
Digital Signatures to Ensure the Authenticity and Integrity of
Synthetic DNA Molecules

Diptendu Mohan Kar
Dept. of Computer Science
Colorado State University
diptendu.kar@colostate.edu

Indrajit Ray
Dept. of Computer Science

Colorado State University and
U.S. National Science Foundation

indrajit.ray@colostate.edu

Jenna Gallegos
Chemical and Biological Engineering

Colorado State University
jenna.gallegos@colostate.edu

Jean Peccoud
Chemical and Biological Engineering

Colorado State University
jean.peccoud@colostate.edu

ABSTRACT
DNA synthesis has become increasingly common, and many syn-
thetic DNA molecules are licensed intellectual property (IP). DNA
samples are shared between academic labs, ordered from DNA
synthesis companies and manipulated for a variety of different
purposes, mostly to study their properties and improve upon them.
However, it is not uncommon for a sample to change hands many
times with very little accompanying information and no proof of
origin. This poses significant challenges to the original inventor of
a DNA molecule, trying to protect her IP rights. More importantly,
following the anthrax attacks of 2001, there is an increased urgency
to employ microbial forensic technologies to trace and track agent
inventories. However, attribution of physical samples is next to
impossible with existing technologies. In this paper, we describe
our efforts to solve this problem by embedding digital signatures
in DNA molecules synthesized in the laboratory. We encounter
several challenges that we do not face in the digital world. These
challenges arise primarily from the fact that changes to a physical
DNAmolecule can affect its properties, randommutations can accu-
mulate in DNA samples over time, DNA sequencers can sequence
(read) DNA erroneously and DNA sequencing is still relatively ex-
pensive (which means that laboratories would prefer not to read
and re-read their DNA samples to get error-free sequences). We
address these challenges and present a digital signature technology
that can be applied to synthetic DNA molecules in living cells.

CCS CONCEPTS
• Security and privacy → Cryptography; Digital signatures;
Hash functions andmessage authentication codes; •Applied
computing → Molecular sequence analysis; Sequencing and geno-
typing technologies;

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.
NSPW ’18, August 28–31, 2018, Windsor, United Kingdom
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6597-0/18/08. . . $15.00
https://doi.org/10.1145/3285002.3285007

KEYWORDS
Cyber-Bio Security, DNA, Identity Based Signatures, Reed-Solomon
Codes

ACM Reference Format:
Diptendu Mohan Kar, Indrajit Ray, Jenna Gallegos, and Jean Peccoud. 2018.
Digital Signatures to Ensure the Authenticity and Integrity of Synthetic
DNA Molecules. In New Security Paradigms Workshop (NSPW ’18), August
28–31, 2018, Windsor, United Kingdom. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3285002.3285007

1 INTRODUCTION
DNA synthesis is becoming more commonplace, and samples con-
taining DNA frequently change hands within the life sciences com-
munity. Samples are shared between academic labs, ordered from
DNA synthesis companies, and manipulated for a variety of dif-
ferent purposes. It is becoming increasingly difficult to properly
attribute DNA molecules to their original sources.

Example use cases where attribution of a DNA molecule to its
originator is important are as follows: (i) Following the anthrax
attacks of 2001, there has been an increased urgency to employ
microbial forensic technologies to trace and track agent invento-
ries. Many of these biological agents are created or manipulated
in laboratories. (ii) Academic laboratories and biotech companies
frequently treat synthetic DNA as licensed intellectual property
that needs to be protected; the first step towards such protections
is successfully ensuring attribution. (iii) In the future, if synthetic
genes are used in gene therapy based medical treatment, such at-
tribution could (a) readily inform the user about matters related
to the therapy, and/or (b) serve as some measure of the quality of
the therapy, à la brand name versus generic drugs. (iv) Recently, a
DNA-based security exploit was demonstrated as a proof of concept,
where synthetic DNA was used to attack a DNA sequencer that
was deliberately modified with a vulnerability [8]; ensuring source
attribution could help mitigate similar attacks on DNA sequencers.

The exact sequence of synthetic DNAmolecules is generally doc-
umented electronically. Thus, one potential way (although indirect)
of achieving such attribution is to include the origin information in
the electronic document. However, the association between phys-
ical sequences and their electronic documentation is very loose
[9, 11]. It is not uncommon for a sample to change hands many

https://doi.org/10.1145/3285002.3285007
https://doi.org/10.1145/3285002.3285007

NSPW ’18, August 28–31, 2018, Windsor, United Kingdom Diptendu Mohan Kar, Indrajit Ray, Jenna Gallegos, and Jean Peccoud

times with only vague descriptions of where it originated or the
exact sequences being shared. On the other hand, simply document-
ing samples more effectively can create security and intellectual
property risks [12]. For instance, if the full sequence of pathogenic
viral vectors was freely available, that information could be used
with malicious intent. Or, for example, if a bio-tech company wants
to keep some sequence information confidential to protect their
IP rights, they may choose to exclude such information from the
documentation. Regardless, the source of a given sample cannot be
verified using only a careful documentation of the DNA sequence.

In the digital realm, the problem of authenticating a document
or software while still withholding proprietary or sensitive infor-
mation is achieved by digital signatures. Digital signatures are used
to authenticate the source of a digital file and to confirm that the
file has not been changed since the originator applied the signature.
Our hypothesis is that digital signature technology can be used to
solve the DNA attribution problem. Additionally, the same technol-
ogy, can be used to detect mutations in DNA samples. Mutations
are known to occur randomly at low frequencies, and they can
compromise the function of DNA molecules. Recent works in DNA
cryptography, such as, encoding arbitrary information in DNA [1],
and embedding watermarks in synthetic DNA [3, 5–7, 15], gives us
some degree of confidence in the validity of this hypothesis.

To solve the problem of tracing the source of synthesized DNA
molecules and confirming their identity and integrity, we have de-
veloped a system for generating digital signatures for molecules of
DNA in living cells. Specifically, we have used Shamir’s Identity-
based Signature (IBS) scheme [16]. For the unique identifier string
of the originator, we use Open Researcher and Contributor ID’s (OR-
CID) – https.orcid.org. ORCID is a non-profit organization which
uniquely identifies researchers using a 16 digit number. Many fund-
ing agencies require researchers to register for an ORCID, and
scholarly journals request that authors identify themselves using
their ORCID. The generated signature bits are converted to the
four letters A, C, G, and T, which represent the four nucleotide
building-blocks of DNA. The sequence can then be synthesized
and inserted into the original DNA molecule. When this signed
molecule is shared, a receiver can sequence the signed molecule
to verify that it was shared by an authentic sender and that the
sequence of the original molecule has not been altered or tampered
with.

While the use of these techniques in the digital world is quite
common, applying them to DNA required several creative adjust-
ments. The foremost challenge we faced arose from the physical
size of the DNA sequence encoding the signature. Adding extra-
neous sequences to a DNA molecule can impact it’s function or
stability. It was, thus, important to minimize the size of the added
sequence in order to decrease the likelihood that the biological
function of the signed molecule would be effected and to decrease
the cost of synthesizing the signature. This restricted our ability to
use more well-known signature schemes as well as larger key sizes
for signatures.

The second challenge was accounting for DNA mutations. In a
DNA sample, mutations occur randomly at low frequencies, and,
as a result, there is a non-trivial possibility that a signed molecule
could undergo a mutation between the time it is signed and when it

is validated. Mutations could affect not only the original DNA mol-
ecule but also the signature. In both cases, the signature validation
will fail even if the molecule is sent by the correct authority and
the original sequence was correct during the process of signature
generation. Mutations are beyond the control of any authority and
the relative impact of any given mutation can vary. In order to
address this concern, we included error correction codes to detect
mutations in the signed DNA molecule. Error correction codes are
prevalent in digital storage such as CD/DVD. It is possible to use the
same techniques to provide a reliable reconstruction of the original
sequence for comparison, provided a small number of changes have
occurred. Our application of error correction codes to DNA could
also be used to ensure the integrity of digital information stored in
DNA molecules.

Finally, while digital signatures provide away to verify the source
and integrity of a DNA sample, there is additional information about
the DNA sequence that would be very useful to the recipient of
a signed DNA sample. For example, the exact location of features
within the sequence, such as a certain gene, will still be unknown
to the recipient. We thus developed a method to link the physi-
cally signed DNA molecule with its digital representation, which
contains the sequence and its features with explanations.

Threat Model: For this work, we assume a polynomial-time
adversary, Mallory, who is trying to forge the signature of a reputed
synthesized DNA molecule creator, Alice. Alice is trying to protect
her IP rights / reputation as she distributes DNA molecules synthe-
sized by her to researcher Bob. If the attacker, Mallory, is able to
forge the signature of Alice then: (a) Mallory can replace the actual
DNA created by Alice with her own but keep the signature intact.
(b) Mallory can create her own DNA molecule and masquerade as
Alice to sign it. (c) Mallory can modify parts of the signed DNA
molecule created by Alice. Therefore, for our proposed signature
scheme to be secure, we need to show that no polynomial-time ad-
versary can forge a genuine signature without knowing the secret
used to sign.

The rest of the paper is organized as follows. In Section 2, we
discuss relevant works in DNA cryptography, especially those that
use watermarking techniques for DNA origin authentication. Sec-
tion 3 gives a small overview of the biological domain which forms
the backdrop of our scheme. Section 4 discusses the challenges we
faced and our design decisions. In Section 5, we present our vanilla
signature scheme and describe how the digital signature is embed-
ded in the physical DNAmolecule. Section 6 describes the workflow
that we have to follow in order to validate the signed physical DNA
molecule. Section 7 discusses how error correction code is used to
address the problem of mutations. In Section 9, we describe the
process of strongly tying the digital document corresponding to a
signed DNA molecule with the physical DNA sample. We include
some discussions on the practicality and usability of our signature
scheme in Section 10. Finally, we conclude in Section 11 by briefly
talking about validation of our scheme and discussing some open
problems that we can pursue in this area.

2 RELATEDWORK
By converting the binary system of 0’s and 1’s used by computers
into the four-letter genetic code (A-C-G-T), encryption algorithms

https.orcid.org

Digital Signatures for Synthetic DNA Molecules NSPW ’18, August 28–31, 2018, Windsor, United Kingdom

have been developed to store the content of a book, an operating
system, and even a movie in synthetic DNA [1, 2]. Computer scien-
tists working in the field of DNA computing have also proposed
developing asymmetric encryption schemes using DNA sequences
[17]. These pioneering projects demonstrate that DNA synthesis
and DNA sequencing technologies are able to translate between
DNA molecules and digital information. Our proposed approach is
the first application of a digital signature scheme to DNA in a living
organism, which will provide a physical significance to a digital
signature.

There is a growing body of research concerned with traceability
and unique identification of the source of DNA sequences. For
instance, it has been proposed that unique watermarks be inserted
in the genome of infectious agents to increase their traceability [6].
The synthetic genomics community has demonstrated the feasibility
of this approach by inserting short watermarks into DNA without
introducing significant perturbation to genome function [3, 5, 7, 15].
The use of watermarks has also been proposed in order to identify
genetically modified organisms (GMOs) or proprietary strains. Our
digital signature-based approach provides a much greater level of
security than watermarking because a watermark is independent
of the sequence it is attached to (only changes to the watermark
itself would be detectable) and watermarks are easily counterfeited.

Heider et al. [4] describes DNA-based watermarks using DNA-
Crypt algorithm. This technique is applicable to provide proof of
origin to a DNA molecule. However, there are some limitations.
First, the watermark is generated from any binary data and added
to the original sequence. The watermark is independent of the orig-
inal sequence and hence provides no integrity to the actual DNA
sequence. The sequence of the original molecule could change
(intentionally or due to mutations) while the watermark remains
unaltered. Anyone attempting to validate the watermark would not
be able to tell that the sequence had changed. Second, if an attacker
knows the binary data that was used to generate the watermark,
they could generate their own DNA sequence and include the wa-
termark to malign the actual user/organization. An attacker could
also apply their own watermark to proprietary DNA sequences
that are licensed by another entity. Owing to these reasons, we
cannot just rely on watermarks to ensure authenticity. Instead, we
use digital signatures as they provide much better and stronger
security guarantees. Finally, DNA-Crypt uses some symmetric key
encryptions like AES, Blowfish to encrypt the binary data that is
used to create the watermark. Hence, these keys have to be trans-
mitted to the receiver who will validate the watermark. DNA-Crypt
has options to export and import keys and exchange them with
receivers. But the receiver now has the secret key that was used
to generate the watermark and can masquerade as the originator
of the DNA. Non-repudiation becomes a problem too. Although
DNA-crypt mentions that RSA algorithm can be used as an asym-
metric scheme, the developers do not talk about the challenges
involved when using RSA since the length of the watermarks will
be dependent on the RSA security parameter.

3 BACKGROUND
As a first step, we have applied digital signatures to plasmids. A
plasmid is a small DNAmolecule within a cell that is physically sep-
arated from the chromosomal DNA and can replicate independently.
Plasmids are small, circular, double-stranded DNA molecules com-
monly found in bacteria. In nature, plasmids often carry genes that
may benefit the survival of the organism, for example, genes for an-
tibiotic resistance. While chromosomes are big and contain all the
essential genetic information for living under normal conditions,
plasmids usually are very small and contain only additional genes
that may be useful to the organism under certain situations or par-
ticular conditions. Artificial plasmids are widely used as vectors in
molecular cloning, serving to drive the replication of recombinant
DNA sequences within host organisms. The reason for starting
with plasmids are -

• Plasmids can be isolated in large quantities.
• We can cut and splice them, adding whatever DNA we
choose.

• We can put them back into bacteria, where they’ll replicate
along with the bacteria’s own DNA.

• We can isolate them again - getting billions of copies of
whatever DNA we inserted into the plasmid!

Plasmids are generally limited to sizes of 2.5-20 kilobases (each
letter of the genetic code A-C-G-T is 1 base).

The sequences that make up a plasmid are often documented elec-
tronically. Molecular biologists are now equipped with automated
DNA sequencers that identify the pattern of bases in a physical
DNA sample and document the sequence in a digital file called a
fasta file (.fasta). A sample fasta file is shown in Figure 1. The
sequences can then be converted to annotated files such as .dna,
or .gb files that include information about what genetic features
are included in the plasmid. A sample genbank (.gb) file is shown
in Figure 2. Each of these files has a specific format which denotes
the sequences together with other pieces of information including
the location of features such as coding sequences (CDS), origin of
replication, etc. Sequence-manipulation softwares such as Snap-
Gene (http://www.snapgene.com) convert sequences into maps of
plasmid features. Figure 3 depicts a map generated in SnapGene of
the same digital DNA file depicted in Figure 2. Features (shown as
colored block arrows in Figure 3) can be added manually or iden-
tified automatically by searching within the SnapGene database
for common features. Not all of the sequences contain features.
There are substrings or subsequences that do not have any known
biological function. Biologists can add other DNA sequences in
these areas with reasonable confidence that the added sequences
will not disrupt the activity of any existing features.

Although the sequences that make up a plasmid can be docu-
mented electronically, the electronic sequence file associated with
a physical DNA sample is seldom shared along with the sample it
represents [10]. In life sciences manuscripts, plasmids are generally
described one of four ways. Most often, the main features of the
plasmid relevant to the publication are broadly explained (ie. "A
plasmid containing gene X was used..."). Sometimes there is a more
thorough description of how the plasmid was constructed included
in the methods section (ie. "Gene X was inserted into a commercial
plasmid between Origin Y and antibiotic resistance gene Z"). Full

http://www.snapgene.com

NSPW ’18, August 28–31, 2018, Windsor, United Kingdom Diptendu Mohan Kar, Indrajit Ray, Jenna Gallegos, and Jean Peccoud

plasmid maps (as shown in Figure 3) are very rarely included in
published manuscripts, and inclusion of the full sequence – which
you would need to validate the plasmid – is even more rare. Addi-
tionally, it is not uncommon for a plasmid to be shared multiple
times between many labs until it is no longer clear who made the
original plasmid. Even within a lab, it is often difficult to track down
the digital sequence file associated with a plasmid if the person
who constructed it is no longer an active member. The ability to
validate a physical DNA sample without having access to the digital
sequence file associated with it would, thus, be extremely valuable
to the life sciences community.

We propose digital signatures as a strategy for encoding the abil-
ity to validate a physical DNA sample within the DNA itself. Once
the sequences are in a digital file, we can apply digital signatures
on the extracted sequence (message). The signature bits are then
converted to ACGT sequence as A-00, C-01, G-10, and T-11 and
added to the original sequence.

Once the signed sequence is obtained by adding the signature
to the original sequence, it can be outsourced to a gene synthesis
company that will synthesize the signed DNA and send it. The
signature alone can be synthesized and inserted into the original
molecule, or the entire plasmid can be synthesized including the
signature to eliminate the need for any downstream assembly.

Digital DNA file formats
An automated DNA sequencer provides the digital representation
of the sequences present within the physical sample. The output of
a DNA sequencer is a fasta (.fasta) file as shown in Figure 1. This
file contains only the raw sequences in the sample. A genbank file
(.gb) contains the same raw sequences along with annotations. In
Figure 2, after the word “ORIGIN” the raw sequences are denoted
and before that the features are annotated.

Sequence manipulation software such as SnapGene can be used
to convert a fasta file to a genbank file and vice versa. When a fasta
file is converted to a genbank file, the software searches its database
for common annotations. The generated annotations may not be
complete or correct every time. Hence, the user has the flexibility
to manually add additional annotations that may be required to
describe the sample sequence. These manually added annotations
are only available to the creator. When the same sample is sent
to others, they will sequence it and obtain the fasta file but the
genbank file will contain only those annotations that can be au-
tomatically generated. In order for the receiver to extract all the
feature information for a given plasmid, the creator would need to
share the genbank file containing the manually added annotations.
In this work, we assume that the sender of the DNA sample will
also share the genbank file, although this is very often not the case.
(We are looking into ways of eliminating this step such that the
genbank file can be generated from the fasta file itself.)

Circular DNA and reverse complement
Plasmid DNA is circular and double-stranded. The sequences rep-
resented in a fasta file are the linear representation of a circular
structure. As a consequence, there is no single set representation
of the sequences in a sample. Following sequencing, any cyclic per-
mutation of the sequence is possible. For example, in a fasta file if

the sequence is - “ACGGTAA”, when the same sample is sequenced
again, the fasta file might read as - “TAAACGG”.

Furthermore, since DNA is composed of two complimentary,
anti-parallel strands, a sequencer can read a sample in both the
“sense” or “antisense” direction. The sequence may be represented
in a fasta file in either direction. When the sample is sequenced
again, the output might be in the other direction, or what is known
as the reverse complement. The reverse complement of "A” is "T”
and vice-versa, and the reverse complement of "C” is "G” and vice-
versa. The DNA molecule has polarity with one end represented
as 5’ and the other represented as 3’. One strand adheres to its
reverse compliment in anti-parallel fashion. So if the sequence is
- “5’-ACGGTAA-3”’, the reverse complement is “3’-TGCCATT-5”’.
The fasta file will represent one strand of the DNA sequence in
the 5’ to 3’ direction; so the fasta file could read as “ACGGTAA” or
“TTACCGT”. By combining these two properties, for a DNA that
contains N number of bases, the correct representation of the same
sample is 2N : N cyclic permutations plus each reverse complement.

4 CHALLENGES AND DESIGN DECISIONS
In the digital realm, the application of digital signatures, nowadays,
is trivial. But embedding a signature within a physical DNA mol-
ecule is challenging for a number of reasons. We describe these
challenges and how we handled them below.

4.1 Signature length
For any digital asset, e.g. a digital document, the length of the sig-
nature does not affect the asset that is being signed. When applying
digital signatures to DNA, we cannot use any arbitrary length for
the signature. Inserting any extraneous DNA sequences could im-
pact the function or stability of the DNAmolecule. For instance, the
inserted sequences could: 1) disrupt existing functions by interrupt-
ing important features, 2) introduce a new function by encoding
cryptic functional elements or 3) impact the overall stability of
the plasmid in terms of propensity for mutations, structural re-
arrangements or retention in the host organism. The probability
that existing features will be disrupted can be minimized through
careful choice of where within the plasmid the sequence is inserted.
The probability that the inserted sequence could introduce a new
function or impact stability increases with the length of the inserted
sequence. Additionally, the cost of synthesizing the signature in-
creases with length. However, it is not preferable to use weak secu-
rity parameters to shorten the signature length as this might keep
the properties of the molecule intact but instead compromise the
security of the signature itself. For a digital document, a signature
of 384 bytes (say) is trivial. But the same 384 bytes translates to
1536 bases (384 * 8 / 2) of DNA. If a DNA sample originally con-
tains, say, 2000 bases (not unusual for a plasmid), the addition of
a 1536 nucleotide signature would nearly double the size of the
DNA molecule. As a consequence, we did not apply identity-based
signatures that use bilinear pairings in order to minimize the size
of the insertion. Hence, we decided to utilize Shamir’s IBS scheme
with a minor modification. The details of our signature scheme are
described in section 5.

Digital Signatures for Synthetic DNA Molecules NSPW ’18, August 28–31, 2018, Windsor, United Kingdom

Figure 1: Sample fasta (.fasta) file

Figure 2: Sample genbank (.gb) file

4.2 Signature identification
In a digitally signed document, the original message and the sig-
nature can be easily identified and separated since we have delim-
iters that separate them. In the DNA domain, there exists another

problem of embedding the signature inside the original molecule.
Because the site of insertion will vary depending on the architec-
ture of the plasmid, delimiters are needed to identify where the

NSPW ’18, August 28–31, 2018, Windsor, United Kingdom Diptendu Mohan Kar, Indrajit Ray, Jenna Gallegos, and Jean Peccoud

Figure 3: SnapGene view of a genbank file

signature starts and ends. So we have used an algorithm that iden-
tifies subsequences. Any subsequence of 10 base pairs (substring of
length 10) that is not present in the original sequence can be used as
a start and end delimiter which will contain the signature. During
verification, all subsequences of 10 base pairs will be identified and
only those subsequence that occur twice within the entire sequence
are the delimiters.

Although the above technique can be useful, to keep things
simple we came up with an alternate solution. Instead of the al-
gorithm choosing the delimiters, the tool we developed lets the
user input their own delimiters of 10 base pairs. This approach
can be beneficial as it lets the biologist design delimiters that are
relevant to their specific project. For instance, the delimiters can
be designed in such a way as to simplify synthesis/assembly of the
DNA. The tool checks if the sequences are permitted i.e. the 10 base
pair subsequence does not already exist elsewhere in the plasmid.
The sequences that we have used as start and end delimiters are
ACGCTTCGCA and GTATCCTATG respectively. These sequences
are relatively easy to identify visually, they are unlikely to develop
secondary structures and they contain a balanced number of A’s
C’s G’s and T’s.

4.3 Error tolerance
When any digitally signed message is shared and verification fails,
the sender just resends the message again. But in the domain of
DNA sharing, since we are primarily shipping samples, this implies
resending and likely resynthesizing the sample (sometimes even

batches of samples). This will incur a lot of cost. The presence of a
signature inside the molecule will ensure that any change in the
signed DNA will result in failed verification. But DNA molecules
are prone to naturally occurring mutations. Hence after a failed
verification, it can be useful to check the location of the mutation(s)
which caused the verification to fail. If there are mutations in any
important features, the receiver will likely choose to reorder the
sample. If there are mutations in any relatively unimportant part
of the DNA, the receiver may choose to proceed to work with the
sample. In order to achieve this error tolerance, we have used error
correction codes specifically Reed-Solomon Codes [14]. The details
are described in section 7.

4.4 Strong association between physical DNA
molecule and its digital representation

In order to tie the physical DNA sample with its digital repre-
sentation, we have proposed a solution that combines the signed
sequence and its description and generates a signature on this com-
bined message. This signature is placed in the digital representation
of the DNA such as the genbank file which is shared with the
receiver. This ensures that the explanation of the sequences and
the sequences in the plasmid are correct and related. Any change
in the descriptions without changing the molecule will invalidate
this signature. Also, any change in the molecule without updating
the descriptions will invalidate the signature. The details of this
procedure are described in section 9.

Digital Signatures for Synthetic DNA Molecules NSPW ’18, August 28–31, 2018, Windsor, United Kingdom

5 DNA SIGNATURE SCHEME
Weuse the identity-based signature scheme proposed by Shamir[16]
in 1984. However, we have simplified it to suit the DNA sharing
domain. The unique identifier in our case is the ORCID (Open
Researcher and Contributor ID). Shamir’s IBS is based on the RSA
cryptosystem and its security depends on the difficulty of integer
factorization in the RSA problem.

Setup: The setup is similar to the standard RSA cryptosystem
setup. For a given security parameter k , proceed with the following
steps -

(1) Generate two distinct primes p and q at random with 2
k−1
2 <

p,q < 2
k
2

(2) Calculate the modulus n as n = p · q
(3) Calculate the totient ϕ(n) = (p−1)(q−1). Choose the master

public key e as 1 < e < ϕ(n), such that e is relatively prime
to ϕ(n).

(4) Calculate the master private key, d , as e−1 mod ϕ(n) in order
to satisfy the congruent relation d · e ≡ 1mod ϕ(n)

(5) Publish the public parameters <e,n> and the keep the pri-
vate key d .

In our setup k is 1024 bits.
Key Extraction: The private key, sID for a user with the identity

ID is generated as:

sID = H (ID)d mod n

where H is a secure hash function. We are using SHA-256 as the
hash function.

Signature Generation: For generating the signature for a mes-
sagem ∈ {0, 1}∗, generate the signature(σ) as :

σ = s
H (m)
ID mod n = H (ID)d ·H (m) mod n

Signature Verification: To verify a signature σ for a message
m and user identity ID, check if the following equation holds:

σe
?
= H (ID)H (m) mod n

Proof of security for DNA signature scheme
Our DNA signature scheme is a simplified version of Shamir’s IBS
scheme. To show that our scheme is secure we first present the
original Shamir’s IBS scheme:

Shamir’s IBS Scheme
Setup: Same as above.
Key Extraction: Same as above.
Signature Generation: For generating the signature for a mes-

sagem ∈ {0, 1}∗ :
(1) Choose r ∈R Z∗n .
(2) Compute R = re mod n.
(3) Compute c = H (R | |m)mod n.
(4) Compute t = sID · rc mod n.
(5) Output signature σ = (R, t)
Signature Verification: To verify a signature σ for a message

m and user identity ID, check if the following equation holds:

te
?
= H (ID) · RH (R | |m) mod n

We show that the simplified Shamir’s IBS scheme is able to
provide the same level of security guarantees as the original scheme.

The signature in the original scheme is a tuple - (R, t). If the
modulus chosen is 1024 bits, the signature output will be 2048 bits
which is 1024 base pairs. Based on our threat model, Shamir’s IBS
scheme is secure if no polynomial-time adversary can forge the
signature on a given message. It is readily shown that this is equiv-
alent to the difficulty of breaking the RSA public-key cryptography.
Here is how. To forge a signature, the adversary needs to find sID
from the equation t = sID · rc mod n. Let, rc = w . Therefore,
sID = t · w−1. In order to find any inverse modulo n, one has to
know ϕ(n), where ϕ(·) is the Euler totient function. Calculating
ϕ(n) from n is equivalent to factoring n into two distinct primes –
a known hard problem. Next, to calculatew−1, the random r has to
be calculated. If r can be found, then rc can be found as c is public.
c = H (R | |m) mod n. R is first part of the signature and m is the
message which bears the signature. To find the random r , one has
to know ϕ(n) or the secret key d , since R = re , r = Rd .

With that brief background, let us now consider the simplified
Shamir’s IBS scheme. We have simplified the original scheme by
removing the random R. In our scheme, the signature σ = s

H (m)
ID .

Therefore, sID = σy , where y = H (m)−1. Hence to find y, one has
to know ϕ(n)which is equivalent to the RSA problem. Therefore, no
polynomial-time adversary can forge a signature in the simplified
scheme.

Note that our scheme will generate the same signature for the
same message every time. This is a threat where replay attacks on
signatures is of concern. In our domain, the threat of replay attacks
is negligible since replaying the signed message implies sending
the actual signed DNA to the receiver again. As this is not any
digital message which can be generated by packet crafting or similar
techniques, the attacker would have to actually synthesize the DNA
molecule and send it to the receiver. On the other hand, removing
the random will make the signature length 1024 bits or 512 base
pairs if the modulus(n) is 1024 bits. Hence, in our domain, although
the same original DNA plasmid, originating from the same source,
will have the same signature every time, the practical risk is minimal
and is outweighed by the benefit of minimizing the signature length
so as to decrease the likelihood that the functionality or stability of
the plasmid is disrupted. □

Figure 4 depicts a map of the plasmid features of a digitally signed
DNA file. We are exploring other identity based signature schemes
which generate shorter signatures as the signature sequences have
to be ordered from gene synthesis companies and this can be finan-
cially expensive. The cost of synthesis is about 7 to 9 cents per base
pair.

6 SIGN-SHARE-VALIDATE WORKFLOW
In our system, there are three players: 1) The signer will develop
the DNA signature and sign a sequence. 2) The verifier will use
the signature to verify whether the received DNA sequence was
sent by the appropriate sender and was unchanged after signing.
3) A Central Authority will provide the signer with a token that is
associated with their identity. We assume that the central authority
is secure and trusted by all participants in the system.

There are also three steps to the sign-share-validate workflow,
summarized in Figure 5. In this example, Alice is developing a new
plasmid. She starts in a sequence editor application by combining

NSPW ’18, August 28–31, 2018, Windsor, United Kingdom Diptendu Mohan Kar, Indrajit Ray, Jenna Gallegos, and Jean Peccoud

Figure 4: Snapgene view of a signed digital DNA file.

sequences from different sources. When she has finalized the se-
quence of the plasmid she wants to assemble in the lab, she uses
the signature generating service hosted in a server to create a DNA
signature sequence she will add to her design. This DNA sequence
is the digital signature. It is generated using the signature algo-
rithm described in section 5. Alice provides the digital DNA file to
sign, her unique identifier (ORCID) and a six-digit plasmid ID. The
digital signature is inserted in the plasmid sequence between two
conserved sequences used to identify the signature from the rest of
the plasmid sequence. Alice will then assemble the signed plasmid
by combining DNA fragments from different sources. She will have
to order the DNA fragment corresponding to the signature from
a gene synthesis company. She describes her plasmid in a paper
and refers to it using the six-digit number ID which she used to
identify the plasmid in the signature. She did not include the entire
plasmid sequence in the online supplement of the article (this is
the norm for biology publications). She sends the plasmids to a few
collaborators.

Ellen is interested in using Alice’s plasmid. She gets the plasmid
from another graduate student who got it from his advisor a few
years ago. Ellen has limited confidence in the plasmid because it
came in a hand-labeled tube. So, she decides to get it sequenced
completely before doing anything with it. She uploads the assem-
bled sequence of the plasmid to the server to verify the plasmid. The
signature validation service in the server identifies the signature in-
serted between the two signature tags. It will identify a block of 32
bp to the right of the signature and extract the plasmid developer’s
ORCID. Using the ORCID value as identity, the server decrypts the
512 bp signature block. Then, the validation service will verify the
signature as described in section 5. If the two values match, then
Ellen will know that the plasmid was signed by Alice and that the
physical sequence of her plasmid corresponds exactly to Alice’s
design. She had asked Alice for the plasmid sequence to align with
her sequencing data. Unfortunately, Alice had moved on with her
life and she no longer had access to the plasmid sequence files.
Nonetheless, because she was careful enough to sign her plasmid,
Ellen can be assured that the plasmid she intends to use is the one
described in the publication.

Alternatively, the validation service might have determined that
the signature was invalid. Several hypotheses could lead to this
situation. It is possible that Alice was sloppy and did not manage
to assemble the plasmid corresponding to the sequence she had
designed. It is also possible that her advisor handed Ellen a deriva-
tive of the plasmid described by Alice. One could also not rule out
the possibility of spontaneous mutations or a stupid labeling error.
In this situation, Ellen may decide to proceed with the plasmid
based on the similarity of the plasmid sequence and the informa-
tion available in the Methods section of the paper describing the
plasmid.

7 ERROR CORRECTION CODES
Limitations of using signed DNA: The presence of a digital sig-
nature within a plasmid will guarantee that the original sequence,
identity sequence and the signature sequence are unchanged since
the time the plasmid was signed. If any of these change, inten-
tionally or unintentionally, the receiver will not be able to verify
the DNA sequence. DNA is prone to mutations. Mutations are a
naturally occurring phenomenon. Whenever there is any mutation
within the signed DNA, the receiver will not know what changes
occurred to invalidate the signature.

Mutations can be of three types: 1) Point mutation - This is the
case where one base changes to another base e.g. AAGGAA −→
AAGAAA. 2) Insertion - This is when a subsequence gets added to
the original sequence e.g. AAGGAA −→ AAGAGAA. 3) Deletion -
This is when a subsequence gets deleted from the original sequence.
e.g. AAGGAA−→AAGG. In any of the above scenarios, the verifica-
tion process will result in failure. In the digital realm, if any message
is not verified, we can always resend the message. But in the DNA
sharing domain, this requires that the sample is transported and/or
synthesized again, which incurs a lot of cost. Associated with the
problem of mutation lies the problem of sequencing. When the
DNA is processed by an automated DNA sequencer, the output
is not always one hundred percent correct. It is dependent on the
depth of sequencing, and increased sequencing depth means higher
costs. Sequencing a small plasmid to sufficient depth is relatively
inexpensive, but for larger sequences, sequencing errors can be an
issue.

In order to overcome these limitations, we propose using error
correction codes along with signatures. The presence of error cor-
rection codes will help the receiver to locate a limited number of
errors in the sequence. In information theory and coding theory,
error detection and correction are techniques that enable reliable
delivery of digital data over unreliable communication channels.
Many communication channels are subject to channel noise, and
thus errors may be introduced during transmission from the source
to a receiver. Error detection techniques allow such errors to be
detected, and error correction is used to reconstruct the original,
error-free data. In error correction, redundant data, or parity data,
is added to a message, such that it can be recovered by a receiver
even with a number of errors (up to the capability of the code being
used). Error-correcting codes are frequently used in lower-layer
communication, as well as for reliable storage in media such as CDs,
DVDs, and hard disks. It is possible to use the same techniques
to provide a reliable reconstruction of sequences provided a small

Digital Signatures for Synthetic DNA Molecules NSPW ’18, August 28–31, 2018, Windsor, United Kingdom

Figure 5: Example of a sign-share-validate workflow

number of changes have occurred. Our application of error correc-
tion codes to DNA can also be used to ensure the integrity of digital
information stored in DNA molecules.

We have used Reed-Solomon codes [14] for error detection of
DNA sequences. As of now, we have utilized this approach to cor-
rect point mutations only. Reed-Solomon codes are block-based
error correcting codes with a wide range of applications in digital
communications and storage. They are used extensively in storage
devices e.g. CD/DVD, barcodes, QR codes, wireless communication,
satellite communication (voyager space probe used RS codes) etc.
We will not explain the construction and working principle of a
Reed-Solomon code here. An interested reader can refer to [13] for
details.

The most common convention of a Reed-Solomon code is (255,
223, 32) in which 223 is the number of data symbols, 32 is the
parity symbols and 255 is the total number of symbols that can
be processed at a time or block size. Using this convention the
total number of errors that can be corrected anywhere in the 255
symbols is 32/2 = 16. This convention uses 8-bit symbols. Since
the symbols are 8-bits, the block size is 28 − 1 = 255 and with

respect to a programming language, each symbol is treated as a
byte. So the Reed-Solomon code of (255,223,32) can be simply put
as 255 bytes block size, 223 data bytes, and 32 parity bytes. The total
number of errors that can be corrected is 16 bytes. The parameters
are generated from Galois field GF(257).

Here also we face an obstacle while applying error correction
codes to DNA. Note that a plasmid contains between 2500 to 20,000
base pairs. If we treat each base as a character or byte, we will
not be able to process the entire sequence in a single block. We
have to make blocks of 255 bases. This implies that in a block of
255 bases, 223 bases are the actual sequence and 32 bases are the
parity sequence for that block. As we mentioned earlier, we do not
have the privilege of using any delimiters in DNA as we had in
a digital message. Therefore, the parity sequences of every block
cannot be identified. Also, let us consider the following scenario -
a user wants to correct 5 bases in a plasmid which contains a total
of 800 bases. By convention, 800 bases cannot be processed at a
time and will be processed in four blocks (255 bases in each). We
cannot be certain about the distribution of errors in the four blocks
i.e. there is no guarantee where the 5 errors might be. They may

NSPW ’18, August 28–31, 2018, Windsor, United Kingdom Diptendu Mohan Kar, Indrajit Ray, Jenna Gallegos, and Jean Peccoud

be all in one block or distributed across multiple blocks, but the
distribution will most certainly not be uniform (1.25 in each block).
So assuming the worst case, we need to correct 5 errors in each of
the blocks. Therefore the number of parity bytes for total 800 bases
is now 10 · 4 = 40. Whereas, if we could process the entire 800 base
sequence at once, we would have only 5 · 2 = 10 parity bytes.

To adapt to this scenario, we used 16-bit symbols or shorts.
Now the block size is 216 − 1 = 65535. The sequence charac-
ters, which were bytes, are now shorts. The parameters are gen-
erated using Galois field GF(65537). This gives us the flexibility
to process the entire plasmid sequence at once. The user pro-
vides the number of errors that they would like to detect. The
original plasmid sequence and the generated sequence are passed
to the Reed-Solomon encoder. The Reed-Solomon encoder gen-
erates 2 · k shorts for k error tolerance. The 2k shorts are then
converted to sequences. Each parity short is converted to an 8 base
sequence (16/2). Previously the final signature sequence consisted
of - < start >< ORCID + Plasmid_ID + Siдnature >< end >
where start and end were 10 base pairs each, ORCID was 32 base
pairs, Plasmid_ID was 12 base pairs and Signature was 512 base
pairs. Now the parity sequences are inserted between the signa-
ture sequence and end sequence. Updated signature sequence -
< start >< ORCID + Plasmid_ID + Siдnature + Parity >< end >.
During the correction phase, the parity sequence is retrieved using
the start and end sequences and the length of the other three parts
which is already known. The number of errors that can be corrected
can be determined by the length of the parity sequence. Since each
parity short is 8 bases, 16 bases are two shorts and two shorts can
correct one error, hence the number of errors that can be corrected
are - (parity sequence length) / 16.

Using the error correction code, the verifier can correct some
number of errors (limit is set by signer) in the digital sequence file.
Upon correcting the digital sequence, the verification is invoked
again on the corrected sequence. The position of the errors and
the corrected value are conveyed to the verifier. The verifier can
then decide if the errors are in any valuable feature or not. If a
valuable feature has been corrupted, the verifier can ask for a new
shipment, else if the error was in a non-valuable area in the plasmid,
the verifier can proceed to work with it.

The sign-share-verify workflow will be updated as follows. Ellen
uploads the digital DNA file to the server which she obtained after
sequencing the plasmid shared by Alice. The validation service
tries to validate the sequence. If this validation results in failure, the
error correction part is invoked and tries to correct the sequence
depending on the number of errors Alice chose to tolerate during
signing. If no corrections can be made (because the number of mu-
tations in the sample exceeds the threshold set by Alice) Ellen is
notified with an alert. If corrections can be made, the verification
starts again on the corrected sequence. Upon successful verifica-
tion on the corrected sequence, Ellen is notified about the errors
(mutations) that occurred in the sample she received.

8 SIGNATURE GENERATION AND
VERIFICATION PROCEDURE

The prototype tool we have developed allows a user to generate
and validate signatures. The parameters i.e. e,d,N are fixed in the
prototype where the modulus N is 1024 bits.

Signature generation: The user provides the following inputs
for signature generation -

(1) The genbank (.gb) file.
(2) ORCID - a 16 digit number in xxxx-xxxx-xxxx-xxxx format.
(3) Plasmid ID - a 6 digit number.
(4) Location of signature placement.
(5) Number of errors to be tolerated.
All the necessary input checks e.g. the file has extension .gb,

ORCID format is correct, ORCID is integers etc. are done. The sig-
nature generation procedure begins by splitting the genbank file
by the keyword ORIGIN . Refer to figure ??. After the keyword
ORIGIN is the actual sequence and before it are the descriptions.
The sequence is the message to sign and the descriptions are kept
for verifying if the user provided location is colliding with an ex-
isting feature. Let us assume the sequence to sign is SEQUENCE
and there exists a feature from location 1 to 3 which corresponds
to SEQ. Next,the location of signature placement is checked. If the
location collides with a feature, the user is alerted to change the
location. For our example, if the user had provided 2, the tool will
alert the user that there is already a feature SEQ there and ask for
a new location. If the user chooses 4 which is after the letter Q, it
will be allowed. Next, the OCRID and Plasmid ID are converted to
ACGT sequence by the following conversion method - [0 - AC, 1 -
AG, 2 - AT, 3 - CA, 4 - CG, 5 - CT, 6 - GA, 7 - GC, 8 - GT, 9 - TA]. The
reason for choosing this conversion type is that if any ORCID or
plasmid ID has repetitions e.g. 0000-0001-4578-9987, the converted
sequence will not have a long run of a single base. If we used 0 -
AA, the example ORCID would have AAAAAAAAAAAAAA in the
beginning, and long runs of a single nucleotide can result in errors
during sequencing. In the chosen conversion method the ORCID
would start with ACACACACACACAC. Let the converted ORCID
and Plasmid ID sequence be ORCID and PID. The signature is
generated according to the scheme described in section 5. The sig-
nature bits are then converted to ACGT sequence. Let this signature
sequence be SIGN. Also, recall that the start and end tag where this
signature is to be placed is predefined. Let this start tag be START
and end tag be END. The signature sequence is concatenated with
ORCID and plasmid ID and then placed between the start and end
- START ORCID PID SIGN END. This entire string is placed at
the position specified by the user. As we chose 4 in our example,
the total sequence looks like - SEQ START ORCID PID SIGN
END UENCE. Now this string is passed into the error correction
encoder. According to the number of tolerable errors specified by
the user, the parity bits are generated. The parity bits increase with
the number of errors to be tolerated. These parity bits are then
converted to ACGT sequence. Let this be ECC. When the encoder
output is generated, the string looks like - SEQ START ORCID
PID SIGN END UENCE ECC. Next, the ECC is separated and
this is placed before the signature and end tag. So the final output
string is - SEQ START ORCID PID SIGN ECC END UENCE .
Note that the error correction code is generated after generating the

Digital Signatures for Synthetic DNA Molecules NSPW ’18, August 28–31, 2018, Windsor, United Kingdom

signature sequence and combining with original sequence. Hence
any error in that string can be corrected provided it is within the
tolerable limit. For our example, if we put 2 as our error tolerance
limit, then any 2 errors within the string SEQ STARTORCID PID
SIGN END UENCE ECC can be tolerated. For example if there is
1 error in SEQ and 1 error in SIGN, or 2 errors in SIGN, or 1 error
in SIGN and 1 error in ECC, it can be corrected. But if there are
more than two errors it cannot be tolerated. The final output string
- SEQ START ORCID PID SIGN ECC END UENCE is written
into another genbank file. The descriptions are updated i.e. the
locations of the signature, start, end, ecc are added and if there are
features after the signature placement locations they are updated.
The output genbank file is shared with the recipient.

Signature verification: The user provides the following inputs
for signature verification -

(1) The shared genbank (.gb) file.
(2) The fasta (.fasta) file which the receiver obtained after

sequencing the shared, signed DNA.

The sequence in the fasta file might not be the in the same order
as the receiver sent it. That is, after sequencing the shared DNA, the
fasta file may look like - ORCID PID SIGN ECC END UENCE
SEQ START which is a cyclic permutation of the final sequence
the receiver obtained after signature generation. The genbank file
contains the correct order. The tool aligns the genbank sequence
and the fasta sequence. If there is any mutation in the shared DNA
the fasta file will have some errors but most of it will be aligned
correctly. If there are no mutations the file will be aligned perfectly.
For now let us assume there is no mutation and hence the fasta
sequence and the genbank sequence will be aligned perfectly - SEQ
START ORCID PID SIGN ECC ENDUENCE. The tool looks for
start and end tags which we had predefined. After obtaining the
start tag, 32 bases are counted, this is the ORCID sequence, next 12
bases are counted, this is the plasmid ID sequence, then 512 bases
are counted, this is the signature sequence. Next the substring after
this signature sequence to the end tag is retrieved, this is the error
correction sequence. Finally, the portion before start tag and the
portion after end tag is concatenated to reconstruct the message for
signature verification. So as of now we have retrieved SEQUENCE,
START, ORCID, PID, SIGN, ECC and END. The SEQUENCE,
ORCID and SIGN is used for signature verification according to
the scheme described in section 5. If there is no mutation, the signa-
ture verification will succeed and the user is alerted for successful
verification. If there is any mutation ,the verification will fail. In
this case the extracted parts are used to construct the string - SEQ
START ORCID PID SIGN END UENCE ECC. Recall that this
was the output of the error correction encoder. If the error is within
the tolerable limit, it will be corrected. If the error is more than
the tolerable limit, the user is alerted that the verification and the
error correction both failed. If the error is corrected, we again use
the counting method to retrieve the corrected parts - SEQUENCE,
START, ORCID, PID, SIGN, ECC and END. The verification is
invoked on the corrected SEQUENCE, ORCID and SIGN. If the
verification succeeds the second time the user is notified about
success. Also, the corrected parts and the previously extracted parts
(before first verification) are compared to display where the error

was. If the verification fails on the corrected parts, the user is no-
tified about failure after correction and the corrected errors are
displayed.

It is to be noted that although the corrected errors are displayed
to the user, the actual content of the DNA did not change, only the
fasta representation changed. The physical DNA still contains the
error i.e. if the sample is sequenced again, the freshly obtained fasta
file will again be erroneous. Hence, the error correction works more
like error detection. The user gets the correction information, and
if he thinks the errors are not in any important part of the DNA,
the user can choose to work with the shared sample. If he thinks
the errors are in an important part of the DNA, the sample can be
re-ordered from the sender.

9 ASSOCIATING THE DNA SAMPLE WITH
ITS DIGITAL REPRESENTATION

When any researcher shares a DNA sample with another, he manu-
ally describes the additional features present in the sample in its
digital representation (genbank file). This file can then be shared
with the recipient (often, however, only the physical sample is
shared, not the digital representation). The recipient will receive
the sample, sequence it and obtain its digital representation. The
common features that are in the sample can be automatically an-
notated with the help of a sequence-manipulation software like
Snapgene. But the additional features and descriptions that Snap-
gene will not be able to interpret must be provided by the sender.
In order to associate this digital DNA file which contains the addi-
tional descriptions(let us call this Fsent) with the digital DNA file
that the receiver generates after sequencing the sample(let us call
this Fдen), we associate them together with a combined signature.
The association between these two files is created in the following
way:

Create association

(1) Signer provides the digital DNA file containing the appro-
priate sequence and descriptions. Extract the sequence and
the descriptions. Only the sequence is used for signature
creation as described in section 5. Let this sequence bemseq
and the descriptions bemdesc .

(2) Generate signature onmseq as before and place this within
the original sequence. Let this final signed sequence bemsiд .

(3) Combinemdesc andmsiд by calculating the following:

mcomb = H (H (msiд)| |H (mdesc))

where H is a secure hash function e.g. SHA-256 and || is
concatenation operation.

(4) Create signature for thismcomb using the same procedure -

σ ′ = smcomb
ID mod n = H (ID)d ·mcomb mod n

(5) Add σ ′ to the genbank file with a keyword “ASSOC”.
(6) Share the file with the recipient.
Validate association

(1) Recipient obtains Fsent and generates Fдen from the received
sample. The tool takes both files as input.

(2) Extract σ ′,mdesc from Fsent andmsiд from Fдen. The ID
is extracted frommsiд .

NSPW ’18, August 28–31, 2018, Windsor, United Kingdom Diptendu Mohan Kar, Indrajit Ray, Jenna Gallegos, and Jean Peccoud

(3) Calculatemcomb as:

mcomb = H (H (msiд)| |H (mdesc))

(4) Check if the following equation holds:

(σ ′)e ?
= H (ID)mcomb mod n

Using this combined signature, the recipient can validate that
the description file was sent by the authentic sender, the manually
added descriptions have not been changed and these descriptions
belong to the same DNA sample that was shared. The sign-share-
verify workflow will work as follows. Ellen will upload the digital
DNA file she generated after sequencing the sample shared by Alice
and also the digital DNA file that Alice shared (which contains
the additional descriptions). The server will match the combined
signature and Ellen will be notified about the association between
the two files.

10 DISCUSSION
The ability to digitally sign a synthesized DNA molecule allows
rigorous tracking of a DNA molecule to its origin. It opens up the
possibility of a number of novel applications.

One question that arises is, since additional base pairs must be
added to the original DNA molecule to accommodate the signature
and error correction feature, at what threshold can we add base
pairs without affecting functionality? Unfortunately, there has been
no concrete study as yet to determine the threshold of how many
or what percentage of sequence addition retains the DNA’s original
properties and after what limit the properties break. Since a plasmid
size ranges from about 2000 to 20,000 bases, it can be possible that
a 512 base signature affects the properties of a 2000 base plasmid
whereas it behaves perfectly fine on a 20,000 base plasmid. What
we know so far is that the fewer the sequences are added to the
molecule, the better chance there is to retain the properties. We
have begun experiments to determine whether the 512 base pair
signature plus error correction code (totaling 624 base pair) impacts
the function of a 2868 base pair plasmid sequence in E. Coli.

Note that there is also an economic cost to adding base pairs to
the synthesized DNA. After generating the signature sequence, it
has to be synthesized by a gene synthesis company which involves
cost, around 9 cents per base pair. Hence, it is essential to have
a shorter signature length. We are trying to further shorten the
signature size such that we can have better chances of property
retention and provide cost-effectiveness.

Another aspect to consider is how to determine if a DNA mole-
cule is signed or not since the delimiters are sequence specific. The
solution is simple if the plasmid developer shares the start and end
delimiters that have been used in signing the plasmid (as part of the
annotated GenBank file or separately). The receiver can also look
the plasmid up by its ID and the ORCID of the developer (possibly)
in a public database maintained by a server. If the receiver knows
the start and end delimiter sequences, the presence of the start
and end delimiters can be verified using a number of biological
methods:

(1) If the start and end delimiters match the recognition site of re-
striction enzymes (https://en.wikipedia.org/wiki/Restriction_
enzyme), a restriction digest (https://en.wikipedia.org/wiki/

Restriction_digest can be used to determine whether or not
the sites are present.

(2) Chemical primers that are complementary to the start and
end delimiters can be ordered and used in a diagnostic Poly-
merase Chain Reaction (PCR) experiment (https://en.wikipedia.
org/wiki/Polymerase_chain_reaction).

(3) Radio-labeled probes complementary to the start and end
sequences can be used to determine whether or not the
sequences are present in a Southern Blot Assay (https://en.
wikipedia.org/wiki/Southern_blot).

11 CONCLUSIONS AND FUTUREWORK
In this paper, we discussed a novel effort to embed digital signatures
into DNA molecules that are synthesized in the laboratory. Do
digital security solutions, in particular cryptographic techniques,
map well to a physical world? That was the big question that we
asked ourselves.

Synthetic DNAmolecules are frequently shared physically. There
is a need to bestow origin attribution properties to these molecules
which are often licensed intellectual property. However, recent
efforts to provide this property using watermarking techniques
suffer from the problem that the watermark is independent of the
DNA molecule (although it is embedded in the molecule). Thus,
the watermark can potentially be removed from a physical DNA
and embedded in another sample or replaced with another entity’s
watermark. We describe our efforts to provide more secure origin
attribution properties using digital signatures.

As a proof of concept, signatures will be generated in the labora-
tory and inserted into two plasmids. The first, 401734, is a synthetic
plasmid composed of two antibiotic resistance genes and an origin
of replication. The second, 190691, is the commonly used standard
vector pUC19. The physical signature embedding and validation
protocol is a complex biological process, detailed discussion of
which involves extensive domain knowledge beyond the scope of
this work. Consequently, we omit this discussion from this paper.
We are also still in the process of performing additional validation
related experiments, results of which will be published as they
become available.

There are several research questions that have not yet been
answered and works that we plan to undertake in this area. First,
our choices of parameters for the digital signatures as well as error
correction codes are not based on some mathematical models of
properties of the DNA vis-a-vis its size. Rather they are based on
domain knowledge and experimental analysis. Models of DNA
properties can help in making optimal parameter choices to trade
off the size of the sequences encoding signatures, security strengths
of signatures and degree of error resiliency.

Related to this first research challenge is the question of whether
embedding signatures is applicable for naturally occurring DNA
and for DNA sequences larger than plasmids such as microbial or
even plant or animal genomes. We have assumed that there is some
leeway regarding the properties of DNA molecules that allows
for the addition of a signature without altering function or stabil-
ity. Current knowledge indicates that large portions of genomes
probably do not play a functional role. So it is possible to embed a

https://en.wikipedia.org/wiki/Restriction_enzyme
https://en.wikipedia.org/wiki/Restriction_enzyme
https://en.wikipedia.org/wiki/Restriction_digest
https://en.wikipedia.org/wiki/Restriction_digest
https://en.wikipedia.org/wiki/Polymerase_chain_reaction
https://en.wikipedia.org/wiki/Polymerase_chain_reaction
https://en.wikipedia.org/wiki/Southern_blot
https://en.wikipedia.org/wiki/Southern_blot

Digital Signatures for Synthetic DNA Molecules NSPW ’18, August 28–31, 2018, Windsor, United Kingdom

signature in these regions. However, from an evolutionary stand-
point, sequences which do not play a functional role are less likely
to be retained unchanged in the genome. Additionally, the sheer
size of a genome means that mutations are more likely to occur
and sequencing technologies are not yet robust enough to provide
completely error-free whole genome sequences. In that case, what
kind of security guarantees can we provide? For instance, could we
apply digital signatures only to portions of larger sequences that
are significant, such as those parts of a microbial genome which
have been re-engineered for a specific purpose? Are there alter-
nate signature schemes that are worth investigating that would be
better-suited to whole genomes?

A third research area would involve signing and verifying the
same DNA molecule multiple times by different users. Alice signs
and sends a DNA sample to Bob and Bob validates Alice’s DNA.
Then Bob continues to modify it, signs it and sends it to Mallory.
Can Mallory only verify Bob’s signature, or is there a way for
Mallory to track the entire pathway starting from Alice? It would
be interesting to see if the concept of aggregate signatures can be
applicable in these scenarios. Also, it would be interesting to see
if we put a signature on top of an existing signature whether the
characteristic of the DNA changes or not. If it does not, how many
signatures can be inserted before the characteristics of the original
DNA molecule begin to change? Also, if we cannot put multiple
signatures within the same DNA molecule, how do we remove the
signature that was present before signing it again. Finally, does
removing the signature also alters the property of the DNA?

A fourth problem that comes into focus is the issue of key revo-
cation. What are the semantics of key revocation and how is this
going to be achieved? Certainly key revocation in the cyber-bio
world is very different from the digital world. If a key is revoked in
the digital world, one can dis-validate any message signed with the
revoked key. Signing, a duplicate copy of the same message is not
expensive. However, it is not trivial to dis-validate a DNA molecule,
synthesize a new one with the same properties and sign it with a
new key. This causes us to rethink the whole key revocation model
in the cyber-bio world.

A fifth research area involves studying the synthetic DNA shar-
ing supply chain and developing techniques to ensure origin attri-
bution. To illustrate the problem, recall that DNA molecules are
shared to study their properties and possibly manipulate them to
build a different DNA molecule. If a DNA molecule is licensed as
an IP and is subsequently used in this manner, the synthesizer of
the original molecule would like to get some credit for the root
molecule. It will be interesting to study how if at all, this can be
achieved.

ACKNOWLEDGMENT
This work is partly based on research supported by the Office of the
Vice President of Research, Colorado State University. This material
is also based upon work performed by Indrajit Ray while serving
at the National Science Foundation. Research findings presented
here and opinions expressed are solely those of the authors and in
no way reflect the opinions of Colorado State University, the U.S.
NSF or any other federal agencies.

REFERENCES
[1] George M. Church, Yuan Gao, and Sriram Kosuri. 2012. Next-

Generation Digital Information Storage in DNA. Science 337,
6102 (2012), 1628–1628. https://doi.org/10.1126/science.1226355
arXiv:http://science.sciencemag.org/content/337/6102/1628.full.pdf

[2] Yaniv Erlich and Dina Zielinski. 2017. DNA Fountain En-
ables a Robust and Efficient Storage Architecture. Science 355,
6328 (2017), 950–954. https://doi.org/10.1126/science.aaj2038
arXiv:http://science.sciencemag.org/content/355/6328/950.full.pdf

[3] Daniel G. Gibson, John I. Glass, Carole Lartigue, Vladimir N. Noskov, Ray-
Yuan Chuang, Mikkel A. Algire, Gwynedd A. Benders, Michael G. Montague,
Li Ma, Monzia M. Moodie, Chuck Merryman, Sanjay Vashee, Radha Krishnaku-
mar, Nacyra Assad-Garcia, Cynthia Andrews-Pfannkoch, Evgeniya A. Denisova,
Lei Young, Zhi-Qing Qi, Thomas H. Segall-Shapiro, Christopher H. Calvey,
Prashanth P. Parmar, Clyde A. Hutchison, Hamilton O. Smith, and J. Craig Ven-
ter. 2010. Creation of a Bacterial Cell Controlled by a Chemically Synthesized
Genome. Science 329, 5987 (2010), 52–56. https://doi.org/10.1126/science.1190719
arXiv:http://science.sciencemag.org/content/329/5987/52.full.pdf

[4] Dominik Heider and Angelika Barnekow. 2007. DNA-based Watermarks Using
the DNA-Crypt Algorithm. BMC Bioinformatics 8, 1 (29 May 2007), 176. https:
//doi.org/10.1186/1471-2105-8-176

[5] Clyde A. Hutchison, Ray-Yuan Chuang, Vladimir N. Noskov, Nacyra Assad-
Garcia, Thomas J. Deerinck, Mark H. Ellisman, John Gill, Krishna Kannan,
Bogumil J. Karas, Li Ma, James F. Pelletier, Zhi-Qing Qi, R. Alexander Richter,
Elizabeth A. Strychalski, Lijie Sun, Yo Suzuki, Billyana Tsvetanova, Kim S.
Wise, Hamilton O. Smith, John I. Glass, Chuck Merryman, Daniel G. Gib-
son, and J. Craig Venter. 2016. Design and Synthesis of a Minimal Bacterial
Genome. Science 351, 6280 (2016). https://doi.org/10.1126/science.aad6253
arXiv:http://science.sciencemag.org/content/351/6280/aad6253.full.pdf

[6] Daniel C. Jupiter, Thomas A. Ficht, James Samuel, Qing-Ming Qin, and Paul
de Figueiredo. 2010. DNA Watermarking of Infectious Agents: Progress and
Prospects. PLOS Pathogens 6, 6 (06 2010), 1–3. https://doi.org/10.1371/journal.
ppat.1000950

[7] Michael Liss, Daniela Daubert, Kathrin Brunner, Kristina Kliche, Ulrich Hammes,
Andreas Leiherer, and Ralf Wagner. 2012. Embedding Permanent Watermarks in
Synthetic Genes. PLOS ONE 7, 8 (08 2012), 1–10. https://doi.org/10.1371/journal.
pone.0042465

[8] Peter Ney, Karl Koscher, Lee Organick, Luis Ceze, and Tadayoshi Kohno. 2017.
Computer Security, Privacy, and DNA Sequencing: Compromising Computers
with Synthesized DNA, Privacy Leaks, and More. In Proceedings of the 26th
USENIX Security Symposium. Vancouver, Canada.

[9] Jean Peccoud, J. Christopher Anderson, Deepak Chandran, Douglas Densmore,
Michal Galdzicki, Matthew W. Lux, Cesar A. Rodriguez, Guy-Bart Stan, and
Herbert M. Sauro. 2011. Essential Information for Synthetic DNA Sequences.
Nature Biotechnology 29 (January 2011). http://dx.doi.org/10.1038/nbt.1753

[10] Jean Peccoud, J Christopher Anderson, Deepak Chandran, Douglas Densmore,
Michal Galdzicki, Matthew W Lux, Cesar A Rodriguez, Guy-Bart Stan, and Her-
bert M Sauro. 2011. Essential information for synthetic DNA sequences. Nature
Biotechnology 29 (Jan. 2011), 22. http://dx.doi.org/10.1038/nbt.1753

[11] Jean Peccoud, Megan F. Blauvelt, Yizhi Cai, Kristal L. Cooper, Oswald Crasta,
Emily C. DeLalla, Clive Evans, Otto Folkerts, Blair M. Lyons, Shrinivasrao P.
Mane, Rebecca Shelton, Matthew A. Sweede, and Sally A. Waldon. 2008. Targeted
Development of Registries of Biological Parts. PLOS ONE 3, 7 (2008), 1–7. https:
//doi.org/10.1371/journal.pone.0002671

[12] Jean Peccoud, Jenna E. Gallegos, Randall Murch, Wallace G. Buchholz, and Sanjay
Raman. 2018. Cyberbiosecurity: From Näive Trust to Risk Awareness. Trends in
Biotechnology 36, 1 (2018), 4–7. https://doi.org/10.1016/j.tibtech.2017.10.012

[13] James S Plank et al. 1997. A Putorial on Reed-Solomon Coding for Fault-tolerance
in RAID-like Systems. Software Prac. Experience 27, 9 (1997), 995–1012.

[14] Irving S. Reed and Gustave Solomon. 1960. Polynomial Codes over Certain Finite
Fields. Journal of the Society for Industrial and Applied Mathematics (SIAM) 8, 2
(1960), 300–304.

[15] Sarah M. Richardson, Leslie A. Mitchell, Giovanni Stracquadanio, Kun
Yang, Jessica S. Dymond, James E. DiCarlo, Dongwon Lee, Cheng Lai Vic-
tor Huang, Srinivasan Chandrasegaran, Yizhi Cai, Jef D. Boeke, and
Joel S. Bader. 2017. Design of a Synthetic Yeast Genome. Sci-
ence 355, 6329 (2017), 1040–1044. https://doi.org/10.1126/science.aaf4557
arXiv:http://science.sciencemag.org/content/355/6329/1040.full.pdf

[16] Adi Shamir. 1985. Identity-Based Cryptosystems and Signature Schemes. In
Advances in Cryptology, George Robert Blakley and David Chaum (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 47–53.

[17] O. Tornea and M. E. Borda. 2009. DNA Cryptographic Algorithms. In Proceedings
of the International Conference on Advancements of Medicine and Health Care
through Technology, Simona Vlad, Radu V. Ciupa, and Anca I. Nicu (Eds.). Romania,
223–226.

https://doi.org/10.1126/science.1226355
http://arxiv.org/abs/http://science.sciencemag.org/content/337/6102/1628.full.pdf
https://doi.org/10.1126/science.aaj2038
http://arxiv.org/abs/http://science.sciencemag.org/content/355/6328/950.full.pdf
https://doi.org/10.1126/science.1190719
http://arxiv.org/abs/http://science.sciencemag.org/content/329/5987/52.full.pdf
https://doi.org/10.1186/1471-2105-8-176
https://doi.org/10.1186/1471-2105-8-176
https://doi.org/10.1126/science.aad6253
http://arxiv.org/abs/http://science.sciencemag.org/content/351/6280/aad6253.full.pdf
https://doi.org/10.1371/journal.ppat.1000950
https://doi.org/10.1371/journal.ppat.1000950
https://doi.org/10.1371/journal.pone.0042465
https://doi.org/10.1371/journal.pone.0042465
http://dx.doi.org/10.1038/nbt.1753
http://dx.doi.org/10.1038/nbt.1753
https://doi.org/10.1371/journal.pone.0002671
https://doi.org/10.1371/journal.pone.0002671
https://doi.org/10.1016/j.tibtech.2017.10.012
https://doi.org/10.1126/science.aaf4557
http://arxiv.org/abs/http://science.sciencemag.org/content/355/6329/1040.full.pdf

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Challenges and design decisions
	4.1 Signature length
	4.2 Signature identification
	4.3 Error tolerance
	4.4 Strong association between physical DNA molecule and its digital representation

	5 DNA Signature scheme
	6 Sign-Share-Validate Workflow
	7 Error Correction Codes
	8 Signature generation and verification procedure
	9 Associating the DNA sample with its digital representation
	10 Discussion
	11 Conclusions and Future Work
	References

