
Putting the Sec in DevSecOps: Using Social Practice Theory to
Improve Secure Software Development

Debi Ashenden
debi.ashenden@port.ac.uk

School of Computing, University of Portsmouth
Portsmouth, UK

Gail Ollis
gail.ollis@port.ac.uk

School of Computing, University of Portsmouth
Portsmouth, UK

ABSTRACT
Practices such as open source development, agile, DevOps and De-
vSecOps mean that cyber security professionals need to find ways
to blend cyber security with software development practices. One
way of approaching this is as an awareness, education and training
problem and many organisations are focusing on training software
developers in cyber security. In this paper, however, we make the
case for looking more broadly at group rather than individual be-
haviours, by examining the social practices of software developers.
Changing software development practices are shaping the lived
experience of software developers and we argue that understanding
these practices will enable us to improve secure software devel-
opment. We use social practice theory as a framework to develop
recommendations for aligning and blending cyber security and soft-
ware development. To achieve this, we carried out a rapid review
of research on software development practices and supplemented
this with data from ten key informant interviews to ascertain what
we need to consider when developing an intervention for secure
software development. Finally, we outline how our research could
be used to develop a workshop that would facilitate the co-creation
of security practices for software development. We conclude with
suggestions for future research.

CCS CONCEPTS
• Security and privacy → Social aspects of security and pri-
vacy; Software security engineering;Human and societal as-
pects of security and privacy.

KEYWORDS
Secure Software Development, Social Practice Theory, Cyber Secu-
rity, DevSecOps

ACM Reference Format:
Debi Ashenden and Gail Ollis. 2020. Putting the Sec in DevSecOps: Using
Social Practice Theory to Improve Secure Software Development. In New
Security Paradigms Workshop 2020 (NSPW ’20), October 26–29, 2020, Online,
USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3442167.
3442178

NSPW ’20, October 26–29, 2020, Online, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8995-2/20/10.
https://doi.org/10.1145/3442167.3442178

1 INTRODUCTION
In the move to agile development and continuous integration or
continuous delivery, software development cycles are shorter and
faster. It has always been difficult to ensure that security is consid-
ered up front in the software development process. Indeed research
has shown that in established open source projects, vulnerabilities
can exist for many years and through many versions of the software
[48]. With software development trends now requiring an increase
in the tempo of security processes the relationship between cy-
ber security professionals and software developers has never been
more important. Changing software development practices shape
the daily lives of software developers in new ways and cyber secu-
rity professionals have to be able to negotiate, align and blend the
way they implement security with these new ways of working. This
puts pressure on a relationship that has not always been easy [7].
The success of new software trends is as much about close collabo-
ration and trusted relationships as it is about the tools, processes
and strategies that an organisation has in place. In this paper we
examine the social aspects of software development practices and
explore what this means for cyber security.

New approaches to software development emphasise collabo-
ration to bring a focus to security [14] with the goal of ensuring
the inclusion of security from the beginning of the development
lifecycle and increasing awareness of obstacles to engaging with
security [46]. This also raises the question of where security hap-
pens in the software development process. Does it sit within the
individual skill sets of software developers, or the tools they use
to test the security of their code; does it reside within the process
that governs software development or is it the task of one security
expert within a project team? It is likely that some combination
of these is required but getting the balance right needs to be ne-
gotiated and, as our research demonstrates, incorporating these
elements effectively into everyday working practices requires a
change of culture as well as productive dialogues between software
developers and cyber security professionals.

Cyber security is a complex challenge in its own right, affected
by both social and technical factors [13] and cyber security profes-
sionals have consistently advocated that security should be ‘shifted
left’ in the software development process so that it is considered
early on in a project. The problems around secure coding and soft-
ware developers is not a new topic as Apvrille and Pourzandi [6]
point out. The cyber security research community has long since
drawn attention to the importance of the usability of security in
the software design process [19, 70] and on tool development to
support developers [52, 69]. As Pieczul et al. [51] point out though
it is ‘not feasible’ to expect developers to become security experts
and yet in spite of this, as Wurster and Van Oorschot [69] state,

34

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3442167.3442178
https://doi.org/10.1145/3442167.3442178
https://doi.org/10.1145/3442167.3442178
https://creativecommons.org/licenses/by/4.0/


NSPW ’20, October 26–29, 2020, Online, USA Ashenden and Ollis

‘apparently many in the security community continue to believe
that developer education will solve the problem’.

As a subset of cyber security, secure software development is
also receiving attention from organisations, Government bodies in
the UK and in the US, as well as software development researchers
[3, 5, 11, 45]. At their best, white papers, guidance documents and
research papers speak to both cyber security professionals and
software developers but there is often an implicit suggestion that
security is something software developers now have to add to their
responsibilities. Given that the relationship between cyber security
professionals and software developers is not always synergistic,
and may in some instances be adversarial [8], the suggestion that
software developers need to step up and do more is unlikely to set
the right culture for collaboration and change.

Attempts to ensure that software developers engage with secu-
rity processes, secure coding practices and the use of security tools,
usually focus on raising awareness of security risks and secure cod-
ing training programmes. Behaviour change is a complex topic and
such initiatives often have limited success, not least because raising
awareness does not necessarily lead to behaviour change [7]. As
Ashenden and Lawrence [7] point out, the first task in changing be-
haviour is to generate insight into the community whose behaviour
you seek to change and in this paper we use social practice theory
(SPT) as a way of generating this insight. The benefit of using SPT
is that it addresses behaviour at a group level ‘rather than focusing
solely on the individual’ [62]. This means that responsibility for
change is shared and collective. It is also a way of understanding the
contextual factors that play a key role in the success of behaviour
change interventions by acting either as a motivator or a barrier. As
Beautement et al. [9] found in their research there is a point beyond
which individuals will choose work arounds rather than following
security processes and SPT allows us to start to understand the fac-
tors that might impact on that tipping point. Our use of SPT builds
on the research by Kocksch et al. [31] that seeks to, ‘re-frame IT
security as a social phenomenon in the making’ by acknowledging
that security takes place in the ‘in-between’ – between people and
things – and is ‘a matter of forging relations’.

The study of social practices stems from the work of sociologists
such as Giddens [21] and Reckwitz [53] and inmore recent years has
increasingly been advocated for use in behaviour change research
[59, 62]. Practices are ‘ways of understanding, knowing how and
desiring’ [53] and SPT offers a way of ‘understanding the complex
dynamics that that make up a practice’ [62].

We use SPT to generate insight into the behaviour of software
developers that will help cyber security practitioners understand
how to co-create behaviour change initiatives that are more likely
to be successful. As such we offer the first step in a behaviour
change programme by using SPT to discover how software develop-
ers understand their current behaviours through their experience
of the practice of software developer. SPT allows us to focus on the
developers’ point of view, attempting to make explicit the reasons
for their practices. This can explain the ‘why’ of developer choices
in context, highlighting how they choose their methods and tools
in everyday use [16] and ensures that, ‘meaningful and sustain-
able improvements can be researched, devised and introduced to
practice’ [57]. In terms of ameliorating behaviour, understanding
the developer’s logic behind current methods is likely to offer an

easier transition to more secure practices. Through SPT individuals
become the agents of practice rather than the focus, allowing the
actions and interactions to become more distinct; this enables a
clearer view of where there are strengths and weaknesses with
regard to the inclusion of security.

2 THE PRACTICE OF SOFTWARE
DEVELOPMENT

In recent years software development research has begun to explore
ways of theorising about software development practices [16, 49].
Päivärinta and Smolandar [49] point out though that when they
reviewed research on software development in professional organi-
sations between 2010 and 2013, out of 271 articles they only found
four that included research with actual software developers. They
note that most research focuses on ‘technical rationality’, where
software developers and the context in which they work are ab-
stracted to provide input to formal models, and they call for a move
to ‘reflection-in-action’ research that seeks to understand the lived
experience of software developers.

This accords with the views of Sharp et al. [57], who make the
case for more ethnographic studies as a way of understanding the,
‘socio-technological realities surrounding everyday software devel-
opment practices’. The use of the term ‘practice’ [16, 49, 57] is a
way to describe the bundles of activities that make up the software
development process in the real world. Practice theory is a socio-
logical theory that Dittrich [16] defines for the context of software
development as a ‘commonly agreed upon way of acting that is
acknowledged by the team’. Dittrich acknowledges that there is
a difference between software development ‘as described’ versus
software development ‘in use’ because while there will be existing
processes and formal rules that support the integration of security
with software development there is often a gap between a docu-
mented process and what happens in reality. Software developers
themselves acknowledge this in their use of terms like ‘ScrumBut’
1. As Ashenden and Lawrence [8] point out this is particularly the
case with security where the gap is between ‘an organisation’s
mandated formal security processes and what actually happens’.
They attribute this to organisational pressures in other areas that
mean that ‘projects have to finish, systems have to run and the
business has to move forward’ [8].

More recent research has examined the motivations of the soft-
ware developer community [10, 56, 66]. There is a distinct culture
and community surrounding software developers however, which
Sharp et al. [58] argue transcends borders and organisations and
has been identified as central to combatting social and technical
problems regarding software and security [11].

Of course, cyber security too is a practice enacted in various
ways in different organisations and when we think about integrat-
ing cyber security with software development we can see that we
are actually trying to blend and merge two, often very different
social practices. Williams [68] writes about this in a short sum-
mary of three annual Continuous Deployment Summits held by
Facebook, Netflix and Google between 2015 and 2017. She makes
references to practices but without explicitly grounding her review

1ScrumBut is where an organisation or team uses Scrum but knows they fall short in
practice – hence the term ‘we use Scrum but . . . ’

35



Putting the Sec in DevSecOps: Using Social Practice Theory to Improve Secure Software Development NSPW ’20, October 26–29, 2020, Online, USA

in practice theory and highlights three themes that are key to the
successful integration of cyber security and software development
practices; communication, culture and technical aspects. She points
to areas where security and software development practices have
been blended successfully – where there is ‘close communication’,
‘shameless retrospectives’ that include security and privacy failures,
and check-in points for testing. More recent work by Kocksch et al.
[31] lays the foundations for the study of the practice of security. In
their work they use ethnographic vignettes to explore the bundle
of practices that make up security and conclude that security is an
‘ongoing collective endeavor’ that requires both empathy and care
if it is to achieve its goals. This research provides a useful starting
point for understanding the social practice of software developers.

3 SOCIAL PRACTICE THEORY
Social Practice Theory is increasingly usedwithin behaviour change
programmes in fields as diverse as environmental issues and hu-
man consumption [18, 25, 29]. Part of the success of SPT in these
areas is that the individual is no longer the focal point of change.
This supports a trend of encouraging agency in individuals so that
they direct their own behaviour change, rather than an outside
force, such as cyber security professionals in this instance, impos-
ing modification through regulation [38]. This seems especially
pertinent when we increasingly need cyber security professionals
and software developers to work together as peers. It is an approach
that should encourage a move towards negotiating the inclusion
of security in software development so that both communities are
satisfied.

SPT is the examination of preferences, habits and behaviours
of people which develop in a social context [26], but instead of
individuals being the unit of analysis, it is the ‘practices’ that are
examined [42]. A practice is the core component of SPT and is made
up of three elements; materials, meanings and competences [60]:

• Practices are defined as a way of understanding and behaving
around a specific act that has been normalised by routine. A
practice may appear at different times and places, ‘carried
out by different body/minds’ [53].

• Materials are the physical objects, tools and infrastructure
used in the practice.

• Competence refers to the knowledge, skills and understand-
ing needed to carry out the practice.

• Meanings are the cultural understanding, expectations and
shared meanings that circulate through the practice.

Shove [59] advocates SPT as an approach to help institutions
structure their actions by ‘making some [actions] very much more
likely than others’ by providing a focus on the specifics of common
social processes, which create observable patterns [29].

We can see an example of how the social practice of cyber se-
curity in the workplace has changed over time. Two decades ago
an employee’s technological materials might have been a desk top
computer on an organisation-wide network. It would have had basic
word processing/spreadsheet functionality. The employee would
have had little to no technical security competence beyond perhaps
a password for access that may well have been shared. The meaning
given to the social practice of technology in the workplace may

well have included innovation, forward thinking and business suc-
cess, it is unlikely it would have included confidentiality, integrity
or availability. Today the same employee would have a range of
technological materials that could include a desktop computer, a
laptop, a tablet and a smart phone. They would be able to access
their company information on all devices. They will have an ar-
ray of apps to help them communicate and work collaboratively
alongside traditional office applications. An organisation will now
ensure the employee has some competence in, and takes responsi-
bility for, both using and securing the devices and the information
on them. The competences have now extended from being able
to construct more and often increasingly complex passwords to
managing two-factor authentication as well as noticing and acting
to prevent phishing attacks.

Employees also need to be able to manage the security of the
interaction between the technology and the physical environment
which may change as they work while on the move, switching
between devices. Employees now have to have competence in man-
aging context switching so they don’t inadvertently reveal company
information while on a train for example. They have to protect their
devices from being stolen as they move between physical locations.
The meanings applied to cyber security as a workplace practice
have also changed. Previously it was hidden, someone else’s respon-
sibility and not something to dwell on, whereas now the employee
is constantly told it is their responsibility. Cyber security is now a
serious topic for organisations. Employees know that if they fail at
practicing cyber security there may be a regulatory fine, they could
be disciplined or lose their jobs, there are standards to comply with.
The social practice of workplace cyber security for employees has
changed significantly over recent years. To begin to understand the
social practices of software development and how it might impact
on how we integrate cyber security we carried out two activities.
Firstly, we conducted a rapid review of literature on software devel-
opment to see what we could learn about social practices. Secondly,
we supplemented the literature review with ten interviews with
key informants. These were people across the software develop-
ment industry who could give us further insight into the social
practices that might cause barriers to, or constraints on, blending
cyber security with software development.

What follows is by no means a comprehensive study of the social
practices of software developers but it does offer a proof of concept
for how SPT could be a useful lens to support the co-creation of
practices for secure software development. Our analysis of the lit-
erature and the interviews can be split into two key practices. The
first is a meta-practice that is determined by the philosophy of soft-
ware development activities and distinguishes between proprietary
software development and open source software development. The
second practice focuses more specifically on the bundle of practices
that make up software development itself.

4 TWO REALMS: PROPRIETARY OR OPEN
SOURCE

The literature on the practice of software development typically
considers either the proprietary software realm or the open source
realm, not both together. These are illustrated in Figure 1, each
realm including its own characteristic social spheres. Proprietary

36



NSPW ’20, October 26–29, 2020, Online, USA Ashenden and Ollis

Figure 1: Realms of Software Development

software is the realm of commercial companies and is ‘closed source’.
Customers typically enjoy the right only to run the software and do
not have access to the source code. In the OSS realm, development
effort is voluntary, source code publicly available and permission
to use or edit it constrained only by the terms of free licences.

However, proprietary software makes extensive use of Open
Source Software (OSS) so software security depends on the prac-
tices of both realms. There are commonalities between proprietary
and OSS development practices in meanings, materials and compe-
tence elements of SPT, suggesting potential for behaviour change
initiatives which will work for both realms.

4.1 Two Realms: Meanings
Historically many companies perceived OSS to mean insecure code,
posing a risk to the security triad of confidentiality, integrity and
availability [61]. This has changed as OSS has matured. A commer-
cial product’s need for trust in OSS code, confidence in its legal and
reputational status, and access to shared knowledge about it can
now be met by projects under the governance of formal affiliation
and governance structures that have helped to establish OSS as
trustworthy [17].

There are still independent projects led informally by core devel-
opers [55], a risk that should be considered when choosing libraries
for secure software development. However, this does not mean
that OSS is developed by enthusiastic amateurs. Many software
developers operate in both realms and apply the same professional
standards throughout. It is their obligations and motivations for
the work that are realm-dependent.

4.2 Two Realms: Materials
The change in companies’ perceptions of OSS has created a greater
overlap between the two realms than just sharing of some personnel.
Companies are now OSS users, routinely using OSS tools [1, 35]
and embedding OSS libraries in their products. Given this vested
interest in OSS, some become contributors to its development by
hiring OSS community leaders or endorsing the use of company
time for work on open source projects [17]. Companies may also
‘open source’ (make publicly available) source code which they
initially developed in-house. Google, for example, developed the

TensorFlow [23] platform (machine learning computation, based
on patterns and inference rather than a sequence of instructions)
for internal use and later released it under the Apache licence.

Whether for a company project or an OSS one, the day-to-day
software development workflow is similar. Coordination of many
individuals’ contribution to a code base is normally implemented
using a Distributed Version Control System (DVCS) such as Git
[22] to support independent work that can later be combined in a
well-managed fashion. GitHub offers the same workflow features
with an added layer of infrastructure to host a public Git repository.
It also provides a gatekeeping mechanism for code changes to be
reviewed by a privileged user before they are accepted, known as a
‘pull request’.

The “pull request” mechanism is used by some projects in both
realms. The key differences in the use of DVCS lie merely in the ex-
tent of the distribution (local employees, employees across multiple
sites or individual contributors anywhere in the world) and where
the repository is hosted (in a company server or online). GitHub,
for example, is popular with OSS projects, but some commercial
projects too find it useful to outsource hosting infrastructure instead
of providing their own server.

Other tools of software development (programming languages,
development environments, testing methods and so on) are also
common to the two realms. The similarities are evident in the
IEEE Spectrum ranking [28]; the top six languages on open source
hubs (Python, Java, C, C++, JavaScript and C#) are exactly the
same as those most in demand by employers. It is symptomatic of
the change in industry use of OSS that none of these is a propri-
etary programming language or reliant on commercial licences;
free compilers/interpreters are available for mainstream platform
architectures. Fully proprietary languages such as MATLAB [40]
do not make the top ten for either open source use or industry
demand.

4.3 Two Realms: Competences
Some of the overlap in tool use can be accounted for by the number
of paid developers also contributing their professional skills to
OSS. Necessary competences across OSS and proprietary software
development are very similar. There is a logistical difference in the

37



Putting the Sec in DevSecOps: Using Social Practice Theory to Improve Secure Software Development NSPW ’20, October 26–29, 2020, Online, USA

barriers to participation - professional developers are selectively
recruited, whereas anyone can volunteer work to OSS projects –
but in either case a code review may determine whether or not the
code is incorporated.

Distributed teams require some different competences from co-
located ones. Licorish and MacDonell [33] cite two challenges:
time zone differences and, between Asia and the West, cultural
mismatch. Overcoming these is possible [12] but requires effort.
OSS project developers may be co-located only when sponsored by
employers or participating in a ‘sprint’ or ‘hackathon’ (a physical
gathering to work together on a project, whether independently
organised or supported by a tech conference [2]) and therefore
face the challenges of a very distributed team. Conversely, while
proprietary software projects may have teams distributed across
company sites it is commonplace to have one or more teams of
co-located developers.

4.4 Implications for Security
With the meaning of OSS now much more positive in companies’
perceptions, cyber security professionals need to know where the
organisation or individual projects sit on the proprietary to OSS
spectrum as this could impact on their risk exposure. They also
need to understand the affiliation and governance structures that
are being relied on to provide trust and to work with them to
assure the same security standards whilst also understanding any
vulnerabilities that such structures may cause.

The goal for working with the OSS realmmust be ‘DevSec’ rather
than ‘DevSecOps’ since OSS typically has no ‘Ops’ (see Figure 1)
but otherwise the materials used are likely to be the same. This
offers a potential locus for security processes that integrate well
with developers’ existing practices across both realms. The role
of DVCS as a fundamental material element in both makes it a
particularly important element to consider.

There are two competence factors with security implications.
One concerns the authority to mandate security knowledge. Volun-
tary participants have rather different obligations to those of paid
employees, although the overlap in personnel means that security
knowledge among professional developers should also influence
OSS development. The second factor is geographically distributed
teams and the impact of associated cultural differences. These have
implications for the take up and adherence to security policies and
processes, whichever authority sets them.

5 COLLABORATIVE PRACTICES: LEARNING
FROM DEVOPS AND DEVSECOPS

Our search terms explicitly combined DevOps or DevSecOps with
Social and Practice to explore the nature of the enhanced collabora-
tion that is sought by these approaches. Since OSS typically has no
‘Ops’ much of the material in this section comes from the propri-
etary realm. However, the OSS realm is by definition a community
effort so it, too, contributes to the discussion of collaborative prac-
tices. It is a social context with different meaning but many of the
same competences and materials.

DevOps is the combination of software development and oper-
ations, a practice designed to address the coordination problems

that can arise when a live software system is installed and sup-
ported by an operations team largely separate from the developer
team writing the software. In our goal of blending cyber security
(Sec) with software development (Dev) practices we can learn from
the DevOps experience of blending the ‘two cultures’ of Dev and
Ops and from the further DevSecOps experience of also including
security in the blended activity.

5.1 Collaborative Practices: Meanings
Iden and Bygstad [27] highlight the importance of trust between the
‘two cultures’ of Dev and Ops. For Luz et al. [36] a collaborative cul-
ture is at the heart of the DevOps model, along with straightforward
communication and blameless, shared responsibilities. Although
their account centres on a single collaborative culture rather than
two cultures with mutual trust, they make it clear that the col-
laborative culture is not something that a team simply has as an
endogenous quality. It is enabled and maintained by the practices
used and it needs to be kept alive. In the words of a participant in
the study by Luz et al, this ‘is still a challenge for us. . . The idea is
not to let the culture die.’ [36].

These principles also apply to DevSecOps, where communication
of security requirements is added to those of development and ops.
The intention is the same: to enable decisions about each of three
aspects to be set with an understanding of the consequences for
the other aspects and those who are responsible for them. Tomas,
Li and Huang [64] describe four key elements for successful De-
vSecOps practice: culture, automation, sharing and measurement.
Of these, culture is the bedrock, consistent with the findings of
Iden and Bygstad [27] and Luz et al. [36]. Successful adoption of
the new, collaborative way of working can be supported by tools
and processes, but depends on having and fostering a collaborative
culture. Together these papers show that bringing Dev and Sec
together (with Ops or, as will be the case in the OSS realm, without)
is not a one-off intervention but an ongoing process of maintaining
that collaborative culture, a process in which the right tools can be
helpful.

The emotional landscape of developers also has an impact on
the success of new structures and processes [41] and it is logical
that this would include any structural or process changes to ac-
commodate cyber security. For example, how software developers
perceive a transition to agile will depend on issues around col-
laboration, communication, commitment or resistance to change,
trust, and organisational culture [20]. A study by Graziotin et al
[24] suggests that while happiness may only benefit the software
developers themselves, conversely software developers believe that
their individual unhappiness is detrimental to the team.

A large-scale survey conducted by Meyer et al. [44] highlights
the importance of agency for software developers and strongly
recommends the need to ‘empower developers to choose their own
tools and tasks’ if they are to have ‘a good day’. In their study they
recognised that developer activities can be split into two groups –
coding tasks and collaborative activities. Satisfaction for developers
depends on balancing these two groups of tasks. Their description of
what makes a good day is when they are ‘working in code’, having
‘constructive discussions’, learning and helping co-workers. Their
acceptance of certain collaborative activities, such as meetings, also
varies through the project lifecycle.

38



NSPW ’20, October 26–29, 2020, Online, USA Ashenden and Ollis

One aspect of developer practice that can be particularly fraught
with emotion and that is very relevant to security is code review.
There are different types of code review ranging from pair pro-
gramming, informal walk throughs and mandatory approvals. In
the research that we reviewed, problems were identified as arising
from scheduling and timing issues [37] for example, code review
taking a long time or not happening at the right time, or through
rejection of code [4]. In both cases, however, good communication
was a way to overcome these problems [37].

Alami et al. [4] suggest that the ‘emotionally loaded practice’
of code review works in the open source community because of
what they term the ‘hacker ethic’ which blends an ‘ethic of passion’
with an ‘ethic of caring’, meaning a strong intrinsic motivation to
‘learn, to grow reputation and to improve one’s positioning in the
job market’, We note the overlap in personnel between OSS and
proprietary software and suggest that the desire to produce good
quality code does not disappear when the same developer turns
to their professional work, but may be constrained by their work
environment.
5.2 Collaborative Practices: Materials
The issue of communication and the role it plays in successful
collaboration comes up repeatedly. Luz et al. [36] note that face-
to-face communication was preferred by their participants, but
where this was not possible they wanted to use tools rather than
a formal ticketing system. Licorish and MacDonell [34] analyse
communication artefacts by a project team distributed across the
USA, Canada and Europe. The 474 different contributors included
team leads, project managers and admins as well as programmers.
The research focuses on quantitative aspects of communication
such as how much time developers spend on different kinds of
tasks, how much communication there is for different task types,
and how long tasks take.

Communication between software developers is important and
more complex than current research suggests. A key tool around
which collaborative behaviour is typically coordinated is the Dis-
tributed Version Control System (DVCS), an essential repository
of a project’s files which tracks changes to them and allows any
version to be recovered. Examples include Git [22] and Mercurial
[43]. They allow changes to be worked on in parallel and then
individuals’ work to be merged together when ready. A history of
the changes to files is kept as they are ‘checked in’. Kalliamvakou
et al. [30] examine collaborative practice via GitHub. The trace
such tools create has great potential to show metrics such as how
long developers work independently before merging their work
into the whole, which files are edited by multiple developers, and
which files experience a large number of changes. Data mining
is no doubt an attractive approach to yield detailed metrics, but
without ethnographic study it can only tell us about some of the
mechanics and not about the meaning or the experience of being
involved in a collaborative project.

5.3 Collaborative Practices: Competences
Knowledge sharing is an important aspect of collaboration. Licorish
and MacDonell [33] suggest that knowledge sharing in a project
centres around a subset of the team that they call ‘core developers’,
also referred to as ‘software gems’. Whether or not their formal

role is a leadership one, these people play a co-ordinating role in
knowledge sharing. While some papers identify such people by
the frequency of their contributions to the impersonal communi-
cation artefacts of a project, Licorish and MacDonell [33] report
that knowledge sharing is a social process. They recognise that
a team’s behavioural norms are an important influence on indi-
vidual knowledge sharing behaviour; social motivation is a factor,
and closely linked to trust. Whether or not the overall pattern of a
team’s communications follows that found in its online artefacts is
unclear.

5.4 Implications for Security
Aligning security with quality and emphasising that security is
part of the ethic of care could be a useful way of framing security
messages and communications. Our review suggests that developers
may already have the ethical mindset to be able to include security
as part of their quality ethic. In the proprietary realm, this needs
companies to understand the relationship and be supportive of
developers’ inclination to exercise their existing ethic of care. Our
review did not identify any papers which explored the meanings
employers ascribe to caring about code.

Cyber security professionals should, where possible, use the soft-
ware developers’ preferred method of communication and methods
by which they already share knowledge as part of their workflow.
The metrics which demonstrate communication patterns suggest a
promising place to start, but these would be complemented by an
understanding of the meanings ascribed to communication meth-
ods to avoid proposals that fit the overt artefacts but conflict with
developers’ experience of using them.

To facilitate knowledge sharing of security issues cyber security
professionals need to identify the core developers who have influ-
ence in a project. These individuals would make useful Security
Champions. One way to identify them would be by examining the
communications across a team but at the moment there is a lack
of research on how influence is built and exhibited in developer
communication.

Ensuring software developers have agency and are empowered in
their work, that they can still balance coding and collaboration, are
going to be important considerations in any security intervention.
Cyber security professionals should aim to negotiate processes and
tools use with software developers as this would both engage them
and ensure they have agency. Ideally the tempo of security activities
should align with the tempo of software development activities so
that meetings focusing on security happen at the optimum time
in a project lifecycle where possible. This could be facilitated by
integrating security activities at the natural ‘meeting points’ that
a DVCS creates as part of the collaborative workflow in both OSS
and proprietary realms.

6 INTERVIEWS
Our literature review demonstrated that while we found useful
information about the materials, meaning and competences we
needed to dig deeper to start to understand some of the nuances
of the lifeworld of software developers. As noted previously there
are very few ethnographic studies of software developers in gen-
eral. While we would advocate further ethnographic studies, in the

39



Putting the Sec in DevSecOps: Using Social Practice Theory to Improve Secure Software Development NSPW ’20, October 26–29, 2020, Online, USA

meantime we carried out a pilot study of interviews with key infor-
mants to demonstrate the potential value of SPT. Key informants
are individuals selected because they have a particularly informed
perspective on a topic. They are hand-picked to provide insight into,
and the identification of, relevant issues. Qualitative interviews are
a recognized data collection method for SPT and key informants
are often ‘important gatekeepers for insights on practices’ [39].

The interviews were between 45 minutes to an hour in length.
They were semi-structured around the topics of interviewees’ ex-
perience of developing software, their working day, their views of
what it meant to be a software developer, their understanding and
perceptions of security in the software development process, the
materials that they use in their day-to-day work and the skills they
value. Our interviews shed light on some aspects of materials and
competences but also focus on the meanings software developers
assign.

Our interviewees included five open source software developers
from a global open source software company. These interviewswere
conducted during a week where the researcher worked alongside
the developers in their office. This allowed for informal conversa-
tions as well as more formal interviews. In addition, we interviewed
one technical pre-sales consultant with experience in both software
development and security from the same organisation. We also
interviewed one agile coach who is responsible for advising and
coaching software developers in the finance sector, one solution
engineer from a small open source software company, one software
security architect and a senior manager for trustworthy computing
from a global proprietary software company. Between them they
worked across five different organisations and two different coun-
tries (the UK and the US). Five of them had experience with cyber
security as well as software development.

6.1 Revisiting the Two Realms
The overlap between OSS and proprietary systems for software
development was borne out in our interviews. One interviewee
asserted, however, that sometimes code can be open source in name,
in that it is placed on GitHub but the, ‘developer mentality behind
it is closed source’ so it can be downloaded, changed and used but
cannot be updated or developed further via GitHub. Alternatively,
it could be a blend of closed source code plugged into an open
source core. Another interviewee said that nearly ‘every software
developer is using open source’ but that what they produce is not
necessarily open source. The notion of a developer’s mentality be-
ing either open source or closed source is interesting but is not
addressed in the research literature. The idea of software develop-
ment practices being as much about a state of mind as about tools
and processes is one that needs to be explored further.

Ethics and affiliation become entwined for OSS developers. Some
organisations have ethics processes to determine how developers
should act in the communities they work in. There was reference
to giving back to the community and one said that ‘Making a con-
tribution is important’ which is what we found in the literature
around an ethics of care. Some developers commented on the diffi-
culty of balancing affiliations where they are affiliated to their own
organisation but also to organisations such as Apache.

With our interviewees, distributed teamswere the norm covering
a wide geographical distribution (one team had members in the UK,

US, Ireland, Serbia and China). One interviewee said that one of the
developers in his team sometimes worked out of New York – he
didn’t know why but it didn’t matter as long as she told him which
time zone she was in for meetings.

6.2 The Lifeworld of a Developer
The idea of the ‘lifeworld’ is about understanding the lived ex-
perience of others, focusing on their perceptions. Understanding
the lifeworld of software developers means that cyber security
practitioners can start to develop empathy with their day-to-day
experiences [31]. This is the first step to understanding why peo-
ple do what they do [7] and allows cyber security practitioners to
understand the context in which software developers experience
security from their perspective which can then inform how they
implement security practices.

One of our key informant interviewees said that open source
development tends to attract individuals who are ‘passionate’ about
what they do and will often work longer hours than contracted.
They have ‘passion’ and ‘attention to detail’. Another said that their
organisation may be ‘sponsoring the project’ but developers will
feel that ‘it’s theirs’ and may ‘forget why they’re here’. Developers
also enjoy the creativity of their role with one interviewee saying,
‘I’m not a creative person but it’s the one thing where I can write
something down and see something happen’.

Some developers need a ‘darkened quiet room’ to work whereas
other need a ‘social, community, environment’. Pair programming
can work for some but a lot of use is made of internal, virtual chat
facilities and this is especially important when there is widespread
geographical distribution. For others, the ‘teddy bear experience’
(talking it through out loud as if to a soft toy) works just as well.
When it came to collaboration one interviewee said that a high
performing team is one where there is ‘implicit trust’. Software
developers need agency as we saw in the review of the research
but one way this was described in the interviews was that they,
‘don’t want to have to jump through hoops to get what they need’
and they expect access to GitHub now because they use it as a
‘portfolio’. For communication they need to be able to talk to other
team members easily and quickly but using tools. They want chat
but ‘without having to get up’. They also want chat linked to their
other collaboration tools.

The importance of influence and knowledge sharing came through
in a richer way in our interviews. The value of interpersonal skills
was highlighted as an important aspect of team work. One partic-
ipant said that many software developers are good at team work
but do so via virtual communication so they are team players ‘but
not in a traditional sense’. The ability to influence and persuade
was also seen as an important skill and this is why role and profile
outside their organisations is important. They become accepted by
‘evangelising about a product’, providing code, documentation and
tutorials or running special interest groups. One software developer
said that the qualities of a good software developer are being an
‘awesome communicator’, ‘articulate’, having a ‘broad knowledge
of many subjects’ while being ‘assertive’ and able to get ‘people’s
attention’.

Our interviewees had a range of perspectives on code reviews
and acknowledged that the experience depends on the team dy-
namics and the project. Some are very strict and some ‘require

40



NSPW ’20, October 26–29, 2020, Online, USA Ashenden and Ollis

two code reviewers’. They can be ‘frustrating’ because some take
‘months with 20-30 iterations’. A software developer’s experience
of code review can depend on reputation – if you already have a
good reputation then your code might not be so closely scrutinised.

One interviewee suggested that you can see group dynamics
through the process. For example, spending less or more time re-
viewing someone’s code either because you think it’s likely to be
good or because you think it’s likely to be bad. Bearing out what
the literature says about code review one software developer high-
lighted that it could be ‘demoralising if it takes five days’. For others
the process was not ‘necessarily an ego issue’ but was supportive
and egalitarian where junior developers would review code for
those more senior.

6.3 Implications for Security
Our interviews shed light on the lifeworld of software developers in
a way that added more richness to the meaning of social practices
than we could extract from the literature. This is an important first
step and further research needs to be carried out here as it is by
understanding the lifeworld in this way that we will be able to
effectively blend the social practice of software development with
that of cyber security. The interviews have started to reveal what is
important to software developers and in turn these elements need
to be taken into account in any security intervention. They help
us to understand how software developers see themselves, their
identity, affiliations and motivations. Their focus on ethics and
their role within their community are particularly important and
both could be invaluable in promoting security. Their perception of
their affiliation could potentially increase security risk. The process
of code review needs to be examined to ensure it is not leading
to security vulnerabilities merely because of the way it is carried
out. Finally, the range of requirements for their work environment,
especially with regard with communication, breaks through stereo-
types of software developers and offers lessons for cyber security
professionals who need to engage with them.

7 A CULTURE OF SECURE SOFTWARE
DEVELOPMENT

Iterative software development initiatives such as DevSecOps are
sometimes seen as synonymous with a rejection of the ‘additional
development efforts’ [47] required by security and are seen as an
overhead [65]. Rindell et al. [54] highlight what they see as an
incompatibility between iterative models and the more traditional
sequential models of security engineering, noting that the idea
of security requirements as non-functional requirements is still a
convenient argument. Oyetoyan et al. [47] do note, however, that
some agile organisations have managed to incorporate security ‘in
a way that fits their processes and practices’. Both Oyetoyan et
al. [47] and Rindell et al. [54] propose mitigations which call for
aligning security with the software development process. What is
missing from the picture is some of the detail of what is actually
involved in the lifeworld of software developers and the social
practice of software development.

The role of culture is an influential aspect of the software devel-
opment practices [50] and to be able to improve security within a
software development lifecycle there must be acknowledgement of

social as well as technical aspects [63, 64]. To create and maintain
a supportive and healthy security culture within the organisational
structure, security must be included as a natural aspect of devel-
oper routine and the end product [67], rather than being seen as a
separate feature or add-on.

The study by Tomas et al. [64] sets out the need for a security
culture among developers. Trust plays a part here too, in the wider
relationships between software developers and cyber security pro-
fessionals. Study participants reported that they ‘feel attacked’ by
security engineers if they fail to measure up. As Ashenden and
Lawrence [8] point out, software developers are sometimes reluc-
tant to engage with cyber security professionals for fear that they
will ‘shoot the baby’ and as one interviewee said, they ‘don’t want
security to say no’. Invoking the ‘lens of care’ that Kocksch et al.
[31] bring to their study of security and software developers, this is
the point where we can clearly see the need for empathy in order to
bridge the divide between software developers and cyber security
professionals. Both groups need to find a way to understand each
other.

Passos et al. [50] have studied the belief systems in software or-
ganisations and find that both past experiences and organisational
culture influence practices. When organisational culture is compat-
ible with developers’ beliefs, it serves to strengthen those beliefs.
When the two conflict, the cultural norms of the developers may
be weakened by disagreement. However, strong developer beliefs
associated with positive results can spread to other developer teams
and become part of the organisational culture.
8 CO-CREATING SECURITY WITH

SOFTWARE DEVS
As we have demonstrated, using SPT to understand the lifeworld
of developers offers us a glimpse of what it feels like to be in their
position. From this perspective we can start to appreciate how se-
curity processes, tools and technologies are experienced by them.
The next step would be to develop this empathy further and one
way could be to bring them closer into the process of designing se-
curity interventions. Co-creation has been identified as an effective
way of designing for behaviour change, particularly when building
relationships is important [15]. In this instance this could take the
form of co-creating education and training initiatives and designing
an environment that supports both software developers and cyber
security practitioners.

Ashenden and Lawrence [7] used co-creation in their action
research project to develop better security dialogues. Their design of
a two-day workshop with cyber security practitioners acted both as
a training programme to help cyber security practitioners facilitate
generative dialogues and as a way of gathering rich, qualitative data
about the practices that inhibited engagement with security. They
note that ‘security dialogues can make up the shortfall between the
security process and the real-world context in which it operates’.

We would seek to build on this idea and develop workshops that
bring together cyber security practitioners and software developers
to work together on activities that would address the following
issues in a specific organisational context:

• Clarifying the affiliation structures within a project, artic-
ulating whether the project is open source or proprietary
or a blend. Understanding the implications for developers

41



Putting the Sec in DevSecOps: Using Social Practice Theory to Improve Secure Software Development NSPW ’20, October 26–29, 2020, Online, USA

to build their portfolios. Discussing the risks of the chosen
affiliation structure both on the project and the potential risk
of insider threat.

• Understanding the physical collaboration and communica-
tion mechanisms and constraints – for example how dis-
tributed is the team geographically, what time zone they are
working in, what the balance will be between home working
and office working. Ensuring that physical communication
and collaboration mechanisms are secure.

• A negotiation session between cyber security professionals
and software developers to identify tools that balance secu-
rity with usability for communication and collaboration in
negotiation with software developers.

• Jointly identifying any barriers to collaboration and commu-
nication that might exist physically, socially, or technically
arising from security requirements.

• Co-creating security processes that allow software develop-
ers to optimise the division of their work between coding
and collaboration for their productivity.

• Designing a code review process that aligns cybersecurity
professionals’ need for security with software developers’
desire for quality code.

By using SPT as the foundation for designing the workshop we
focus on group practices rather than individual behaviours. In this
way we are more likely to avoid an adversarial environment that
attributes blame. Instead, by structuring the workshop around the
exploration and shaping of practices we believe we will facilitate
constructive and generative dialogue. By co-creating security prac-
tices we would start to ensure that responsibility for security is
shared by cybersecurity professionals and software developers in
practice as well as in the process.

9 CONCLUSIONS AND FUTURE RESEARCH
With a move to agile, continuous integration/continuous delivery,
DevOps and DevSecOps, software development cycles are shorter
and faster. Blending cyber security processes with those of soft-
ware development is now more important than ever but is proving
difficult to achieve. There is increased interest at the moment in
how to ensure secure software development but initiatives tend to
focus on tools, technology and processes without considering the
social practice of software development or the relationship between
cyber security professionals and software developers.

We have made a case for using SPT to understand the lifeworld of
software developers in order to be able to better blend cyber security
with software development. Our rationale for taking SPT as our
approach stemmed from existing research which suggests that to
change behaviour we need to understand why people do what
they do from their own perspective – in this case the perspective of
software developers. SPT also enabled us to build on the current turn
towards examining practices in software development research.

SPT allows us to start to understand security as it happens in
the ‘in-between’ [31]; those liminal spaces between documented
processes and real-world actions, between the cyber security prac-
titioner and the software developer. We need to start building the
type of bridges between the two communities that C.P. Snow envis-
aged between art and science; it should not be one or the other that

wins but it should be about learning from each other [32]. Using
SPT we have shown that we have a way to consider the ‘interplay
of structure and situated practice’ [52] and the impact this has on
secure software development. Through the framework of materials,
meanings and competences we have a way of helping cyber security
practitioners to understand why software developers do what they
do and a starting point for understanding how to co-create solu-
tions. By moving the focus away from individual responsibility, we
avoid a zero-sum game where all the potential blame lies with the
software developer, and encourage a shared responsibility where
both the software developer and the cyber security practitioner can
win.

This is in no way a comprehensive study of the social practices
of software developers as they relate to security; the next step is to
carry out a much larger scale study. We believe though that we’ve
provided a proof of concept that demonstrates the potential benefits
of using SPT to develop practices that support secure software
development effectively. Our next step will be to develop and trial
a workshop that brings software developers and cyber security
practitioners together to co-create solutions. This would build on
other successful initiatives that take this approach. The aim is to
facilitate generative dialogue between the two communities.

Future research will focus on studies that cross cyber security
and software development communities. There is a need for ethno-
graphic studies not just in software development but in DevSecOps
teams specifically. Two topics that warrant more in-depth focus
from cyber security researchers because of the impact that they
could have on risk profiles are the code review process and the
affiliation and identity of software developers.

ACKNOWLEDGMENTS
This work was funded by the Centre for Research and Evidence on
Security Threats (ESRC award ES/N009614/1) and EPSRC award
EP/P01166711. The authors would like to thank Dr Helen Thackray
for her help with the literature review.

REFERENCES
[1] 2020. Enabling Open Innovation & Collaboration | The Eclipse Foundation.

https://www.eclipse.org/ [Online; accessed 14-Dec-2020].
[2] 2020. EuroPython 2019 Sprints & EuroPython 2019, Basel, Switzerland, 8-14

July 2019. https://ep2019.europython.eu/events/sprints/ [Online; accessed
14-Dec-2020].

[3] Yasemin Acar, Christian Stransky, Dominik Wermke, Charles Weir, Michelle L
Mazurek, and Sascha Fahl. 2017. Developers need support, too: A survey of
security advice for software developers. In 2017 IEEE Cybersecurity Development
(SecDev). IEEE, 22–26.

[4] Adam Alami, Marisa Leavitt Cohn, and Andrzej Wąsowski. 2019. Why does
code review work for open source software communities?. In 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). IEEE, 1073–1083.

[5] Edward Amoroso. 2018. Recent progress in software security. IEEE Software 35,
2 (2018), 11–13.

[6] Axelle Apvrille and Makan Pourzandi. 2005. Secure software development by
example. IEEE Security & Privacy 3, 4 (2005), 10–17.

[7] Debi Ashenden and Darren Lawrence. 2013. Can we sell security like soap?
A new approach to behaviour change. In Proceedings of the 2013 New Security
Paradigms Workshop. 87–94.

[8] Debi Ashenden and Darren Lawrence. 2016. Security dialogues: Building better
relationships between security and business. IEEE Security & Privacy 14, 3 (2016),
82–87.

[9] Adam Beautement, M Angela Sasse, and Mike Wonham. 2008. The compliance
budget: managing security behaviour in organisations. In Proceedings of the 2008
New Security Paradigms Workshop. 47–58.

42

https://www.eclipse.org/
https://ep2019.europython.eu/events/sprints/


NSPW ’20, October 26–29, 2020, Online, USA Ashenden and Ollis

[10] Sarah Beecham, Nathan Baddoo, Tracy Hall, Hugh Robinson, and Helen Sharp.
2008. Motivation in Software Engineering: A systematic literature review. Infor-
mation and software technology 50, 9-10 (2008), 860–878.

[11] Gerry Gerard Claps, Richard Berntsson Svensson, and Aybüke Aurum. 2015. On
the journey to continuous deployment: Technical and social challenges along
the way. Information and Software technology 57 (2015), 21–31.

[12] Robert Davison, France Bélanger, Manju Ahuja, Mary Beth Watson-Manheim,
J Alberto Espinosa, William DeLone, and Gwanhoo Lee. 2006. Global boundaries,
task processes and IS project success: a field study. Information Technology &
People (2006).

[13] Hans de Bruijn and Marijn Janssen. 2017. Building cybersecurity awareness: The
need for evidence-based framing strategies. Government Information Quarterly
34, 1 (2017), 1–7.

[14] Breno B Nicolau de França, Helvio Jeronimo, and Guilherme Horta Travassos.
2016. Characterizing DevOps by hearing multiple voices. In Proceedings of the
30th Brazilian symposium on software engineering. 53–62.

[15] Darshan Desai. 2009. Role of relationship management and value co-creation in
social marketing. Social Marketing Quarterly 15, 4 (2009), 112–125.

[16] Yvonne Dittrich. 2016. What does it mean to use a method? Towards a practice
theory for software engineering. Information and Software Technology 70 (2016),
220–231.

[17] Remo Eckert, Matthias Stuermer, and Thomas Myrach. 2019. Alone or Together?
Inter-organizational affiliations of open source communities. Journal of systems
and software 149 (2019), 250–262.

[18] David Evans. 2011. Consuming conventions: sustainable consumption, ecological
citizenship and the worlds of worth. Journal of Rural Studies 27, 2 (2011), 109–115.

[19] Ivan Flechais, M Angela Sasse, and Stephen MV Hailes. 2003. Bringing security
home: a process for developing secure and usable systems. In Proceedings of the
2003 workshop on New security paradigms. 49–57.

[20] Taghi Javdani Gandomani and Mina Ziaei Nafchi. 2016. Agile transition and
adoption human-related challenges and issues: A Grounded Theory approach.
Computers in Human Behavior 62 (2016), 257–266.

[21] Anthony Giddens. 1984. The constitution of society: Outline of the theory of
structuration. Univ of California Press.

[22] Git. 2020. –fast-version-control. https://git-scm.com/ [Online; accessed 14-Dec-
2020].

[23] GitHub. 2020. GitHub - tensorflow/tensorflow: An Open Source Machine Learn-
ing Framework for Everyone. https://github.com/tensorflow/tensorflow [Online;
accessed 14-Dec-2020].

[24] Daniel Graziotin, Fabian Fagerholm, Xiaofeng Wang, and Pekka Abrahamsson.
2018. What happens when software developers are (un) happy. Journal of Systems
and Software 140 (2018), 32–47.

[25] Bente Halkier. 2001. Risk and food: environmental concerns and consumer
practices. International journal of food science & technology 36, 8 (2001), 801–812.

[26] Georg Holtz. 2014. Generating social practices. Journal of Artificial Societies and
Social Simulation 17, 1 (2014), 17.

[27] Jon Iden and Bendik Bygstad. 2018. The social interaction of developers and IT
operations staff in software development projects. International Journal of Project
Management 36, 3 (2018), 485–497.

[28] IEEE Spectrum. 2020. Interactive: The Top Programming Languages 2019 - IEEE
Spectrum. https://spectrum.ieee.org/static/interactive-the-top-programming-
languages-2019 [Online; accessed 14-Dec-2020].

[29] Jack Ingram, Elizabeth Shove, and MatthewWatson. 2007. Products and practices:
Selected concepts from science and technology studies and from social theories
of consumption and practice. Design issues 23, 2 (2007), 3–16.

[30] Eirini Kalliamvakou, Daniela Damian, Kelly Blincoe, Leif Singer, and Daniel M
German. 2015. Open source-style collaborative development practices in commer-
cial projects using GitHub. In 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering, Vol. 1. IEEE, 574–585.

[31] Laura Kocksch, Matthias Korn, Andreas Poller, and Susann Wagenknecht. 2018.
Caring for IT Security: Accountabilities, Moralities, and Oscillations in IT Security
Practices. Proceedings of the ACM on Human-Computer Interaction 2, CSCW (2018),
1–20.

[32] Lawrence M Krauss. 2009. CP Snow in New York. Scientific American 301, 3
(2009), 32–34.

[33] Sherlock A Licorish and Stephen G MacDonell. 2014. Understanding the atti-
tudes, knowledge sharing behaviors and task performance of core developers: A
longitudinal study. Information and Software Technology 56, 12 (2014), 1578–1596.

[34] Sherlock A Licorish and Stephen G MacDonell. 2017. Exploring software devel-
opers’ work practices: Task differences, participation, engagement, and speed of
task resolution. Information & Management 54, 3 (2017), 364–382.

[35] Linux Foundation. 2020. The Linux Foundation – Supporting Open Source
Ecosystems. https://www.linuxfoundation.org/ [Online; accessed 14-Dec-2020].

[36] Welder Pinheiro Luz, Gustavo Pinto, and Rodrigo Bonifácio. 2019. Adopting
DevOps in the real world: A theory, a model, and a case study. Journal of Systems
and Software 157 (2019), 110384.

[37] Laura MacLeod, Michaela Greiler, Margaret-Anne Storey, Christian Bird, and
Jacek Czerwonka. 2017. Code reviewing in the trenches: Challenges and best

practices. IEEE Software 35, 4 (2017), 34–42.
[38] Greg Marsden, Caroline Mullen, Ian Bache, Ian Bartle, and Matt Flinders. 2014.

Carbon reduction and travel behaviour: Discourses, disputes and contradictions
in governance. Transport Policy 35 (2014), 71–78.

[39] Lydia Martens. 2012. Practice ‘in talk’and talk ‘as practice’: Dish washing and
the reach of language. Sociological Research Online 17, 3 (2012), 103–113.

[40] Matlab. 2020. MathWorks. https://uk.mathworks.com/products/matlab.html
[Online; accessed 14-Dec-2020].

[41] Christoph Matthies, Johannes Huegle, Tobias Dürschmid, and Ralf Teusner. 2019.
Attitudes, beliefs, and development data concerning agile software development
practices. In 2019 IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering Education and Training (ICSE-SEET). IEEE, 158–169.

[42] Petra Sylvia Meier, Alan Warde, and John Holmes. 2018. All drinking is not equal:
how a social practice theory lens could enhance public health research on alcohol
and other health behaviours. Addiction 113, 2 (2018), 206–213.

[43] Mercurial SCM. 2020. Work easier, Work faster. https://www.mercurial-scm.org
[Online; accessed 14-Dec-2020].

[44] Andre Meyer, Earl T Barr, Christian Bird, and Thomas Zimmermann. 2019. Today
was a good day: The daily life of software developers. IEEE Transactions on
Software Engineering (2019).

[45] Nabil M Mohammed, Mahmood Niazi, Mohammad Alshayeb, and Sajjad Mah-
mood. 2017. Exploring software security approaches in software development
lifecycle: A systematic mapping study. Computer Standards & Interfaces 50 (2017),
107–115.

[46] Håvard Myrbakken and Ricardo Colomo-Palacios. 2017. DevSecOps: a multivocal
literature review. In International Conference on Software Process Improvement
and Capability Determination. Springer, 17–29.

[47] Tosin Daniel Oyetoyan, Daniela Soares Cruzes, and Martin Gilje Jaatun. 2016.
An empirical study on the relationship between software security skills, usage
and training needs in agile settings. In 2016 11th International Conference on
Availability, Reliability and Security (ARES). IEEE, 548–555.

[48] Andy Ozment and Stuart E Schechter. 2006. Milk or wine: does software security
improve with age?. In USENIX Security Symposium, Vol. 6.

[49] Tero Päivärinta and Kari Smolander. 2015. Theorizing about software develop-
ment practices. Science of Computer Programming 101 (2015), 124–135.

[50] Carol Passos, Manoel Mendonça, and Daniela S Cruzes. 2014. The role of organi-
zational culture in software development practices: a cross-case analysis of four
software companies. In 2014 Brazilian Symposium on Software Engineering. IEEE,
121–130.

[51] Olgierd Pieczul, Simon Foley, and Mary Ellen Zurko. 2017. Developer-centered
Security and the Symmetry of Ignorance. In Proceedings of the 2017 New Security
Paradigms Workshop. 46–56.

[52] Andreas Poller, Laura Kocksch, Sven Türpe, Felix Anand Epp, and Katharina
Kinder-Kurlanda. 2017. Can security become a routine? A study of organizational
change in an agile software development group. In Proceedings of the 2017 ACM
conference on computer supported cooperative work and social computing. 2489–
2503.

[53] Andreas Reckwitz. 2002. Toward a theory of social practices: A development in
culturalist theorizing. European journal of social theory 5, 2 (2002), 243–263.

[54] Kalle Rindell, Sami Hyrynsalmi, and Ville Leppänen. 2018. Aligning security ob-
jectives with agile software development. In Proceedings of the 19th International
Conference on Agile Software Development: Companion. 1–9.

[55] Scikit-Learn. 2020. scikit-learn: machine learning in Python. https://scikit-
learn.org/stable/index.html. [Online; accessed 14-Dec-2020].

[56] Helen Sharp, Nathan Baddoo, Sarah Beecham, Tracy Hall, and Hugh Robinson.
2009. Models of motivation in software engineering. Information and software
technology 51, 1 (2009), 219–233.

[57] Helen Sharp, Yvonne Dittrich, and Cleidson RB De Souza. 2016. The role of
ethnographic studies in empirical software engineering. IEEE Transactions on
Software Engineering 42, 8 (2016), 786–804.

[58] Helen Sharp, Hugh Robinson, and Mark Woodman. 2000. Software engineering:
community and culture. IEEE Software 17, 1 (2000), 40–47.

[59] Elizabeth Shove. 2010. Beyond the ABC: climate change policy and theories of
social change. Environment and planning A 42, 6 (2010), 1273–1285.

[60] Elizabeth Shove, Mika Pantzar, and Matt Watson. 2012. The dynamics of social
practice: Everyday life and how it changes. Sage.

[61] Mario Silic and Andrea Back. 2016. The influence of risk factors in decision-
making process for open source software adoption. International Journal of
Information Technology & Decision Making 15, 01 (2016), 151–185.

[62] Fiona Spotswood, Tim Chatterton, Alan Tapp, and David Williams. 2015.
Analysing cycling as a social practice: An empirical grounding for behaviour
change. Transportation research part F: traffic psychology and behaviour 29 (2015),
22–33.

[63] Damian Andrew Andrew Tamburri, Fabio Palomba, and Rick Kazman. 2019.
Exploring community smells in open-source: An automated approach. IEEE
Transactions on software Engineering (2019).

43

https://git-scm.com/
https://github.com/tensorflow/tensorflow
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2019
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2019
https://www.linuxfoundation.org/
https://uk.mathworks.com/products/matlab.html
https://www.mercurial-scm.org
https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html


Putting the Sec in DevSecOps: Using Social Practice Theory to Improve Secure Software Development NSPW ’20, October 26–29, 2020, Online, USA

[64] Nora Tomas, Jingyue Li, and Huang Huang. 2019. An empirical study on culture,
automation, measurement, and sharing of DevSecOps. In 2019 International Con-
ference on Cyber Security and Protection of Digital Services (Cyber Security). IEEE,
1–8.

[65] Amber van der Heijden, Cosmin Broasca, and Alexander Serebrenik. 2018. An
empirical perspective on security challenges in large-scale agile software develop-
ment. In Proceedings of the 12th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement. 1–4.

[66] Georg Von Krogh, Stefan Haefliger, Sebastian Spaeth, and Martin WWallin. 2012.
Carrots and rainbows: Motivation and social practice in open source software
development. MIS quarterly (2012), 649–676.

[67] Shao-Fang Wen, Mazaher Kianpour, and Stewart Kowalski. 2019. An empirical
study of security culture in open source software communities. In 2019 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining
(ASONAM). IEEE, 863–870.

[68] Laurie Williams. 2018. Continuously integrating security. In Proceedings of the 1st
International Workshop on Security Awareness from Design to Deployment. 1–2.

[69] Glenn Wurster and Paul C Van Oorschot. 2008. The developer is the enemy. In
Proceedings of the 2008 New Security Paradigms Workshop. 89–97.

[70] Mary Ellen Zurko and Richard T Simon. 1996. User-centered security. In Proceed-
ings of the 1996 workshop on New security paradigms. 27–33.

44


	Abstract
	1 Introduction
	2 The Practice of Software Development
	3 Social Practice Theory
	4 Two Realms: Proprietary or Open Source 
	4.1 Two Realms: Meanings
	4.2 Two Realms: Materials
	4.3 Two Realms: Competences
	4.4 Implications for Security

	5 Collaborative Practices: Learning from DevOps and DevSecOps
	5.1 Collaborative Practices: Meanings
	5.2 Collaborative Practices: Materials
	5.3 Collaborative Practices: Competences
	5.4 Implications for Security

	6 Interviews
	6.1 Revisiting the Two Realms
	6.2 The Lifeworld of a Developer
	6.3 Implications for Security

	7 A Culture of Secure Software Development
	8 Co-Creating Security with Software Devs
	9 Conclusions and Future Research
	Acknowledgments
	References

