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ABSTRACT

Intelligent voice assistants (IVAs) and other voice-enabled devices
already form an integral component of the Internet of Things and
will continue to grow in popularity. As their capabilities evolve,
they will move beyond relying on the wake-words today’s IVAs use,
engaging instead in continuous listening. Though potentially useful,
the continuous recording and analysis of speech can pose a serious
threat to individuals’ privacy. Ideally, users would be able to limit or
control the types of information such devices have access to. But ex-
isting technical approaches are insufficient for enforcing any such
restrictions. To begin formulating a solution, we develop a system-
atic methodology for studying continuous-listening applications
and survey architectural approaches to designing a system that
enhances privacy while preserving the benefits of always-listening
assistants.
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1 INTRODUCTION

As the Internet of Things grows, it will continue to provide both
major conveniences and significant privacy challenges. One ex-
isting category of technologies that exemplifies these tradeoffs is
intelligent voice assistants—for example Apple’s Siri, Microsoft’s
Cortana, Google Assistant, and Amazon Alexa—which respond to
users’ voice commands, such as playing music, looking up infor-
mation, or activating a smart-home device. These assistants are
available in most smartphones, as well as in stand-alone smart-
speakers, and their voice-enabled interfaces have also been added
to conventional gadgets like televisions, microwaves [22], and even
toilets [2]. In all of these form factors, the voice assistant operates
by always listening for “wake-words” (such as “Hey Siri” or “Ok
Google”), then recording and analyzing any audio that follows it,
in order to extract (and act on) the user’s instructions.

Even the current setup, with users explicitly triggering the device,
presents privacy difficulties [10]. Most people do not understand
when a smart device is listening and where it is sending data [9].
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Some may not even realize that their recordings are stored in the
cloud—though law enforcement certainly does, and has requested
the collected data as part of investigations [12]. Advertisers have
also sought to exploit the insights these devices offer into shoppers’
lives. Patent filings from Amazon and Google have described de-
signs for using data they collect from smart speakers for targeted
advertising [18].

1.1 Towards Always-Listening Devices

The patent filings provide clues to other features that we may expect
to one day see in our assistants. One notable assumption is that
the devices will be constantly listening and analyzing data [5]: for
example, the assistants may be expected to detect a fire alarm going
off, ababy crying, or a child “engaging in mischief” [8]. More simply,
users may want to vary their sentence structure when addressing
their devices (“turn on the lights, Siri” instead of “Siri, turn on the
lights”). All of these features require the devices to expand the scope
of their listening. Today, the device’s microphone is already always
on, but its task is very narrow: detecting the device’s wake-word.
Future use cases, however, will require listening for more things
and performing more sophisticated analysis.

In fact, always-listening (or always-watching) devices are already
on the market. As one example, the Google Clips camera takes
pictures continuously and then selects the “best” photos among
them [14]. Less sophisticated but more common, in-home cameras
are marketed for a variety of purposes: security, watching pets,
and surveillance of nannies and other domestic workers. Most are
already connected to the Internet, and, with time, they too are
likely to incorporate Al-powered or other “smart” features. Voice
interfaces may similarly benefit from an “always-on” capability,
and, as their features expand, it is highly likely that more people
will welcome them into their homes without full knowledge of
potential privacy ramifications.

1.2 New Privacy Challenges

What does it mean for consumers’ privacy if a device is always
listening? Rather than waiting for a wake-word to start capturing
the audio surrounding the device, they will be “passively listening”
to everything until they hear content relevant to their functionality.
This calls for a shift in how we think about privacy on these devices—
and in our homes. Previously, we opted in to interactions with our
assistants, addressing them by name. Soon, the default will be for
our speech to always be collected, and we need to think about how
to opt out (i.e., block) the devices from gaining access to certain
speech. But with the trigger word gone, users will have even less
insight into when these devices are capturing or processing audio,
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significantly increasing the chances of a device capturing audio in
unexpected—and potentially privacy-invasive—circumstances.

Lack of transparency will not be the only privacy issue for fu-
ture passive listening devices. Depending on where in the home
they are located, they can listen in on different conversations with
varying degrees of sensitivity. Based on what they hear, they will
be able to infer highly private and intimate details about our lives.
This further raises difficult questions of whether this data is stored
and who has the opportunity to review it. Compounding the chal-
lenges, multiple people could be involved in a conversation, each
with different privacy expectations and preferences. Many, due to
their status in the household, may lack any administrative access
or accounts with the service. Some, like visitors, might not even
know about the device’s presence. Meanwhile, as assistant-enabled
devices become smaller and more ubiquitous, their form factor and
hardware limitations will make privacy indicators and feedback
cues less feasible.

The picture is further complicated by the ecosystem that will
surround these devices. We envision the ecosystem following the
path of smartphones, where manufacturers will serve as a mediator
(like the Android and i0S operating systems do) for a multitude of
third-party applications. These apps will provide narrowly defined
functionality, such as calendaring, ride sharing, etc. Some voice
assistants already support third-party functionality (e.g., “skills” for
Alexa), and are actively promoting their platform to developers.

What will the privacy protections be when these devices shift to
passive listening and start sharing audio with third parties? Will
the third parties also get full access to all audio from within our
homes? Because of liability and reputational concerns, platforms
themselves will likely want to impose restrictions on the data third
parties collect. The question—and challenge—is, how? How can a
passively-listening device identify when it should or should not
be listening? How can a person specify which conversations are
fair game for an app and which are private? Can a conversation be
appropriate for one app while being inappropriate for another?

Answering these questions requires new approaches for both
privacy and security. While existing paradigms—f{rom capability-
inspired permission systems to access control—present a full spec-
trum of options, they are by and large inadequate for the problems
posed by passively-listening devices. Granting a “microphone per-
mission” to Siri or Alexa does nothing to limit what it might hear
and how it will use the data. Instead, we argue that privacy controls
must make use of the content of communication rather than meta-
data about it. These would expand on the capabilities of existing
permission systems, which do not examine data directly, but rely on
metadata about it to determine if flows are appropriate. However,
these methods may have only limited applicability to speech con-
trols, since conversations may have identical attributes, differing
only in their content.

In this paper, we begin to explore the design space for possible
solutions to the problem of privacy for always-listening devices.
We first describe how passive listening applications might work,
and provide examples, in order to create a clear picture of the
problem we are trying to solve. We then enumerate several potential
approaches for ensuring end-users’ privacy when interacting with
passive listening apps and discuss the trade-offs of these approaches.
We also examine how the different approaches can be evaluated
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and compared. Taken in concert, we hope that our work represents
a first step towards a future where—though our devices might
inevitably be always listening to us—they are able to respect our
privacy wishes in the process.

2 SCOPE & ASSUMPTIONS

Trying to impose limits on the behaviors of an always-listening
device inevitably raises questions of trust. Suppose we develop a
“permission system* for always-listening devices. Where should it
run? Is it external to the smart speaker? If so, who will operate it?
Why are they to be trusted? How will it stay up-to-date? How will it
work when the voice assistant takes other form factors? Alternately,
the privacy controls may be built in to the device itself. But can the
platforms really be trusted to police themselves?

These problems are vast and complex; to make progress in this
space, we begin by defining a threat model where the smart speakers
themselves are trusted, as are the platforms that operate them.
These platforms, however, are open to third-party applications, and
these are the ones from whom we want to protect users’ privacy.

In other words, under our threat model, the manufacturers and
their software are fully trusted with all audio their devices may
overhear. This does not mean these platforms are incapable of vio-
lating users’ privacy; indeed, there are a multitude of ways for them
to do this, either for their own purposes (e.g., selling information
about users) or for others (for example, state-sanctioned backdoors
or surveillance). Yet, in trying to define a trusted computing base,
the line must be drawn somewhere, and the hardware manufacturer
is a reasonable place to start. We hope that eventually these assump-
tions can be relaxed, but for now, we will trust the hardware and
its operating system, including any first-party functionality, and
assume that they can safely hear everything that happens around
the device.

Whom don’t we trust, then? We believe that, as they are today,
assistant platforms will be open to third-party developers, who will
create apps that provide certain functionality which requires an
always-listening smart speaker. If such an app were a standalone
device, it would receive all audio from the microphone—24/7—and
if it happened to be malicious, it would use that audio towards some
nefarious ends. Our goal is to develop a system that can prevent this
sort of abuse by enforcing limits on the audio an always-listening
app may access.

We believe this is a realistic and practical threat model. First,
it matches how existing ecosystems have developed, for exam-
ple, mobile operating systems rely on central app stores to offer
third-party-provided functionality. This also matches how exist-
ing voice assistants have positioned themselves: both Amazon and
Google already allow third-party “skills” for their voice assistant
and encourage their creation by, for example, offering hundreds of
thousands of dollars in prizes to developers [6].

Overall, this architecture is likely to be more beneficial to privacy,
as there is a single trusted party controlling the microphone. The
alternative is for each “smart” device to have its own microphone
and custom logic about when it listens and how it reacts. This
means that each device would be responsible for privacy on its own.
As we know from the sad state of IoT security, this may not be
ideal.
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Some further simplifying assumptions that we will make—in the
interest of making the scope of the problem more manageable—
is assuming that the passive-listening devices in question will be
targeted at consumers (rather than businesses), located in a home
environment, and fixed (rather than portable). However, we note
that passive listening in the workplace presents its own interesting
set of challenges, from both a technical and security perspective,
some of which have begun to be explored in the literature [11].

3 CURRENT VOICE ASSISTANTS

Smart speakers with passive listening apps are unlikely to just
show up, in the near future, in industry showrooms and on store
shelves. The technology, and specifically the current state of natural
language processing, is simply not ready yet, though it is advanc-
ing rapidly. Consequently, we may reasonably expect a relatively
gradual progression in functionality from today’s intelligent voice
assistants to those with more passive capabilities. As such, it may
be useful to review the current behavior of voice assistants and
smart speakers, as a sort of baseline for any future developments.

Large numbers of people have embraced smart speakers and
other intelligent voice assistants: reports suggest that 86 million
smart speakers were sold in 2018 alone [21]. Intelligent voice as-
sistants come embedded in a variety of devices: smart speakers
and displays (e.g., Amazon’s Echo and Echo Show), laptops, smart-
phones, smart plugs, and many other consumer electronics [2, 22].
Regardless of the specific form factor, these share two things in
common: an always-on microphone and an Internet connection.

An on-device speech model has been pre-trained to identify the
assistant’s wake-word among the ambient sounds. When the wake-
word has been recognized, the device records the subsequent audio
until a pause in speech or a timeout has been reached. The speech
is then sent to the assistant’s web servers, where it is processed,
analyzed, and the requested action (if understood) is triggered.

The exact processing pipeline used by popular IVAs remains pro-
prietary, but common steps include automatic transcription (going
from speech to text), domain detection (understanding the general
type of query; e.g., it is about travel), intent detection (recognizing
the user’s specific goal; e.g., booking tickets), and slot filling (in-
ferring the parameters of the query; e.g., destination and date for
the tickets). These steps may not necessarily happen sequentially;
feedback from later stages (such as slot filling) may result in up-
dates, for example, to the understanding of the intent. Alternately,
the stages may happen all at once, with a single model trained to
perform domain detection as well as slot filling [15].

In addition to one-shot interactions (a request or query followed
by a response), IVAs have also started introducing more complex
interactions. Some may keep a small amount of state [16]: for exam-
ple, after inquiring about an artist, a user can ask “when were they
born?” without naming the person again. IVAs can also engage in
rudimentary dialogue, usually asking for confirmation or follow-up
questions. Notably from a privacy perspective, when a follow-up
question is asked, the microphone “opens” (i.e., starts recording)
directly, without hearing a wake-word.

The audio, its inferred transcript, and the assistant’s response are
stored by the companies indefinitely by default. Users are able to re-
view these interactions and delete them, though many do not know
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about these capabilities [10]. Besides this, the only privacy control
available on a device is a physical mute button or switch. This is typ-
ically available on smart speakers, but fewer other assistant-enabled
devices.

Third parties and their capabilities. The major voice assistants to-
day allow third-party developers to provide additional functionality
for the voice assistants. These are called “skills” for Alexa and “Ac-
tions” for Google. To implement this functionality, developers are
provided with a declarative APL which they use to list and provide
examples of the intents their app fulfills and the slots (parameters)
they expect to fill. Most often, users must invoke a skill directly, e.g.,
“Alexa, tell SmartHome App to turn on the lights” However, certain
skills may be invoked automatically, without the user uttering their
name, if the platform detects a user’s intent as matching the one
implemented by the app [3]. When an app is invoked, it is provided
with the parsed data as well as a transcript of the original utterance.
At present, third party apps for both Amazon and Google do not
get access to the underlying audio for their requests.

Privacy and security challenges. Existing smart speakers pose
privacy problems along a variety of dimensions. The device must
be trusted to only listen for its wake-word (and record only after it
is said) and not the rest of the time. Even if it does this faithfully,
accidental activations can occur, often without the user’s knowl-
edge; in some cases, this has even led to entire conversations being
shared with third parties [17]. Adopting our paper’s threat model
(i-e., focusing only on the risks of third-party apps), possible attacks
include “skill squatting” [7] (malicious apps impersonating legit-
imate ones by adopting similarly-sounding names). Skills where
the assistant automatically selects the appropriate app based on
the request (“ok Google, hail me a cab”) may also be targeted by
attackers for impersonation. Such attacks, as well as the informa-
tion targeted by attackers and their motivation, may carry over to
always-listening apps as well.

4 APP CAPABILITIES AND DESIGNS

Our goal is to envision privacy solutions for passive listening apps,
but none exist today which could be analyzed for their properties
and capabilities. Therefore, as a first step, we will define what these
capabilities may be. Understanding the variety of designs and use
cases for these apps will help us ensure that any proposed solutions
are able to address the full spectrum of features these apps may
develop.

4.1 What Functionality Will Apps Provide?

Since we are discussing technology that is largely hypothetical, we
can only speculate on the needs developers may seek to address. We
have come up with examples that—while far from exhaustive—are
plausible and representative of the potential use cases. Appendix A
lists a range of sample apps, along with utterances or conversations
that may trigger them. Some examples include:

e A calendaring app, which picks up on plans you make and
adds them to your calendar automatically

e A foreign language learning tool, which can help when
you're speaking a foreign language by correcting mistakes
or suggesting vocabulary
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e A “swear jar” to keep track of how many times you say
undesirable words

o A kitchen helper, which can keep track of ingredients and
answer questions about recipes

e “Artificial memory” that saves and organizes information
(such as names and birthdays) mentioned in a conversation
for easier recall

o A baby monitor can alert you to when your child is crying
(or, when they grow older, if they’re fighting with a sibling)

e A music DJ, which adjusts the music in the room based on
the mood of the party (as inferred from the conversations)

4.2 'What Audio Do Apps Need to Provide?

The examples above represent a range of use cases for always-
listening apps. What audio would each of them want to capture to
provide the necessary features? This depends on an app’s specific
functionality, of course, but more generally on:

(1) How are apps invoked?
(2) How do apps interact with users?

4.2.1 How are apps invoked? Techniques can range from today’s
direct invocations via wake-words to fully-passive listening.

Direct address with wake-word. This is the way assistants and
their skills are triggered today; for example, “Mycroft, turn on
the lights” While we expect this to remain the most popular way
of invoking apps, existing paradigms may offer sufficient privacy
protections. In particular, the fact that users are directly naming
the app they want to summon means privacy violations are likely
to happen only in the event of accidental invocations.

Flexible trigger-word invocation. A variant of the wake-word
approach is allowing users to construct more natural-sounding
queries where the trigger word need not be the first word in the
sentence: “can you turn on the lights, please, Alexa?” While the
addressee is still semantically clear, identifying it requires more
sophisticated analysis.

Call to action without trigger word. A variant of the familiar app
invocation may happen when a user issues a call to action that
is not preceded by a trigger word. For example, instead of saying,
“Computer, louder” or “Computer, pause” the user may want to
simply say “louder” or “pause”

Purely passive (just listening). Apps may listen for speech that is
not directed at them, but may still be relevant to their functionality.
(We refer to these as “passive-listening apps,” in contrast to the
broader category of always-listening apps, which may use any of
the other invocation modes.) For example, they could keep track
of the conversation to have context if they are eventually invoked
(e.g., knowing which song people are discussing when they decide
to request information about the artist), or they could take actions
silently (e.g., making a note that the household is out of milk based
on someone’s comment, without speaking up and interrupting the
conversation). Compared to other invocation modes, the relevant
speech here may be longer, have fewer keywords, more ambiguous
grammatical structures, and require more context.
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4.2.2  How do apps interact with users? Another important variable
to consider is the kind of feedback apps provide to users: do they
respond immediately or take an action in the background? This
design decision has import implications for the user’s acceptability
to detect an accidental or privacy-violating invocation.

Provide immediate responses. This is how today’s voice assistants
behave. This provides an opportunity for immediate feedback (audio
or visual) that a particular skill was invoked.

Engage in dialog with the user. In addition to providing an im-
mediate response, the app may ask for confirmation or clarifying
questions. This has the privacy advantage of providing immediate
feedback, but is technically challenging, as the app must maintain
state and context.

From a privacy perspective, the implication of this interaction
mode is that the system has to not only detect the initial invocation,
but understand whether any follow-up utterances are directed at
the app. (This is another classification problem that malicious apps
could try to exploit.)

Background action or no response. In this mode, the app does
nothing, or performs an action through a channel that is not the
system itself. Conversely from the previous mode, this might have
challenges as far as feedback is concerned, especially in combination
with the passive listening (non-)invocation mode.

4.3 How Are New Apps Installed?

Other considerations in the design space include whether apps
are installed through a visual interface or by talking to the device.
The latter case presents additional challenges, as it significantly
limits the channels for presenting information to the user, such as
a privacy notice or any additional information about the app.

4.4 Legal and Ethical Considerations

Always-listening devices raise a host of legal and ethical issues.
This paper does not aim to explore these exhaustively, nor resolve
them; we encourage other scholars to take up these questions. Here,
we provide a sampling of the issues that will need to be addressed.

GDPR and other privacy laws. The European General Data Pro-
tection Regulation (GDPR) contains a number of provisions that
may affect the deployment of always-listening devices. How do
requirements like data minimization and limitations on storage
interact with the smart speaker’s need to hear and analyze all au-
dio around it? Can the device be transparent about what it heard
without creating a conversation log that may run afoul of further
regulations (and may make many users uncomfortable)? What ad-
ditional liabilities are added by other privacy laws, like the “Right
to Be Forgotten™?

Wiretap laws. The United States currently lacks comprehensive
privacy legislation like Europe’s GDPR (though some narrowly
targeted laws, like COPPA, the Children’s Online Privacy Protec-
tion Act may still be applicable). However, a number of individual
states have laws against wiretapping, requiring all parties to con-
sent if their conversation is to be recorded. (Remaining states are
single-party consent states, where only one party needs to provide
consent.) How does an always-listening device collect consent?
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Informed consent. Whether under the US or European regulatory
regime, informed consent is likely to be a core requirement for
the deployment of always-listening devices. But how should an
assistant obtain consent? Current smart speakers sidestep these
questions by requiring their owners to obtain consent from all
parties who might be recorded. (They are typically located in the
home, making this a more tractable task.) Will always-listening
devices be able to get away with the same requirements, or will
they need to be more proactive about obtaining consent?

Ethical concerns. Always-listening devices are a potent force for
surveillance, both within a household and on a larger scale, by com-
panies and states. Having access to an individual’s conversations
(especially in a private place, like one’s home) is ripe for abuse;
the possibilities are, quite literally, Orwellian. Even outside any
dystopian visions, a device that is privy to so many conversations
is certain to exacerbate any power imbalances, both between peo-
ple within the home and between consumers and the companies
providing their services. Without appropriate checks and balances,
they are likely to exacerbate any power imbalances. In light of all
these concerns, it is reasonable to ask whether always-listening
devices are even ethically desirable.

Regardless of one’s stance on that particular question, always-
listening devices are all but inevitable. As we have seen, in many
ways, they already here, even if law and ethics have not fully caught
up. We believe that robust regulations will be vital to preventing
privacy violations. However, our hope is that we can develop tech-
nical guarantees that can work in concert with strong legislation
to constrain the capabilities of always-listening devices. This is the
focus of our research and the remainder of this paper.

5 ATTACKER MODEL

So far we have discussed the behavior and capabilities of benign
apps. However, some apps may be privacy-invasive, whether acci-
dentally or due to malevolence. Our goal is to protect against these
malicious applications. To do this most effectively, it will help to
understand what constitutes an attack, the attackers’ motivations,
and the information they may target.

5.1 Defining Attackers and Privacy

As the goal of our system is to ensure users’ privacy, an attack
is any action that results in a privacy violation, and an attacker
is someone who engages in these actions. Of course, this merely
invites the next question: what constitutes a privacy violation?

Traditional permission systems, such as those used by smart-
phone operating systems, focus privacy controls on a handful of
“sensitive” data types, such as a user’s location or their contacts.
However, in reality, there are many more types of information
whose leakage may be considered a privacy violation by users. This
is because it is impossible to divide information into “sensitive” and
“not sensitive.” People freely share even “sensitive” information,
like health facts, in certain situations, e.g., with doctors, support
groups, and families. On the other hand, they may consider their
purchases not sensitive, yet object to the sharing of their shopping
habits. These apparent contradictions make sense if we observe
that people feel upset when their information is shared in a way
that runs counter to their expectations.
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This notion is formalized in Helen Nissenbaum’s theory of pri-
vacy as contextual integrity (CI) [13]. CI models information flows
with variables including the data type, the subject (whom the in-
formation is about), the sender, the recipient, as well as the trans-
mission principle (any stipulations or conditions attached to the
sharing). Each flow occurs within a specific context, which is gov-
erned by communal norms and individual expectations. Privacy
violations occur when any of these variables change and infor-
mation starts flowing contrary to established expectations. For
example, people may feel that their privacy has been violated if
their information gets passed along to a new party (a change in
the recipient), or if their identities become attached to previously
anonymous data (a change in the transmission principle).

The contextual integrity model has important implications for
our quest to design privacy controls for always-listening assistants.
It suggests that it is not enough for our system to prevent access to
the data types enumerated above (even if this were feasible). Instead,
it must strive to ensure the contextual integrity of conversations:
that the applications only get access to the data that is relevant to
their purpose, and everything else remains off-limits.

Contextual integrity also illuminates a type of privacy violation
that may be almost impossible to prevent: information collected
for one purpose being used for another. A simple example is data
collected for the purpose of fulfilling functionality being repur-
posed for advertising. This violates contextual integrity because
the information flows beyond the original recipient to a third party
for an unintended purpose. If the data in question is speech and the
recipient is an always-listening app, our platform may be powerless
(from a technical point of view) to curb such further spread of infor-
mation once it has left the system. Yet, this is still a very important
consideration, since any such privacy violations will necessarily
impact the overall trustworthiness of the system as a whole. This
problem is likely most amenable to non-technical solutions: care-
ful vetting of developers and terms, contracts, and legislation that
specify consequences for misuse of data.

5.2 Attacker Motivations

Contextual integrity suggests an intimidatingly large set of privacy
violations: anything outside established norms of information flow.
However, an attacker generally does not set out to violate privacy
for the sake of violating privacy. Instead, they are guided by their
own personal (or organizational) reasons. If we understand these
motivations, then we may be able to deploy more targeted defenses.
Thus, it is worth considering the question: what are attackers trying
to achieve?

Marketing. In today’s economy, a common cause for privacy vi-
olations is the developer’s desire to collect user data for advertising
purposes. We expect similar motivations will drive many privacy-
violating always-listening apps. The data may include specific facts
(e.g., location, gender) or inferences that can be made about the
individual (e.g., interests, income). This information may be used
directly by the developer or sold to a data broker.

Theft of private information. Another common motivation for
malware is theft of secrets that can be valuable on the black market.
This is typically financial information (e.g., credit card numbers,
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bank accounts) but can also include personal identification numbers
(e.g., Social Security Number or equivalent) and account usernames
and passwords. An always-listening device is likely to eventually
pick up this sort of information, making it a particularly attractive
target for attackers.

Profiling household occupants. It is possible that software may
want to profile and understand the habits of the people living in
a household for purposes other than advertising. Example scenar-
ios include a utility or government agency wanting to ascertain
how many people are living in a particular household or a criminal
syndicate deciding which houses to burglarize. While the latter
appears far-fetched (it does not scale, and the economics appear
questionable), the former is drawn from real-world privacy con-
cerns surrounding smart meters.

Reputational damage. Some attackers may be motivated by caus-
ing reputational damage to their victim—whether a specific indi-
vidual (e.g., politician, celebrity) or a class of people based on some
characteristic or behavior. For this type of attacker, there is no
single “data type” that they may be trying to collect (though any
data type from above may be considered useful); instead, lifestyle
or ambient information may be targeted.

Unintentional privacy violations. Finally, it is important to con-
sider that privacy violators may actually be well-intentioned, and
their violations are entirely accidental (or, less charitably, due to
negligence), for example, due to a poorly-trained classifier. In fact,
this is currently the primary source of privacy violations by voice
assistants, and we expect mistakes to remain the dominant cause of
privacy violations due to inherent difficulties in natural language
processing (and software engineering more generally). How do we
prevent these mistakes from happening? Defending against more
targeted attacks can help protect against accidental ones as well;
however, there may be more specialized techniques that can be
used if we assume an app is simply confused rather than malicious.

5.3 Information Targeted by Attackers

Having examined attackers’ motivations, we now consider whether
there is certain information they may be especially driven to obtain.

Indiscriminate data collection. One way an attacker may seek to
satisfy their goals is by collecting any and all data they can get their
hands on, storing it, then mining it for useful information later.
(This may include any speech, including non-primary languages, as
well as nonverbal sounds.) The difficulty of accomplishing this will
depend in large part on the design of our always-listening platform.

Targeted collection. Indiscriminate collection is harder to conceal,
especially in the presence of any counter-measures, and may also be
difficult to scale. As such, attackers may limit their collection to only
data they consider valuable (based on their specific motivation). The
following attempts to enumerate the specific data types attackers
might be after:

e Demographic details, such as location, language, age, gender,
income, etc. (to enable targeted advertising)

e Financial and other secrets (bank details, credit card numbers,
passwords)
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Security measures (physical—do you lock your doors?—and
digital: what operating system you use, whether you use
two-factor authentication, etc.)

Brands you use (for market research)

Personal details, such as names, dates, pets, phone numbers,
etc. (for social engineering)

e Health events (for advertising, as well as insurance purposes)
People in the house (see discussion in 5.2 above)

Timing of in-home events (to correlate with other data; less
plausibly, for burglaries)

Political opinions (for advertising, or social control)
Controversial behaviors (for social leverage)

Criminal acts (confessing to a crime)

Crying or other signs of abuse (to share with government)!

5.4 Attack Types

The final question we consider is how the attacker will try to col-
lect the information we outlined above. In the case of accidental
“attackers,” they will collect data through the same methods, but not
on purpose. We envision several methods of attack. (Note that each
strategy makes certain—possibly contradictory—assumptions about
how the always-listening platform operates and may therefore not
be applicable to all architectures.)

Direct listening. The attacker may choose to directly listen for
the personal (or other) information they are interested in, without
any concealment, obfuscation, or other trickery. In doing so, their
hope is that the review process does not catch their behavior.

Alternately, attackers may pursue a strategy that provides them
plausible deniability and lowers the chance of detection. In general,
these approaches can be thought of as overly broad listening.

Capturing things when the classifier has lower confidence. Gen-
erally, an NLP model will have some confidence score indicating
to what extent a user utterance is likely to match a particular in-
tent. One simple strategy is to capture audio even for lower-than-
expected confidence scores, in the hope that something useful (for
the attacker) is captured.

Always find named entities relevant. If the app performs its own
named-entity recognition, it could always deem the entities relevant
to the app’s purpose (either because they legitimately do not know
or maliciously).

Relevant keywords in irrelevant contexts. For example, a flight-
booking app hears you talking about drinking a flight of beers.
As with other scenarios, benign false positives can be expected to
dominate actually malicious behavior.

Homophones (similar-sounding words). For example, a malicious
app might listen for “past word” instead of “password,” thus evading
a filter.

Listening “around” appropriate times (past the end). A passive
listening app may be privy to entire conversations, which it then

Note that this type of data sharing may be considered a privacy violation even if it is
in the public interest. System designers will therefore need to navigate the attendant
ethical questions when deciding how to handle these scenarios.
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attempts to process to fulfill its functionality. But what is the bound-
ary of a topic or conversation? This is a hard technical challenge
even for benign apps. Malicious ones may try use this as an “excuse”
to keep listening even after the relevant conversation is over.

Inference / side channels. An app could attempt, for example, to
infer gender by voice, income by products used, travel patterns by
timing, and so forth.

6 EVALUATION

Now that we have defined attacker goals and motivations, we can
start thinking about how to design protections against them. But
once we have a candidate system, how should we evaluate it? In this
section, we consider how we might evaluate a potential platform
against our goals of ensuring user privacy and security.

Rigorous evaluation criteria are needed because different ap-
proaches to assuring privacy will necessary involve trade-offs, and
we need ways of comparing them. We propose that there are two
broad axes for evaluation:

(1) Effectiveness: how well does the system achieve its goal of
increasing users’ privacy?
Metrics include: functionality loss, privacy gain.

(2) Usability: how well would the system work for real people?
Metrics include: usability comfort, trust, acceptability, sur-
prise, and reviewer effort (if applicable).

Effectiveness seeks to formalize the notion of how well a system
achieves its goal of preserving users’ privacy. Since this is the
primary purpose of the system, it is a core metric for success and
evaluation. Of course, there may be multiple ways of measuring
effectiveness—and different components to it.

However, the system’s usability is also crucial. The notion of
usability captures the extra burden a privacy-enhancing system
places on users, in terms of time, effort, cognitive load, and other
expenses. Usability can be at tension with effectiveness, as a system
that zealously guards a user’s privacy may bother them with warn-
ings, notifications, and needlessly blocked false positives. On the
other hand, usability can be seen as contributing to the system’s
overall effectiveness: an unusable system will not be welcomed by
consumers or adopted by companies. Usability too can be broken
down into further subcomponents.

6.1 Evaluation Metric Details

The metrics that measure the effectiveness of the platform are
functionality loss and privacy gain.

6.1.1  Functionality loss. This metric can be formulated as: “if app
A is denied access to resource R, it will lack functionality F.” Given
clear assumptions about apps, it should be possible to evaluate this
metric in an automated manner (see 6.2.1 below).

6.1.2  Privacy gain. While a bit more ambiguous, working with
some definitions, again this metric may be evaluated automatically.
However, there are a few different ways of measuring it:

Absolute privacy gain. Without the platform, any app would have
access to 24 out of 24 hours every day. Suppose that the platform
limits some app to listening for only one hour in a given day. (The
rest of the audio is blocked from reaching the app because it is
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considered irrelevant.) This translates to 23 hours of “absolute”
privacy gained. However, this figure does not account for which
audio the app retained access to—it could be that the most sensitive
information was not successfully shielded.

Privacy gain for sensitive conversations. Consider an app that,
without the platform, only used 2 hours (out of 24) of data. The
platform detected that one out of those hours was sensitive and
made it off-limits, resulting in a one-hour gain.

Privacy gain based on user inputs. An app provides functionality
for cars, flights, and hotels, but the user wants to only use it for
flights.

For both functionality loss and privacy gain, we expect to en-
counter false positives and false negatives, because language is
ambiguous and permissions are necessarily coarse. False positives
mean the platform allows an app access to some speech, even
though the app does not need and may not even want it. False
negatives mean there is speech that an app needs for its (proper)
functionality, but is denied access to by the platform.

6.1.3  Usability. Usability is traditionally measured by how well
users are able to perform specific tasks. This includes how easy it
is for users to find the information they want and choose between
apps (i.e., make an informed choice about which app to install,
based on the permissions it requests). Below, we survey several of
the components that go into making a system usable.

Time and effort. How much time is required to make a decision
and install an app? How much effort (including cognitive load) is
involved in the process?

Comfort, trust, and acceptability. How willing are people to install
apps with this system? For example, users may be uncomfortable
with a totally opaque solution that outsourced screening to the app
store.

Reviewer effort (if applicable). Certain platform architectures may
rely on reviewers (professionals or community members) to exam-
ine apps for compliance with standards and adherence to rules or
its own declared behaviors. In this case, an important metric for
the success of the platform is the amount of time (as well as money
and effort) that each review is expected to expend.

6.1.4 Surprise. If there is a mismatch between the audio an app
gets and a user’s expectations for what it should hear, we refer to
this as “surprise,” and it should be the goal of any architecture to
minimize this. There are several ways in which surprise may occur.

Caused by bad or confused ML. For example, imagine that a user
says, “I got into a fight,” but the system hears “flight” and captures
it. This would be surprising but perhaps not interesting from a
system-security perspective (unless this was a deliberate attack,
along the lines of those discussed above in 5.4). We therefore gen-
erally consider this problem outside the scope of our threat model,
assuming perfect recognition and machine learning as much as
possible, while acknowledging that reality falls far short of these
assumptions.

Caused by ambiguously specified or overly broad permissions. For
example, a user gives permission to an app for booking flights, but
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is surprised that the system captures their conversation about birds
flying. In situations like these, both the developer and platform
could be at fault: the platform for having overly broad categories,
or the developer for choosing too broadly. It could also be a sign
that a malicious application was successfully able to evade the
platform’s privacy protections.

6.2 Evaluation Experiments

The metrics we have defined are only useful if we are able to evalu-
ate and compare potential platform designs along their dimensions.
Below, we propose a series of experiments that allow for these com-
parisons. (There may, of course, be other experimental designs.)

6.2.1 Effectiveness/privacy. Our goal is to measure effectiveness
(functionality loss and privacy gain) as defined above (6.1.1 & 6.1.2).
This experiment is based on evaluating simulated passive listening
apps on the proposed platform design. The first step, then, is to
select sample apps. While it may not be necessary to implement
their functionality in full, we need to train classifiers that are equiv-
alent to those of the apps, in that they should correctly classify
speech (or text) that the apps will consider relevant and use for
their functionality.

The next step is to generate or collect labeled speech examples.
These should include both negative examples (i.e., speech not rel-
evant to the app; this should be relatively easy to source as most
things are likely to fall in that category) and positive examples
(which may need to be generated specifically for the app). If the
platform assumes that the speech will be transcribed before reach-
ing the app, then the examples may be text-only.

Next, we run the app’s classifier on the sample speech. Achieving
high accuracy is important because our goal is to use this as a proxy
for what a real skill needs access to for functionality; anything the
classifier returns true on will be considered functionally necessary.

The final step is to “apply” the platform or permission system
to the sample apps and rerun the classifier, now limited by the
platform, on the sample speech, measuring what it still has access
to. The functionality loss and privacy gains can then be inferred
from these results.

6.2.2 Comfort/acceptability. Measuring users’ comfort level with
a proposed platform calls for a very different approach. For this
task, we recommend a user study with role-playing.

In this experiment, we explain the scenario and role-playing to
participants and have them choose which skills they would install
for their always-listening device. In the control condition, we will
make it clear that the app would get access to all data (audio record-
ing/transcripts, 24/7). In the experimental condition, participants
will see and interact with the proposed system. The dependent vari-
able in this experiment is the number of apps installed in each of
the conditions. If it is higher in the platform condition, this suggests
users are more comfortable installing always-listening applications
under the proposed system.

6.2.3  Clarity/surprise. The following experiment seeks to measure
the level of surprise induced by the proposed privacy platform.
Show people triples of {app, permission, example utterance}. That is,
provide a description of the app as it would appear on the platform,
as well as any information about the “permission” it requested
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or resources it would have access to. Sample speech, as in the
effectiveness experiment, should be drawn from a corpus of positive
and negative examples. For each sample app, ask whether they
expect the app to receive that utterance given the permission. If
they say no, the app has failed at communicating what is in scope.
In other words, it is surprising, which is bad! It is important that
this evaluation includes positive examples that the app will not get
due to the permissions (if these exist); these are the most interesting
data points. Additionally, participants can be asked to flag speech
they think the app will get, but should not be allowed to.

7 ARCHITECTURE APPROACHES

At this point, we have considered passive listening apps and what
they may look like, how and why miscreants may seek to exploit
them, and what an evaluation might look like. But we have re-
mained, as much as possible, agnostic to the details and mechanisms
a system will use to protect users’ privacy in this new paradigm of
passive listening apps. Now, we begin to examine the architectural
choices a privacy-protective platform may rely on.

7.1 Content-Based vs. Metadata-Based Controls

Today on mobile platforms and personal computers, privacy con-
trols and permission systems operate primarily based on metadata,
such as the source of the data, the sender, or the recipient. For ex-
ample, firewalls can block access to certain ports or entire devices,
ad blockers prevent certain domains from receiving data, and file
permissions restrict access to users with sufficient privileges. In
all of these cases, the system is agnostic to what the underlying
data is; it makes its determination based on facts it knows about it.
Even smartphone permission systems, which ostensibly distinguish
between data types like contacts and location, actually operate by
restricting access to specific resources and APIs, rather than inspect-
ing the data flows. More general techniques, like access control
lists, capability-based controls, and information flow control are
also based on metadata.

However, when we are dealing with passively listening applica-
tions, and the data is speech, metadata-based systems are insuffi-
cient. Two conversations between the same two people may have
identical metadata—yet the content will be different, and therefore
the conversation could be appropriate for one app but not another.
To enforce user preferences for always-listening devices, privacy
controls must be able to make this distinction. They therefore have
no choice but to go beyond the metadata. Thus, furnishing users
with this type of choice requires a solution that draws on a different
type of approach: allowing (or disallowing) access based on the
content of the communication.

Applying this paradigm in practice will require either advances
in speech recognition, if controls are applied on-device, or a much
greater degree of trust in platforms, if controls are applied in the
cloud. On the bright side, once this paradigm is sufficiently ad-
vanced, these methods will be applicable to other domains (e.g.,
replacing the microphone permission on smartphones with more
granular controls).

Inspecting a transmission and using its contents to decide how
to treat it is not unprecedented, and there may be lessons to learn
from prior instantiations of this paradigm. Deep Packet Inspection
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does exactly this, with a variety of Intrusion Prevention Systems
relying on this technique to detect attacks. Anti-spam techniques
also rely on examining the message body and, in some cases, even
use natural language processing to detect unwanted messages.

The multi-level security (MLS) system used by the US military
for handling classified information is another interesting example
of content-based controls. Under this scheme, documents (as well as
their individual sections) are assigned labels based on the sensitivity
of the information they contain (confidential, secret, or top secret);
an individual’s clearance level determines whether they are allowed
to access the document (their clearance must be at least as high
as the document’s classification). Since a document’s classification
level depends on its content, the system as a whole represents a
type of content-based controls. A vast body of research, including a
variety of formal methods such as the Bell-LaPadula Model, has ex-
amined how to track these labels through a system [1, 4]. However,
at that stage the problem becomes another type of metadata-based
control, as the system is content-agnostic once a label has been
assigned. The content itself is only relevant during the actual clas-
sification process. This is a manual (and labor-intensive) operation
that entails following a classification guide and checking at what
level each piece of information that needs to be communicated
should be classified [19]. A number of classification guides have
been made public [20], but they are understandably focused on
securing government secrets rather than everyday communication.
Still, there may be lessons to learn from this system; for example, it
may be possible to divide personal information into tiers based on
its sensitivity, with apps only being granted “clearance” to certain
tiers.

What are content-based controls? The basic principle of content-
based privacy controls for always-listening devices is that they will
examine some amount of speech, and decide whether to deny an
application access to it or allow it through (possibly after certain
editing or transformations). At the most general level, there are
two families of approaches a system to protect privacy may take.
We refer to these as blacklisting and whitelisting,.

Blacklisting. This approach relies on the observation that many
people do not consider most day-to-day speech sensitive, and at-
tackers are likely to be after only certain data types (see 5.3 above).
Therefore, it may be sufficient for the platform to identify speech
that is truly sensitive and prevent apps from getting access to it.

Whitelisting. Taking the opposite tack, this approach envisions
that apps’ access is scoped to capabilities. In other words, apps should
only get access to what they need to function. We conceptualize this
as a permission system: similar to permission systems in modern
smartphone operating systems, apps must declare ahead of time
the resources they wish to use, and the platform enforces these
restrictions. This approach achieves greater privacy benefits, since
it would limit applications to hearing only the speech they need.
Furthermore, as discussed in Section 5.1, the contextual integrity
model suggests that this approach better aligns with user expecta-
tions. Therefore, in the remainder of this paper, we will consider
how we might build such a system. (In practice, however, we ex-
pect systems to use a combination of blacklisting and whitelisting
techniques. Whitelisting can guide the behavior of most apps most
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of the time, and blacklisting can act as a safe-guard to prevent the
leakage of data considered categorically sensitive.)

7.2 What Do Permissions Look Like?

In considering the design of a permissions system for a passive
listening app, we must address several related questions:

How do apps declare permissions? In smartphone permission sys-
tems, app developers specify upfront which permissions their app
requires by including a list of these permissions in the app’s mani-
fest. This is a straightforward approach that works well; adopting
it for always-listening apps could be one way forward. However,
for this to work, a developer must be able to explicitly enumerate
the resources they require. This may present challenges due to how
natural language processing models currently work: by relying
heavily on neural approaches and training on a wide range of ex-
amples. How can a developer translate a neural network into a list
of permissions? Therefore, we must consider alternate approaches.
For example, a developer could be required to submit their app—or
just its natural language component—for testing and evaluation.

After solving the challenges of how apps declare their require-
ments, a permission system needs to address the questions of user
involvement: how—if at all—is this information conveyed to the
user, which choices do users have, and how much customizability
are they allotted? Each of these questions has crucial implications
for security and usability.

Do users get a choice? The overarching consensus in the field
of usable security is that the burden of making security decisions
should be removed from users as much as possible, replaced instead
with security (and privacy) by default. Applied to the problem
of always-listening apps, this maxim would suggest that an ideal
system would ensure that all apps behave in a privacy-respectful
manner. Yet, even if this were possible, there would still be an
element of user choice: deciding whether to use an app or not. Any
privacy-sensitive user would make this decision in part based on
what the app is likely to hear, and this will be seeking information
to answer that question. They could obtain it from the developer’s
description of the app, however this may be vague or incomplete.
This is where the permission system can come in: by providing a
clear and standardized way for a potential user to understand an
app and its privacy impact.

How are permissions presented to users? If a permission system
decides to share information about the apps with its users, the next
question is: how? As pointed out above, permissions declared by
apps might not be human-readable. Even if they are, there might
be a gap between apps’ true behavior and how concepts are in-
terpreted by users. Therefore, care must be taken in ensuring the
understandability and usability of the interfaces presented to peo-
ple.

When are permission requests presented to users? A particular
issue in sharing an app’s permissions with users is when to present
that information. One natural point is at the time of installation.
However, research in smartphone permission systems showed that
users rarely paid attention when presented with install-time per-
missions. This motivated the move to “ask-on-first-use” in mobile
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operating systems. That system would present its own challenges
for always-listening voice assistants, as it may be unclear when
an always-listening app is first “used” Furthermore, with audio as
the only output channel, the ways an app’s permissions could be
presented to users are further restricted.

Should users be able to deny or limit permissions? Denying means
not allowing certain permissions at all (e.g., an app asks for 5 per-
missions, but the user only grants 4 of them). Limiting means re-
stricting permissions within an existing hierarchy; for example, if
a skill wants access to “travel” but a user wants it to know only
about flights. This feature is desirable, but it may add significant
complexity to the platform, both from a technical and cognitive
perspective, as it would necessitate a user interface for reviewing
permissions and for users to make active, informed decisions.

What is the role of other parties in the system, such as app store
reviewers or super-users? What choices, capabilities, and responsi-
bilities might we assign to them?

In the next section, we consider and compare several approaches
permission designers may take. Each will vary along the dimensions
above.

8 PERMISSION SYSTEM DESIGN SPACE

There are many ways to design a permission system. Rather than
exhaustively listing all potential variants, here we want to sketch
out the different approaches one might take.

In comparing and understanding the approaches, it may help
to set out our design goals. While they may not be as quantifiable
as the general evaluation metrics defined in 6.1, they clarify the
principles that guide our designs. These include:

Data minimization. The goal of the whitelisting family of ap-
proaches is to select speech that is relevant to an app’s functionality
and appropriate to its purpose—and only that speech. The data it
gets is thus minimized. By definition, then, data minimization is a
core objective of a whitelisting-based permission system.

Transparency. To gain users’ trust, we believe it is imperative
for our system not only to act correctly, but to be transparent with
users about what is happening with their speech. Therefore, it is
important for users to know, which speech of theirs an app would
gain access to.

Consent. Users should provide positive consent before an app
is installed and thus obtains access to their speech. However, it
remains an open question how that consent should be obtained,
and what level of interaction and review this process should entail.

Leverage the wisdom of the crowd. We believe that, while it should
always be up to an individual to decide whether an app is right
for them, we can leverage other people to help in this process. For
example, dedicated workers, volunteers, or other users could help
determine whether an app’s behavior is appropriate. This informa-
tion could then be shared with prospective users or automatically
used as part of the evaluation process of an app.

With these in mind, several potential approaches follow. We note
that each approach may work well for certain use cases and not
at all for others. This is expected, and a real-world system may
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employ them in combination. Our goal here is to understand their
advantages and disadvantages.

8.1 Approach: Keywords

Looking for keywords in text: only allow sentences that include
certain words. This is reminiscent of how today’s voice assistants
work, except the trigger word does not have to come first.

This approach is obviously insufficient for many purposes but
may be the right choice for certain use cases, such as requiring the
keywords “remind,” “forget,” or “remember” for a reminder app.

Challenges. Natural language has many ways of expressing an
idea, so creating an exhaustive list of keywords may be difficult
for any non-trivial task. (And over-eager keyword lists may create
privacy problems of their own.) Furthermore, keywords may have
homophones, homographs, and different meanings of the same
word. In general, this approach is not applicable to many use cases,
especially passive ones.

8.2 Approach: Whitelisting Topics

This involves pre-defining “buckets” that speech might fall into. For
example, a conversation might have a topic, or a sentence might
have an intent. The system would allow apps to subscribe to certain
buckets.

Challenges. For developers to choose a topic for their app, the
platform must maintain a reasonably exhaustive list of all conver-
sation subjects human speech may plausibly contain. How can this
list be generated? Is it even realistic? Even broad categories (e.g.,
“food”) may generate privacy gains, which is good, but how should
the system handle conversations—and apps—that cover multiple
topics? Individual sentences can contain multiple, potentially con-
flicting, topics or partial matches. And many passive use cases cut
across topics or are based on higher-level concepts.

8.2.1 Sub-approach: whitelist entities / slot filling. Rather than sub-
scribing to topics, apps would declare the “types” of things they’re
looking for:

o A unit conversion app is looking for two unit measures plus
a quantity.

e A travel app is looking for two destinations and a date.

e A mapping app is looking for a location.

8.3 Approach: Embeddings

Word embeddings are a type of NLP technique that maps words
or phrases to a point in vector space. While each dimension does
not necessarily have semantic meaning, similar words or phrases
end up clustered together. For the permission system, apps could
declare the regions from which their speech should come.

Challenges. This approach assumes that all skills would use
the same intermediate representation. Recent advances in transfer
learning in the NLP domain have made this more plausible, but
it’s still not clear how realistic this approach is. This approach also
suffers from low explainability. On the other hand, it may be com-
bined with other approaches (like “transparency”, 8.6 below) to
counteract this, and it is notable in enforcing stronger guarantees
than some of the other approaches.
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8.4 Approach: Derived Features

Have the platform compute “features” over people’s speech and
expose these to apps, instead of the speech itself. Examples of
features may include language, speaker, sentiment, or tone. For
certain use cases, these may provide sufficient information with
few or no details about the underlying speech being necessary.
This bears strong similarities to topic whitelisting (if topics can be
considered features) and embeddings approaches.

Challenges. What are the features that the platform should make
available? Furthermore, most of the problems from the related
approaches are applicable here as well.

8.5 Approach: Local Mode

This follows a slightly different paradigm from the previous ap-
proaches: listen locally and tightly control exfiltration. The app runs
on the device or in the manufacturer’s sandbox with full access to
all speech. However, it can only talk to the outside world through
limited, pre-declared interfaces. The permission system (what users
review/allow/deny) is defined over these interfaces—i.e., the out-
going data—rather than over the underlying speech. For example,
a calendar app is limited so that it only sends dates over the wire.
Local mode could also be used in conjunction with other permission
approaches, for example by allowing users to turn it on only for
certain periods of time or for certain apps.

Challenges. A full-featured calendar app (to continue with this
example) will want to create events that have, at the very least, a
title and, ideally, a description with additional information. All of
these are open-ended text fields which, by default, are not subject
to control. This creates an opportunity for major leaks, though the
platform can try to enforce stronger guarantees about the contents
of such fields. However, for truly malicious apps, this still leaves
open the possibility of leaks through side channels (e.g., exfiltrating
data through the pattern of requests).

Potential mitigation. One way to combat this sort of attack, even
those that rely on side channels, is by resetting state. The con-
cern with local mode is that you can exfiltrate arbitrary speech
in open-ended fields (e.g., event title). Suppose, however, that the
classifier/detector only got access to one sentence at a time. (It
might be allowed to carry over state from previous sentences, but
presumably be restricted in what that state is.) Then, it would be
limited to exfiltrating that single sentence as the event title, but not
anything else from the larger conversation context.

8.6 Approach: Transparency

In this approach, apps submit a machine learning model that is a
speech detector/classifier. Its job is to classify all speech into one
of two categories: whether or not it is relevant to the app. When
installing an app, users see examples of conversations (drawn from
a corpus maintained by the platform) and whether the “relevance
detector” classified them as relevant to the app. Users can also try
their own examples.

Challenges. This approach requires a static model, but develop-
ers may want to frequently retrain their models to improve per-
formance. Asking users to constantly re-review their apps is not
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usable. Other concerns include edge cases, obscure examples (not
covered by the platform’s speech corpus), adversarial design, etc.

8.6.1 Sub-approach: crowd-sourced review. Developers supply a
human-readable description of the kind of speech their classifier
aims to capture. This is compared to the examples actually captured
(as in the transparency approach). For example, Mechanical Turk
workers may look at the examples and decide if they match the
description or not. Then, users only need to review the app descrip-
tions, rather than any speech examples. This also allows for more
frequent updates to the relevance models.

8.6.2  Sub-approach: bootstrap from prior examples. Like trans-
parency, but actively restrict apps from accessing speech that is not
similar to examples that have been whitelisted or explicitly okayed
by other users.

Challenges. How is similarity measured? And who determines
it? Answering these questions well determines whether this is a
viable approach.

8.6.3 Sub-approach: runtime opt-in. When the app wants to cap-
ture speech, request the user’s consent (similar to ask on first use
permission models in smartphones).

Obviously, this is not feasible for every request, but it could be
used in combination with the bootstrapping approach, or when
other permission approaches have low confidence.

8.7 Moving Forward

The approaches outlined above represent a (no doubt incomplete)
characterization of the solution space for designing a privacy-
enhancing platform for always-listening devices. These solutions
need to be studied, ideally under realistic use cases, to understand
when they work and where they fall down. It seems clear already
that none of them will be totally sufficient on its own. Another
question, therefore, is how to combine these approaches into a
single system that takes advantage of their strengths rather than
multiplying problems and security holes. These can be further com-
bined with solutions that already exist or have been suggested for
existing voice assistants, such as physical mute buttons, automatic
deletion [10], and “sleep words” that temporarily disable a device’s
listening capabilities.

Furthermore, no solution is likely to be “one size fits all,” because
of varying privacy preferences and risk tolerances among users.
Therefore, a device should be able to customize its operation to a
particular user. Due to the changing nature of the technology, this
process should be continuous: the device should always be learning
about what the user considers acceptable and what they consider
to be creepy.

Whether or not we will be able to address these research ques-
tions may have a major impact on the real world. Always-listening
and always-watching devices are already widespread: smart speak-
ers, displays, phones, and cameras. As they get “smarter” and more
processing gets pushed to the cloud, the boundaries will get blurrier:
when is the device listening and when is it not? Where is my data
and who can access it? If, when these devices arrive on the market,
the only privacy solutions are those available today—microphone
permissions and physical mute buttons—they are unlikely to be
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adopted, and the surveillance power of these devices will remain
unchecked. On the other hand, if appropriate privacy controls can
be developed, intelligent voice assistants can continue becoming
more and more useful while respecting users’ privacy wishes in
the process. But the time to act is now. Passive-listening devices
are a new paradigm, but they will be the new norm.
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Appendix: Sample Applications

Here, we provide a range of examples of always-listening apps;
each is illustrated by sample interactions that may trigger them
or a general description of the speech they may find relevant. We
organize the apps, loosely, based on the setting where they are most
likely to be invoked.

A LIVING ROOM

A.1 Q&A/search
A catch-all for queries you’d ask Google/Siri/etc. today

e Does anyone know who was president in 18377

A.2 Add to calendar

Automatically add planned meetings and appointments to the user’s
calendar.
e Let’s plan to get lunch at noon next Thursday.
o I took the doctor’s appointment at 10 AM tomorrow. I'll pick
you up at 9 and we’ll go together.

A.3 Remind later

Detect when the user wants to remember something and automati-
cally save it, in order to remind them at an appropriate time.
e Ineed to remember to water the plants on Friday.
e Remind me to call Morgan!
e Don’t forget that Casey has soccer practice on Wednesday.
e The school needs Blake’s permission slip back by Thursday.

A.4 Timer

e Start a countdown for 60 seconds
e Can you time how long it takes me to do 10 pull-ups?

A.5 Remember locations, send to map

Take note of locations mentioned during a conversation, so that they
can be highlighted on the user’s personal map (e.g., in a smartphone
app).

e I should get stamps when I'm in the store tomorrow.

e “This cake is amazing, where did you get it?” “Virginia Bak-

» &

ery” “I should remember to stop by next time I'm in Berkeley”

A.6 Learn book/TV/movie/music preferences
and make recommendations
“1984 is the best book I've ever read.” “I don’t know, I kind
of liked Brave New World more”
¢ “Do you listen to rap much?” “Not a lot. But it’s fun to listen
when my friends come over during the weekend or at a party.

A.7 Email client

e “Read me the email from Jack that I got this morning”
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e “Did I get any new messages?”

A.8 Shazam

e What’s the song playing in the background of this commer-
cial?
e That song was dope! I want to look up the artist later.

A.9 Unified music history

Keep a record of any music playing, so that users can recall that
information at a later point, or so that it can be used for offering
personalized music recommendations.
e Do you remember the name of the track you played for me
last night?

A.10 Change music based on mood in the room
While active, the app could keep track of any (non-sensitive) con-

versations in the room, perform sentiment analysis on them, then
select the next track based on the overall mood of the room.

A.11 Read books out loud

Hey AJ, read me a book.

Stop. Hold on.

Can you repeat the last paragraph?

Let’s start over from the beginning of the chapter.

A.12 Trivia quiz

I want to play a game.

Okay, what’s the largest city in Yukon?
That’s right. Want to hear another question?
What’s the smallest city in Yukon?

A.13 Language practice

When a user wants to practice their foreign language skills, the app
could serve as their conversation partner, or suggest vocabulary
and correct grammar mistakes as the user is talking.

A.14 Swear jar

e That’s the third time you’ve said <expletive> today. Your
swear jar is up to $3 now.

A.15 Reservation maker

The app would initiate appointments and reservations on behalf of
the user.

e “Let’s celebrate your birthday at Fentons next week” “Alright,
we need a reservation for 6 people”

A.16 Weather

The app could directly answer queries about the weather, as well
as detect when a conversation discusses plans that may be affected
by the weather, and offer up the relevant forecast.

Will it rain tomorrow?

Do you think I need a coat?

Is August a good time to go to Thailand?

[discussing a trip] Are you sure you want to go hiking this
weekend? The forecast calls for rain.
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A.17

o Ireally want to get away to some place quiet with a beach
for Memorial Day weekend. Can you think of anywhere? I
don’t want to pay more than a couple hundred dollars for
tickets.

Trip/travel recommendations

A.18 Health advice

e You seem to be coughing a lot today. The air quality isn’t
great; there’s a lot of pollen. Would you like us to order you
some allergy medicine?

A.19 Fitness monitor

e We've noticed you’ve been sitting for a while. Do you want
to stand up and walk around for a couple of minutes?

A.20 Gift recommendations

e These headphones seem great, I want to get these someday.

A.21 Track baby’s vocabulary

e Cat is your baby’s third unique word!

A.22 Fact checker

The app could analyze, in real time, the veracity of statements made
on TV (or by the speakers on the room).

e [responding to statement on TV] Politifact has rated this
claim as False.

A.23 Artificial memory: kids’ names edition

The app would keep track of potentially useful information about
friends and acquaintances, such as the names or birthdays of their
children.

e - Do you have kids?
- Yeah, three daughters.
- Oh wow, I didn’t know that! How old are they?
- Well, Drizella is 30, Anastasia is 25, and Ella is 20.

A.24 Tkea helper

While you’re trying to put together Ikea furniture, the app could
listen, read instructions out loud, and offers help and suggestions.

A.25 Score keeper

The app could gamify household chores by keeping track of chil-
dren’s scores.

e 10 points for Gryffindor!

A.26 Kid monitor

Detect if a child is shouting, fighting with their sibling, or is “en-
gaging in mischief” [8].

A.27 Motion detector

The app can detect people’s presence in certain rooms of the house,
then turn on the heat/AC/light there, while turning it off in other
rooms.
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B KITCHEN
B.1 Shopping list
e We should get eggs.

e Don’t forget to get milk on your way home.
e We’re almost out of butter.

B.2 Fridge monitor

Keep track of items in the refrigerator and when they are likely to
expire.

e Oh yay, you got cauliflower. [Reminder that it goes bad after
X days.]

Do we need milk? No, this one is good for another week.
What'’s for dinner today? Turkey and mashed potatoes. [re-
member that these ingredients were (probably) used up]

B.3 Recipe search

How long do I boil eggs?
How do I make ratatouille?
Do we have everything we need for cookies?

B.4 Cooking advisor

What temperature should I set this oven to for asparagus?
How hot should the oil be for deep-frying?

How long has this lasagna been in the oven?

What is the temperature of a medium rare steak?

How much sugar should I put in the cake mixer? I do not
want it to be too sweet.

B.5 Unit conversion

How many cups of flour is 200 grams?
How many teaspoons is one tablespoon?
What’s 600 grams in ounces?

B.6 Is this thing still good?

Oh no, I left out the ham this morning. Can I still eat it?

B.7 Coffee maker

The app could respond directly to instructions to make coffee, but
also be more proactive, for example offering to brew coffee if a user
simply mentions that they are tired.

C BEDROOM
C.1 Baby monitor

Inform parents if it hears their baby crying in other room

C.2 Alarm

e Wake me up tomorrow at 8.
e Time to get up!
e Do you want to snooze for another 10 minutes?

C.3 Coffee scheduler

e Have a cup ready to go when I wake up tomorrow.
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C.4 Clothes recommendations

e What should I wear today? Maybe shorts? “It’s 40 degrees
outside; are you sure you want to wear shorts?”

C.5 Laundry reminder

e Hey, it’s been a week since you’ve done laundry. You're
almost out of socks.

D BUSINESS/MEETINGS

D.1 Action items

Summarizes action items from meeting

D.2 Equal time monitor

Makes sure everyone in the meeting has a chance to talk and doesn’t
monopolize the meeting

D.3 Language watchdog
Lets people know when they could have used more inclusive lan-
guage

D.4 Measuring interruptibility

Determines whether now is a good time for a phone call or other
interruption, based on content/tone of the conversation



