns. As a result, there is the concern that
lab studies would essentially just measure learnability. Would case

studies of small or medium-scale systems be persuasive? And the
e�ect of designs on security is usually not immediately apparent,
so how long would a study have to be conducted before reliable
conclusions could be drawn?

During the discussion it was noted that this was a topic that
frequently is brought up: one of the participants, for example, has
been in many meetings where capabilities were proposed to han-
dle �ne-grain access control, but others argued that it was not
possible to manage least privilege and access control at scale in a
capability-based system. Microsoft has reportedly implemented a
capability-based system called Midori, but it hasn’t been released.
Unfortunately, it is not known whether its non-release is due to
technical issues or merely political or commercial judgements.

3.2 Composition and Decomposition
An operating system, like a programming language, is a base for
creating and running applications. For applications there are many
external requirements, which restrict the form of applications. But
for an operating system there is only one question: What is the
best form to create applications with the appropriate properties?
These properties include Security, Privacy, and Usability (which
themselves are composed of many sub properties).

To address this rather unconstrained problem, it is necessary
to decompose the problem into components, hone the design of
these components, test them against the various desired properties,
and study how they compose back to provide solutions. It is in
this composition that programs often fail, so a careful design is
necessary but not su�cient.

Ultimately, the proof is in its use: How di�cult is it to build
applications with the desired properties? What are the limitations of
the system? Do the components work well together in the di�erent
ways they must compose? These are not questions which can be
answered with proofs. Instead, empirical evaluation is essential.

3.3 OS Support for Applications
Operating systems are supposed to support applications. One way
that they do so is via the APIs and programming model that they
implement. We have many examples of APIs that lead to insecure
code: a �le system API that provably cannot be free of TOCTOU
vulnerabilities is hardly ideal. Can such properties be provably
provided, or are we limited to features which if properly used
are safer, but not guaranteed? We are woefully lacking empirical
evidence of how to design better APIs and models. This is especially
true when it comes to complex applications such as web application
servers and internet browsers which have to implement complex
security policies of their own—what support can an OS provide to
applications such as these?

This is not to say that there has not been work on how to design
OSes that help developers write more secure code. As one example,
the Ethos [7] project has this as its major goal. Rather, the ques-
tion is how to evaluate the e�ectiveness of any particular design
or approach. Evaluating the usability of an API is hard enough,
but evaluating whether it leads programmers to write more secure
code is harder, especially as there is no established metric for se-
curity. Perhaps a decomposition of properties will help with this
evaluation?

Panel: Empirically-based Secure OS Design NSPW’17, October 1-4, 2017, Santa Cruz, California, USA

3.4 Learning from Practice
SELinux [4] is a widely-available security extension to Linux. In-
ternet browsers are now often designed as if they were operating
systems and implement their own security mechanisms. Java itself
also might be considered to provide OS support to its applications.
What lessons can be learned about secure OS design from these
systems?

For example, SELinux is often derided as being hard to use. Does
this represent an intrinsic problem with the protection model it
implements? Or is it merely, as Chris Siebenmann suggests [6], the
fact that it is not the primary security model of the system but
instead a secondary mechanism? As for Java, Java’s classloading
mechanism ended up being used entirely di�erently than antic-
ipated by its designers (as a modularity construct, rather than a
security mechanism). What does this imply about the software
ecosystem that a security system should support?

Our community seems to have di�culty in learning from real-life
examples such as these. Can we do better?

3.5 Evaluating Security of Applications On an
OS

If we want to assess if we have a secure OS design that supports
secure applications, an initial consideration is whether secure ap-
plications be created for this OS? The OS may or may not have a
model of what a secure application is (e.g. isolation). The applica-
tion itself may bring in security features which may have full or
partial OS support (e.g. authentication, encrypted communications
such as HTTPS.). It may bring in features traditionally associated
with security bugs or vulnerabilities (e.g. an interpreter). It may
call OS features with the same history (e.g. command line). The
availability of the application itself may be considered a security
feature.

So, to (empirically) create a secure application, we need to start
with some choices; development language and tools, (security) fea-
tures, calling APIs. The argument was made that empirical evidence
that the application is secure must include testing, even for provably
secure code, since the gap between what can be proven and what is
considered secure in use remains. There is a raft of security testing
tools and procedures that are considered standard best practice:

• Static analysis if the language warrants it and if the tools
are fairly practical (e.g. low false positives, actionable sug-
gestions for �xing issues),

• Fuzz testing of any inputs. Web vulnerabilities (e.g. XSS,
XSRF, SQL injection),

• Various kinds of scans, such as Nessus, which can deter-
mine if versions of code with known vulnerabilities needs
patching or updating,

• the patches/update model that is now commonly used by
operating systems, and

• manual pen testing, which is the �rst form of security test-
ing for any new and innovative technologies or approaches
that are not suitably exercised by existing tools and tech-
niques.

If it is posited and shown that it is possible to create secure appli-
cations, a next question is, can developers create secure applications
on this OS? Empirical research of developers and secure coding

is a rapidly emerging area in the usable security community. The
community is still sorting through a large number of ecological
validity questions, which only loom larger for new and innovative
approaches to secure applications and OSes. What level of experi-
ence do the developers have with the tools and languages, with the
APIs, with the OS? What tasks/applications are you evaluating their
ability to code securely? What about developers who work in teams,
or in organizations, with the collaboration and processes inherent
in multi-developer work? Early research in this area has shown
that examples and documentation have the most impact. This is
great news for initial testing in this area. Create the documentation
and (secure) examples �rst, and start testing with those.

3.6 ‘Security’ isn’t precise enough
Security is not a single goal, but a set of goals, because we lack useful
ways to conceptualize what a secure OS does. Let’s assume that
Apple prioritizes anti-malware in iOS. But one of their features is to
restrict what code runs as root; perhaps there is a lot of malware on
the platform, but our inability to run AV software on it inhibits our
ability to test that hypothesis? The OS is so secure it even resists
science!

Similarly, we might claim that the way to empirically evaluate
a how well a phone succeeds at anti-censorship might be to test
its capabilities in avoiding censorship. That depends in part on the
software loaded on it, but it also depends on the censorship, and
that censorship might change in response to features in the phone.
If we wish to be empirical, which facts should we use?

To follow from Petroski’s core argument in The Evolution of
Useful Things, [2], engineers work to address �aws they observe
in real systems. It may be hard or impossible to understand the
use of a thing until it’s built and deployed, and it may be harder or
more impossible to understand the security of a thing in the same
fashion. A longer discussion of this is available at [5].

3.7 Miscellaneous Observations
A number of observations were made by NSPW participants that
don’t �t neatly into the above topics.

It was observed that very few of the problems discussed in NSPW
papers would be solved by a secure operating system, which raises
the question of whether we need a di�erent abstraction instead.
It was argued that whatever di�erent mechanism was desired, it
would probably look like an OS. In many cases currently, what
runs at the bottom of the software stack is really a browser, not
a traditional OS, but modern browsers are, in reality, operating
systems.

It was then argued that what an OS provides is harm reduction:
after a developer does something bad, an OS can limit the blast
radius of the failure. The use of secure development practices, such
as the use of Go instead of C, was described by another participant
as also harm reduction.

The panelists were asked what the biggest question or lowest-
hanging fruit for empirical measurement is. One panelist argued
that we need a model better than subject-object-action. Another
panelist wanted to know how computers get compromised: what is
the proximate event that gives an attacker control of a computer?
There are no statistics on this, but the argument is that with this

NSPW’17, October 1-4, 2017, Santa Cruz, California, USA S. Weber

knowledge we could have a more informed idea of what the most
impactful design choices were.

4 PANEL ORGANIZATION AND
PARTICIPANTS

The panel members were:
Adam Shostack Adam is a consultant, entrepreneur, tech-

nologist, author and game designer. He’s a member of
the BlackHat Review Board, and helped found the CVE
and many other things. He’s currently helping a variety
of organizations improve their security, and advising and
mentoring startups as a Mach37 Star Mentor. While at Mi-
crosoft, he drove the Autorun �x into Windows Update,
was the lead designer of the SDL Threat Modeling Tool v3
and created the "Elevation of Privilege" game. Adam is the
author of "Threat Modeling: Designing for Security," and
the co-author of "The New School of Information Security."

Jon Solworth Jon Solworth is interested in the design and en-
gineering of robust systems which—unlike today’s systems—
can withstand attack. His projects in this area include au-
thorization, authentication, denial of service, and what is
becoming my capstone project, a new operating system
called Ethos.

Notable achievements within computer security include:
1. Designing and leading the development of the Ethos

Operating System, with MinimaLT network protocol, whose
semantics make it far easier to develop secure applications.

2. Showing that an authorization model (aka) could be
both su�ciently expressive to provide desirable protections
while also be analyzable, so that the protections could be
understood. This solved, in part, a 30 year old problem
posed by Harrison-Ruzzo-Ullman.

3. Showing how to do Public Key Infrastructure Revo-
cations 1000s of times more e�ciently than the standard
technique (OCSP). The Revocation Problem has been called
a Grand Challenge Problem in PKI.

SamWeber Sam Weber’s primary research interests lie in
the empirical evaluation of secure development methodolo-
gies. He obtained his PhD from Cornell University on speci-
�cation and veri�cation, and he served as a Program Direc-
tor for the National Science Foundation’s Secure and Trust-
worthy Cyberspace program. He has been a researcher at
IBM’s T.J. Watson Research Center and a faculty member
at Cornell University, the University of Pennsylvania, and
New York University.

Mary Ellen Zurko Mary Ellen Zurko has recently joined
MIT Lincoln Laboratory. Mez has worked extensively in
security; in product development, early product prototyp-
ing, and in research, and has over 20 patents. She was
security architect of one of IBM’s earliest clouds; SaaS
for business collaboration. She de�ned the �eld of User-
Centered Security in 1996. As a senior research fellow at
the Open Group Research Institute, she led several innova-
tive security initiatives in authorization policies, languages,
and mechanisms that incorporate user-centered design el-
ements. She started her security career at DEC working on

an A1 VMM, on which she coauthored a retrospective with
a fellow member of the Forum on Cyber Resilience. She has
written on active content security, public key infrastruc-
tures, distributed authorization, user-centered security, and
security and the web. She is a contributor to the O’Reilly
book "Security and Usability: Designing Secure Systems
that People Can Use." She is on the steering committees
of New Security Paradigms Workshop and General Chair
of the Symposium on Usable Privacy and Security. Mez
received S.B and S.M. degrees in computer science from
MIT.

5 CONCLUSIONS
In summary, during this panel we discussed how to e�ectively apply
empirical methods to the problem of designing secure operating
systems. Given the long history of cybersecurity in general, and
secure operating system research speci�cally, it is long-past time
that we establish an evidence-based body of knowledge on how to
create operating systems that are usable, useful, and which assist
developers to create secure applications. Furthermore, we do not
wish to miss opportunities to introduce secure OS designs into
commercial practice.

Acknowledgements. This material is partially based upon work
supported by the National Science Foundation under Grant Num-
bers 1409868 and 1640732.

REFERENCES
[1] Paul A. Karger, Mary Ellen Zurko, Douglas W. Bonin, Andrew H. Mason, and

Cli�ord E. Kahn. 1991. A Retrospective on the VAX VMM Security Kernel. IEEE
Transactions on Software Engineering 17, 11 (1991), 1147–1165. Special Section
on Security and Privacy.

[2] Henry Petroski. 1992. The evolution of useful things. Vintage.
[3] Qubes OS Project. 2017. Qubes OS: A Reasonably Secure Operating System.

http://www.qubes-os.org. (2017). Accessed: 2017-12-15.
[4] SELinux. 2017. SELinux Project Wiki. (2017). https://selinuxproject.org/page/

Main_Page
[5] Adam Shostack. 2015. The Evolution of Secure Things. (2015). https://adam.

shostack.org/blog/2015/11/the-evolution-of-secure-things/
[6] Chris Siebenmann. 2011. One of SELinux’s problems is that it’s a backup mecha-

nism. (2011). https://utcc.utoronto.ca/~cks/space/blog/linux/SELinuxIsABackup
[7] Jon Solworth. 2017. The Ethos Operating System. (2017). https://www.ethos-os.

org/index.html

http://www.qubes-os.org
https://selinuxproject.org/page/Main_Page
https://selinuxproject.org/page/Main_Page
https://adam.shostack.org/blog/2015/11/the-evolution-of-secure-things/
https://adam.shostack.org/blog/2015/11/the-evolution-of-secure-things/
https://utcc.utoronto.ca/~cks/space/blog/linux/SELinuxIsABackup
https://www.ethos-os.org/index.html
https://www.ethos-os.org/index.html

	Abstract
	1 Introduction
	2 Scope of Panel
	3 Discussion Topics
	3.1 Usable and Effective Access Control
	3.2 Composition and Decomposition
	3.3 OS Support for Applications
	3.4 Learning from Practice
	3.5 Evaluating Security of Applications On an OS
	3.6 `Security' isn't precise enough
	3.7 Miscellaneous Observations

	4 Panel Organization and Participants
	5 Conclusions
	References

