
Can Software Licenses Contribute to Cyberarms Control?
Steve Dierker

Freie Universität Berlin
Berlin, Germany

dierker.steve@fu-berlin.de

Volker Roth
Freie Universität Berlin

Berlin, Germany
volker.roth@fu-berlin.de

ABSTRACT
We discuss the potential role that software licenses can play in cy-
berarms control, the attribution of cyber attacks and the adherence
to international humanitarian law and treaties that stipulate that
the effects of war on the civilian population shall be minimized. We
consider the increasing reliance of civilian and military institutions
on FOSS and conduct a thought experiment: what would happen
if a fraction of FOSS migrated to a license with non-military use
clauses? If this caused civilian and military systems to diverge in de-
sign, and exploits and malware reflect their targets, then erroneous
targeting of civilian institutions could be ruled out. This idea led us
to perform an initial analysis of software dependencies and their
relationship to the propagation of copyleft licenses. We analyzed
packet manager data for seven different programming languages,
based on data from Libraries.io. Among other things we found that
a small number of packages accounts for the majority of the depen-
dencies. The number of dependent packages varies from language
to language and ranges from 79% in the case of Cargo to merely 3.9%
in the case of Pypi. We also review existing non-military licenses
and identify areas that need further research in order to under-
stand the potential and the applicability of non-military licensing
regimes.

CCS CONCEPTS
• Social and professional topics→ Licensing; Governmental
surveillance; Codes of ethics; • Applied computing → Cyber-
warfare; Investigation techniques;

KEYWORDS
Software licenses, cyberwar, arms control, Geneva Conventions,
FOSS

ACM Reference Format:
Steve Dierker and Volker Roth. 2018. Can Software Licenses Contribute
to Cyberarms Control?. In New Security Paradigms Workshop (NSPW ’18),
August 28–31, 2018, Windsor, United Kingdom. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3285002.3285009

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
NSPW ’18, August 28–31, 2018, Windsor, United Kingdom
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6597-0/18/08. . . $15.00
https://doi.org/10.1145/3285002.3285009

1 INTRODUCTION
Computer systems and networks have played a role in warfare at
least since the introduction of the AirLand Battle Doctrine [12] in
the 1980’s by the United States and its adoption by NATO. It was
seen as a means to rapidly disseminate information to where it
was needed in order to achieve situational awareness. In addition,
computerized smart weapons were developed in order to improve
the efficiency and precision of military operations. The trend to
computerize and automate military conflict continues with the
development of Lethal Autonomous Weapon Systems [25].

However, computer systems are not only a means to enhance and
extend traditional military capabilities, they are targets of attacks
themselves. Consequently, computer networks, specifically the in-
ternet, have become a battle ground on which computer network
operations (CNO) take place. The term cyberwarfare is used to refer
to offensive operations such as computer network attacks (CNA)
and exploitation (CNE). These operations may take place even dur-
ing peace time as a preparation for future conflicts, for example,
by planting malware that remains dormant until activated during
an outbreak of hostilities (cf. [6]). Information about software vul-
nerabilities, exploits and malware are the principal weapons of
cyberwar.

The internet is primarily a civilian infrastructure and connects
civilian institutions, municipal infrastructure and systems of mil-
itary, particularly strategic, value alike. This puts CNO at odds
with international humanitarian law and established military doc-
trine [9] that seek to minimize the effects of military conflicts on
the civilian population. Beyond risking collateral damage, parties
to a conflict may simply not adhere to international humanitarian
law and may target civilian institutions and infrastructure deliber-
ately with CNO. The potential effects are considerable while the
execution can be relatively easy and cost-effective. For example, the
Bush administration reportedly considered CNO on Iraq’s banking
system before the invasion of 2003, but “rejected the idea, fearing
an unintended impact on global financial markets” [21].

Whistleblower Edward Snowden revealed that US and UK in-
telligence agencies target civilian institutions and infrastructure
aggressively and extensively with CNE, in a clandestine fashion,
in order to extend their intelligence collection. Other intelligence
agencies certainly attempt the same and differ only according to
their capabilities. CNE involves implanting malware that seizes
control of its host computer and can be updated dynamically with
arbitrary functions. Hence, it becomes almost impossible to draw
a line between what has been, historically, accepted conduct be-
tween competing nation states, that is, espionage, and laying the
groundwork for military operations during times of conflict. For
this reason, we conflate military and intelligence institutions in our
discussion.

https://doi.org/10.1145/3285002.3285009
https://doi.org/10.1145/3285002.3285009

NSPW ’18, August 28–31, 2018, Windsor, United Kingdom S. Dierker, V. Roth

A persistent risk of CNO is that the tools and techniques used
for it may fall into the hands of criminal actors or terrorists. These
tools need to be copied from compartmentalized systems to staging
servers in order to be used against targets. Targets and third parties
who have compromised a staging server may be able to obtain these
tools. Worse still, CNO tools and techniques may be exfiltrated from
the source and publicized. This happened to the NSA, whose tools
were quickly picked up by criminal actors [18].

1.1 Limiting Armament
The UN Charter stipulates in Article 2 that Members shall settle
their international disputes by peaceful means and that Members
shall refrain [. . .] from the threat or use of force against the territorial
integrity or political independence of any state. General and complete
disarmament has been a declared goal of the international commu-
nity but remains elusive [1]. Instead, states continue to maintain
military forces to ensure their ability to self-defend, which the UN
Charter permits in Article 51. However, armament increases the risk
of conflict and the potential for escalation [1]. This is the security
dilemma. Cyberweapons are particularly concerning because their
use is difficult to prevent and difficult to attribute. They may be de-
ployed in low-intensity conflicts for which conventional retaliation
is disproportionate and likely to escalate the conflict further. Classic
mechanisms for arms control, such as treaties, are difficult to apply
here because it is unclear how the crucial element of verification
may be implemented.

Besides treaties, a limiting factor of armament is the cost of
weapons systems. Among the most expensive weapons are nuclear
ones. Their producers are funded by financial institutions with hun-
dreds of billions of Dollars [3]. Organizations such as PAX in the
Netherlands campaign for financial institutions to divest from pro-
ducers of nuclear weapons, they hope that this leads producers to
cut nuclear weapons production from their business strategies [3].
Cyberweapons are cheap compared to kinetic weapons and delivery
systems. Of course, skilled labor is needed as in other specialized
areas but in terms of material investment a few computers are suf-
ficient to get started. Countless developer-years worth of software
is available to be leveraged and is continuously developed. Much
of that software is free of costs and is developed and maintained by
volunteers, for example, by enthusiasts and academic researchers.
Even commercial software and its development often depends on
free and open software. Without the benefit of free and open soft-
ware, the costs of cyberweapons would increase, as would the costs
for operations and for the development and maintenance of other
types of weapons that rely on software components.

1.2 Diversification of Systems
Since civilian institutions and military organizations rely on a com-
mon set of operating systems, applications and other software,
exploits developed for military purposes may work against civilian
targets and vice versa. If military and civilian systems were devel-
oped independently then we could reasonably assume that exploits
for one type of system would not readily work on the other type.
This would have compelling conceptual benefits:

(1) The type of exploit (it works for a military system versus
it works for a civilian system) would indicate the type of

target intended by the creator and the user of the exploit.
Observing military use of exploits against a civilian system
would be indicative of a violation of international human-
itarian law. In contrast to bombing a hospital [19] this can
not be dismissed as an accident because exploit development
requires deliberation and a precise target specification.

(2) A stolen cache of exploits developed for military targets
could not be applied readily to attack civilian systems with
criminal intent.

Of course, a complete diversification may not be possible. For ex-
ample, the MIL-SPEC reform initiated in 1994 by then United States
Secretary of Defense William Perry [14] sought a consolidation
and reduction of military specifications in order to leverage greater
cost efficiencies of COTS products and a recognition that COTS
products may meet or even exceed military expectations in the
field. MIL-SPECs focused on physical and operational requirements
of military equipment as opposed to software. As a consequence,
military computing equipment often contains COTS computing
hardware and firmware that shares vulnerabilities with its civil-
ian counterparts. Meltdown1 and Spectre2 are recent examples that
come to mind and that affect CPU families produced by Intel and
AMD. On the other hand, exploits often require the use of several
vulnerabilities in conjunction. While some vulnerabilities may be
shared between military and civilian systems, others may not. The
fact that some vulnerabilities are shared therefore does not nec-
essarily preclude all benefits that may be derived from diversified
systems.

1.3 Non-Commercial Software Plays a Role
What if free and open source software was not available to the mil-
itary and the intelligence community, directly or indirectly? They
would have to procure their software entirely from commercial
sources (commercial off-the shelf) or they would have to develop
their own software in-house (government off-the-shelf). Commer-
cial providers of military software in turn would have to raise prices
if they cannot leverage free software. The costs of selling into both,
the civilian and defense, markets would therefore increase, which
benefits the competitiveness of companies that focus on either mar-
ket. This increases the likelihood that development of civilian and
military systems diverges and the two worlds become increasingly
incompatible to each other, at least with regard to the exploits and
the malware that affect the two types of systems.

The commercial sector does not have an incentive to cause such
a market separation. For software companies, it is efficient to invest
in the development of one product that is sold into both markets.
At best one can hope that the product is customized to the specific
needs of either market segment. However, these considerations
play a lesser role in the case of software that is made available
for free. Instead, there is room to base one’s decision to whom the
software is made available on ideological or humanitarian grounds.
The principal means to limit who may use a software is the software
license.

In this paper, we make a thought-experiment: what would hap-
pen if a fraction of free and open source software developers decided

1CVE-2017-5753, CVE-2017-5715
2CVE-2017-5754

Can Software Licenses Contribute to Cyberarms Control? NSPW ’18, August 28–31, 2018, Windsor, United Kingdom

to move their software to a license with clauses that prohibit the
use of the software for military and intelligence purposes? This
thought-experiment immediately leads to a number of questions:

(1) What would a non-military license have to look like and
would it be enforceable?

(2) In what cases, if any, is it possible to move software from
one license to a non-military one?

(3) How many developers would have to make such a switch
and for which projects in order to have an effect?

In what follows, we begin to explore answers to these questions
and steps that need to be taken to arrive at answers. Once we
have answers we can begin to ask whether a necessary fraction of
developers would indeed be willing to make such a license switch.

2 SOFTWARE LICENSE BACKGROUND
We can distinguish between proprietary software licenses and free
and open source (FOSS) licenses. Proprietary licenses govern the
use of proprietary software, which tends to be closed source, for
example, Microsoft Windows. The license allows the licensee to use
the licensed software in certain narrowly defined ways. Usually,
this excludes the right to inspect or further develop the software or
to make it available to third parties. We are not interested in this
type of license and hence do not discuss it further. We rather focus
on FOSS licenses.

The first FOSS license was written by Richard Stallmann and
led to the foundation of the Free Software Foundation (FSF) on Oc-
tober 4th, 1985. The FSF is a nonprofit organization dedicated to
advocating FOSS and it maintains a definition of FOSS. The initial
definition [22] was given by Stallmann as follows:

The word “free” in our name does not refer to price; it
refers to freedom. First, the freedom to copy a program
and redistribute it to your neighbors, so that they can
use it as well as you. Second, the freedom to change
a program, so that you can control it instead of it
controlling you; for this, the source code must be
made available to you.

The second major nonprofit advocacy group for FOSS is the Open
Source Initiative (OSI). It was founded by Bruce Perens and Eric S.
Raymond in February 1998. The OSI maintains its own Open Source
Definition3 (OSD) and approves licenses that it deems compliant.
In order to comply with the OSD, the license must not discriminate
against persons, groups or fields of endeavor, among other criteria.
Whereas the FSF appears more focused on the moral issues of FOSS,
the OSI takes a pragmatic view point [23, p. 31].

Multiple flavors of FOSS licenses exist. They are differentiated
by the strictness of copyleft the license imposes on derived works.
Copyleft ensures that derived works have to be published under
the same license or with the same degree of freedom. The Institute
for Legal Questions on Free and Open Source Software4 distinguishes
between five types of licenses, that is, licenses:

(1) without copyleft
(2) with strict copyleft
(3) with restricted copyleft

3https://opensource.org/docs/osd
4http://www.ifross.org

(4) with providing a certain choice
(5) with particular privileges

The first type, licenses without copyleft, provide licensees with all
the freedom of a FOSS license but without any obligation to publish
derivations of the software under the same license as the original.
Licensees may modify the software and may publish derived works
under a license of their own choosing. The 2-Clause BSD License
and the MIT License are examples of this type.

The second type are licenses with strict copyleft. They provide
licensees with all the freedom of a FOSS license but require that
derived works are published under the same license as the original.
The best-known example of such a license is theGNUGeneral Public
License (GPL).

The third type are licenses with restricted copyleft. Such a license
provides the freedom and obligations of a FOSS license with strict
copyleft. Additionally it allows the distribution of derived works
under a different license as long as the files of the original software
remain unchanged. This type of license is meant to enable the
bundling of FOSS software with non-free software. The best-known
example of such a license is the GNU Lesser General Public License
(LGPL).

The fourth type are FOSS licenses that provide licensees with
choices of how to distribute derived works. The fifth type are FOSS
licensees that reserve privileges for the licensor in case that the
licensee produces derived works. This type of license is often used
when a proprietary software is turned into FOSS. The last two types
of FOSS licenses are used the least.

3 NON-MILITARY LICENSES
Probably the best-know license with a non-military clause is the
JSON License, published in 2002 by Douglas Crockford.5 It stipulates
that “The software shall be used for Good, not for Evil.” This vague
phrasing caused lawyers headaches because neither “good” nor
”evil” is particularly well-defined [7, from 16:00]. Therefore, it is
necessary to clarify with the licensor on an individual basis whether
the intended use of the software is indeed “good” and not ”evil.”
The well-known FOSS project Debian refuses to distribute software
under the JSON License because it is not in compliance with the
OSD. It violates the criterion of not discriminating against a field
of endeavor of which doing evil apparently is one. In that spirit it
is remarkable that Google (now Alphabet) refuses to host software
under the JSON License as well, for the same reason. Google is the
company that famously chose “Don’t do evil” as a motto for its
corporate code of conduct. One might think that the JSON License
reflects that motto and is compatible with what Google strives to
achieve but apparently it is not. More recently, Google is making
headlines because several thousand Google employees wrote a letter
of protest to Google’s Chief Executive Officer Sundar Pichai [20],
urging Google to withdraw from a project with the Pentagon that
is said to build “warfare technology.”

An example of a software license with an explicit non-military
clause is the Software Libre para Uso Civil (SLUC) published 2006
in Spain.6 The SLUC builds on the GPL but prohibits military per-
sonnel from using the software, it prohibits the use of the software

5https://www.json.org/license.html
6https://en.wikipedia.org/wiki/SLUC

https://opensource.org/docs/osd
http://www.ifross.org
https://www.json.org/license.html
https://en.wikipedia.org/wiki/SLUC

NSPW ’18, August 28–31, 2018, Windsor, United Kingdom S. Dierker, V. Roth

for the manufacture of offensive weapons (not for defense) and it
prohibits the use of the software by organizations that are either
controlled by military organizations (more than a 51% of shares)
or whose customers are dominantly military (more than 51% of
clients).

Another example is the Light++ License,7 which “prohibits use
of the software by employees of military or defense-related orga-
nizations, or within facilities producing weapons or conducting
research on weapon design.” Yet another example is the Qabel Pub-
lic License Version 0.2,8 which excludes the use of the software for
“military, intelligence or related purposes, including but not limited
to intelligence and military research.”

Another non-military license is due to Phillip Rogaway.9 It de-
fines military use as “any Use by, in cooperation with, on behalf
of, or paid for by” a number of explicitly stated U.S. military and
intelligence institutions and their foreign counterparts.

The SLUC, Light++ and Qabel licenses are all copyleft licenses.
The license of Phillip Rogaway is for use of intellectual property
rather than a specific software implementation. Therefore, the no-
tion of copyleft does not apply to his license. The license the second
author used for his Easy Encrypt tool builds on a BSD license and
thus is an example of a license without copyleft. It stipulates the
following:

Military and Intelligence organizations, their Affili-
ates and individual Members of these organizations
and Affiliates are excluded under penalty of law from
this License in regard to this code irrespective of their
purpose, including for private, non-commercial, com-
mercial, governmental, research and educational pur-
poses.

The pertinent terms are defined as follows:
Affiliates means all entities which are controlled by a
military or intelligence organization, whether directly
or through one or more intermediaries. For purposes
of this definition “controlled” means ownership of
securities representing more than fifty percent of the
voting capital stock or other interest having voting
rights with respect to the election of the board of
directors or similar governing authority, or any other
power by contract or in any other form which entitles
such named entity to the respective voting rights.

In what follows we point out questions about non-military licenses
that need to be answered. Some answers appear straightforward,
others require further research.

3.1 Can there be Non-Military FOSS Licenses?
The first question is whether a license with a non-military clause
can be a FOSS license. The answer is “No” when judging by the
criteria of the FSF and the OSI. The FSF intends to provide “the
freedom to run the program as you wish, for any purpose.” The OSD
specifies as its fifth criterion that “the license must not discriminate
against any person or any group of persons.” The sixth criterion
stipulates that “the license must not restrict anyone from making
7https://www.openhub.net/licenses/LightPlusPlusLicense
8https://qabel.de/en/license
9http://web.cs.ucdavis.edu/~rogaway/ocb/license2.pdf

use of the program in a specified field of endeavor.” Excluding the
military or its contractors from the license discriminates against
a group and it discriminates against a field of endeavor. Hence, a
non-military clause cannot comply to the FOSS definitions of the
FSF or the OSI. Thus, non-military licenses need a novel “brand” of
their own that captures the salient points of FOSS licenses while
restricting military use in suitable ways.

3.2 Can FOSS become Non-Military?
The second question we need to consider is whether existing FOSS
can migrate to a non-military license and, if so, how. Of course, any
copyright holder can decide at his discretion to publish new versions
of his software under a new license. The situation becomes more
complicated if the copyright is shared, for example, if a software is
a derivation of another software that is governed by a FOSS license.

Migrating FOSS licenses without copyleft to a non-military li-
cense is straightforward. It suffices to publish a derivation of the
software under the new license. Of course, a non-military license
without copyleft can as easily be converted back to a license with-
out the non-military clause. This return path can be closed by
publishing the software under a non-military license with copyleft.
Although, the original FOSS version remains available under the
FOSS license and may be developed further under that license. It
is therefore necessary that the developer community commits to
maintaining the non-military version rather than the original FOSS
version.

There is not a general migration strategy for FOSS with copy-
left because the copyleft principle requires that derived works are
published under the same license. However, there is a theoretical
loophole. Some FOSS is licensed according to “GPL version x or
later,” where x is a version number. The phrase “or later” means
that the applicable license is always the most recent version of the
GPL. The most recent version of the GPL is 3. If the FSF decided
to create a version 4 GPL that includes a non-military clause then
all software licensed according to a prior version “or later” can be
distributed under the terms of that clause. Compelling as this might
be, it is unlikely that the FSF would do that – and it would without
doubt cause an intense debate – because the clause still violates
the FOSS principle of non-discrimination and the FSF freedom to
distribute copies of the software to others.

It needs to be determined on an individual basis whether or not
there exists a migration path for FOSS licenses of types 3 (restricted
copyleft) to 5 (particular privileges).

3.3 What is a Good Non-Military Clause?
The third question in need of an answer is what needs to be in the
non-military clause of a software license. In any case, the clause
must be legally sound. In what follows, we analyze the licenses we
described in Section 3 and sort them loosely into different categories
according to what the basis for the exclusion is.

Based on intent (end goal). The approach taken by the JSON
License is too vague because neither “good” nor “evil” is easily
defined. The terms would have to be interpreted in the light of
each individual licensing case, jointly with the licensor. Even worse,
courts would interpret vague terms against the licensor according

https://www.openhub.net/licenses/LightPlusPlusLicense
https://qabel.de/en/license
http://web.cs.ucdavis.edu/~rogaway/ocb/license2.pdf

Can Software Licenses Contribute to Cyberarms Control? NSPW ’18, August 28–31, 2018, Windsor, United Kingdom

to the contra proferentem principle.10 One could choose “intention
to harm a human” as a more precise formulation of intent. This
wording covers harm inflicted by anyone, not just harm inflicted
by the military. However, establishing intent (as a legal standard)
can be difficult to meet in a legal dispute and the question arises as
to who has to carry the burden of proof. Requiring the licensor to
carry that burden does not seem to scale well. On the other hand,
how would a licensee prove that it had no intention to harm a
human? In the case of the military, harming humans (and objects)
is an intended effect of military force, that is, the application of
violence to achieve political goals. Based on that reasoning, military
organizations should always be excluded. Arguably, it is preferable
to have a simple legal test that can be made unequivocally over
creating legal uncertainties that risk missing the larger goal, which
is limiting preparations for large wars and a reduction of risks to
civilians.

Based on organization type. The exclusions defined in the Light++
License and the Qabel License are more explicit and more precise
than the JSON license. They speak of military and intelligence
organizations and purposes and of uses for weapons research and
development. Still, there exists a continuum of involvement with
the military and intelligence. Without further interpretation on a
case-by-case basis one risks an exclusion that is exceedingly broad.

The SLUC License is already very precise in the definitions of
organizations that are excluded from the license. For example, it
excludes organizations of which the military holds more than a 51%
share, and it excludes organizations with a customer base of which
more than 51% are military organizations. A military organization
is defined as being subject to military legislation.11 However, this
definition does not account for indirect control through holding
companies. This would enable military organizations to launder
their controlling position for the purpose of licensing. Furthermore,
shares can sometimes be distinguished into voting stock and pre-
ferred (non-voting) stock. By not distinguishing between the two in
a license we risk an exclusion that is broader than intended because
the military might have obtained a majority economic interest in a
company without having a controlling (voting) majority. On the
other hand, the military may have a controlling majority without
having a majority of the economic interest, which means that the
definitions is not strict enough to achieve its intended effect.

The exclusions in the Easy Encrypt license are perhaps the most
precise we encountered. They cover the cases of indirect control
and voting stock. The exclusion is also the broadest of the examples
we encountered. It excludes even the private use of the software
by excluded individuals, for example, the employee of a defense
contractor. It remains to be seen to what degree such an exclusion
is compatible with existing law. For example, Directive 2009/24/EC
of the European Union declares that any contractual provisions
that prohibit a person from “performing acts necessary to observe,
study or test the functioning of the program” are null and void [13].
However, the Directive grants these exceptions only to persons
who have a right to use the software, that is, users who have legally
licensed the software. Since excluded individuals are not and cannot

10UNIDROIT Principles 2016, Article 4.6.
11We used Google Translate to translate the Spanish original into English for better
interpretation.

be licensees they do not enjoy the provisions of the Directive. U.S.
Code, Title 17, § 1201 (Circumvention of copyright protection sys-
tems) contains similar provisions, which grant limited exceptions
from end-user license agreements to legal users of a software. How-
ever, in contrast to the Directive it contains a broad exception for
intelligence and other government activities in Section (e). There-
fore it seems that U.S. Government affiliates do not violate 17 U.S.
Code § 1201 by inspecting the software governed by the license, as
long as they act on behalf of the U.S. Government. Although, the
license may still exclude private uses of the software by affiliates
of the U.S military and intelligence. Other jurisdictions may have
different laws and different exceptions, still.

Based on application. References to weapons and weapons pro-
duction, as found in the SLUC and Light++ Licenses, are ambiguous
as well. For example, one might ask whether intrusion software
such asMetasploit counts as a weapon. This does make sense given
its application to CNO. If exploits are not considered weapons then
the license does not cover a core ingredient of cyberwarfare. Fur-
thermore, “intrusion software” is a controlled technology according
to theWassenaar Arrangement [24]. On the other hand, researchers
and pen testers are users ofMetasploit. Furthermore, the Wassenaar
Arrangement exempts technology “in the public domain” and “basic
scientific research.” By this standard, Metasploit would be exempt
because versions of it are FOSS and hence in the public domain.
Which interpretation should one follow?

Another question that arises is whether any support system
should be considered a part of the weapons production system.
Consider for example a software that is used to keep track of the
working hours of cleaning personnel who cleans the offices of en-
gineers involved in the production of weapons. The cleaners are
employed by a service company that services civilian and military
facilities. One might argue that the Light++ License excludes use
of the software if it runs inside the facility. If the software is gov-
erned by the Qabel License then its use appears permissible. The
upside of focusing on weapon systems is that such an exclusion
still allows for positive uses of the licensed software within the
military. For example, the US Army Corps of Engineers12 provides
public engineering services along with military ones.

Exclude the Military or their Targets? The language of existing
non-military licenses seeks to limit the uses of a given software
by the military. This matter of principle approach speaks to the
idealism of the licensors. In this paper, we hypothesized a specific
effect that can be sought by a non-military licensing regime, that
is, the diversification of systems and their attack vectors so that
legitimate and illegitimate target systems of cyberwar operations
are independent. From that perspective, it may make sense to limit
the use of a software by legitimate targets of military operations rather
than the military itself, with the understanding that every military
is also a legitimate target of its opponent’s forces. This brings
about the challenge of defining tie-breakers for dual-use goods and
services. For example, a large internet service provider (ISP) may
provide internet access to large parts of the civilian population but
also to military installations. Should the ISP be allowed to use a
software that is not meant to be operated by a legitimate target of

12http://www.usace.army.mil/

http://www.usace.army.mil/

NSPW ’18, August 28–31, 2018, Windsor, United Kingdom S. Dierker, V. Roth

a military? Similar considerations hold for any essential support
service such as food, utilities and power, whose denial has grave
effects on civilians.

Take-away. In Figure 1, we contrast the three license design
approaches we discussed before using two arguments in favor and
against each approach. None of the licenses we discussed offers any
provisions that would allow exceptions for humanitarian missions.
We also shared the idea that the targets of military operations
might be a worthwhile “target” of license designers rather than
just the military. The question of what a good non-military clause
is, remains open. A debate is needed on two levels. First, a debate
about what the intent of the clause should be and, second, how it
must be formulated to achieve this intent.

3.4 Exemptions for Humanitarian Missions
Humanitarian missions can be divided into humanitarian aid and
humanitarian intervention. The former consists of material and
logistic assistance after a humanitarian crisis, for example, natural
disasters and disasters caused by humans. The latter involves the
deployment of armed forces to sovereign states with the intention to
end or alleviate mass human suffering within that states’ borders. In
order to exempt humanitarian missions it is necessary to determine
whether a mission is indeed humanitarian. In fact, three questions
arise immediately:

(1) Who determines whether a mission is humanitarian?
(2) When is the determination being made?
(3) Does the determination meet legal standards?

Neither of these questions is easy to answer. The humanitarian
status of several interventions is controversial in hindsight. For
example, the US government justified its Iraq war of 2003 based on
claims that Iraq held weapons of mass destruction (WMD). Only
after the invasion did it turn out that these claims had been falsi-
fied [16]. The Libya intervention of 2011 was based on UN Resolu-
tion 1973. A discussion is still ongoing whether the intervention
was just [2]. In the beginning of 2018, an investigation began to
look into the ties that Nikolas Sarkozy, then president France, had
to Libya before 2011 because he may have had a personal interest
in the intervention [5]. If we accept, for example, the UN as the
authoritative and legally binding source of the determination of a
mission’s humanitarian status, this status may still be challenged
post-hoc and intervening states may turn out not to have acted
in good faith. If the prior determination of humanitarian status is
binding then no remedy exists against states not operating in good
faith, which is unsatisfactory. On the other hand, if a state acts
in good faith then it must sill consider the risk of being sued for
license violations post-hoc if the humanitarian status of the mis-
sion is challenged. All this creates considerable uncertainties for
the licensees and licensors of software governed by a non-military
license with humanitarian exemptions.

It is worth asking whether such exemptions would play a role
in practice. Humanitarian missions are a small part of the tasks of
armed forces. On the other hand, serious risks arise from the prepa-
ration of large wars, specifically those including cyber attacks, with
the associated destabilization of international security and world
peace. We argue that the larger goal of working towards demili-
tarization should take precedence over humanitarian applications

of military force when it comes to deciding upon a non-military
licensing regime. This does not necessarily imply a limitation on
humanitarian missions. The military can still carry out humanitar-
ian missions using the systems it has which, by assumption, are
not governed by a non-military license. Hence not much would be
lost by avoiding the legal uncertainties that surround exemptions
for non-military clauses for humanitarian purposes.

3.5 Are Non-Military Clauses Enforceable?
The fourth question we must address is whether a non-military
license is actually enforceable. Sceptics might worry that military
and intelligence institutions may violate licenses with impunity and
that their illegitimate use of unlicensed software may be difficult
to prove because of the secrecy that shrouds them. However, we
doubt that these are fundamental concerns in liberal democracies.

Court cases in the U.S. suggest that the Department of Defense
indeed engages in software piracy occasionally but it does pay fines
for it or pays for settlements. In 2012, U.S. company Apptricity
Corp. filed a lawsuit against the U.S. Army for software piracy and
finally settled the case for $50 million [11]. In another case, the U.S.
Navy obtained 38 licenses of a software copyrighted by the German
company Bitmanagement Software GmbH. Subsequently, the U.S.
Navy copied and used the software in an unauthorized fashion in
more than half a million cases, according to a lawsuit13 filed in the
U.S. by Bitmanagement [10]. The U.S. Navy admitted the numbers
but denies that this occurred in an unauthorized fashion. The case
appears to be still ongoing.

The aforementioned cases pertain to proprietary software li-
censes rather than FOSS. However, U.S. court cases clarified that
the GPL is an enforceable set of copyright terms (Jacobsen vs. Katzer)
and an enforceable contract (Artifex vs. Hancom). A pending lawsuit
between Artifex Software, Inc. and Hancom, Inc. over a violation
of the GPL has reached a settlement meanwhile.14

Of course, the aforementioned cases do not answer affirmatively
the question whether a non-military license with FOSS charac-
teristics would be enforceable. Moreover, it is an open question
what the fines would be for violating the license of a software that
is otherwise available without cost, and whether these fines are
a sufficient deterrent. However, judging by unclassified internal
communication, the U.S. Department of Defense takes FOSS and
the associated licenses seriously [26]. Of course it stands to reason
that military institutions in other countries may not have to fear
comparable scrutiny from their own countries’ judicial system.

On a final note, a German idiom says that “wo kein Kläger, da
kein Richter,” which means that someone has to sue before a judge
can come to a verdict. For non-military licenses to be enforceable,
particularly if the licensed software is otherwise free of cost, there
still has to be someone, an individual or an organization, motivated
to challenge the license violation in a court of justice.

13U.S. Court of Federal Claims, case 16-840 C, filed July 15, 2016.
14https://artifex.com/news/artifex-and-hancom-reach-settlement-over-ghostscript-
open-source-dispute/

https://artifex.com/news/artifex-and-hancom-reach-settlement-over-ghostscript-open-source-dispute/
https://artifex.com/news/artifex-and-hancom-reach-settlement-over-ghostscript-open-source-dispute/

Can Software Licenses Contribute to Cyberarms Control? NSPW ’18, August 28–31, 2018, Windsor, United Kingdom

Who uses it?
Example: Military and contractors
In favor:

(1) Focused, broad
(2) Unambiguous test

Against:
(1) Arbitrary thresholds for control
(2) Setting threshold is challenging

What is made with it?
Example: Weapons
In favor:

(1) Focused, narrow
(2) Positive uses possible, e.g., USACE

Against:
(1) Dual-use software ambiguous
(2) Support functions ambiguous

What is intended by its use?
Example: Harming humans, doing “evil”
In favor:

(1) Independent of who uses it
(2) Independent of what is made with it

Against:
(1) Intention difficult to prove
(2) Exceptions warranted, e.g., surgery

Figure 1: Contrasts reasons in favor and against various approaches to define military exclusions in software licenses. The
acronym USACE refers to the United States Army Corps of Engineers, which provides public engineering services along with
military ones.

3.6 Can License Violations be Detected?
Yet another question is how violations of a non-military license can
be uncovered despite the secrecy that shrouds military and intelli-
gence organizations. In the U.S., the Freedom of Information Act can
probably be used to obtain information on the kinds of software
used by the Department of Defense. In Germany, the Informations-
freiheitsgesetz can probably be invoked to inquire about the FOSS
software being used by government entities. We are unaware to
what degree other countries offer comparable information freedom
laws.

3.7 Are License Violations Likely?
Military institutions tend to procure systems from larger “mature”
companies with the express or implied expectation that supplies
and support for these systems will be available for a prolonged time.
Of course, smaller and younger companies may still sell products
and services to the military, for example, if their products and ser-
vices are either unique or interchangeable. Mature companies tend
to have a certification process that all their software products need
to pass. In the course of that process, legal staff assesses whether
the licenses that govern the product’s components are compatible
and aligned with the company’s business objectives and those of
their customers. Large customers often have a matching process
that makes the same determination, independently. Therefore, ma-
ture companies will likely avoid a dependency on software whose
license prevents them from meeting their military customers’ re-
quirements or exposes them to a legal risk [15]. Hence, the question
whether non-military clauses are enforceable may not likely pose
itself often in practice because non-military software will not be
integrated into commercial products to be sold to the military in
the first place. Once again, this is probably true for democratic
rule-of-law countries. We cannot predict whether this will be true,
for example, in autocratic countries unless international pressure
assures compliance.

3.8 Effects of License Non-Compliance
It stands to reason that some state Amay gain an advantage over
state B by ignoring the provisions of non-military licenses if state
B remains compliant. If this is so then state B has incentives to not
comply with the license provisions either, which puts the value
of what we propose into question. The hypothetical advantage
manifests from one of two actions:

(1) Civilian systems of state A use software licensed for use in
the military.

(2) Military systems of state A use software it is prohibited to
use under a non-military provision.

The expectation of state A would be that its civilian or military
systems are better protected than they would be if A remained
compliant.

It is unclear how action 1 would lead to an advantage. Clearly,
state B has an incentive to develop exploits against the military sys-
tems of A. Collecting information on these systems would certainly
be easier rather than more difficult compared to the alternative.
Furthermore, exploits would work against civilian and military
systems of A, which is more cost-effective than the alternative and
provides exactly the pretext for attacks on civilian systems that we
seek to minimize.

Action 2 is more promising. State Amay be able to develop its
military systems faster and in a more cost-effective fashion than
in the alternative case. This may yield a strategic advantage. At
the same time, its military systems inherit the weaknesses of the
civilian systems and obtaining information on the military systems
becomes easier, as in the case of the first action. Crucially, state B
once again has a pretext to seek cyberweapons against the civilian
systems of state A, which renders the civilian population of state A
less safe. Furthermore, the same cyberweapons would work against
the civilian systems of a third state C whose civilians rely on the
same software, even ifC complies with the non-military provisions
of software. At least to us it is unclear how A would benefit from
this consequence, strategically.

It appears that action 2 may be beneficial to A if the strategic
advantage gained from the use of non-military software in mili-
tary systems outweighs the risk this decision poses to the civilian
systems of A. Of course, autocrats may have little regard for their
civilians when it comes to obtaining military power and they may
trust that their opponent does not intend to target their civilian
systems. However, the price they pay is less security for their own
military systems. First, state B has easier access to the information
necessary to develop exploits. Second, criminals will still develop
exploits against civilian systems and will likely sell their tools and
exploits to state B if the demand arises and the price is right. On
top of that, state A exposes its military systems to the very same
criminals even in the absence of any demand by B, that is, during
peace times. Lastly there is a risk that military-grade exploits are

NSPW ’18, August 28–31, 2018, Windsor, United Kingdom S. Dierker, V. Roth

lost or stolen and are used by criminals on civilian targets, as has
happened before [18].

3.9 Future Work on Non-Military Licenses
A number of non-military software licenses exist, which take differ-
ent approaches towards a similar goal. The impression they give is
still ad hoc. We consider it an interesting question to think this topic
through and to develop a “second generation” non-military license
portfolio. Different developers may have different preferences when
deciding upon their licensing choices. The license portfolio needs to
capture the majority of these preferences, which poses the question
of what they are. Examining the distribution of existing licenses
may yield useful insights. For example, is the license distribution of
software that is of interest to the military biased towards particular
licenses, for example, GPL versus MIT?

A second question of interest is how existing licenses can be
combined with flavors of non-military licenses and what approach
should be taken to combine them. There appear to be two general
approaches, as Nathan Reitlinger pointed out in the course of a
collaboration that ensued from NSPW 2018:

(1) Modular. Non-military licenses may augment and modify
established licenses in the form of an add-on. When present,
the add-on would have to take precedence over conflicting
clauses in the modified license.

(2) Stand-alone. Non-military licenses may include desired
subsets of established licenses while leaving out clauses that
conflict with the non-military provisions.

It seems that stand-alone licenses would be harder to maintain
because changes to established licenses would have to be tracked
and ported into the corresponding non-military license whereas
modular licenses may simply latch on to established licences.

Another important question to be addressed is the ways in which
non-military licenses combine in the case of software dependencies.
In a simple case, the licenses have a hierarchical ordering of “strict-
ness.” In other words, software A and B can be combined under
license B if and only if everything that is excluded under license B
is also excluded under licenseA. A more general case would impose
a lattice structure on licenses, that is, for licenses A and B there
would have to be a license C (the least upper-bound) such that
C excludes everything that A or B excludes. The ways in which
licenses combine needs to be “psychologically acceptable” (cf. [17]).
Hence, license portfolio design also poses usability challenges that
need to be addressed in suitable ways.

A challenge in the design of non-military licenses is to carefully
delineate desired and undesired uses of a software. At the same
time, the license language must be applicable internationally, that
is, the language cannot be tied to the institutional structure of a
particular state.

Another interesting idea that was raised by Eireann Leverett at
NSPW 2018 is to specifically furnish the community of hackers and
security professionals who develop exploits (and pentesting tools)
with licenses that prohibit the use of their exploits by the military.
Anecdotal evidence of a demand along those lines can be found in
the form of a disclaimer in the Github repository of Hydra,15 a tool
to audit the password security of a plethora of different services.
15https://github.com/vanhauser-thc/thc-hydra

On September 22th, 2018, the disclaimer reads “Please do not use
in military or secret service organizations, or for illegal purposes.”
Penetration testing tools are of particular interest because some of
them are used by military and intelligence organizations and they
have an immediate impact on cyberwarfare.

4 RIPPLE EFFECTS DUE TO DEPENDENCIES
One important aspect of the copyleft provision is that it requires
derived works to be licensed under the same license. A derived work
is software that extends other licensed work or simply includes it as
a dependency. One may therefore ask how many software projects
must convert to a non-military license with copyleft in order to
cause a particular fraction of all dependent projects to convert to a
non-military license as well.

Towards this end we decided to perform an analysis of current
open source projects. We used public datasets from Libraries.io,
which cover the projects from 36 package managers and public
repositories from 3 social coding platforms. In total these are over
2.7 million unique open source projects, 33 million repositories and
235 million interdependencies between them.

The dataset is released as an archive containing multiple CSV
files, each representing one table of a relational database.We used re-
lease 1.2.0 from March 13, 2018, which is 52G in size. For our analy-
sis only two files were of interest, the projects file and the dependen-
cies between projects (dependencies.csv, project_dependencies.csv,).
Since each file contains additional information, for example, the
Homepage URL, we filtered them and extracted only the informa-
tion on license use and dependencies (attributes Project ID and
Dependent Project IDs).

We analyzed license usage for the entire dataset and selected
seven popular package managers for a detailed analysis: Cargo for
Rust, CPAN for Perl, Maven for Java, NPM for NodeJs, NuGet for
.NET, Packagist for PHP and Pypi for Python.

In our analysis we interpret a package as a vertex in a directed
graph. Two vertices α and β are connected by the directed edge
α → β if and only if package β depends on package α . We also say
that α captures β and β is a captive because β may have to comply
with the license terms of α . The transitive hull of α is the maximal
subgraph that can be reached from α by following outgoing edges.
In this graph we can label each vertex with its associated license if
its license can be converted to a non-military one, and give it an
empty label otherwise. A vertex is particularly attractive if it has a
non-empty label and a large outdegree.

4.1 Dataset Analysis
Table 2 shows the statistics of the most relevant licenses in our
dataset. The most relevant licenses without copyleft were MIT,
Apache v2.0, ISC, BSD 3-Clause and BSD 2-Clause. The most rele-
vant licenses with copyleft were the GPL v2 and GPL v3. Overall,
58.3% of the packages are governed by a license without copyleft
and could be migrated to a non-military license. All other pack-
ages are governed by a license of types 2 to 5 and cannot easily be
migrated to a non-military license.

For our detailed analysis, given a graph G, we extracted all ver-
tices with an outdegree greater than zero, that is, all projects on
which other projects depend. We ranked these vertices in a greedy

https://github.com/vanhauser-thc/thc-hydra

Can Software Licenses Contribute to Cyberarms Control? NSPW ’18, August 28–31, 2018, Windsor, United Kingdom

fashion. The greedy algorithm begins with a set of selectable ver-
tices P and an empty set of selected vertices D. In each step, the
algorithm chooses a vertex π from P that has a transitive hull of
maximum size. It removes the transitive hull of π from P and adds
it to D, outputs |D|, recalculates the transitive hulls of all vertices
in P, and repeats until P only contains vertices with an outdegree
of zero. The vertices in D are the “captives,” that is, the set of ver-
tices that can be captured by converting fewer than |D| vertices.
A core of D is a set of vertices that is necessary and sufficient to
capture all of D.

Note that the greedy algorithm does not necessarily find the op-
timal solution, that is, the minimal selection necessary to compute
the captives. Finding the optimal solution amounts to solving an
instance of the maximum coverage problem, which is known to be
NP-hard. Therefore, our distribution only yields a sufficient num-
ber of packages, not the necessary number, that one must migrate
to a non-military license in order to convert any given fraction of
the captives.

Figure 2 shows the resulting distributions. The ordinate specifies
the fraction of captives that is captured by the number of vertices
given on the abscissa. Note that the graphs do not show the fraction
of all packages, which includes packages without dependent ones.
The tail end of the distribution must be captured on a 1-for-1 basis.
Table 1 gives descriptive statistics of the datasets, for example, the
number of captives, the size of the core, percentiles and the overall
number of packages.

For all package managers, the graphs show that there exists
a comparatively small number of influential packages with large
outdegrees. These packages capture a large fraction of dependent
packages. In the case of Pypi, 10 packages capture more than 65%
of all captives, and 208 packages capture more than 90%. In the
case of NuGet, 10 packages capture more than 93% of the captives,
and only 4 packages are necessary to capture more than 90%. For
all other package managers, one package already captures more
then 90%. More than 77% of Cargo (79%) CPAN (78%) and NPM
(77%) packages are captive, and less than than 59% of Maven (42%),
Packagist (51%) and NuGet (58%) packages are captive. For Pypi
packages, only 3.6% are captive. The maintainers of the remaining
(noncaptive) packages must be convinced to adopt non-military
licenses on an individual basis.

5 DISCUSSION AND CONCLUSIONS
Note that the Association of Computing Machinery (ACM) expects
of its members that they behave ethically and take a moral stand
if need be.16 One of the moral imperatives explicitly mentioned in
the ACM’s Code is “avoid harm to others.” While the Code does not
speak about war in general or cyberwar in particular, some ACM
members might still want to position themselves on these issues by
way of the licenses they choose for their own software. Using an
accepted and well-crafted non-military license that otherwise seeks
to maximize freedom in the spirit of FOSS, but is distinct from FOSS
licenses, would be one way to do that. The idea to do that might be
viewed as symbolic or even naïve. However, judging by the existing
examples of non-military licenses it appears that some individuals
and groups do have a desire for their software not to be associated

16https://www.acm.org/about-acm/acm-code-of-ethics-and-professional-conduct

Manager 90% 95% core used captives all
CPAN 1 1 106 10978 27488 35132
Cargo 1 1 176 5046 11382 14499
NPM 1 1 167 269325 540445 699243

Packagist 1 1 320 35913 100533 198815
Maven 1 23 175 39379 57117 135486
NuGet 4 27 187 28754 69034 118623
Pypi 208 320 432 2646 4494 125719

Table 1: Shows dataset descriptive statistics. All indicates all
packages. Used indicates packages that are used by at least
one other package. Captive indicates the maximum number
of packages that can be captured with cost less than one. A
cost of onemeans one packagehas to be converted to capture
one package (no uncaptured dependent packages are left).
Core indicates the maximum number of packages necessary
to capture all captives. The percentiles indicate how many
packages must be converted to capture x% of all captives.

License percent License percent
MIT 36.5 BSD 3-Clause 3.9
Apache v2.0 10.9 GPL v3 1.7
ISC 6.1 BSD 2-Clause 0.9
Other 4.6 GPL v2 0.8

Table 2: Shows the distribution of licenses among the
projects in our dataset in percent.

with military and intelligence activities. Whether an idea is naïve or
an idea whose time has yet to come is often only clear in hindsight.
What is clear is that FOSS is a force to be reckoned with inside and
outside the military. Already in 2003, MITRE conducted a study [4]
on behalf of the Defense Information Systems Agency (DISA) on
the importance of FOSS for the U.S. Department of Defense (DoD).
We quote liberally from the executive summary:

“To help analyze the resulting data, the hypothetical
question was posed of what would happen if FOSS
software were banned in the DoD.”

“The main conclusion of the analysis was that FOSS
software plays a more critical role in the DoD than
has generally been recognized.”

“Taken together, these factors imply that banning FOSS
would have immediate, broad, and strongly negative
impacts on the ability of many sensitive and security-
focused DoD groups to defend against cyberattacks.”

“Research would be impacted by a large to very large
increase in support costs, and by loss of the unique
ability of FOSS to support sharing of research results
in the form of executable software.”

“To the contrary, the combination of an ambiguous
status and largely ungrounded fears that it cannot be
used with other types of software are keeping FOSS
from reaching optimal levels of use.”

https://www.acm.org/about-acm/acm-code-of-ethics-and-professional-conduct

NSPW ’18, August 28–31, 2018, Windsor, United Kingdom S. Dierker, V. Roth

 0.95

 0.955

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0 20 40 60 80 100 120 140 160 180

F
ra
c
tio
n

o
f
c
a
p
tiv
e
s

Packages

Cargo
 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 20 40 60 80 100 120 140 160 180

F
ra
c
tio
n

o
f
c
a
p
tiv
e
s

Packages

Maven

 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 0 20 40 60 80 100 120 140 160

F
ra
c
tio
n

o
f
c
a
p
tiv
e
s

Packages

NPM
 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0 20 40 60 80 100 120 140 160 180 200

F
ra
c
tio
n

o
f
c
a
p
tiv
e
s

Packages

Packagist

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 20 40 60 80 100 120 140 160 180 200

F
ra
c
tio
n

o
f
c
a
p
tiv
e
s

Packages

NuGet
 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 20 40 60 80 100 120 140 160 180 200

F
ra
c
tio
n

o
f
c
a
p
tiv
e
s

Packages

Pypi

Figure 2: Shows what fraction y of captive projects (ordinate) can be affected by changes in x projects (abscissa). Projects are
ranked in a greedy fashion. For any given point (x ,y) the project at x + 1 produces the greatest increase of y. We show graphs
for six of the seven dependencymanagers we analyzed in order to keep the columns balanced.We omitted the graph for CPAN
because it has the smallest core and is very similar to the graph of Cargo.

In 2018, fifteen years later, it is probably safe to assume that the
reliance on FOSS has increased rather than decreased, particu-
larly since the U.S. government meanwhile embarked on a broad
FOSS strategy itself.17 According to a recent report of the U.S. Gov-
ernment Accountability Office [8], “DOD reports state that many
weapon systems rely on commercial and open source software.”
We contend that if some of the FOSS ecosystem migrated to non-
military licenses then this may have considerable impact on the
DoD and perhaps its counterparts worldwide who certainly lever-
age FOSS as well.

Towards an assessment of the impact that license changes may
have on FOSS software we analyzed popular package managers.
Our analysis of package dependencies necessarily looks only at one
case because the number of possible configurations is 2n for n core
packages. Since the worst case is not very interesting we analyzed
the best case configuration, that is, the most influential packages
convert to a non-military license with copyleft. This yields the

17https://code.gov

greatest effect with the least number of conversions. Since comput-
ing exact solutions is NP-hard we settled for a heuristic solution,
the greedy computation. The results show that a small number
of influential packages suffices to capture most captive packages.
However, the fraction of all packages that is captive in this fashion
varies among package managers, which suggests that a significant
number of packages would have to be converted to a non-military
license on a one-by-one basis (almost 97% in the case of Pypi). How-
ever, this does not yet answer the question what packages are the
most interesting ones to convert, that is, the packages of greatest
interest to military users and military targets. It would therefore
make sense to look specifically at the dependencies of projects
with known origin in defense departments. Prominent examples
would be the projects listed at code.gov, which are provided by the
US Government and which are hosted at Github. The Libraries.io
dataset does contain information on Github repositories and their
dependencies on packages. In order to analyze these dependencies,
the repository graph must be merged with the individual package

https://code.gov
code.gov

Can Software Licenses Contribute to Cyberarms Control? NSPW ’18, August 28–31, 2018, Windsor, United Kingdom

graphs and analyzed jointly. This yields a fairly large graph that
we have not proccessed at the time of writing.

It is important to note that the odds of converting even a small
number of specific packages to another license, say 10 of them, are
significantly smaller than converting an arbitrary set of 10 packages.
It appears that, in order to have an effect on the diversification of
systems, non-military licensing would have to become a trend
not unlike FOSS itself. On the other hand, we have only started to
investigate the impact that software dependencies have on software
licensing. More research on this subject will be helpful to better
understand the potential and limitations of “contagious” licenses in
today’s software ecosystem. In other words, perhaps non-military
licensing can bemore thanmerely an idealistic statement if amodest
number of influential developers decide to “flip the switch.” We
believe this could justifiably be called a paradigm shift. Amotivation
to doing so, besides signaling a moral position on an important
societal issue, might be the expected divergence of civil and military
systems. Combatants in a cyberwar would have to commit to their
types of targets in a fashion that is amenable to forensic analysis
and a firm conclusion. Because exploits and malware necessarily
reflect the specifics of the systems they are designed to attack there
would be little room to dismiss the targeting of civilian institutions
as accidents. This ups the ante for successful attribution because
international humanitarian law might be applied more effectively
as a consequence.

Besides further analysis of software and license dependencies
a number of principal and legal questions arise. For example, in
what terms should military use be defined? Should it be where a
software is used, by whom it is used, on whose behalf it is used, for
what it is used or any combination thereof?

ACKNOWLEDGMENTS
The Easy Encrypt License has been developed jointly by Volker Roth
and Dr. jur. Andreas Schoberth, Head of Legal Affairs in Research
& Transfer at Freie Universität Berlin. We thank Jürgen Altmann,
Ingo Ruhmann and Ute Bernhardt for reading drafts of our paper
and for suggesting improvements. We would also like to thank the
anonymous reviewers of NSPW for their insights and comments,
and our shepherds Cormac Herley and Olgierd Pieczul for their
guidance on revising our paper. We benefitted greatly from the
many discussions at NSPW 2018, particularly those with Eireann
Leverett, Nathan Reitinger and Olgierd Pieczul. Specific thanks
go to Eireann Leverett for having pointed us to libraries.io. Their
datasets prompted us to replace our original and more limited
analysis of Github data with the current analysis. We would also
like to thank the scribes, Bob Blakely and Matt Bishop, for their
meticulous notes, which were a great asset when finishing the
post-proceedings version of our paper.

REFERENCES
[1] Jürgen Altmann. 2013. Arms Control for Armed Uninhabited Vehicles: an Ethical

Issue. Ethics Inf. Technol. 15, 2 (March 2013), 137–152.
[2] Jeff Bachman. 2017. Revisiting the “Humanitarian” Intervention in Libya. Huff-

ington Post. (March 13, 2017). Online at https://www.huffingtonpost.com/jeff-
bachman/revisiting-the-humanitari_b_9445270.html.

[3] Maaike Beenes and Susi Snyder. 2018. Don’t Bank on the Bomb: A Global Report
on the Financing of Nuclear Weapons Producers. Technical Report. PAX, Utrecht,
Netherlands. ISBN 978-94-92487-25-4 NUR 689.

[4] Terry Bollinger, Frank Petroski, Fred Schultz, and Flayo Kirk. 2003. Use of Free
and Open-Source Software (FOSS) in the U.S. Department of Defense. Report MP 02
W0000101. The MITRE Corporation. Version 1.2.04, prepared for the Defense
Information Systems Agency (DISA) under contract No. DAAB07-01-C-N200.

[5] Anqelique Chrisafis. 2018. Nicolas Sarkozy Denies ’Crazy, Monstrous’
Libya Funding Allegations. The Guardian. (March 22, 2018). Online
at https://www.theguardian.com/world/2018/mar/22/nicolas-sarkozy-denies-
crazy-monstrous-libya-funding-allegations.

[6] Gordon Corera. 2018. Could Russia and West be Heading for Cyber-War?
BBC News. (April 16, 2018). Online at http://www.bbc.com/news/technology-
43788114.

[7] Douglas Crockford. 2018. The JSON Saga. Online at https://www.youtube.com/
watch?v=x92vbAN_j1k. (April 2018).

[8] GAO. 2018. Weapon Systems Cybersecurity – DOD Just Beginning to Grapple with
Scale of Vulnerabilities. Report to the Committee on Armed Services, U.S. Senate.
United States Government Accountability Office.

[9] International Committee of the Red Cross 1977. Protocol Additional to the Geneva
Conventions of August 12, 1949, and Relating to the Protection of Victims of Inter-
national Armed Conicts (Protocol I). International Committee of the Red Cross,
Geneva.

[10] Sebastian Jannasch. 2016. Bayerische Firma will 600 Millionen Dol-
lar von der US-Marine. Süddeutsche Zeitung. (July 22, 2016). On-
line at http://www.sueddeutsche.de/digital/klage-gegen-raubkopien-bayerische-
firma-will-millionen-dollar-von-der-us-marine-1.3090442.

[11] Michael A. Lindenberger. 2013. Irving Software Firm Settles Suit with U.S.
Army for $50 million. The Dallas Morning News. (Nov. 2013). Online
at https://www.dallasnews.com/business/business/2013/11/24/irving-software-
firm-settles-suit-with-u.s.-army-for-50-million.

[12] United States. Dept. of the Army. 1982. FM 100-5, Operations. Headquarters,
Department of the Army, Washington, D.C., USA.

[13] The European Parliament and the European Council. 2009. Directive 2009/24/EC
on the Legal Protection of Computer Programs. Official Journal of the European
Union. (April 23, 2009), 111/16-111/22 pages.

[14] William J. Perry. 1994. Specifications and Standards - A New Way of Doing
Business. Memorandum for Secretaries of the Military Departments. United
States of America Department of Defense, Washington, D.C., USA.

[15] Olgierd Pieczul. 2018. Personal Communication at NSPW. (Aug. 2018).
[16] Kenneth Roth. 2006. Was the Iraq War a Humanitarian Intervention? Journal

of Military Ethics 5, 2 (2006), 84–92. https://doi.org/10.1080/15027570600711864
arXiv:https://doi.org/10.1080/15027570600711864

[17] Jerome H. Saltzer and Michael D. Schroeder. 1975. The Protection of Information
in Computer Systems. Proc. IEEE 63, 9 (1975), 1278–1308.

[18] David E. Sanger. 2017. Malware Case Is Major Blow For the N.S.A. The New York
Times. (May 17, 2017). New York edition, A1, online at https://www.nytimes.
com/2017/05/16/us/nsa-malware-case-shadow-brokers.html.

[19] John Schwarz. 2015. A Short History of U.S. Bombing of Civilian Facilities. The
Intercept. (October 7, 2015). Online at https://theintercept.com/2015/10/07/a-
short-history-of-u-s-bombing-of-civilian-facilities/.

[20] Scott Shane and Daisuke Wakabayashi. 2018. A Google Military Project Fuels
Internal Dissent. The New York Times. (April 5, 2018). New York edition, A1,
online at https://www.nytimes.com/2018/04/04/technology/google-letter-ceo-
pentagon-project.html.

[21] Tom Shanker. 2010. General Nominated to Lead Cyberspace War Unit Sees Gaps
in Laws. The New York Times. (April 15, 2010). New York edition, A10, online at
https://www.nytimes.com/2010/04/15/world/15military.html.

[22] Richard Stallman. 1986. What is the Free Software Foundation? GNU Bulletin 1,
1 (Feb. 1986), 8–9. Online at https://www.gnu.org/bulletins/bull1.txt, accessed
June 16, 2017.

[23] Victor van Reijswoud and Arjan de Jager. 2008. Free and Open Source Software
for Development. CoRR cs.GL, Article 0808.3717 (2008), 113 pages. http://arxiv.
org/abs/0808.3717

[24] Wassenaar Arrangement on Export Controls for Conventional Arms and Dual-
Use Goods and Technologies 2017. List of Dual-Use Goods and Technologies and
Munitions List. Wassenaar Arrangement on Export Controls for Conventional
Arms and Dual-Use Goods and Technologies, Vienna, Austria. Online at https:
//www.wassenaar.org.

[25] Human Rights Watch. 2012. Losing Humanity: The Case against Killer Robots.
Human Rights Watch, 350 Fifth Avenue, 34th Floor, New York, NY 10118-3299,
USA. ISBN 1-56432-964-X.

[26] David M. Wennergren. 2009. Clarifying Guidance Regarding Open Source Software
(OSS). Memorandum. Department of the Defense. Attachment 2, online at
https://dodcio.defense.gov/Portals/0/Documents/FOSS/2009OSS.pdf.

https://www.huffingtonpost.com/jeff-bachman/revisiting-the-humanitari_b_9445270.html
https://www.huffingtonpost.com/jeff-bachman/revisiting-the-humanitari_b_9445270.html
https://www.theguardian.com/world/2018/mar/22/nicolas-sarkozy-denies-crazy-monstrous-libya-funding-allegations
https://www.theguardian.com/world/2018/mar/22/nicolas-sarkozy-denies-crazy-monstrous-libya-funding-allegations
http://www.bbc.com/news/technology-43788114
http://www.bbc.com/news/technology-43788114
https://www.youtube.com/watch?v=x92vbAN_j1k
https://www.youtube.com/watch?v=x92vbAN_j1k
http://www.sueddeutsche.de/digital/klage-gegen-raubkopien-bayerische-firma-will-millionen-dollar-von-der-us-marine-1.3090442
http://www.sueddeutsche.de/digital/klage-gegen-raubkopien-bayerische-firma-will-millionen-dollar-von-der-us-marine-1.3090442
https://www.dallasnews.com/business/business/2013/11/24/irving-software-firm-settles-suit-with-u.s.-army-for-50-million
https://www.dallasnews.com/business/business/2013/11/24/irving-software-firm-settles-suit-with-u.s.-army-for-50-million
https://doi.org/10.1080/15027570600711864
http://arxiv.org/abs/https://doi.org/10.1080/15027570600711864
https://www.nytimes.com/2017/05/16/us/nsa-malware-case-shadow-brokers.html
https://www.nytimes.com/2017/05/16/us/nsa-malware-case-shadow-brokers.html
https://theintercept.com/2015/10/07/a-short-history-of-u-s-bombing-of-civilian-facilities/
https://theintercept.com/2015/10/07/a-short-history-of-u-s-bombing-of-civilian-facilities/
https://www.nytimes.com/2018/04/04/technology/google-letter-ceo-pentagon-project.html
https://www.nytimes.com/2018/04/04/technology/google-letter-ceo-pentagon-project.html
https://www.nytimes.com/2010/04/15/world/15military.html
https://www.gnu.org/bulletins/bull1.txt
http://arxiv.org/abs/0808.3717
http://arxiv.org/abs/0808.3717
https://www.wassenaar.org
https://www.wassenaar.org
https://dodcio.defense.gov/Portals/0/Documents/FOSS/2009OSS.pdf

	Abstract
	1 Introduction
	1.1 Limiting Armament
	1.2 Diversification of Systems
	1.3 Non-Commercial Software Plays a Role

	2 Software License Background
	3 Non-Military Licenses
	3.1 Can there be Non-Military FOSS Licenses?
	3.2 Can FOSS become Non-Military?
	3.3 What is a Good Non-Military Clause?
	3.4 Exemptions for Humanitarian Missions
	3.5 Are Non-Military Clauses Enforceable?
	3.6 Can License Violations be Detected?
	3.7 Are License Violations Likely?
	3.8 Effects of License Non-Compliance
	3.9 Future Work on Non-Military Licenses

	4 Ripple Effects due to Dependencies
	4.1 Dataset Analysis

	5 Discussion and Conclusions
	Acknowledgments
	References

