Transcending the Teetering Tower of Trust

Demonstrated with Virtual Memory Fuses for Software Enclaves

Scott Brookes
Draper Laboratory
Cambridge, MA, USA
sbrookes@draper.com

ABSTRACT

When it comes to security, there is a dangerous disconnect be-
tween the mental model we use for the modern computation stack
and the real thing. The model we all use is not rich enough to
understand the constant battle between attackers and security re-
searchers across the layers of the stack. This paper offers an en-
hanced model and explains how security fits into the picture. We
use our model to explain the implications of various types of de-
fensive mechanisms. Then, we practice the recommended method
for future security research by designing an operating system fea-
ture — software-enforced trusted execution enclaves using Virtual
Memory Fuses (VMFs) - with the best-practices we argue for. The
Teetering Tower of Trust model offers a new way to think about
security across the computation stack, while the novel Virtual Mem-
ory Fuse creates the possibility of a new operating system feature:
software enclaves.

CCS CONCEPTS
« Security and privacy — Virtualization and security.

ACM Reference Format:

Scott Brookes. 2020. Transcending the Teetering Tower of Trust: Demon-
strated with Virtual Memory Fuses for Software Enclaves. In New Security
Paradigms Workshop 2020 (NSPW °20), October 26-29, 2020, Online, USA.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3442167.3442168

1 INTRODUCTION

Most application-level security-conscious developers have probably
heard (or said) something like: “if the operating system is compro-
mised, we’ve already lost” Most system security researchers have
probably heard (or said) something like: “if the hardware is com-
promised, we’ve already lost.” But, are these statements true? Do
they need to be true? In this paper, we aim to understand why these
statements are true right now and what the security community,
and operating system designers specifically, can do about it.

In Section 2, we examine the conventional model of the compu-
tation stack that lies underneath statements like these. The model
is adjusted to more closely resemble the real state of the world:
from a “stack” to a “Teetering Tower of Trust” With a more realistic

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

NSPW °20, October 26—29, 2020, Online, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8995-2/20/10...$15.00
https://doi.org/10.1145/3442167.3442168

90

model, we can describe the security landscape across all layers of
the computation stack.

With a working mental model of not just the computation stack,
but also the way security interacts across the layers, Section 3
characterizes the common approaches to security. It identifies three
different methods in terms of the impact each has on the tower of
trust; one that may be hurting more than helping, and two which
future security efforts should strive for.

Section 4 is a design exercise exploring how operating systems
designers can put the lessons learned in Section 3 into practice.
After some technical background in Section 4.1 and a statement of
assumptions in Section 4.2, we will explore the security posture
and implementation of a novel defensive mechanism: software en-
claves. In order to offer stronger security properties to applications,
Section 4.3 introduces a new security primitive for system soft-
ware: the Virtual Memory Fuse (VMF). With this tool, Section 4.4
presents the skeleton of an operating system implementation of
software-enforced secure execution enclaves. In a software enclave,
a sensitive process can maintain confidentiality and integrity of its
code and data even in the event of a complete kernel compromise.

Section 5 offers discussions of the teetering tower of trust model
and the software enclave design exercise, including thoughts about
the techniques’ applicability to hypervisors.

Finally, Section 6 offers concluding thoughts and main take-
aways.

This work makes the following contributions:

(1) Describe a model for the current computation stack and its
implications on security across its layers. (Section 2)

(2) Characterize the effects of different methodologies used by
defensive security mechanisms and offer the methods most
beneficial for future efforts. (Section 3)

(3) Present an operating system feature: software enclaves. Ex-
plore the implementation of this feature and how it conforms
to the methodologies for transcending the Teetering Tower
of Trust. (Section 4)

2 THE TEETERING TOWER OF TRUST

All computer scientists have seen a figure like Figure 1. Whether it
was in a systems or security course or in so many systems security
research papers, this figure has defined the mental model many
use to think about the modern computation stack. However, this
figure does not make any statement about security. In fact, many
security-conscious computer scientists may be hard pressed to
define the mental model they use for understanding security in the
computation stack.

This traditional computational stack diagram is not so far from
one that can be used to model a top-level security story for the

https://doi.org/10.1145/3442167.3442168
https://doi.org/10.1145/3442167.3442168

NSPW °20, October 26-29, 2020, Online, USA

App || App App || App

Operating
System

Operating
System

Hypervisor

Hardware

Figure 1: The conventional computation stack. This is the
model most computer scientists use to understand the layers
of software in the modern computation stack. It has applica-
tions at the top of the stack with more privileged software
layers underneath. Software rests on top of hardware at the
base.

modern computational landscape. With just a few changes adding
features relevant to security, the figure can be the basis for a princi-
pled way to classify and evaluate broad swaths of defensive cyber-
security mechanisms across the layers of computation. In particular,
there are two changes necessary to produce a figure we can use to
tell a security story: the role of hardware and the relative size of
the components.

Having “hardware” at the bottom of the stack is misleading.
The hypervisor is not the only software component sitting on the
hardware; hardware implements all computation throughout the
entire stack. This is how Rowhammer can cause user-space bit-
flips [17] and how Spectre [20] can cause false branches to be
executed, all from user-space. In other words, all software is realized
by hardware. Using the tower analogy, it is as if hardware forms
the bricks that each level is built from.

In another sense, some hardware does belong at the bottom of
the stack. After all, user-space does not interact with hardware
abstractions in the same way that the operating system or hypervi-
sor do. To express this distinction, we put hardware abstractions at
the bottom of the stack. These are specific hardware features such
as the interrupt controller or paging. Abstractions like these are
hidden from higher layers of the stack.

In Figure 1 each layer is drawn smaller than the layer below it.
This is mostly for convenience’ sake: there are more applications
than operating systems, so they are drawn such that they all fit
nicely on top of the OS. However, this reinforces (or is a product
of) a security story that we want to believe: that good security
practice demands that the lower layers are more powerful than the
upper layers. In reality, the higher layers almost universally dwarf
the lower layers in ways that matter for security such as interface
surface, complexity, and lines of code.

Figure 2 makes these adjustments to Figure 1. This figure illus-
trates the title of the paper: “The Teetering Tower of Trust” Each
layer is larger than the one below it. While the bottom-most layer
is hardware abstractions, remember that the blocks shown at each
layer are realized by hardware.

91

Scott Brookes

Another implication of the tower of trust on our security model:
the surface area of one layer on another is a meaningful analogy!.
With a larger surface area between a higher and lower layer, it
is more likely that even a small compromise in the lower layer
will disrupt the higher one. For instance, consider Meltdown [23].
Operating systems that use both paging and access control bits to
implement their isolation schemes (higher surface area of applica-
tions on the OS) are vulnerable to the attack, while systems such
as KPTI [26] or KUCS [7, 10] that use only paging (lower surface
area) are not.

The tower of trust reveals that each higher layer is completely
dependent on the security of all layers below it [1]. The irony here
is that our secrets — our bank accounts, communications; all of
our data - live in the highest layer, which has not only the largest
attack surface on its own, but is the most vulnerable to attacks
elsewhere in the stack! The deeper irony is that the intermediate
layers exist purely to support and protect the highest layer; yet they
have become one of the most dangerous parts of the application’s
footprint.

I This is not to say that relative surface areas in Figure 2 are meaningful. The figure is
not drawn to any scale and is simply for illustrative purposes. Similarly, surface area
between different userspace applications is not meaningful.

Hardware
bstraction:

L Application‘) DC OSDG uypervisor

Figure 2: The Teetering Tower of Trust. Unlike the conven-
tional computation stack model, the higher layers of the
stack are larger than the lower layers. “Hardware” is not on
the bottom because hardware actually realizes every layer
of the computation stack. Instead, hardware abstractions lie
at the bottom, as these are the interfaces used by the lower
level software.

Transcending the Teetering Tower of Trust

3 TRANSCENDING THE TOWER

We can categorize defensive efforts in terms of the tower of trust as
a model for our computation stack and its overall security. There
are three main approaches to security in terms of the model:

(1) Use some lower layer (usually n — 1) to harden layer n
(2) Harden layer n on its own
(3) Reduce the extent to which layer n depends on layer n — 1

Turtles all the way Down. Using some lower layer of the stack
(typically but not always layer n— 1) to offer some feature to harden
layer n leads to a natural question: “how can we protect n—1, then?”
Without changing the approach, the answer amounts to “it’s turtles
all the way down!”?

However, many of the most common defensive techniques use
this “turtles all the way down” approach. Hypervisors offer a clear
example. Although they are not inherently subject to this approach,
the common case for hypervisor research has made this method the
most popular way to add security for the operating system. Dozens
of security projects put security monitors into the hypervisor. A
few examples include [28, 31, 33].

Unfortunately, this method only reinforces the issues with the
tower of trust model. First of all, it almost always involves adding
code and complexity rather than removing it. As these are directly
related to insecurity in general, and for the operating system in
particular [4], this is a step in the wrong direction. Moreover, the ten-
dency to use hypervisors to push conventional security paradigms
one step deeper in the stack is not changing the game for attack-
ers, just moving it; remember, it’s turtles all the way down. This
is not an effective use of the powerful abstractions offered by the
virtualization features of modern hardware [6, 32].

Additionally, the mechanisms using this technique encourage
the attacker to target lower layers of the stack. Not only does a
technique following this method make the higher layer more chal-
lenging to attack, but the lower layer also becomes more valuable
to an attacker. This accelerates the rate at which the attacker’s
increase in effort to attack n — 1 (rather than n) is overcome by the
increasing value in attacking the lower layer. This is bad news for
defensive security, which is much better prepared for dealing with
attacks from above than those from below.

Self-Hardening. Hardening layer n on its own offers a better
security posture in terms of the tower of trust. When using this
approach, a layer tries to make it more difficult for attackers to
compromise its security properties without any help from lower
layers. This method is most commonly applied at the operating sys-
tem level, where there are many examples of security mechanisms
not relying on a more privileged hypervisor actor. Some examples
include the seL4 verified microkernel [19], returnless kernels [22]
and Linux’ Self Protection Project [15].

It is important to note that not all “hypervisor” applications use
the previous method of security. One such example is ExOShim [8],
which enforces execute-only memory protection on the operating
system code using Intel’s Extended Page Tables (EPT). Although

2“It’s turtles all the way down” is a way to describe a “chicken or egg” style recursive
problem. While its origin is unknown, it is most commonly described as an old woman
telling a scientist that the world is flat and carried on the back of a giant turtle, standing
on a larger turtle. When asked what the larger turtle stands on, she says “it’s turtles
all the way down!” [38].

92

NSPW °20, October 26-29, 2020, Online, USA

these are hypervisor features, ExOShim doesn’t exactly load a hy-
pervisor. Instead, the kernel enables these features and then config-
ures the ring -1 layer such that no code can ever run there again. It
ensures that the protection offered by ExOShim cannot be disabled,
hijacked, or modified even in the event of complete kernel compro-
mise. This is a property the kernel has configured and enforced on
itself, and the property is immutable for the lifetime of the system.

While self-hardening can be more difficult for application code
because it has less freedom over the system’s configuration, it
is not impossible. In fact, some of the strongest techniques for
security available in userspace today are examples of this method,
including using memory-safe languages such as Rust and using
formal verification to prove code correctness.

Unlike the first method, self-hardening does not increase the
value to an attacker of compromising the lower layer. However,
as it is still decreasing the difference in difficulty of targeting the
lower layer versus the higher, it still pushes the attacker towards
targeting lower layers of the stack.

Comparing Turtles all the way Down and Self-Hardening. We
will use software diversification [21] (specifically ASLR) as a single
mechanism that can be used to compare and contrast these two
methods of security. Traditional Address-space Layout Randomiza-
tion (ASLR) relies on the kernel to randomize the layout in memory
of the user process at load-time. This makes it more challenging
for an attacker to locate a known vulnerability, but it relies on the
operating system’s security. An information leak in the OS can
allow an attacker to completely bypass the randomization [35].

Alternatively, ASLR at the kernel level (KASLR) [14] is a self-
hardening approach that typically does not rely on the hypervisor
for its security. The kernel uses its greater level of control over
the system layout to randomize itself at its own load-time. As it is
the only actor involved in the randomization, it is the only actor
that can betray its randomization via an information leak. While
a compromised hypervisor could read its memory, it would still
require non-trivial reversing to discover the layout that the kernel
is using.

This is not to say that self-hardening versus hardening by lower
layers is as simple as kernel versus userspace. Compile- [21] or
development-time [2] diversification can randomize an application
without relying on the operating system. These techniques are
similar to KASLR: a compromised operating system could read the
process’ memory, but it would need to reverse engineer the memory
to determine how the process is laid out. These techniques harden
the application layer without the support of the operating system,
therefore they offer a stronger security posture than classic ASLR.

Self-Reliance. The most effective method for security in terms of
the tower of trust is to stabilize the tower by bypassing intermediate
layers. Although we must always have some amount of trust [37],
if the application layer rests directly on hardware abstractions it
is no longer vulnerable to compromise in the operating system or
hypervisor layers. These types of mechanisms not only increase
the difficulty of attacking a higher layer, but they also decrease the
incentive for the attacker to target intermediate layers because they
do not immediately achieve compromise of the higher layers.

Although not as much work has taken this challenging approach,
there are some examples, including Unikernels [5]. By running just

NSPW °20, October 26-29, 2020, Online, USA

a single process per operating system and using a hypervisor to han-
dle multitasking, the attacker is disincentivised to compromise the
operating system layer and forced to either attack the application
or the hypervisor directly.

Taking the protected process one step further, hardware Trusted
Execution Enclaves (TEEs) such as ARM’s Trustzone [29] or Intel’s
SGX [13] place a secure process’ trust in a hardware feature rather
than in the operating system. This means that compromising the
operating system does not compromise the process. The attacker is
forced to choose between attacking the hardened protected process
directly, or attacking the hardware itself.

Characterizing Security. Turtles all the way down, self-hardening,
and self-reliance are underlying methods for a single mechanism to
deliver security rather than possible classifications for the security
posture of a system.

Trying to use the three methods of security to describe the secu-
rity posture of an entire system will always bottom out on turtles
all the way down because all software must always trust some hard-
ware. Insofar as they are used to describe the underlying method of
a single security mechanism, they describe the effect that the iso-
lated mechanism has on the overall security posture of the system.

For example, a system using Unikernels is not “secure by self-
reliance” because it still relies on the security of the hypervisor and
hardware. However, deploying Unikernels is using self-reliance to
harden the entire system by removing the operating system from
the trusted computing base.

Similarly, a formally verified system still trusts the integrity of
n — 1 layers. However, it has opted to make the system harder
to attack by deploying defenses in its own layer. Thus, formal
verification as a mechanism is self-hardening.

4 DESIGN EXERCISE: SOFTWARE ENCLAVES

The rest of this paper presents a design exercise intended to explore
a security mechanism that embraces self-reliance: decreasing the
higher layer’s dependence on a lower layer. In particular, we will
explain how operating systems could leverage the simplest Intel x86
hardware abstractions to offer process sandboxes that the operating
system itself cannot read, write, or execute. These have similar
properties to a TEE hardware enclave, but they are more flexible
and do not rely on sensitive hardware implementations; they are
effectively software enclaves. This operating system feature will
not only show how applications need not rely on the operating
system, but also how software can minimize its hardware footprint
as insurance against some hardware failures.

First, Section 4.1 gives a brief background on operating systems,
virtual memory, and enclaves. We then scope the exercise with some
assumptions in Section 4.2. In Section 4.3, we begin the exercise
with a novel software architecture primitive: the Virtual Memory
Fuse (VMF). Section 4.4 discusses an operating system design that
uses VMFs to implement secure software enclaves.

4.1 Background

4.1.1 Virtual Memory?®. The virtual memory abstraction is a funda-
mental hardware feature of modern computational systems. With

3Subsection text from author’s prior work [7]

93

Scott Brookes

virtual memory, software uses addresses that do not correspond
directly to physical addresses in memory. Instead, the hardware
translates virtual addresses used by software through a configurable
set of tables in order to produce a corresponding physical address.

On a particular x86 processor core, Control Register 3 (CR3)
defines the virtual memory context of the core. This control register
contains the physical address of a base level paging structure. From
that address, the memory management unit follows a chain of
physical address pointers down through the multi-level paging
structures until it resolves the physical address corresponding to
the inputted virtual address as a function of the currently loaded
paging structures.

4.1.2 Operating Systems. Itis difficult to define the term “operating
system.” For the purposes of this paper, it is sufficient to describe
the operating system as that software which:

e Runs in Ring 0 on an Intel processor

e Loads, schedules, and serves Ring 3 processes

e Multiplexes and manages access to hardware resources, in-
cluding memory

Different operating system architectures offer different security
and performance tradeoffs. Traditional monolithic operating sys-
tems are the most functional and fastest, while microkernels are
more secure but come with more performance issues. Unikernels [5]
are stripped-down kernels running just a single process. Any of
these architectures could implement software enclaves as discussed
below, each with its own unique challenges.

4.1.3 Enclaves. An enclave is a form of Trusted Execution Envi-
ronment (TEE). TEEs offer a hardware-enforced* boundary for
software to be protected outside of the typical privilege mode para-
digm. The most common examples are ARM’s TrustZone [29] and
Intel’s SGX [13]. These and other TEE technologies are surveyed
in [39, 40].

While an enclave is most commonly used as a protected space
for an application to execute (employing “self reliance”), it can also
house software that provides integrity to the rest of the system
(a turtles all the way down approach). Two examples of the latter
approach are SPROBES [16] and TZ-RKP [3]. Both of these tech-
niques force key memory manipulations to take place in the enclave,
pulling trust out of the operating system and locating it in a more
privileged layer.

It is important to note that attackers have compromised both
SGX [11, 27] and TrustZone [36] using hardware-based attacks. Fur-
thermore, all enclaves (including software enclaves) are vulnerable
to Iago attacks [12] in which a corrupted operating system returns
malicious system call responses to the unsuspecting enclave.

The intent in this section is to design a software-defined enclave
that offers similar security properties to TrustZone and SGX.

4.2 Assumptions and Threat Model

Our mechanism’s goal is to protect the confidentiality and integrity
of a protected process’ code and data, even if another malicious
process has escalated privilege to that of the OS. As such, we assume

“The only other “software-based” enclave technology we found was SecTEE [41] which
still requires ARM TrustZone: stating that “SecTEE is designed to be incorporated into
the TrustZone software architecture”

Transcending the Teetering Tower of Trust

that after a protected process has been launched, a remote or local
attacker manages to escalate privilege [9] to that of the operating
system. The attacker is attempting to extract or control some data
stored within the boundaries of the process. The attacker may
execute arbitrary code with kernel privilege and read or write all
memory in the kernel’s address space. The attacker does not have
any information from before the initialization of the protected
process.

We will target the x86-64 architecture. We assume that the oper-
ating system already has the process running in a separate address
space from itself e.g. Linux with KPTI [26] or Kernel and User Core-
based Separation (KUCS) [7, 10]. The design assumes a secure boot
and initialization time; attacks before the start of the protected pro-
cess are left as future work. The availability property of the trusted
process is out of scope; a compromised OS may deny service.

While this work is motivated to design software that can survive
certain hardware compromises, we do not claim to survive arbitrary
hardware failures. We assume that the core virtual memory abstrac-
tion is intact. In particular, we assume that all memory accesses are
interpreted as virtual addresses by the MMU, and correctly resolved
by the page tables defined by the CR3 register. We assume that a
physical address not present in those tables cannot be accessed. We
will not assume the correctness of the permission bit in the tables.

The design exercise develops software enclaves to showcase the
self-reliance method of security. Importantly, we are not seeking to
solve the larger problems inherent to secure enclaves in general.

Finally, side-channel attacks are out of scope. While providing
stronger separation between user and kernelspace may make some
side-channel attacks more difficult, we do not claim to defeat all side-
channels. Side-channel attacks deserve their own analysis which is
beyond the scope of this paper.

4.3 The Virtual Memory Fuse

In order to implement our software enclaves, we will first introduce
a new system software architecture primitive: the Virtual Memory
Fuse (VMF). Broadly defined, the virtual memory fuse is the set
of conditions that enable one operating context to read, write, or
execute the memory of another. We call these conditions a “fuse”
because invalidating the conditions (i.e. “blowing the fuse”) results
in two completely isolated contexts.

In order for operating context S (subject) to access (i.e. read,
write, or execute) a region of memory O (object), S must possess a
virtual mapping to O. This is the single most fundamental property
of the virtual memory paging abstraction discussed in Section 4.1.

However, this single condition is not sufficient. In order to guar-
antee that S cannot access O it must have neither a mapping to O
nor the ability to create such a mapping. Consequently, the Virtual
Memory Fuse from a subject to an object is made of two parts:

(1) A valid virtual mapping to the object, and:
(2) The ability to make a virtual mapping to the object.

A trivial example of the VMF in practice is userspace’s inability
to access kernelspace memory. In the traditional kernel/userspace
split between ring 0 and ring 3 on an x86 architecture, mappings for
the userspace memory are set up with a lower privilege than the
mappings to the kernelspace memory, including the address space’s
page tables. This denies both conditions of the VMF, effectively

94

NSPW °20, October 26-29, 2020, Online, USA

“blowing” the fuse in order to protect the operating system from
USer processes.

4.4 Implementing Software Enclaves

By blowing the Virtual Memory Fuse, the kernel can generate a
protected enclave we call a VMF Enclave (VMFE). We will show
how the kernel can create such a memory space before discussing
the implementation details of two separate operating systems that
might implement this feature. One is targeted for systems that
have a narrow and well-defined workload with long-running pro-
cesses (e.g. control systems, embedded systems) while the other
begins to tackle the additional challenges of a server-class system’s
unpredictable workload.

44.1 A VMF Enclave. The VMF Enclave is an address space with a
particular virtual memory configuration in which a normal userspace
application can be loaded and run. The VMFE ensures that the op-
erating system cannot read, write, or execute the process’ memory,
even if it is completely compromised.

To launch a VMFE the operating system, at a high level, needs
to relinquish some of its control over the system in order to create
a memory space that even it cannot introspect. The process runs
in this space, safe from the prying eyes of a kernel subjected to a
confused deputy [18] or other type or privilege escalation attack [9].

It is nontrivial to blow the fuse from kernel to userspace because
the operating system is more privileged than the process. As such,
it has permission to access all of the memory on the system and
therefore both parts of the VMF are intact.

Blowing the first part of the fuse - active mappings to the object
— is quite simple. The kernel can modify its own page tables to
remove mappings to the VMFE. Although most kernels do rely
on having the process mapped into their address space with the
same layout used by the process itself, [7, 10] have discussed at
length how to implement an operating system that does not require
these mappings. That work did maintain mappings to the process,
but they were ad-hoc (i.e. they did not preserve the layout of the
process).

Ostensibly, blowing the second part is equally simple. The kernel
will delete the mappings to its own page tables so that it cannot
re-map the VMFE memory. Because all memory accesses operate
through the MMU, even page table memory needs corresponding
page table entries in order to be written to. Therefore, stopping the
kernel from writing to the page table is as simple as stopping the
kernel from writing to the VMFE itself. Figure 3 shows the virtual
memory layout of a VMFE loaded on an operating system using
KPTI [26] style virtual memory management.

The remaining attack vector. Unfortunately, deleting the page
table mappings does not stop the kernel from creating an entirely
new page table with the necessary mappings and switching to it
as the active context. Although this would be very difficult for
an attacker, switching to a new context with a carefully crafted
new page table structure could compromise the VMFE. Part of
the challenge of performing this attack has to do with the careful
saving and restoration of state associated with a context switch.
In particular, the program counter (RIP on x86-64) does not change
during a context switch. This means that the entry point for new

NSPW °20, October 26-29, 2020, Online, USA

Kernel Page Table

O 0O

Scott Brookes

VMEE Page Table

(ON
Page

(O
Page

A
v | Shared Memory |,
A

O 0O

User .
Page

User
Page

Figure 3: Memory layout for a VMFE with a KPTI style operating system. The dashed arrows are new mappings to a shared
memory region that the process and kernel use for passing information e.g. system call arguments or return values. The dotted
arrows are deleted virtual mappings as part of blowing the VMF. The solid arrows are existing virtual mappings that remain

throughout run-time.

code needs to be loaded at the same address as the exit point for
the old context. In particular, successfully switching contexts from
one active page table to another requires that the physical address
of the entry point for the new context’s code must be loaded at
the virtual address of the exit point of the old context’s code. We
present a few methods for defeating this attack:

o The kernel could delete bookkeeping/records such that it no

longer knows what physical memory the protected process
is using. If the process were loaded with some randomization
and the kernel did not have physical addresses linked from its
process structure, an attacker would not be able to construct
a page table with the process at known virtual addresses.
This method would not interrupt the kernel’s behavior much
at all. The only challenge would be cleaning up the process
on exit. In order to simplify this task, the process itself could
record its physical addresses (as reported by the kernel dur-
ing initialization, before blowing the VMF) and when it exits,
it could simply report its physical addresses back to the ker-
nel for cleanup.
Certainly, an attacker could still defeat this method. The
attacker could simply map all physical memory into a page
table, at which point they would be able to read the memory
of the entire system. Finding the process would require non-
trivial reverse engineering, though the task would be slightly
more simple because the process would be somewhere in a
limited amount of physical memory about which the kernel
has no ownership data, amongst hardware mapped regions
and other reserved physical memory “holes”. While this
technique does increase attacker workload, its main benefit is
limited disruption to the kernel rather than actually stopping
the attack.

o Most earnestly, the kernel could delete all records of virtual-
to-physical mappings such that it would be too ignorant to

95

conduct the attack. Without any such mappings, the attacker
could not know the physical address of the payload code,
meaning they would be unable to produce a valid target
context page table. Although this would have far-reaching
effects on the kernel’s ability to perform memory manage-
ment, process creation and deletion, device management,
and more, an embedded kernel with a well defined workload
may actually be able to operate uninterrupted. However, we
will consider embedded as well as server-class operating
systems and solving these problems for the latter case is
beyond the scope of this exercise (though we do believe it is
possible).

o The kernel can implement a policy in the hypervisor layer
that traps on writes to the CR3 register and verifies that
only pre-approved CR3 targets have mappings to the pro-
tected process. This method, depending on its implementa-
tion, could be a classic turtles all the way down approach or a
self-hardening approach similar to ExOShim [8]. In the latter
case, the “hypervisor” can be considered as a well-isolated
bit of trusted kernel functionality.

For the remainder of the design exercise, we will assume that
the hypervisor solution is employed. Although careful implemen-
tation would be required to avoid a turtles all the way down type
solution, we are moving forward with this assumption to simplify
the discussion and avoid broadening the scope of the paper.

4.4.2 Software Enclaves for Embedded Systems. As blowing the
VMF for a VMFE is quite disruptive to the capabilities of a traditional
operating system, we will start our exploration with an embedded
operating system which may have lower requirements for long-
term flexibility based on having a well-defined workload.

For an embedded system, we assume that the process(es) that
need to run in a VMFE are well defined and known at boot-time.

Transcending the Teetering Tower of Trust

This means that the kernel only needs to burn its VMF(s) a single
time for the lifetime of the system rather than needing to constantly
instantiate new VMFEs for processes that arise at run-time.

After booting and blowing the VMF, the kernel will no longer
be able to modify page tables. However, it can still perform much
of the work required of an operating system without interruption:

e Serve system calls: with the correct support at the library
layer of the application, the process can communicate with
the kernel through only a narrow interface of shared memory.
This is discussed in [7].

o Schedule: the kernel can run its scheduling algorithms with-
out any knowledge of the memory layout. Furthermore,
scheduling a new process requires only the physical address
of the new context’s CR3 target; not even a virtual mapping
to that address is needed. The kernel could schedule with no
issues.

o Process Management: as discussed earlier in terms of defeat-
ing the VMF, the kernel can create and launch new page
tables at will. This means that loading new processes will be
possible. We also discussed process exit and destruction.

Of course, other tasks are more challenging. In particular, con-
ventional operating systems have a unique OS instance per process
(unlike KUCS [7]). If one of these operating systems needs to fork
new processes, it must duplicate the operating system context. This
normally straight-forward copying of the active page tables is a
major challenge without mappings to the kernel’s own page tables.

While the kernel could simply maintain information about its
own layout in memory separate from its page tables, and refer to
that when creating a copy of itself, this problem offers a chance
to introduce the notion of a VMF Kernel Enclave (VMFKE). There
is no reason that a VMFE needs to contain a userspace process. A
kernel component could be loaded into a VMFE to make a VMFKE.
To address this particular issue the VMFKE would not burn its VMF
entirely (it would maintain mappings to its own page tables). As
such, any running VMFEs would have to trust this component;
keeping the code small, formal verification, and/or careful isolation
of recordkeeping (i.e. don’t give this component access to process
memory addresses) would be required, but the main operating
system still need not be trusted.

4.4.3 Software Enclaves for Server-class Systems. VMFEs would be
very useful in a server-class system. After all, SGX was developed
primarily to allow residents of the cloud protection from untrusted
hosts, and a VMFE offers similar security properties. At the limit,
all applications would blow their VMF and the kernel would persist
to provide non-memory related services such as interfacing with
and multiplexing hardware, scheduling, and handling system calls.

However, working with a server-class operating system poses
additional challenges to providing VMFEs. One main question is
how the operating system could recover from having blown its
VMF if the VMFE were to exit and allow the OS to return to its state
of full functionality.

One option is that a VMFKE could restore the kernel’s control
over virtual memory. Upon process exit, the VMFKE would write
new mappings to the kernel’s page tables. With the ability to modify
its page tables, the kernel can regain all control over the system
gracefully.

96

NSPW °20, October 26-29, 2020, Online, USA

The next challenge will come from the long-running nature of
the system. The assumption that the kernel would have time before
launching the VMFE without being attacked to configure correctly
is not fair in a server-class system. Some additional component
would be needed to verify that the kernel is in a known-good state
before launching the VMFE. A hypervisor, formal verification, or
hardware (e.g. Intel TXT or custom) are all options for providing
that guarantee.

5 DISCUSSION
5.1 The Teetering Tower of Trust

Much of the discussion at the workshop centered around the teeter-
ing tower model and its limitations. Several questions were raised
that deserve further research, including:

e Can the model help to represent distributed systems? Per-
haps as multiple towers with some sort of connection be-
tween them? Would these connections strengthen or weaken
the security posture overall?

e Does this model work for other types of “stacks” in compu-
tation, e.g. the TCP/IP stack?

One conference participant noted that all metaphors have a
breaking point at which they no longer manage to describe their
counterpart. An especially insightful question at the workshop
identified such a breaking point: its ability to capture time. How
would periodic refresh fit into the model? Its not clear that this
metaphor is strong enough to capture a time dimension at all. We
think this deserves future research.

Finally, part of the workshop discussion showed how the model
could be used to help understand security and bootstrap new ideas.
A participant noted that with a real teetering tower, we would not
allow people to stand around trying to topple it; we would hire
guards to protect it. The ability to use the mental model to think
about security mechanisms is exactly the aim of the teetering tower
of trust.

5.2 Software Enclaves

We have described an operating system implementation that can
offer software enclaves (VMFEs), giving processes the promise that
they can maintain confidentiality and integrity, even in the event
of complete kernel compromise.

This technique is an example of self-reliance: decreasing a layer’s
dependence on the layer below it for its security properties. As such,
the security posture of this technique is strong. It offers strong
security properties for userspace without adding much complexity
to userspace and without increasing the value of compromising the
hypervisor or the kernel. It even has a small footprint on hardware,
relying only on the most fundamental properties of paging and
virtual memory.

The design is not just a useful pedagogical exercise. In the embed-
ded case, especially when the kernel may know all the processes it
expects to run in advance, the design offers a compelling way to im-
plement secure software enclaves. This is especially valuable in the
embedded case where hardware may not have TEEs, or where over-
head associated with hardware TEEs might threaten performance
constraints.

NSPW °20, October 26-29, 2020, Online, USA

5.2.1 Hypervisors. A similar design exercise targeting the hypervi-
sor layer may be especially fruitful. The specific techniques devel-
oped here are applicable to hypervisors as well as operating systems.
In particular, the hypervisor can blow its VMFs to its operating
system guests the same way our OS did for its processes. In fact, this
application is an especially good fit for these techniques because
hypervisors often offer static configurations that are known at boot
time [24, 25, 30], invalidating many of the concerns discussed in
the sever-class OS case.

Hypervisor architectures have already explored loading their
own functionality in less privileged domains from Xen’s dom to
more advanced architectures such as Nexen (and others) as de-
scribed in [34]. These distributed micro-kernel style hypervisor
options are clearly more secure than a monolithic hypervisor, but
they could take security to the next level by creating enclave-type
protections for these modules.

Hypervisors are a good candidate for this style of defensive
mechanism more broadly. As the most privileged layer of the soft-
ware stack, they do not have the luxury of using turtles all the way
down style approaches. They also have more powerful hardware ab-
stractions available to implement self-protection and self-bypassing
techniques (e.g. extended vs. normal page tables), but do not have
access to hardware TEEs for launching guest operating systems.
We believe that attackers have only scratched the surface of discov-
ering hypervisor vulnerabilities and ideas like those discussed in
this paper will be vital for securing these important software layers
in the future.

6 CONCLUSION

In conclusion, we summarize our position as follows: trusting sys-
tem software is 1) dangerous and 2) not as necessary as convention
may suggest. To support this argument, we:

e Critically examined the traditional model of the “computa-
tion stack” We identified ways in which the traditional stack
is not faithful to the actual state of the world and corrected
these inaccuracies, producing the “Teetering Tower of Trust.”
The tower allowed us to incorporate a security story into
the model - something that was sorely missing from the
conventional stack. (Section 2)

e Classified multiple methods of security in terms of their

impact on the tower of trust model. We argued that the most
common method of security, using a lower layer to harden
a higher layer, is a case of turtles all the way down that
encourages not only higher dependence on system software,
but also encourages attackers to target the lower layers of
the stack.
Alternatively, we offered two methods of security that can
help avoid the challenges revealed by the tower of trust
model. Methods for self-hardening offer security in spite of
the lower software layers. Finally, we suggested the possibil-
ity that clever system software architectures could dramati-
cally reduce the extent to which higher layers need trust in
the lower software layers. (Section 3)

e Practiced the proposed method for security by describing
an novel operating system feature: software enclaves. These
isolated virtual memory contexts are made possible by the

97

Scott Brookes

Virtual Memory Fuse. As an alternative to hardware-based
Trusted Execution Enclaves, they offer similar security prop-
erties (confidentiality and integrity of a process, even from a
completely compromised kernel) without the limitations or
complexity inherent in a pure hardware solution. (Section 4)

We acknowledge that some system software needs to be trusted
and even that changing the paradigm of trusting all system software
will be a slow and difficult process. However, we believe that these
methods will increase security in the long term.

Moreover, we believe there are two concrete and easily imple-
mented contributions in this paper:

(1) Incorporating the Teetering Tower of Trust, or something
like it, as a more accurate mental model of the computation
stack. Overlaying security onto our highest-level model of
what is happening on our machines can only lead to better
security efforts.

Prioritizing self-hardening techniques over turtles all the
way down approaches. Although rearchitecting our system
software to be “trustless” may not be realistic in the short
term, using memory-safe languages, leveraging formal ver-
ification, and other self-hardening techniques are possible
now. They offer a substantially stronger security posture
than alternatives, and should be regarded as such.

—~
DN
~

ACKNOWLEDGMENTS

Many thanks to the NSPW community including, but not limited
to, our anonymous reviewers, our shepherds Lori Flynn and Anil
Somayaji, and the workshop participants who engaged in a lively
and insightful discussion of the work.

I would like to thank my colleagues Chris Casinghino, Silviu
Chiricescu, John Merrill, Ryan Prince, Arun Thomas, Felipe Vilas-
Boas, and Curtis Walker. This work would not be possible without
their support.

I owe thanks always to Rob Denz, Martin Osterloh, and Steve
Kuhn. My passion in this space is a child of their friendship, and
these ideas were developed over years of musings with them.

Finally, I want to thank my fiancée Lauren Mrachko. This paper
was written in the midst of the COVID-19 pandemic and her support
during the various “shelter-in-place” efforts was vital to the success
of this work.

REFERENCES

[1] James P. Anderson. 1972. Computer Security Technology Planning Study.
[2] Algirdas Avizienis. 1995. The methodology of n-version programming. Software
fault tolerance 3 (1995), 23-46.
[3] Ahmed M. Azab, Peng Ning, Jitesh Shah, Quan Chen, Rohan Bhutkar, Guruprasad
Ganesh, Jia Ma, and Wenbo Shen. 2014. Hypervision Across Worlds: Real-Time
Kernel Protection from the ARM TrustZone Secure World. In Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications Security
(Scottsdale, Arizona, USA) (CCS ’14). Association for Computing Machinery, New
York, NY, USA, 90-102. https://doi.org/10.1145/2660267.2660350
Simon Biggs, Damon Lee, and Gernot Heiser. 2018. The Jury Is In: Monolithic OS
Design Is Flawed: Microkernel-Based Designs Improve Security. In Proceedings of
the 9th Asia-Pacific Workshop on Systems (Jeju Island, Republic of Korea) (APSys
’18). Association for Computing Machinery, New York, NY, USA, Article 16,
7 pages. https://doi.org/10.1145/3265723.3265733
A. Bratterud, A. Walla, H. Haugerud, P. E. Engelstad, and K. Begnum. 2015.
IncludeOS: A Minimal, Resource Efficient Unikernel for Cloud Services. In 2015
IEEE 7th International Conference on Cloud Computing Technology and Science
(CloudCom). 250-257.

[4

[5

https://doi.org/10.1145/2660267.2660350
https://doi.org/10.1145/3265723.3265733

Transcending the Teetering Tower of Trust

[6] Sergey Bratus, Michael E. Locasto, Ashwin Ramaswamy, and Sean W. Smith.

2010. VM-Based Security Overkill: A Lament for Applied Systems Security
Research. In Proceedings of the 2010 New Security Paradigms Workshop (Concord,
Massachusetts, USA) (NSPW ’10). Association for Computing Machinery, New
York, NY, USA, 51-60. https://doi.org/10.1145/1900546.1900554

Scott Brookes. 2018. Mitigating Privilege Escalation. Ph.D. Dissertation. Dart-
mouth College.

Scott Brookes, Robert Denz, Martin Osterloh, and Stephen Taylor. 2016. Exoshim:
Preventing memory disclosure using execute-only kernel code. In Proceedings of
the 11th International Conference on Cyber Warfare and Security.

Scott Brookes and Stephen Taylor. 2016. Containing a Confused Deputy on x86:
A Survey of Privilege Escalation Mitigation Techniques. In International Journal
of Advanced Computer Science and Applications.

Scott Brookes and Stephen Taylor. 2016. Rethinking Operating System Design:
Asymmetric Multiprocessing for Security and Performance. In Proceedings of
the 2016 New Security Paradigms Workshop (Granby, Colorado, USA) (NSPW
’16). Association for Computing Machinery, New York, NY, USA, 68-79. https:
//doi.org/10.1145/3011883.3011886

[11] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikei, Frank

Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient
Out-of-Order Execution. In 27th USENIX Security Symposium (USENIX Security
18). USENIX Association, Baltimore, MD, 991-1008. https://www.usenix.org/
conference/usenixsecurity18/presentation/bulck

Stephen Checkoway and Hovav Shacham. 2013. Tago Attacks: Why the System
Call API is a Bad Untrusted RPC Interface. In Proceedings of the Eighteenth
International Conference on Architectural Support for Programming Languages
and Operating Systems (Houston, Texas, USA) (ASPLOS ’13). Association for
Computing Machinery, New York, NY, USA, 253-264. https://doi.org/10.1145/
2451116.2451145

Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptology
ePrint Archive 2016, 086 (2016), 1-118.

[14] Jake Edge. 2013. Kernel address space layout randomization.
[15] Jake Edge. 2016. State of the Kernel Self Protection Project.

Xinyang Ge, Hayawardh Vijayakumar, and Trent Jaeger. 2014. Sprobes: Enforcing
Kernel Code Integrity on the TrustZone Architecture. arXiv:1410.7747 [cs.CR]
Daniel Gruss, Clémentine Maurice, and Stefan Mangard. 2015. Rowhammer.js:
A Remote Software-Induced Fault Attack in JavaScript. CoRR abs/1507.06955
(2015). arXiv:1507.06955 http://arxiv.org/abs/1507.06955

Norm Hardy. 1988. The Confused Deputy: (or why capabilities might have been
invented). ACM SIGOPS Operating Systems Review 22, 4 (1988), 36-38.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, et al. 2009. seL4: Formal verification of an OS kernel. In Proceedings of
the ACM SIGOPS 22nd symposium on Operating systems principles. 207-220.

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M.
Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom. 2019. Spectre Attacks:
Exploiting Speculative Execution. In 2019 IEEE Symposium on Security and Privacy
(SP). 1-19.

Per Larsen, Andrei Homescu, Stefan Brunthaler, and Michael Franz. 2014. SoK:
Automated Software Diversity. In Proceedings of the 2014 IEEE Symposium on
Security and Privacy (SP ’14). IEEE Computer Society, USA, 276-291. https:
//doi.org/10.1109/SP.2014.25

[22] Jinku Li, Zhi Wang, Xuxian Jiang, Michael Grace, and Sina Bahram. 2010. De-

feating return-oriented rootkits with "Return-Less" kernels. In Proceedings of the
5th European conference on Computer systems. 195-208.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from
User Space. In Proceedings of the 27th USENIX Conference on Security Symposium
(Baltimore, MD, USA) (SEC’18). USENIX Association, USA, 973-990.

[24]

[25]

[26

[28

[29

(30]

[31

[32

®
3

[34

[35

[36

[40

(41

NSPW °20, October 26-29, 2020, Online, USA

José Martins, Adriano Tavares, Marco Solieri, Marko Bertogna, and Sandro Pinto.
2020. Bao: A Lightweight Static Partitioning Hypervisor for Modern Multi-Core
Embedded Systems. In Workshop on Next Generation Real-Time Embedded Systems
(NG-RES 2020) (OpenAccess Series in Informatics (OASIcs), Vol. 77), Marko Bertogna
and Federico Terraneo (Eds.). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 3:1-3:14. https://doi.org/10.4230/OASIcs NG-RES.2020.3
M Masmano, I Ripoll, Alfons Crespo, and Metge Jean-Jacques. 2009. XtratuM: a
Hypervisor for Safety Critical Embedded Systems.

Lars Miiller. 2018. KPTI a Mitigation Method against Meltdown. Advanced
Microkernel Operating Systems (2018), 41.

Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van Bulck, Daniel Gruss, and
Frank Piessens. 2020. Plundervolt: Software-based Fault Injection Attacks against
Intel SGX. In Proceedings of the 41st IEEE Symposium on Security and Privacy
(S&P’20).

Nick L. Petroni, Jr. and Michael Hicks. 2007. Automated Detection of Persistent
Kernel Control-Flow Attacks. In Proceedings of the ACM Conference on Computer

and Communications Security (CCS). 103-115.
Sandro Pinto and Nuno Santos. 2019. Demystifying ARM TrustZone: A compre-

hensive survey. ACM Computing Surveys (CSUR) 51, 6 (2019), 1-36.

Ralf Ramsauer, Jan Kiszka, Daniel Lohmann, and Wolfgang Mauerer. 2017. Look
mum, no VM exits!(almost). arXiv preprint arXiv:1705.06932 (2017).

Ryan Riley, Xuxian Jiang, and Dongyan Xu. 2008. Guest-Transparent Prevention
of Kernel Rootkits with VMM-Based Memory Shadowing. In Recent Advances in
Intrusion Detection, Richard Lippmann, Engin Kirda, and Ari Trachtenberg (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 1-20.

Timothy Roscoe, Kevin Elphinstone, and Gernot Heiser. 2007. Hype and Virtue.
In Proceedings of the 11th USENIX Workshop on Hot Topics in Operating Systems
(San Diego, CA) (HOTOS’07). USENIX Association, USA, Article 4, 6 pages.
Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. 2007. SecVisor: A
Tiny Hypervisor to Provide Lifetime Kernel Code Integrity for Commodity OSes.
SIGOPS Oper. Syst. Rev. 41, 6 (Oct. 2007), 335-350. https://doi.org/10.1145/1323293.
1294294

Lei Shi, Yuming Wu, Yubin Xia, Nathan Dautenhahn, Haibo Chen, Binyu Zang,
Haibing Guan, and Jinming Li. 2017. Deconstructing Xen. In NDSS. https:
//doi.org/10.14722/ndss.2017.23455

Raoul Strackx, Yves Younan, Pieter Philippaerts, Frank Piessens, Sven Lachmund,
and Thomas Walter. 2009. Breaking the memory secrecy assumption. In Proceed-
ings of the Second European Workshop on System Security. 1-8.

Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. 2017. CLKSCREW:
Exposing the Perils of Security-Oblivious Energy Management. In 26th USENIX
Security Symposium (USENIX Security 17). USENIX Association, Vancouver, BC,
1057-1074. https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/tang

Thomas Wadlow. 2014. Who must you trust? Queue 12, 5 (2014), 30-43.
Wikipedia contributors. 2020. Turtles all the way down — Wikipedia, The Free
Encyclopedia. https://en.wikipedia.org/wiki/Turtles_all_the_way_down Online;
accessed 30-April-2020.

Fengwei Zhang and Hongwei Zhang. 2016. SoK: A Study of Using Hardware-
Assisted Isolated Execution Environments for Security. In Proceedings of the
Hardware and Architectural Support for Security and Privacy 2016 (Seoul, Republic
of Korea) (HASP 2016). Association for Computing Machinery, New York, NY,
USA, Article 3, 8 pages. https://doi.org/10.1145/2948618.2948621

Lianying Zhao, He Shuang, Shengjie Xu, Wei Huang, Rongzhen Cui, Pushkar
Bettadpur, and David Lie. 2019. SoK: Hardware Security Support for Trustworthy
Execution. arXiv:1910.04957 [cs.CR]

Shijun Zhao, Qianying Zhang, Yu Qin, Wei Feng, and Dengguo Feng. 2019.
SecTEE: A Software-Based Approach to Secure Enclave Architecture Using TEE.
In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communica-
tions Security (London, United Kingdom) (CCS ’19). Association for Computing
Machinery, New York, NY, USA, 1723-1740. https://doi.org/10.1145/3319535.
3363205

https://doi.org/10.1145/1900546.1900554
https://doi.org/10.1145/3011883.3011886
https://doi.org/10.1145/3011883.3011886
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://doi.org/10.1145/2451116.2451145
https://doi.org/10.1145/2451116.2451145
https://arxiv.org/abs/1410.7747
https://arxiv.org/abs/1507.06955
http://arxiv.org/abs/1507.06955
https://doi.org/10.1109/SP.2014.25
https://doi.org/10.1109/SP.2014.25
https://doi.org/10.4230/OASIcs.NG-RES.2020.3
https://doi.org/10.1145/1323293.1294294
https://doi.org/10.1145/1323293.1294294
https://doi.org/10.14722/ndss.2017.23455
https://doi.org/10.14722/ndss.2017.23455
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://en.wikipedia.org/wiki/Turtles_all_the_way_down
https://doi.org/10.1145/2948618.2948621
https://arxiv.org/abs/1910.04957
https://doi.org/10.1145/3319535.3363205
https://doi.org/10.1145/3319535.3363205

	Abstract
	1 Introduction
	2 The Teetering Tower of Trust
	3 Transcending the Tower
	4 Design Exercise: Software Enclaves
	4.1 Background
	4.2 Assumptions and Threat Model
	4.3 The Virtual Memory Fuse
	4.4 Implementing Software Enclaves

	5 Discussion
	5.1 The Teetering Tower of Trust
	5.2 Software Enclaves

	6 Conclusion
	Acknowledgments
	References

