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ABSTRACT

Intrusion detection systems are a commonly deployed defense that
examines network traffic, host operations, or both to detect attacks.
However, more attacks bypass IDS defenses each year, and with the
sophistication of attacks increasing as well, we must examine new
perspectives for intrusion detection. Current intrusion detection
systems focus on known attacks and/or vulnerabilities, limiting
their ability to identify new attacks, and lack the visibility into all
system components necessary to confirm attacks accurately, partic-
ularly programs. To change the landscape of intrusion detection,
we propose that future IDSs track how attacks evolve across system
layers by adapting the concept of attack graphs. Attack graphs were
proposed to study how multi-stage attacks could be launched by
exploiting known vulnerabilities. Instead of constructing attacks
reactively, we propose to apply attack graphs proactively to detect
sequences of events that fulfill the requirements for vulnerability
exploitation. Using this insight, we examine how to generate mod-
ular attack graphs automatically that relate adversary accessibility
for each component, called its attack surface, to flaws that provide
adversaries with permissions that create threats, called attack states,
and exploit operations from those threats, called attack actions. We
evaluate the proposed approach by applying it to two case stud-
ies: (1) attacks on file retrieval, such as TOCTTOU attacks, and
(2) attacks propagated among processes, such as attacks on Shell-
shock vulnerabilities. In these case studies, we demonstrate how to
leverage existing tools to compute attack graphs automatically and
assess the effectiveness of these tools for building complete attack
graphs. While we identify some research areas, we also find several
reasons why attack graphs can provide a valuable foundation for
improving future intrusion detection systems.
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1 INTRODUCTION
Network and host intrusion detection systems (NIDS/HIDS) are
now commonly deployed to detect malicious activities, even re-
stricting system operations in some cases (as intrusion prevention
systems, IPSs). NIDS deployments, such as Bro [66], Snort [73] and
Suricata [63], can collect packets at one or more network monitor-
ing locations to detect network-borne attacks. On the other hand,
current HIDS solutions, such as OSSEC [19] and Samhain [91], ex-
amine system operation logs for behaviors often associated with
attacks, such as root logins and sensitive resource modifications.
Nonetheless, even with IDSs deployed widely, the number of
intrusions continue to increase each year [29]. In addition, the so-
phistication of attacks also continues to increase, raising questions
about the efficacy of continuing solely with the current approaches
to IDSs [46]. One acknowledged weakness of IDSs is that they focus
on known attacks and attack behaviors, which limits the ability to
detect new attacks and attacks similar to benign behaviors. Mod-
ern attacks, such as so-called advanced persistent threats (APTs),
leverage operations similar to benign behaviors to evade intrusion
detection and anti-virus systems, as Stuxnet demonstrated several
years ago [26]. Another limitation that we highlight is that NIDS
and HIDS each lack visibility into the programs where vulnerabil-
ities are often exploited. As a result, NIDS and HIDS must infer
attacks based on communications and system calls, respectively,
lacking critical information about threats and their exploitation.
IDS vendors and researchers have explored a variety of ways to
improve IDS effectiveness, but they do not completely overcome the
limitations above. First, to improve visibility, systems sometimes
combine network and host IDS into a so-called hybrid IDS, such
as SolarWinds [79] and Sagan [71], that integrate network and
system monitoring to correlate log entries from both layers to
improve attack detection confidence. While correlating network
and host operations can improve attack detection, hybrid IDSs still
focus on known attack behaviors and lack visibility into programs.
Second, to reduce dependence on known attacks, systems have
been proposed to perform vulnerability-focused detection as well as
exploit-focused detection [20, 27, 59]. While this approach reduces
dependence on known attacks, these approaches currently examine
known vulnerabilities, limiting the ability to detect new attacks.
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Third, many systems now employ some form of Al and machine
learning to detect attack behaviors from datasets of known attacks
and benign operations [12, 14, 35, 42, 49, 77]. However, classification
methods may not identify the features necessary to detect attack
scenarios that are similar to benign operations [80], demonstrated
by the recent research area of adversarial machine learning [16, 30,
65], where adversaries actively disrupt training and/or find samples
that have malicious behavior but will be classified as benign.

To overcome these limitations in current intrusion detection
systems, we argue that future IDSs need to: (1) identify threats
and possible attacks in a principled manner, rather than depend on
known attacks and/or vulnerabilities and (2) correlate actions across
the network, host, and program layers. Fortunately, researchers
have already proposed a model for tracking how attacks may be
perpetrated system-wide, called attack graphs [23, 64, 67, 75, 78],
but researchers have not explored the potential of attack graphs to
track intrusions proactively to detect new attacks across systems.

We acknowledge that attack graphs were not originally devel-
oped for intrusion detection, but rather for intrusion analysis: to
understand how known vulnerabilities could be or were exploited as
multi-stage attacks across systems. While researchers have started
to explore using attack graphs for intrusion detection [60, 89], these
initial approaches have only leveraged known vulnerabilities for
network-level detection, so they suffer from the same limitations
as prior work. Instead, we propose to leverage the common defini-
tion for “vulnerability” to guide the application of attack graphs.
A vulnerability is often said to be a software flaw accessible to an
adversary who can exploit that flaw [92]. Using this insight, we
propose to construct attack graphs for proactive intrusion detection,
where attack states correspond to the permissions made available to
adversaries by software flaws as possible preconditions to attacks,
attack actions correspond to the possible operations adversaries
may use to leverage those permissions for exploits, and attack sur-
faces [36] correspond to the possible sources of adversary input
that provide accessibility to flaws.

To employ attack graphs for proactive intrusion detection, we
have to address several key limitations. First, traditional attack
graphs were often constructed manually from known vulnerabili-
ties and attacks. However, the emergence of a variety of security
configurations, such as firewall policies, access control policies, and
program defenses, provide a bounty of information to automate
attack graph generation. In this paper, we explore how to apply
such information to compute attack graphs automatically.

Second, traditionally attack graphs have been employed for
network-level intrusion analysis, focusing on hosts with known
vulnerabilities and their network connectivity to propagate attacks.
To extend intrusion across network, host, and program layers, we
need a way to connect flows between layers to understand how
to correlate events. In this paper, we propose to utilize the con-
cept of attack surfaces, which identify the sources of adversary
accessibility, to express the sources of input from other layers.

Third, while attack graphs can express attack states and actions
about network, host, and program resources, representing all possi-
ble states and actions in a single graph will be impractical. Instead,
we need a way to construct and reason about attack graphs modu-
larly. We find that a benefit of making the system layering explicit
is that attack surfaces can serve as boundaries between modules,
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enabling attack graphs to be computed per system component !
Importantly, attack surfaces specify each component’s “API” for
adversary-controlled input, which identifies the starting points for
each component’s attack graphs.

In this paper, we explore the challenges of building attack graphs
for performing intrusion detection. We define an intrusion detec-
tion approach based on attack graphs and identify a set of research
problems that must be solved to complete the approach. While some
problems may be solved with methods available today, others will
require non-trivial research efforts. We identify opportunities to
solve these research problems based on current research, and high-
light outstanding issues to examine further. We then perform case
studies to examine how the proposed intrusion detection approach
could apply to two specific cases: (1) attacks on file retrieval, such as
TOCTTOU attacks [13, 48], and (2) attacks propagated among pro-
cesses, such as on Shellshock vulnerabilities [51]. Importantly, both
types of attacks span multiple layers of a system, demonstrating
requirements for attack graphs across layers.

This paper makes the following contributions.

o We derive requirements for intrusion detection systems from
examples of complex vulnerabilities that span network, host,
and program layers.
We define a model of intrusion detection based on the attack
graph concept, where attack states represent preconditions
that enable adversaries to gain permissions to threaten com-
ponents, attack actions represent operations that leverage
those permissions to propagate attacks, and attack surfaces
identify entrypoints for adversary-controlled input.
We outline a vision for intrusion detection based on the at-
tack graph model and investigate key research questions for
automating attack graph generation for intrusion detection.
e We explore the application of the proposed approach using
two case studies that involve attacks that combine network,
host, and program behaviors to demonstrate how specific
tasks in computing attack graphs may be accomplished to
enable intrusion detection.

2 MOTIVATION

To motivate the requirements of future intrusion detection systems,
we examine two types of vulnerabilities: (1) those resulting from
the Shellshock vulnerability discovery [51] and those related to
attacks on file retrieval including TOCTTOU attacks [13, 48]. These
types of vulnerabilities present challenges for intrusion detection
because they involve multiple systems and software components
(Shellshock) and exploit permissions normally available to the vic-
tim (file retrieval). We then examine the lessons these challenges
impart on intrusion detection systems.

2.1 Shellshock Vulnerability

Shellshock refers to a group of vulnerabilities in the Bash shell pro-
gram that were caused mainly due to how inputs from environment
variables passed from web servers were parsed. The Bash shell was
first released in 1989 and has been used for a multitude of purposes.

'We use the term “component” broadly to refer to all types of network, host, and
program entities in need of intrusion analysis.
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Bash introduced the export shell function definition feature in ver-
sion 1.03 in 1989. This feature itself has been employed in a variety
of ways, including for web servers and embedded systems. The
Shellshock vulnerability was discovered in 2014, and characterized
primarily in the context of web servers. However, modern embed-
ded systems continue to use the export shell functionality to parse
and execute inputs, and several of these systems were not patched,
providing the main attack vector for exploiting Shellshock [50].

Bash supports exporting shell function definitions to Bash in-
stances via environment variables. Web servers and other programs
utilize this functionality to specify new functions for execution
by Bash in processing web requests. The Shellshock vulnerability
was a result of incorrect parsing of these function definitions. The
initial problem was that Bash continued to parse input even after
the function definition ends. Hence, anything after the function
definition was parsed and executed as well. This vulnerability en-
abled adversaries to direct Bash to execute any functionality that
the invoking principal (e.g., web server) could execute, exposing a
large number of options for adversaries to propagate attacks.

Shellshock is exploitable because adversaries may make network
requests that both update environment variables and trigger the
execution of Bash shells. Web servers used such functionality com-
monly to run scripts to process web requests. Embedded systems
that run Bash also often propagate network request input to Bash
shells. With the proliferation of Internet of Things devices, oppor-
tunities for exploitation of embedded devices is greater since not
all have been patched.

Discovery of the Shellshock vulnerability resulted in a series of
patches to fix the vulnerability completely and to address other
vulnerabilities that were discovered as a result of the study into
the initial Shellshock vulnerability. The initial vulnerability (CVE-
2014-6271) was caused by the parsing error described above, but the
initial patch (Patch 25 for Bash 4.3-25) did not address related flaws
in parsing (CVE-2014-6278 and CVE-2014-7169). In addition, several
memory errors were discovered in Bash processing related to this
parsing that were also discovered and patched (CVE-2014-6277,
CVE-2014-7186, and CVE-2014-7187).

The patch history related to the vulnerabilities is interesting
because the third patch in the sequence (Patch 27, Bash 4.3-27)
aimed to address the parsing problems systematically by clearly
demarcating the environment variables that may be used for func-
tion definitions and the bounds of function definitions for parsing.
However, errors remained in parsing (CVE-2014-6278) that were
not addressed correctly in this patch, so they were fixed in later
patches (Patch 30, Bash 4.3-30).

2.2 File Retrieval Attacks

Programs may also be exploited when accessing files by adversaries
who control either the input used to build file pathnames or the
filesystem resources used to resolve those file pathnames to specific
files. Most famous are so-called time-of-check-to-time-of-use (TOC-
CTOU) attacks that exploit races between file system operations
of the adversary and victim [13, 48], but several types of attacks
do not require race conditions, being more direct confused deputy
attacks [32].
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Researchers have reported that approximately 10% of reported
CVEs are vulnerabilities of this type [88], and this problem contin-
ues to plague current systems, such as Android. As with Shellshock,
these attacks may span network, host, and program layers, receiv-
ing untrusted network input and falling victim to host-program
attack surfaces by exploiting program flaws. We examine attacks
against the Apache web server program, leveraging some prior re-
search in this analysis [86] that, like Shellshock, found exploitable
flaws in web servers for file serving.

There are two distinct attack actions that may be leveraged inde-
pendently or in concert to enable an adversary to gain unauthorized
access to host resources.

First, an adversary could provide input used to build file path-
names that is not properly filtered by the program to prevent unau-
thorized access. For example, a programmer may not expect adver-
sary input at a particular program attack surface associated with
constructing file pathnames (i.e., an unexpected attack surface [86]),
so an adversary can choose the file pathname. In addition, a pro-
grammer may recognize a threat from an attack surface, but fail
to filter the input from this attack surface properly, permitting an
adversary to gain access to unauthorized files.

Second, an adversary may control a program running on the
host already and leverage that program’s permissions to modify
directories to direct pathname resolution to a file of the adversary’s
choosing [13, 48]. Given write access to a directory, an adversary
can create and delete files in that directory. Simply by planting a
file used by the victim, an adversary may provide malicious input
to the victim if it trusts that file. In addition, an adversary may plant
a symbolic link to redirect the pathname resolution to retrieve a
file chosen by the adversary. Files accessed via symbolic links are
authorized using the victim’s identity, so if an adversary can trick a
victim with the permissions necessary to access a file referenced by
the planted symbolic link then the victim may mistakenly operate
on a file unauthorized for the adversary on behalf of the adversary.

Both of these attacks are difficult to prevent. Incorrect filtering
in programs remains an open problem. Researchers have explored
program analysis techniques to detect missing filters [9], but even
the task of identifying filtering code in programs is non-trivial [45],
making attacks from network input possible. Researchers have also
found that programmers often miss attack surfaces made avail-
able in deployments, causing vulnerabilities because no filtering is
present at all [86]. On the other hand, attacks on pathname resolu-
tion have been known since the 1970s [48] and attacks due to race
conditions, called time-of-check-to-time-of-use (TOCTTOU) vul-
nerabilities, were made precise in the early 1990s [13]. Thus, attacks
on programs that exploit the access control configurations of hosts
are also possible. Many solutions have been proposed to fix pro-
grams and provide protection mechanisms in operating systems,
but researchers have demonstrated many attacks to circumvent
such protections, leading Cai et al. [15] to identify that any effec-
tive defense requires knowledge of programmer intent, meaning
that vulnerabilities often remain latent in programs because such
intent is not explicit.

2.3 Lessons for Intrusion Detection

We find that the Shellshock and file retrieval attacks demonstrate
the following lessons for the future of intrusion detection.
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First, exploiting these vulnerabilities involves tracking data flows
at the network, host, and program layers of the system. Both types
of attacks may originate from network input, such as web server
requests. Second, flaws may exploit host resources. Shellshock pay-
loads are propagated from the web server to Bash shells through the
setting of environment variables. On the other hand, file retrieval
attacks may be possible because another process on the host may
attack the victim (e.g., web server). Third, ultimately, exploits are
possible because of flaws in the Bash shell and victim programs,
where the parsing errors, memory errors, and/or errors in checking
the results of system calls may be exploited to further adversary
control. Finally, exploits of Shellshock result in operations on host
resources once again, such as executing other programs.

Next, exploitation of such vulnerabilities are difficult to prevent
without concrete information about the vulnerabilities. From the
perspective of a NIDS, only the web requests are seen, and the vari-
ants of requests that may occur make it difficult to identify known
malicious requests that would include Shellshock or file retrieval
payloads. For example, web requests were able to set environment
variables for several years using input, such as HTTP_ACCEPT="{
:3}; rm -rf’, which would remove files. From the perspective of
a HIDS, the web server will commonly pass information to Bash
shells via environment variables and open files, and Bash shells
commonly spawn other processes, making it difficult to identify
malicious requests from a compromised Bash shell. A hybrid IDS
could correlate risky web requests with host operations, but such
IDSs currently require knowledge of a specific vulnerability or at-
tack, enabling adversaries to circumvent checks before the specific
attack was discovered.

In addition, the ability to detect either of these vulnerabilities
would benefit significantly from visibility into program execution.
Critical operations in exploiting either vulnerability occur inside
the victim programs (e.g., web server and Bash shell programs).
Recently, several developer organizations have decided to expend
vast resources on software testing, such as fuzz testing, to detect
flaws within programs more quickly. However, many flaws are still
missed in testing or only unveiled in particular, unusual deploy-
ments, and the results of fuzz testing are not employed to guide IDS
detection of such situations, leaving blind spots in testing as blind
spots in detection. In addition, the relationship between flaws (e.g.,
crashes) and the threats (e.g., adversary access to new permissions)
that such flaws enable is not yet well understood.

Both improving the effectiveness of detection and improving
visibility of programs to detect intrusions will require more knowl-
edge about how attacks may proceed and how programs link host
and network actions, which in turn will require new automated
methods to compute such knowledge. At present, knowledge of
attack methods is either based on known attacks or attack behav-
iors (e.g., writing executable files), and IDS vendors aim to leverage
such information for effective use in detection. Generating IDS data
from known attacks can be automated, but methods to predict new
attack cases and methods are limited to coarse attack strategies,
such as kill chains [38].

Finally, expanding IDS to include program state will challenge
the scalability of detection methods. Since this knowledge appears
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necessary to make significant improvements, we must explore meth-
ods to extend intrusion detection in a scalable manner. Current hy-
brid IDS techniques of combining system operations and network
operations into a common format will be insufficient to serve as a
basis for managing scalability.

In summary, we find that the following broad requirements apply
to future intrusion detection systems.

e Relate to Attack Principles: Reason about components
and their defenses in a principled manner to detect intru-
sions.

e Increase Visibility: Represent attack behaviors for net-
work, host, and program layers.

e Automate Intrusion Models: Identify possible attack op-
erations automatically.

e Improve Scalability: Perform detection over richer, more
complete attack models efficiently.

In the rest of this paper, we will explore how the attack graph
concept may be employed to achieve these requirements, and we
will identify the challenges in applying attack graphs to achieve
those requirements.

3 ATTACK GRAPHS

In this section, we review the evolution of attack graph approaches,
including their motivations and research challenges, and then pro-
vide a definition for the attack graph model we will use in this
paper. We will then review some of the challenges in applying
attack graphs to IDS that have not been addressed by prior work.

3.1 Prior Attack Graphs Approaches

Work on representing attacks in terms of attack graphs emerged in
the mid-1990s. The problem was to develop techniques to enable
administrators to understand how vulnerabilities in their system
could enable adversaries to escalate their permissions through a
sequence of operations to complete an attack.

A wide variety of research has been undertaken on attack graphs.
The origin of attack graphs appears to be a paper by Dacier and
Deswarte [22] that models permission transformations in an access
control system (the Typed Access Matrix) to detect violations of
the safety problem [33]. While permission changes in an access
control system for a variety of reasons, Dacier et al. [23] extended
this approach to reason about the relationship among permission
states created by vulnerabilities, which they still called a permission
graph, but which started to capture the notions in attack graphs. In
particular, Dacier et al. wanted to aid administrators in computing
the permission escalation enabled through vulnerabilities, so the
edges in their permission graph represented vulnerabilities and
administrators could compute sequences of permission escalations
possible given a sequence of vulnerability exploitations.

Phillips and Swiler developed an attack graph model for net-
works in 1998 [67]. This model incorporates key elements of the
attack graph, relating network flows, possible sets of attacker per-
missions, and attack specifications, including post-conditions. This
attack graph model connects network flows and the adversary per-
missions obtained to possible attacks. Interestingly, Phillips and
Swiler advocated generating network flows from configurations
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Figure 1: Attack graph example for Shellshock showing how
attack actions (rectangles) depend on conjunction of attack
states (circles) and attack states are created by any one of a
disjunction of attack actions.

directly, although adversary permissions and attack specifications
were determined in an ad hoc way from known vulnerabilities.

Researchers then explored methods to compute attack scenarios
from attack graphs. Sheyner et al. developed a model checking
approach to compute attacks [78]. Sheyner’s approach computes
paths to attack goal states in the attack graph. Ammann made
the critical insight that we can reason about adversaries as being
monotonic (i.e., they do not release permissions once obtained) to
reduce the number of meaningful attack paths to consider through
an attack graph [4]. Ou et al. [64] further optimized the representa-
tion to make the attack graph independent of hosts, only relating
pre-conditions (i.e., permissions) and attacks (i.e., vulnerabilities
to exploit), which they found is a special case of Schneier’s attack
trees [75]. We adopt a version of the attack graph model of Ou et
al., which we define below.

Noel and Jajodia explored a variety of uses for attack graphs, in-
cluding vulnerability analysis using attack graphs [41, 62], network
risk analysis and hardening [2, 61], intrusion detection configura-
tion and analysis [60, 89], and detection of new instances of known
vulnerabilities [3]. Typically, these approaches leverage known
vulnerabilities to identify hosts that may be exploitable. Graphs
leverage network flows for permissions to access hosts with vul-
nerabilities and such vulnerabilities may be exploited if reachable.
While we examine the connection between attack graphs and in-
trusion detection in this line of work further below, we would like
to produce attack graphs without known vulnerabilities.

3.2 Attack Graph Model

In this paper, we adopt the attack graph definition of the Ou et
al. [64] paper?.

Definition 3.1. An attack graph, G = (V,E), is a graph where: (1)
the set of vertices, V = S U A, where S is the set of attack states
(called factsin Ou et al. [64]) and A is the set of attack actions (called
derivations in Ou et al. [64]) and (2) the set of edges, E = RU P,
where (u,v) € R is a precondition edge when u € S and v € A and
(u,v) € P is a postcondition edge whenu € Aand v € S.

2We change the terms in the Ou et al. definition for facts (to attack states) and deriva-
tions (to attack actions) to associate the attack graph with proactively tracking threats
that may lead to exploitation.
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Since there are multiple ways of causing an attack state to be-
come true, the set of attack actions directly preceding an attack
state in an attack graph form a disjunction. On the other hand, in
order for an attack action to be executed, all the necessary attack
states must be achieved forming a conjunction.

Shown in Figure 1, consider that the attack action of exploiting
Shellshock by an adversary choosing a program to execute requires
that the Bash shell subject (likely the same as the web server subject)
has the file system permissions to execute the requested program
and that the adversary has the program permission to specify the
file name argument of the execute function (e.g., execve or system).
Thus, this attack action requires two distinct attack states, one in
the program layer and one in the host layer, to both be satisfied.

On the other hand, once the program is executed it obtains all
the permissions associated with that execution, based on the sub-
ject under which it is run. However, there are multiple ways of
obtaining those permissions (i.e., through “Other ATTACK AC-
TIONS”) , meaning that an adversary can obtain permissions from
a disjunction of attack actions.

Ou et al. [64] represent attack states as facts and attack actions
as rules (derivations) in Datalog. In that paper, facts referred to
permissions available to adversaries and rules referred to methods
of exploitation of known vulnerabilities given those permissions.
We envision using a Datalog representation for our attack graphs.

3.3 Challenges Using Attack Graphs in IDSs

There are several challenges in applying attack graphs to intrusion
detection in a manner that can satisfy the requirements listed in
Section 2.3.

First, traditional attack graph configuration requires non-trivial
manual effort. Phillips and Swiler [67] propose using network con-
figurations to automatically generate network flows and Noel and
Jajodia [41] leverage the Nessus vulnerability scanner to identify
possible vulnerabilities to exploit automatically. However, many
other aspects of attack graphs must be determined and config-
ured manually. For example, identifying attack states (permissions)
necessary to exploit a vulnerability were determined manually. In
addition, the resultant attack states after exploiting a vulnerability
were specified manually. Finally, exploiting a vulnerability is often
more complex than simply having connectivity, so the details of
attack actions themselves must be specified more precisely. Thus,
automation remains a significant challenge.

Second, while recent IDSs explore utilizing known vulnerabili-
ties along with known attacks to detect attacks, researchers com-
monly find use of known information insufficient to detect ad-
vanced attacks. Much research has focused on artificial intelli-
gence and machine learning attacks to classify behaviors more
accurately [12, 14, 35, 42, 49, 77]. However, a challenge is to iden-
tify the system features that identify attacks effectively without
overfitting, and thus not improving significantly on detection using
known attacks. One approach would be to leverage attack graphs to
generate classifiers, but traditional attack graphs work from known
vulnerabilities/exploits as well limiting their effectiveness to extend
IDS knowledge. Using attack graphs for intrusion detection will
require definitions of attack states and attack actions that reflect
the principles necessary to detect attacks in modern systems.
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Third, challenges arise in correlating intrusion detection and
attack graphs. For example, a proposed intrusion detection ap-
proach [89] compares the knowledge encoded in an attack graph
with the intrusion alerts seen so far to identify inconsistencies
between the attack graph and the IDS alerts, where such incon-
sistencies may imply events missed by the IDS. However, such
inconsistencies emerge partly because attack graphs and intrusion
detection are configured independently. A question is whether the
generation of attack graphs could be an input to configuring intru-
sion detection to avoid such inconsistencies.

Finally, while scalability has been examined by Ammann [4],
Ou et al. [64], and Noel and Jajodia [61] among others, the study
of scalability of attack graphs is still quite limited. In addition,
intrusion detection aims to be performed at runtime, so we have
a limited budget to devote to attack graph analysis (and upkeep).
Attack graph approaches are often agnostic about how they may
be modularized to enable better scalability. Prior research has often
limited the application domain (e.g., just to network flows) to create
tractable attack graphs, but we need approaches that encompass
network, host, and program layers systematically.

Provenance vs. Attack Graphs. Given these challenges, an obvi-
ous question is whether the attack graph concept should even be
considered for improving intrusion detection. Another technique
that has historically been applied to forensic (offline) analysis of
security is provenance [11, 44, 69]. Han et al. [31] explore the op-
portunities and challenges in utilizing provenance at runtime for
intrusion detection. Provenance graphs record host operations (e.g.,
system calls) and their dependencies forming a more complete and
accurate representation of system runtime behaviors. However,
unlike attack graphs, provenance graphs are not directly related to
attack states (threats and their permissions) and actions (potential
exploits). Without this knowledge, intrusion detection may only
improve slightly (e.g., by having a more complete picture of run-
time operations). This knowledge could conceivably be added to
provenance graphs, but one needs to encode such knowledge in
some form. We explore encoding such knowledge in attack graphs,
where provenance techniques could be configured based on attack
graphs to enable detection at runtime or via forensic analysis.

Challenges Summary. Based on these findings, we propose to
apply attack graphs to intrusion detection to leverage their ability to
model attacks more accurately. However, to do so, we will examine
how to overcome the challenges above, as summarized here.

Generate Attack Graphs Automatically: Compute attack
states and attack actions from available information (e.g.,
configurations).

Without Known Attacks/Vulnerabilities: Detect attacks
from the principles of vulnerability exploitation, rather than
known attacks/vulnerabilities.

To Direct Intrusion Detection: Determine intrusion de-
tection operations from the attack graph.

Account for Scalability: Budget resources for intrusion
detection based on attack graphs.

We do not claim to know acceptable answers to all of the chal-
lenges at present, but in the next two sections we present a vision for
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intrusion detection using attack graphs and explore the problems,
opportunities, and open issues for achieving that vision.

4 INTRUSION DETECTION VISION

Our vision for intrusion detection using attack graphs is based on
the following insight: that attack graphs naturally correlate to the
two aspects of misuse intrusion detection (1) claiming permissions
that create threats and (2) using threatening permissions to perform
operations that obtain access to additional permissions. Attack
states imply preconditions that grant subjects with permissions
that violate some security property, such as information flow, that
enables a threat to the system. Pieters similarly proposes reasoning
explicitly about access claims, where adversaries may claim use
permissions to launch attacks [68], similar to attack states here.
In addition, attack actions are operations adversaries can employ
given those permissions to launch attacks. Thus, attack graphs
represent sequences of threats and operations that enable possible
misuses that may be composed by adversaries into full attacks.

This implies that we can leverage the ability to compute threats
and exploits to construct attack graphs, which can then be employed
to detect intrusions at runtime. There are several known techniques
for computing flaws of various types that grant threatening permis-
sions. In this paper, we will examine how benign components allow
memory errors and information flow errors that may be exploited.
We further note that researchers have explored computing flaws
at the network, host, and program layers. Although less mature,
researchers have also proposed methods to generate exploits au-
tomatically, for both memory errors and information flow errors.
In the next section, we discuss research challenges in computing
attack states and attack action and combining these two concepts
to construct effective attack graphs.

To enable continuing research and development of methods to
compute attack graphs, we propose that IDSs should be built as a
framework that supplies a suite of methods for constructing attack
graphs and applying them to intrusion detection to enable new
methods to be deployed in a plug-and-play manner. That is, building
and utilizing attack graphs involves a sequence of decisions, and
researchers can plug solutions into the framework to improve the
effectiveness of decisions made for attack graph generation and
intrusion detection incrementally.

A critical challenge will be managing the scalability of using at-
tack graphs. One key insight that we will aim to leverage is that by
predicting the attack surfaces of each component we can compute
attack graphs independently for each component, improving the
scalability of (offline) attack graph computation and (online) use.
An attack surface of a component [36] identifies the entrypoints
that may receive input controlled by an adversary. Attack surfaces
then describe all the sources of adversary-controlled inputs, so at-
tack graphs must originate only at the attack surface entrypoints.
Thus, attack graphs can be constructed locally from the attack
surface entrypoints for each component. A challenge is that even
attack graphs for each component may be sufficiently complex as
to present scalability challenges, particularly to runtime monitor-
ing. One possible side-benefit may be that once an attack graph
is computed, defenders may proactively remove flaws to reduce
attack graphs for their components. However, if component attack
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graphs are too large, techniques will be necessary to prioritize the
parts of the attack graph to utilize, such as via machine learning.

To implement intrusion detection from our proposed attack
graphs, the basic approach would be to use the attack graph to in-
strument system components to monitor each component for attack
states being achieved and attack actions being performed. For each
state, the IDS would record the associated permissions obtained.
For each action, the IDS would record the successful completion of
an operation associated with exploitation behaviors implied by the
action. For both the permissions obtained and exploit behaviors
completed, an IDS has options about whether to track worst-case,
probabilistic, and/or best-case scenarios for each to produce de-
tection hypotheses about adversary control. Detection hypotheses
are similar to attack states in that they describe permissions under
adversary control, but unlike attack states, which we envision will
imply best-case permissions (for adversaries), hypotheses may be
generated using other thresholds. At runtime, hypotheses relative
to a single component could be computed using local attack graphs.
Researchers have examined techniques to estimate attack prob-
abilities for attack graphs by reasoning about them as Bayesian
networks [53]. However, to use such a technique, a challenge is to
relate attack states and attack actions to probabilities.

5 RESEARCH PROBLEMS

In this section, we examine the main research problems to be solved
to generate attack graphs for intrusion detection. Figure 2 shows an
attack graph example, showing the network, host, and program lay-
ers. This attack graph shows a simplified system with only one host
and only one program. Each network, host, and program compo-
nent has its own attack graph rooted at its attack surface. Note that
the attack surfaces provide the link between layers. For example,
the host-to-program attack surface represents how programs may
use host resources or network resources through the host, such
as sockets, to receive adversary-controlled input. Attack graphs
show how each component uses its attack surface input to cre-
ate threats that give the adversary permissions as attack states to
launch attacks against the component via attack actions. Finally,
attack graphs show that attack states may enable adversaries to
have permissions to propagate attacks to attack surfaces of other
layers as output, such as the program-to-host attack surface. Below,
we examine the research problem in computing attack surfaces,
attack states, and attack actions for network, host, and program
components, and in using attack graphs for intrusion detection.

5.1 Computing Attack Surfaces

The first step is to identify the possible sources of attacks for each
component, which we propose to do by computing each compo-
nent’s attack surface. Figure 2 shows the locations of attack surfaces,
which connect the network, host, and program layers. Importantly,
the host layer faces adversary-controlled input from both the net-
work and program layers.

As entrypoints imply communication from outside the compo-
nent, they naturally identify the possible inter-layer sources. If
components only receive adversary-controlled inputs from attack
surface entrypoints, then all adversary-controlled inputs can be
identified from those entrypoint sources, independent of other data
flows. We leverage this assumption for computing attack graphs
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Figure 2: Attack graph vision for intrusion detection, where
individual network, host, and program components have in-
dependent attack graphs relating attack states and attack ac-
tions generated based on that component’s attack surface.
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below. In this section, we examine the research problems, opportu-
nities, and issues in estimating component attack surfaces.

The Problem. Computing attack surfaces requires solving three
main challenges: (1) identifying entrypoints of each component;
(2) identifying adversaries of the component that may launch at-
tacks; and (3) determining the entrypoints for each component
that are accessible to any of that component’s adversaries. First,
what constitutes an entrypoint depends on the component. For pro-
grams, entrypoints typically correspond to system calls, although,
to distinguish among system calls of the same type researchers
designate the library calls that cause system calls (e.g., to 1ibc) as
entrypoints. For networks, untrusted remote hosts or networks are
entrypoints [47, 87]. For hosts, resources updated from untrusted
parties, such as network sockets and files of unknown provenance,
form attack surfaces. Second, attacks originate from adversaries of
each component, so we need a method to predict such adversaries.
Third, we need to connect a component’s adversaries to its entry-
points to determine which of the component’s entrypoints may
actually be accessible to adversaries.

Each of these three challenges may present ambiguities that
prevent exact solutions. For example, library calls are a relatively
reliable source of external input for programs (i.e., entrypoints), but
programs may use specialized techniques, such as memory-mapped
files, to create other entrypoints. Finding references to memory-
mapped files in programs is intractable in general, as it requires
solving the aliasing problem. Second, identifying adversaries de-
pends on the threat model for the particular component, which
may vary depending on the context. Third, identifying which entry-
points are accessible to adversaries depends on how components
are used in practice. Such use will depend on the configuration of
the component’s runtime environment. As a result, we have to make
choices about whether to overapproximate or underapproximate
attack surfaces. Ideally for security, we would overapproximate
attack surfaces for each component, so we would never miss an
attack, but the complexity of systems means that we will likely gen-
erate many false positives. On the other hand, underapproximating
attack surfaces means we are actually tracking true attack surfaces,
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although we have to develop strategies for handling new attack
surfaces when they are discovered.

Opportunities. Researchers have explored a variety of methods
to identify program attack surfaces, including measurement of
the importance of data accessible from the entrypoint [47], the
stack traces associated with crashes [84], resources accessible to un-
trusted subjects based on the access control policy [87], and where
programmers filter inputs to limit program inputs [86]. These dis-
parate techniques typically underapproximate the attack surface
because they depend on runtime results, but the resultant attack
surfaces nonetheless have been found to correlate well with vul-
nerabilities [84, 87], even detecting new vulnerabilities. However,
several of these methods do not offer techniques for identifying
adversaries nor their accessibility to specific entrypoints, limiting
the value of these techniques to flaw identification rather than
intrusion detection.

Researchers often set threat models for their experiments, but
there have not been many research efforts that propose methods
for computing adversaries and the threats they present. One such
method is the Integrity Wall approach [87]. This approach proposes
a conservative threat model that aims to maximize the number of
adversaries of a program. In this model, a program only trusts those
programs that run under the same domain, have the permissions to
modify the program’s executable file, or can modify critical kernel
data (e.g., physical memory). In general, subjects with such permis-
sions can trivially compromise the program, so they must be trusted
for the program to operate. Researchers applied this technique to
SELinux systems, finding that even with this large set of adversaries
per program: (1) program attack surfaces were only a small frac-
tion of the number of entry points and (2) reported vulnerabilities
could be associated with a large fraction of the identified attack
surface. We examine the application of the Integrity Wall approach
for computing adversaries in one of the case studies in Section 6.1.

Since it is difficult to predict the resources that may be accessed
by individual library calls, if they are computed dynamically, it is
often difficult to predict which library calls may access adversary-
controlled resources, implying that they are part of the program’s
attack surface. Vijayakumar et al. [86] found that if a program lacks
any filtering for an entrypoint, then the program assumes that no
adversary-control input will be received. Thus, such an input can
be blocked to prevent an unexpected attack surface that would be
vulnerable. If the program filters input at that entrypoint, then that
entrypoint may be a legitimate attack surface, and IDS will have to
examine the impact of its use, lest risking a false positive. Thus, one
can apply a method that detects the filtering to detect legitimate
attack surfaces.

We also need methods to compute host and network attack
surfaces. Fortunately, researchers have explored attack surfaces
from networks to hosts [36, 47, 52], as this was the original point
of the attack surface metric. These works enumerate the various
entrypoints that make the system accessible from the network,
as most network entrypoints enable untrusted access. In addition,
researchers identified that host resources of unknown origin may
be adversary-controlled sources [52], and hence part of the host
attack surface as well.
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Issues. An often overlooked issue is the computation of the
program-host attack surface shown in Figure 2. The problem is
that programs may propagate adversary-controlled input that they
receive to system resources, which may propagate attacks to other
processes. This is part of the cause of the Shellshock vulnerability,
where a web server transfers adversary-controlled input to Bash
through environment variables. While we can compute whether
information written to a host resource is tainted by adversary input
in a variety of ways, these methods have historically had severe lim-
itations. Dynamic taint tracking is accurate, but expensive, whereas
sound static analysis often greatly overapproximate tainted flows.
However, recent work has shown that applying static analysis
judiciously can reduce the overhead of dynamic taint analysis sig-
nificantly [10] (below 10%).

However, dynamic analysis is inherently incomplete, so we may
underapproximate attack surfaces. Thus, we need to address the
challenge where new attack surfaces may be discovered at runtime.
For the program-host attack surface, this creates the possibility of a
mutual dependence between the host and program attack surfaces,
where program flows may extend host attack surface which in turn
likely extends one or more program attack surfaces, and so on.
In general, program and host attack surfaces must be computed
until a fixed point is reached. However, many programs do not
expect untrusted input propagated by programs they trust (e.g.,
lack filtering), so these so-called unexpected attack surfaces [86]
should halt propagation. The IDS must effectively choose between
blocking input and tracking threats.

5.2 Computing Attack States

Given the attack surfaces, we aim to build attack graphs in two
stages. In this first stage, we compute attack states from security
property violations, because such violations often introduce new
permissions to adversaries. The aim is to identify operations that
may enable adversaries to leverage such permissions to launch at-
tacks (i.e., attack actions) that are accessible to adversary-controlled
input.

Security properties restrict an operation to only utilize permis-
sions that comply with security requirements, so a violation indi-
cates a flaw that may permit an adversary to exploit the component.
For example, an adversary request may cause a program to access a
database containing some information to which an adversary is not
authorized or to utilize a key value that must be kept secret from
adversaries. Such permissions are not allowed to the requestor, so
there use by the database may present a problem, if exploitable, for
the adversary to utilize those permissions in unforeseen ways.

The Problem. The problem of computing attack states from secu-
rity properties involves the following challenges: (1) determining
the security properties to employ; (2) identifying where components
violate those security properties; and (3) estimating the permissions
obtained by the security violation.

In contrast to attack surfaces and attack actions, we aim for
attack states to overapproximate the threat posed to identify the
possible permissions that may be obtained. Thus, we employ se-
curity properties to compute the maximal permissions that may
be made available to adversaries to create threats to exploit the
component.
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Opportunities. We identify two broad types of properties we
consider for identifying new attack states that may grant new per-
missions to adversaries at present. Other security properties may
be considered without modifying the basic approach. The main
requirement for a security property is that it be broadly applicable,
so it can be applied automatically.

We observe that adversaries commonly obtain permissions by: (1)
abusing weaknesses in access control enforcement and (2) stealing
permissions by hijacking program executions. First, access control
enforcement is often weak because subjects are granted permissions
that may enable compromise. For example, we have long known
that secrecy and integrity of a computer system can be protected by
enforcing an information flow policy [24, 55]. However, in practice
information flow is often too restrictive to permit desirable, if risky,
functionality, such as allowing a process holding secrets to reply to
a process that is not authorized for such secrets. Such an operation
is risky because it may enable the secret values to be leaked. Thus,
information flow is a security property that identifies attack states
where adversaries may gain unauthorized access.

Information flow violations may occur at the program, host, and
network layers. Researchers have developed several methods for
detecting information flow errors in program [24, 54-56] and in
host [17, 18, 34, 40, 74, 95] as well as in host and network com-
bined [82, 83].

In addition to information flow violations, a variety of attacks on
programs involve hijacking program executions through exploita-
tion of memory errors. In languages that are not type safe, memory
references may not point to memory associated with the referenced
resource leading to unauthorized reads and writes. Prior work clas-
sified pointers into safe, sequential, and wild categories [58], where
safe pointers must satisfy type safety, but sequential and wild point-
ers may not. Bounds checking techniques have been developed to
enforce buffer bounds [57] to ensure that sequential pointers comply
with memory bounds restrictions. While the performance overhead
for the initial bounds checking techniques was high, subsequent
methods based on fat pointers [25] have much better performance
and hardware support for fat pointers is being explored [90].

Issues. A challenge is to predict the permissions implied by a
security property violation for each attack state, and manage the
accumulation of those permissions across attack states. In tradi-
tional attack graphs [62, 64, 78], the attack states are specific to
each vulnerability, so the permissions (or facts in Ou et al. [64])
implied are also ad hoc (i.e., determined manually). One alternative
is to arrange permissions in a lattice, as proposed for decentralized
information flow control [43, 96], to enable transitions to be more
systematic as the adversary obtains more access. This would apply
well for properties that are commonly represented as lattices, such
as information flow. Other properties could be represented in sepa-
rate lattices. However, security properties related to memory errors
are typically not represented in such a form. However, current ex-
ploit generation techniques assume broad access to memory [39].
Thus, the management of permissions is an open research issue for
memory security properties.

Support for checking restrictions on wild pointers currently re-
mains an open research issue. Wild pointers may reference arbitrary
memory -locations, such as pointers to a set of objects on the heap.
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Prior work identifying wild pointers [58] applied ad hoc checks to
limit their access. While they estimated that wild pointers were
relatively uncommon (around 1% of pointers), that still created sig-
nificant manual effort. The development of sanitizers to check for
memory errors of various kinds using fuzz testing indicates that
precise checks for such memory errors can be done with compiler
support, but sanitizer-based detection can have high runtime over-
head, 3X or more [81]. While this overhead may be acceptable for
fuzz testing, it will not be acceptable in normal runtime use, so mon-
itoring for violations for wild pointers will require lighter-weight
sanitizers that are still reasonably accurate.

5.3 Computing Attack Actions

To complete the attack graph, we must compute attack actions,
identifying exploits that lead to new attack states. As attack states
represent operations where adversaries obtain additional permis-
sions due to security property violations, the question is how ad-
versaries may take advantage of such permissions to gain more
permissions.

Once a security property is violated, this opens opportunities for
adversaries to launch attacks depending on the permissions avail-
able from the violation and the permissions they already possess.
The goal in this step is to determine the possible attack actions
leveraging those permissions that may enable the acquisition of
additional permissions to further attacks.

The Problem. The problem of computing attack actions from
threatening permissions is to identify the relevant operations that
an adversary may want to employ to propagate an attack (e.g., use
permissions to access unauthorized data and/or increase adversary
permissions) and determine whether those operations are possible
within the component defenses employed.

Similar to attack surfaces, we aim to compute attack actions that
are likely to be possible to identify misuses of security property
violations. Thus, we aim to identify malicious behaviors relative to
the permissions gained and others that have been gained previously.

Opportunities. We find that this problem is similar to the problem
of exploit generation. Exploit generation methods leverage known
vulnerabilities for computing attacks. Early systems to produce
exploits from memory errors automatically, such as AEG [6], also
assumed that no defenses were in place. However, recent systems
like Data-oriented Programming [37] and Block-oriented Program-
ming [39] (BOP) assume that only attacks that comply with pro-
gram control flows will be permitted by defenses. Most techniques
still assume that the vulnerability provides the adversary with full
permissions over memory access, referred to as an arbitrary write
primitive (AWP), but recent work also explores determining the
permissions available to launch exploits for use-after-free vulnera-
bilities [93]. These exploit generation tools then generate a single
exploit path, if possible. Most tools search for a specific, known
attack, although BOP enables specification of a set of attacks in the
form of exploit programs that are mapped to the victim code.
While these approaches have previously been employed to com-
pute exploits for known crashes and/or vulnerabilities, another
insight is that they may be used to study the impact of security
property violations in attack states. Fundamentally, BOP only de-
pends on the assumption that certain permissions may be available
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to an adversary (e.g., arbitrary write primitive to write to any mem-
ory location) to implement a particular exploit program. Thus, one
can leverage BOP to determine whether exploit programs corre-
sponding to attack actions are possible given particular attack states
by assuming the availability of permissions from the attack state.
Currently, BOP assumes arbitrary read and write access, so we will
need to explore the impact of more limited permissions.

We envision that a similar approach can be taken to assess infor-
mation flow violations as well. When information flow violations
occur, we assume that adversaries can access unauthorized data, so
the question is what actions are available to the adversary using
that data. We can also apply exploit generation techniques like BOP
to determine whether a particular attack is possible given access
to that unauthorized data. Since BOP follows legal control flows
and no further memory errors are necessary to generate such an
exploit, a technique like BOP could also be adapted to exploit in-
formation flow errors. We explore using BOP for generating attack
actions for both memory errors and information flow errors related
to Shellshock case studies in Section 6.

Issues. One issue with using current exploit generation techniques
is that they only find one exploit and declare victory. For building
attack graphs, we want to have as comprehensive a view of the
attacks given the available permissions as possible. However, as we
see in the case study, non-trivial changes will need to be made to
the exploit generation methods to build attack graphs.

Another issue is that exploit generation techniques focus just
on the last mile of the attack, rather than all of the steps in the
kill chain [38]. On the other hand, exploit generation could benefit
from more focused techniques for individual steps of the kill chain
as well.

Another issue is that exploit generation typically assumes one
set of permissions for all cases. For example, BOPC assumes the
presence of an arbitrary memory write primitive and control-flow
integrity [1] defenses. However, a particular security violation may
impart a more or less restricted set of permissions. Also, adversaries
may accumulate permissions over time from reaching other attack
states.

5.4 Intrusion Detection with Attack Graphs

In considering the potential for leveraging attack graphs to improve
intrusion detection, we must examine the impact of the proposed
approach in the context of the base-rate fallacy [7, 8]. The base-rate
fallacy occurs because people often fail to account for the basic rate
of incidence of an event in assessing the frequency of producing
false positives. Thus, even if a detector is very accurate (e.g., has a
99% detection rate), the frequency of non-intrusion events evaluated
may lead to a high false-positive rate in practice.

We envision that our proposed intrusion detection approach
based on attack graphs mitigates the base-rate fallacy in two ways.
First, all intrusion detections will be based on both an attack state
and its subsequent attack action. While violating a security property
of an attack state may be fairly common, and thus prone to false
positives, we will never identify an intrusion from an attack state
alone. We also require evidence of abuse of that attack state in the
form of an attack action. Should all attack actions be examples of
true misuses, the proposed approach should not incur false positives
because attack actions are examples of true intrusive behavior.
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However, if we utilize techniques that do not identify only true
misuses, some false positives are possible.

Second, in this proposed approach, intrusions will be detected
based on a sequence of state-action pairs (i.e., corresponding to pairs
of attack states and attack actions). The aim is that the probability
of such a sequence of state-action pairs implying an intrusive action
rather than a benign action should be sufficiently high to prevent
non-intrusive actions from dominating the detection process. In
terms of Bayes Theorem as described by Axelsson [7], the value P(I)
in equation 10 should be much greater than shown in the presented
example because the likelihood of that trace of state-action pairs
being emblematic of the basic rate of incidence should be quite low
(i.e., P(I) >> P([) rather than the other way around).

One main challenge is to convert state-action events into es-
timates of intrusion. Prior research in attack graphs associates
vulnerabilities and attacks by computing probabilities [53, 70, 94]
or tracking correlations [72, 85]. To compute an overall attack prob-
ability from attack graphs, researchers encode the attack graphs as
Bayesian Networks. A challenge then is to determine the individual
probabilities, and researchers often employ available knowledge
of vulnerabilities, such the Common Vulnerability Scoring Sys-
tem [21] (CVSS). However, such estimates are not available for the
security violations and generated exploits that we employ in this
attack graph model. An alternative is to reason about correlations
between states and subsequent actions and/or among state-action
pairs themselves. However, the correlations proposed thus far are
heuristics that may themselves be error-prone. While events that
are not commonly correlated may indicate anomalies, we are more
interested in looking for sequences of state-action pairs that corre-
late as misuses (attacks).

Another challenge that we envision for the proposed approach
is that it aims to detect intrusions in a stateful manner. To detect
attacks in terms of sequences of state-action pairs, the IDS must
collect sequences of state-action pairs and track trigger rules based
on those sequences. Collecting such sequences at runtime could
incur non-trivial overhead, so judging how to use the attack graphs
wisely for monitoring is an open challenge. An opportunity is to
integrate detection with the component processing to detect intru-
sions locally, perhaps at low cost. However, in general, intrusions
may span multiple components, so efficient and effective ways to
produce summaries for (more) centralized analysis are necessary.
Research has explored summarization methods with low loss of
information for network IDSs [5].

6 CASE STUDIES

In this section, we examine case studies for the two examples pre-
sented in Section 2, file retrieval and Shellshock attacks. We present
the file retrieval case study first, as the Shellshock case study builds
on that, particularly for computing attack surfaces.

6.1 Detecting Attacks on File Retrieval

We also examine the application of the proposed attack graph ap-
proach to detect attacks on file retrieval. Details on this vulnerability
and its variants are provided in Section 2.2.

Computing Attack Surfaces. To compute attack surfaces for
Apache, we collect its relevant entrypoints, identify its adversary
subjects, and compute which relevant Apache entrypoints may
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use resources accessible to those adversaries. As is typical, any
entrypoint that may receive adversary-controlled input by reading
an adversary-controlled resource is part of Apache’s attack surface.

To compute Apache’s adversaries, researchers leveraged the In-
tegrity Wall adversary model [87] that conservatively identifies
adversaries (i.e., maximizes adversaries) by only trusting the sub-
jects that Apache must necessarily trust. That is, each program
only trusts subjects that could modify critical kernel resources or
the code files run by Apache or its trusted subjects, based on the
host’s mandatory access control policy (e.g., SELinux [76]). All
other subjects were considered to be adversaries of the program.

Given the set of program adversaries, computing the entrypoints
in the attack surface was done through a runtime analysis using test
suites provided with Linux packages. By running the test suites and
collecting the file accesses at relevant entrypoints, the researchers
could determine whether a program’s entrypoint ever accessed a
file that could be written by a subject considered to be an Apache
adversary. This attack surface includes entrypoints that use direc-
tories in pathname resolution that may be modified by adversaries.
Notably, even with this conservative model only five attack sur-
face entrypoints were identified in the prior work (see Figure 10 in
Vijayakumar et al. [86]).

This approach to computing attack surfaces did not include pro-
gram flows that propagate adversary-controlled data to modify
host resources (i.e., the program-to-host attack surface). For exam-
ple, the researchers identified that log files should be considered
as adversary-controlled [87], even though only the program itself
could write to the log files. Instead of using the program data flows
to detect this propagation of data, the researchers labeled these files
manually. Research is needed to automate this task.

Computing Attack States. In this case, there are three security
properties. In the first security property, the file name arguments
used in library calls that perform name resolution (e.g., open) must
not depend on adversary-controlled input. In the second security
property, if the first security property is violated, the output of a
name resolution (i.e., file referenced by the returned file descriptor)
must be authorized to be accessed by Apache adversaries. In the
third security property, if the first security property is not violated,
then the output of a name resolution must be protected from access
by Apache adversaries. Some name resolutions comply with all
three security properties, e.g., if they use a hard-coded file name
guaranteed to return a file protected from adversary access. How-
ever, several programs fail at least the first property and many
others also fail the second or third property as well, which implies
a successful attack [86, 88].

The researchers identified the library calls that may violate one
or more of these security properties using a runtime analysis that
collected all the information flows from adversary-controlled inputs
to file pathname arguments in library calls that perform name
resolution. They further identified whether some form of filtering
restricted how the input could be used to build file pathnames on
those information flows to differentiate whether the second or third
security property was relevant.

Computing Attack Actions. Attack actions in this case are op-
erations to modify file retrieval to gain access to unauthorized data
or trick Apache into using an adversary-controlled file. Two broad
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classes of attack actions are possible: (1) supply input used to build
file pathnames chosen by the adversary and (2) change the filesys-
tem to redirect name resolution. A challenge is to find attack actions
that would be successful given the adversary permissions to control
file names and modify the filesystem namespace.

Researchers defined a runtime method to test programs for name
resolution vulnerabilities using a kernel-based system that deter-
ministically changes the filesystem for an attack whenever an ad-
versary of the program under test has modify permissions to a
directory used in name resolution [88]. In this case, the types of
attack actions that are possible were identified a priori. However,
rather than performing intrusion detection, this prior approach
performed testing as if it were an adversary.

Instead, an IDS could apply these attack actions to detect when
either the second or third security property is being violated at
runtime. If so, then prior work raised an alert [86], although some
false positives were reported. Thus, we may want to track the
program further to determine if Apache would be compromised by
processing that file. Other researchers have explored techniques to
compute the response of the operating system necessary to direct
programs to the chosen operations [28] (e.g., leak the file contents).
We could leverage such a technique to compute subsequent attack
actions following the malicious actions on name resolution.

6.2 Detecting Shellshock Attacks

Now we examine the application of the proposed attack graph
approach to detect attacks on the Shellshock vulnerability by ex-
ploiting web requests. Details on this vulnerability and its variants
are provided in Section 2.1.

Computing Attack Surfaces. Computing attack surfaces intro-
duces challenges because the web server propagates adversary-
controlled data to host resources, expanding the host attack surface
for itself and the Bash shell.

Starting with the attack surface in the web server that receives
web requests, as described for file retrieval above, we compute
resources that may be tainted by attack surface input. First, we
compute the exit points tainted by data flows from the web request
entry point that is accessible to adversaries within the web server,
including the exit points that set the environment variable. As we
are looking to estimate an underapproximation of attack surfaces,
we perform a static taint analysis without aliasing. This detects that
the environment variables passed to Bash (a host resource) reaches
a program-to-host attack surface. In general, any program that can
be started by a web server can be victimized by these environment
variables, expanding their attack surfaces. With traditional UNIX
access controls, a web server is authorized to run many programs,
but using MAC enforcement the programs that may be executed
can be limited, thus limiting the impact of the new attack surface.
However, environment variables are not specifically managed by
current access control mechanisms, either DAC or MAC, so host
data flow analyses [17, 18, 34, 40, 74, 95] will need to be expanded
to represent such information.

In addition, the discovery of the new program-to-host attack
surface may expand the attack surface of other programs, such
as Bash in this case, which may cause yet further attack surface
expansion. In general, one can envision this expansion continuing
until a fixed point is reached. However, in the case of Shellshock,
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Figure 3: Full Shellshock Attack Graph: Attack states are in white and attack actions are in blue. This attack graph includes
both the traditional Shellshock vulnerability as well as a memory error vulnerability discovered later.

the expansion of the Bash attack surface enables an adversary to
dictate program execution, which is not a permission that Bash
intends. Thus, the attack surface should not be expanded for the
execute call, since Bash assumes that the executor of the shell trusts
the input provided to that shell. This is an example of an unexpected
attack surface [86], which should terminate propagation. However,
Shellshock patches introduced filtering for such input, basically
certifying the use of environment variables as a legitimate attack
surface.

Computing Attack States. With regard to Shellshock, multi-
ple security property violations occur when unfiltered adversary-
controlled input is passed to the program entry point in Bash. The
original violation was that the adversary can control critical argu-
ments to execute functions, which can be detected as an informa-
tion flow violation. Using taint analysis, we can detect such errors.
In addition, other Shellshock vulnerabilities enabled violation of
memory errors. At present, detecting such errors accurately is diffi-
cult. However, identifying risky pointer operations, as proposed in
Ccured [58] is practical. We plan to explore utilizing such a method.

The next step is to estimate the permissions made available to
adversaries due to security property violations. For information
flow, a question is how much control an adversary may obtain if
they can provide part of the input for the file name submitted to
the execute function. As in the previous case study, control of a file
name used in a name resolution gives the adversary access to any
file accessible to the principal, the web server.

While patching Bash, one of the early patches was incomplete,
leaving a memory error that could be exploited by adversaries
through the same mechanism as Shellshock. In this case, developers
introduced new memory violations and for a brief period of time,
adversaries could remotely execute arbitrary code and deny service
before a subsequent patch was released. As discussed above in
Section 5.3, current exploit generation tools assume that memory
errors grant an arbitrary write primitive (AWP) to the adversary for
attack actions [39]. However, in the future a more accurate estimate

of memory accessibility will be necessary to prevent creating many
unattainable attack actions.

Computing Attack Actions. We leveraged block-oriented pro-
gramming (BOP) as implemented by the BOPC tool [39] in
an effort to identify possible attack actions from vulnerabili-
ties due to the receipt of adversary-controlled environment vari-
ables. The relevant part of the Bash program’s call graph for
the BOPC analysis is shown in Figure 4. Function calls before
parse_and_execute are omitted since they are not related to
the vulnerability. parse_command perform the parsing of com-
mands including environment variables, and would return to
parse_and_execute if parsing is not needed or finished. BOPC
aims to find a single vulnerability, preferring the shortest path to
success. We define an SPL program (BOPC’s programming lan-
guage) to run execve with a program of our choice in Figure 5.

The complete attack graph for Shellshock is shown in Figure 3.
Note that we used BOPC to study from the “Generate Env Payload”
step. The remaining attack graph was produced manually at present.

Since Bash is an interpreter, the most direct way to execute a
program is to specify it in the script input. Since BOPC is looking
for the shortest, context-sensitive attack path, it finds this path
instead of the more complex path using the environment variables.
We tried to start BOPC in other places in the call graph, even to
exploit the memory errors instead, but received the same result. The
reason is that BOPC will only compute the shortest-path solution to
exploit the target binary. Since the function that processes environ-
ment variable input, yyparse, will return to parse_and_execute
when it finishes, BOPC regards directly modifying the argument
of execve as the optimal solution. The exploit path then is from
parse_and_execute to execve circled in red.

A challenge from this analysis is that exploit generation tools
are not yet designed to look for multiple attack actions, but rather
to find one proof-of-concept exploit. We found that directing BOPC
to look for multiple attack actions would require an extension to
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Figure 4: Call graph for Shellshock exploits in Bash

collect multiple edges between functional steps in its representation
of the search (called a delta graph in the BOPC paper [39]).

7 DISCUSSION

We now review the intrusion detection requirements set forth in
Section 2.3.

Relate to Attack Principles. The aim of this requirement is to
connect the acquisition of threatening permissions (attack states)
to adversary operations to leverage those permissions to perform
attacks (attack actions) in a systematic way to detect intrusions.
We propose to satisfy this requirement by defining attack graphs
in terms of attack states and attack actions that directly correlate
to these corresponding intrusion detection concepts. We propose
using security property violations, which imply the acquisition of
threatening permissions, for attack states and exploit operations,
which imply exploitation of those permissions for attack actions.
There are challenges in computing security properties and exploits,
which require further research, but the basic approach relates attack
graphs and intrusion detection.

Increase Visibility. The aim of this requirement is to compute
security violations and exploit operations for network, host, and
program layers. In this paper, we focused primarily on attack graphs
for host and program layers, but prior work has demonstrated con-
nections between host and network flows suitable for computing
security property violations for the information flow. We have
shown that the attack graphs can span and connect network, host,
and program layers through attack surfaces and per-component
attack graphs.

Automate Intrusion Models. The aim of this requirement is to
compute attack states and attack actions in attack graphs automati-
cally. We show that some types of security properties are general
and methods exist to compute them. Exploit generation methods
also exist for automating exploit computation, but more such meth-
ods will be necessary. Computing modular attack graphs require
computing attack surfaces automatically.

Improve Scalability. The aim of this requirement is to enable
scalable intrusion detection. The proposed approach in this paper
utilizes attack surfaces to improve scalability for computing attack

NSPW ’19, September 23-26, 2019, San Carlos, Costa Rica

void payload() {

string prog = "/bin/sh\0";

int64 xargv = {&prog, 0x0};
_r0 = &prog;

__rl = &argv;

_r2 = 0;

execve (__r0, _rl, __r2);

Figure 5: Example SPL program for building attack actions
for execve.

graphs (offline) and performing intrusion detection (online). First,
computing attack surfaces enables us to compute attack graphs of
components independently. However, the computation of attack
surface itself may be complicated by the propagation of adversary-
controlled data between programs, hosts, and the network. Next,
although we proposed to compute attack graphs for components
locally, which improves scalability, such attack graphs may still be
complex. Researchers will need to explore techniques to generalize
attack states and actions to simplify attack graphs. Finally, the resul-
tant IDS system will leverage a trace of state-action events to detect
intrusions. While we envision that some intrusions may be detected
locally using the component’s own attack graph, some correlation
among the components may be necessary by a centralized IDS.

8 CONCLUSIONS

In this paper, we argue that current intrusion detection systems
are designed to either defend against previously known attacks or
have limited visibility of all layers of a system preventing them
from defending against new attacks or multi-stage attacks that tra-
verse a system’s network, host, and program layers. We define a
new approach to intrusion detection systems by leveraging attack
graphs and showing that attack graphs naturally correspond to the
intrusion detection steps of acquiring threatening permissions and
leveraging them in operations to perform exploits. Then, we exam-
ined our approach in two case studies, to show how this approach
applies to file retrieval attacks and the well-known Shellshock ex-
ploit and discuss limitations and additional challenges that need to
be researched to deploy such an approach effectively.
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