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ABSTRACT
Our review of common, popular risk analysis frameworks finds that
they are very homogenous in their approach. These are considered
IT Security Industry "best practices." However, one wonders if they
are indeed "best", as evinced by the almost daily news of large
companies suffering major compromises.

Embedded in these "best practices" is the notion that "trust" is
"good", i.e. is a desirable feature: "trusted computing," "trusted third
party," etc. We argue for the opposite: that vulnerabilities stem
from trust relationships. We propose a a paradigm for risk analysis
centered around identifying and minimizing trust relationships.

We argue that by bringing trust relationships to the foreground,
we can identify paths to compromise that would otherwise go
undetected; a more comprehensive assessment of vulnerability,
from which one can better prioritize and reduce risk.
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1 INTRODUCTION
There are a number of risk management frameworks and method-
ologies commonly used in practice, which form the basis of what
is considered computer security “best practices”. We review these
methodologies below in Section 3.

These traditional approaches assess risk by identifying threats
and assets, enumerating vulnerabilities and potential avenues of
attack, and labeling the combination “risk.” Threats get instantiated
through exploitation of vulnerabilities, or weaknesses that when
exploited bypass or compromise controls. Then it applies “controls”
to eliminate the dangers or reduce the risk to an acceptable level.
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In that paradigm, the element of trust is implicitly present — but
that notion is not made explicit, nor is it defined. Our paradigm
changes this, in that it is based on trust, which for the purposes of
this paper we define in terms of reliance:

Anna trusts Bill if Anna relies on Bill, and cannot (or chooses
not to) monitor or control whether and how Bill meets Anna’s
expectations.

A clear definition of trust leads to an understanding that vul-
nerability is fundamentally a result of trust, and that conventional
vulnerabilities such as software flaws are merely specific instances
of misplaced trust. Put more succinctly: trust relationships are the
root of vulnerabilities. We discuss this definition, and compare and
contrast it with others, in the following section.

Consider how the risk analysis methodologies are used in prac-
tice. The methodologies focus on reducing risk by identifying vul-
nerabilities and then applying controls to ameliorate or eliminate
them. In other words, the choice of controls is dictated by the na-
ture and type of vulnerabilities. This might be well and good if one
is able to identify all vulnerabilities. But virtually none of those
risk analysis methodologies speak to identifying vulnerabilities
beyond checking for known vulnerabilities. We argue there are two
problems with this omission. First, the search for vulnerabilities
in software and hardware is woefully incomplete. In fact, so many
vulnerabilities go undetected prior to attack that we have a term for
them: “zero-day.” Second, many of the vulnerabilities exploited are
configuration or architectural problems in the systems, or human
or organizational problems, none of which are related to flaws in
software and hardware, and hence not detectable by vulnerability
analysis tools and techniques. This suggests an explanation of why
organizations continue to fail at security, that the “best practices”
actually mislead one into thinking that they’ve identified their
risks, and argues for a better approach. However, we hear frequent
announcements of compromises and data breaches of very large
organizations such as Equifax [22], RSA [29], and Target [46], ones
with the ability to devote more than enough resources to cyberse-
curity, and that we would expect to understand and ameliorate the
risks they have taken on.

This stems from the current operational paradigm of security and
risk assessment being to determine what equipment to purchase
and how to configure and install both the computing infrastructure
(networks, etc.) and the equipment. At that point, one makes con-
figuration or architectural decisions, and optimizes the design and
configurations based on those decisions. The design and configura-
tion creates trust relationships at various levels: lower levels such
as software configurations, and higher levels such as integrating a
third-party service or partnering with a particular vendor. In other
words, the risk assessment is performed first, and then the system is
architected and set up based on that assessment. Trust relationships
may be considered, but this is unusual, especially at lower levels.
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Our paradigm is different than zero-trust networking. Zero-trust
networking [23], generalized into zero-trust architecture [41], de-
fines “zero-trust” as “the term used to describe various cybersecu-
rity solutions that moved security away from implied trust based
on network location and instead focused on evaluating trust on a
per-transaction basis” [41, p. 4]. This approach to enterprise archi-
tecture addresses particular instances of where trust is to be placed,
and when; its primary focus is on transaction-level authentication
and dynamic authorization. While a zero-trust architecture may
reduce particular types of trust relationships, it is not a risk anal-
ysis methodology, nor does it address the general evaluation of
trust relationships.1 Indeed, the paradigm we propose below might
provide a foundation for improving such an architecture.

We argue that the current approach is inadequate because it does
not make trust relationships sufficiently explicit. Indeed, rather than
have the controls define the trust relationships, as is currently done,
we identify the trust relationships from the architecture of the
system and the goals of the security policy. We then use security
controls to minimize the number of these relationships, taking into
account the effects of these relationships being misplaced.

The usual practice has controls determine what entities can and
cannot do, and strengthening or weakening them as the threats, and
hence the security policy, evolves. Instead, we propose identifying
and evaluating trust relationships as the basis of the threatmodeling,
and then based on the evaluation, defining controls to monitor
or reduce trust as much as possible. Vulnerabilities then come
simply from trust relationships that cannot be fully monitored and
controlled. Indeed, we argue that failure to identify and address
trust relationships is the root of vulnerabilities; that “best practices’ ”
overlooking of these trust relationships has resulted in a failure to
properly address risk.

Our new paradigm revolves around the concept that violations
in trust relationships are the root of vulnerabilities. Specifically, our
paradigm addresses the lack of recognition of trust relationships
in “best practices.” We advocate a practice of risk analysis built
around the recognition of trust relationships, and using them to
guide selection and configuration of security controls.

In this new operational paradigm, trust relationships get iden-
tified when the system is designed and built and configured, and
those relationships are made explicit. Then installation and con-
figuration are based upon the trust relationships. Where there is
trust, there is a recognition that one or more parties in the rela-
tionship are vulnerable to the others. When the trust is deemed
inappropriate, controls are applied to reduce that trust. Security is
considered both during design and development, and the controls
get implemented based on the trust relationships.

Framing risk analysis from the perspective of trust has several
advantages:

• We can identify paths to compromise that would otherwise
go undetected;

• Wemake the exposure due to trust relationships explicit, and
bring them to the foreground where they can be acknowl-
edged; and

1Neither [23] nor [41] actually define “trust” or “trust relationship.“

• Addressing vulnerabilities in terms of trust can be more
easily understood by non-technical people (such as executive
management).

Returning to the popular risk management approaches, their
failure to acknowledge trust relationships means that none provide
practitioners with the tools they need to fully identify what is actu-
ally at risk. This failure is structural, in that trust relationships are
not addressed as risks. Indeed, one can argue that all vulnerabilities
(except perhaps weaknesses in cryptosystems) are the result of trust
relationships gone awry. Some examples are:

• A malicious package in RubyGems designed to steal cryp-
tocurrency adds an entry to the Windows registry to ensure
it is run even if the system reboots [12];

• Buffer overflows, the perennial problem that is always sup-
posed to disappear “next year”, arise because the programmer
trusts that indices will never go out of bounds;

• Input validation problems arise because the programmer
trusts that the input will be valid and supplied as expected;
and

• Access controls based on IP addresses (such as used in fire-
walls and network services) rely on IP addresses not being
spoofed or forged.

We next explore what we mean by “trust”, and examine both
current risk analysis methodologies and “best practices” in detail.
We then apply our paradigm to several real world compromises.
We conclude by discussing related work and future directions.

2 WHAT IS TRUST?
There are many definitions of trust. Our definition of trust is based
upon reliance. One entity (Anna) trusts another entity (Bill) if Anna
believes that Bill will meet some requirement (action or character-
istic) that she does not control in some way and in a context in
which it affects Anna in some way. Informally, Anna trusts Bill if
she relies on Bill in some way, and must assume Bill will perform
as expected, meaning she cannot or does not control or monitor
whether or how Bill meets her expectations. Call this reliance trust.

To expand upon this, when Anna trusts Bill:
• Anna expects (trusts) Bill to behave in a certain way.
• Anna does not control or monitor (must trust) how Bill be-
haves.

• Anna is relying on (trusting) Bill to behave in that way.
Anna is now vulnerable to (trusts) Bill; should Bill misbehave, Anna
cannot stop Bill, nor even detect the misbehavior. Hence (reliance)
trust begets vulnerability.

Note that we variably say here that Anna “cannot,” “does not,”
or “chooses not” to monitor or control. Whether the lack of control
and monitoring is involuntary or voluntary, the vulnerability is the
same. The only difference comes in our paradigm for evaluating
the trust relationship; whether the capability exists to reduce trust.

Most of the definitions of trust focus on the social interactions
among groups of people. Golembiewski and McConkie note about
trust ([24, p. 133], as cited in [32]):

Trust implies some degree of uncertainty as to outcome.
Trust implies hopefulness or optimism as to outcome.

Marsh [32] expands on this:
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Trust is thus strongly linked to confidence in some thing, be it the
person to be trusted, the environment, or whatever it is that the
desirable outcome is contingent upon. We arrive at the concept of
trust as choosing to put ourselves in another’s hands, in that the
behaviour of the other determines what we get out of a situation.

In terms of social trust, Marsh says [30] that “trust concerns a
positive expectation regarding the behavior of somebody or some-
thing in a situation that entails risk to the trusting party.” This is
analogous to our approach, but we frame it in the negative: trust
of an entity, whether social or computing, creates risk. It is then a
matter of whether that risk is acceptable.

Despite similarities, social trust differs from reliance trust. Social
trust arises from many intangible and sometimes irrational factors
such as reputation, past performance, and personal relationships.
Further, these factors do not apply when the entity being trusted
has been coerced in some way.

Summing up, when people say “we trust” something, they mean
there is no danger from it. It is important to realize that many uses
of the word “trust” in technical work are reformulations of this no-
tion of social trust, not reliance trust. For example, the word “trust”
appears in four places in the MITRE ATT&CK Matrix [33]. All refer
to social trust, in which an entity evaluates whether a third party
or technology will function as expected. The controls or entities
in question in each place can be monitored and controlled. Con-
trast this with our definition, which requires there be no capability
provided to monitor or control.

In what follows, we will refer to social trust explicitly, and with-
out the modifier, “trust” refers to reliance trust. The reader is cau-
tioned not to draw incorrect conclusions arising from applying the
notion of social trust to what follows. This, indeed, is a problem
with may new paradigms, which unfortunately must co-opt exist-
ing words due to the universe of thought in which the concepts
they represent are to be applied [36].

In high assurance work, trust recurs in many ways — trusted
third party, trusted path, trust management, and trusted computing
base, to name a few. The instantiation of trust for each of these
is presented differently, but ultimately mean that an entity relies
on the mechanism to work exactly as expected, with no additional
functionality — and the dependent entity is unable to verify or
monitor the mechanism to detect any corruption.

A key observation in this context is that when one trusts some-
thing, one relies upon it to function in some way without the ability
to prevent a malfunction. If the reliance is well placed, then the
system functions correctly. But if the reliance is misplaced, the
system may not function correctly. And if there are controls and
monitoring to identify problems, the component is not fully relied
upon — the reliance is distributed over the component, controls,
and monitoring instruments. In essence the reliance is distributed.

As an example, consider the trusted computing base (TCB). This
underlies the subsystems of a “trustworthy” computer. Such a base
is “trusted” to some degree because either it has been verified (to
some degree), or the system relies on the base even though it has
not been verified. In the former case, TCB trust devolves to as-
suming proper behavior of the verification techniques, tools, and
people involved in the verification. A program or subsystem cannot
validate these. So the system with the TCB relies on them to both
work correctly and be used correctly; this is a case of distributing

the reliance among multiple components (the TCB, the verification
tools, and the humans who used those tools). In the latter case, the
reliance is of necessity, because were it unreliable and therefore not
used, the system could not function. Again, a program may detect
some inconsistencies, but in general cannot determine if the TCB
is corrupt because anything used to validate results from the TCB
requires using that base — and therefore relying upon that which is
being analyzed to determine how reliable it is. Note that one could
say it cannot be relied upon and still use it, but then nothing the
system does can be relied upon.

Another classic example of trust comes from Thompson’s “Trust-
ing Trust” paper [50]. In it, Thompson designed an attack postulated
by Karger and Schell [28]. He doctored the compiler so when it
compiled the login program, it added code to accept a fixed, “magic”
password giving immediate access to the system to whoever used
it. As the compiler added the code, examining the login program
source would lead one to believe the program was not corrupted.
He then doctored the compiler once more, so that it would insert
the code to doctor the login program whenever the compiler was
compiled. He recompiled the compiler and removed the modified
source code of the compiler, replacing it with the source code for
the old compiler. Now, even if one were suspicious and examined
the compiler source, one would not detect the malicious code; and
even if the compiler source were recompiled, the compiler would
still be corrupted with the malicious code. The point here is that
a component of the system, the compiler, that programmers rely
upon was compromised in a way that could not be detected. So
the “trust” or reliance upon the compiler here is out of necessity.
Programmers needed the compiler. They did not verify it, and no
verification technique that involved examining the source code
would find the corruption.

This view of trust, specifically as what is relied upon, leads imme-
diately to the identification of where vulnerabilities in the system
and its operation may be located. That which can be checked, mon-
itored, or controlled need not be relied upon, but the reliance is
distributed over the mechanisms doing the checking, monitoring,
or controlling. Those mechanisms are typically not checked, con-
trolled, or monitored themselves. That which cannot be checked,
monitored, or controlled must be relied upon, and are where the
system is vulnerable to failures or attacks. This immediately iden-
tifies the components which, if the reliance is misplaced, can be
used to compromise the system. We therefore argue that trust rela-
tionships, or more properly reliance relationships, are the root of
vulnerabilities.

Consider TCP/IP network security. Networked systems are sus-
ceptible to spoofing because they accept connections based on IP
addresses or network segments. These connections are often relied
upon even though it is well known that they can be spoofed, simply
because for a long time there was no alternative.2 As cryptography
became more widely used, and in particular with the development
and deployment of TLS, DNSSEC and IPsec, or DNS over HTTPS,
that trust could be transferred to the cryptographic keys (and their
management) and to the managers and operators of both the DNS
server(s) involved and the end hosts involved. Thus, something that

2The attacks by Kevin Mitnick against the San Diego Supercomputer Center as de-
scribed in Takedown [44] were among the earliest seen TCP spoofing attacks.
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could be easily spoofed need no longer be relied upon. But more
locations (and third parties) are now relied upon, and if an attacker
could compromise one of them, spoofing would still be a threat.
Trust — reliance — had not been eliminated, merely shifted.

These examples demonstrate the utility of reliance trust. Indeed,
if we replace “trust” with “rely upon, and hence are vulnerable to
attacks from,” the risk entailed becomes explicit. Our reasoning
is that, in this context, “trust” is an assumption that the trusted
entity will (or will not) act in some way. Indeed, penetration testers
begin by looking for these assumptions, and then try to ensure the
trust is misplaced, compromising the entities that rely upon those
components.

Consider again Thompson’s compiler. There, the users of the
system, and developers working on that system, trusted the com-
piler, so an attacker would look to sabotage that mechanism. And
indeed, that is exactly what Thompson did. The phrasing “the users
were vulnerable to attacks from the compiler” makes plain the
threat. Consider the vulnerabilities due to input validation failures:
SQL injection, shell metacharacter exploits, buffer overflows. These
vulnerabilities result from the programmer relying on the (often
anonymous) client to provide the expected input.

For example, the Heartbleed vulnerability in OpenSSL exploited a
particular implementation of the RFC 6520Heartbeat extension [43],
in which the sender sends a “heartbeat” request consisting of a
text string and an integer indicating the length of the string. The
receiver was then supposed to transmit back to the sender the same
string. However, the receiver erroneously trusted that the sender
would always specify a length that matched the actual length of the
heartbeat payload. The result was that the receiver sent back not
only the string received, but whatever additional data happened to
be left in the buffer from previous use, and even data in memory
beyond the end of the buffer. As the data transmitted before the
heartbeat dealt with the management of X.509 private keys, the
exploit allowed attackers to obtain private key information.

We should note there are degrees of reliance — one may rely
completely on a component, and less completely on another compo-
nent, perhaps because its functioning can be checked. That means
there are degrees of vulnerability. The less acceptable the trust, the
less acceptable relying on the component, and the more one will
want to control and monitor. This, at least in theory, lessens the
degree of vulnerability from that source. So this supports our thesis.

We turn now to applying this point of view to development and
operations. Normally, both have security controls that protect their
work or operations. Given those tools, one can determine what
is not controlled or monitored, which identifies what it trusted,
and implicitly declares that trust acceptable. The view we have
proposed above suggests an inverse approach. First, identify what
is relied upon. Then determine whether that reliance can be reduced
with appropriate controls, and apply those controls as necessary to
reduce the reliance to an acceptable level. The remaining trust is
what is commonly called “accepted risk.”

Again, return to Thompson’s compiler. On a general purpose
system it cannot be controlled or monitored. Thus, it, and any con-
trols built using it, or that depend on it, must trust the compiler and
are therefore vulnerable to it. Similarly, network traffic can be mon-
itored and controlled, but the destination cannot control or verify
the source IP address that is embedded in the packet, and hence that

must be relied upon (whether we like it or not), absent some sort of
independent confirmation (such as cryptographic authentication of
the source). Consider a user connecting to a remote authenticated
network service from a workstation not managed by the organi-
zation running the server (e.g. a researcher at a university using
their university managed laptop to log in to a service at a national
lab). The service cannot determine who is in control of the remote
system, nor whether the person who entered the valid credentials
is actually the authorized person. The service has neither control
of the workstation directly nor over the security policies applied to
the workstation, and no ability to monitor. The service has to rely
upon the remote system being under control of the authorized user
and has not been compromised.

Consider an organization that decides to run a sensitive applica-
tion and/or store sensitive data on a cloud service. Cloud services
basically consist of virtual machines (VMs) and networks owned
and managed by a third party, the “provider.” The organization
cannot monitor the network or system of the cloud provider as
thoroughly as if it were hosted in-house.3 The provider may also
be hosting VMs of other customers on the same hardware. Thus
the organization has to rely on the VM software (chosen by the
cloud provider), the cloud provider network, any other co-hosted
VMs,4 and most importantly, all the cloud provider employees and
contractors who have administrative access to the VM host and
the endpoints they use for administration (which could very well
be home or personal systems) to not violate the agreed upon se-
curity policy. The organization has to further rely on the cloud
provider having properly vetted those with access. Thus, the orga-
nization has a large number of trust relationships between their
cloud instance, the vendor, and other cloud customers. Our para-
digm predicts a day will come when a large cloud provider suffers
a catastrophic failure of that trust, and many subscribers will no
longer be able to rely on that cloud.

Perhaps the best example of our approach lies in the electronic
voting systems people cast ballots on (called a “DRE”5). A common
physical control is tamper-proof tape, to detect when an attacker
has opened the physical box, and presumably tampered with its
internals. This is indeed necessary, but tests have shown it is not suf-
ficient. For example, unless the tape is placed properly, an attacker
can pry open parts of the systemwithout breaking the tamper-proof
tape. Worse, it is possible to order the same tamper-proof tape, with
the same numbers, over the Internet, so the tape can simply be
broken and then replaced. Similarly, many e-voting systems have
anti-virus controls, with the goal of preventing compromise from
attacks that modify the data or software. But the utility of anti-
virus controls is questionable, as these systems are special-purpose
systems and certified with respect to both hardware and software.
One is not allowed to download software from the Internet and
install it on those systems; indeed, many DREs do not even have
network cards. Indeed, the existence of anti-virus might cause one
to question their trust of the voting system vendor. [34]

One can view some aspects of social trust similarly. Marsh and
Dibben [31] defines lack of trust in three ways. “Untrust” means

3Often nothing can be monitored outside the VM instance.
4While theoretically isolated, VM breakout vulnerabilities are well documented, and
network attacks such as spoofing may occur in a VM environment.
5“DRE” is an abbreviation for “Direct Recording Electronic”.
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the truster expects the trustee not to cooperate with the truster; in
terms of reliance, it means that the truster cannot rely on the trustee.
“Distrust” means the truster expects the trustee to act in a way
inimical to the truster; in terms of reliance, this means the truster
can rely on the trustee to act against the truster. “Mistrust” means
trust is misplaced; in terms of reliance, it is misplaced reliance.
Considering that trust and confidence are directly correlated, this
view is unsurprising

The alternate approach proposed here focuses on what must be
relied upon, and hence trusted, as opposed to what has vulnera-
bilities. With respect to software, the trust points are the software
development and functioning, delivery, and installation. With re-
spect to the hardware, the trust points are the points at which the
hardware can be compromised, which requires direct access to the
hardware. With respect to system management, it is the trust rela-
tionships created by the architectural and configuration decisions,
the privileges granted to the system administrator, and third-party
relationships. These lead naturally to mechanisms to reduce trust
by controling and monitoring the systems.

3 SURVEY OF RISK ANALYSIS
METHODOLOGIES AND BEST PRACTICES

Given that the concept of trust relationships, and consequences
of their violation, are not new, one would naturally assume that
common computer security best practices would address the es-
tablishment of trust relationships in an organization’s computing
environment. A survey of the risk analysis frameworks, industry
requirements, and other recommended best practices finds that,
with one exception, trust relationships hardly merit a mention. And
that one exception discusses trust relationships at such a high level,
and in just one document of many, that it does not percolate down
to the actual approach to vulnerability assessment.

As we are focusing on what gets applied in practice, we limited
our survey to risk analysis approaches that a practitioner would
likely use or be required to use, starting with an Internet search.
The results of which were: FISMA (FIPS 200 and related docu-
ments)6 [35], OCTAVE [5], SERA [6], TARA [54], Common Cri-
teria [1], PCI-DSS [2], SANS Consensus Server Security Policy [42],
and CIS Controls [14]. We reviewed these approaches looking at
their guidance on identifying vulnerabilities, for any discussion of
trust relationships or a similar concept.

Every reviewed framework has essentially the same theme: iden-
tify assets, threats and vulnerabilities, compute risk, and apply
controls. The frameworks vary either in how prescriptive they are,
or the procedures to be used, or both. For example, FISMA uses a
quantitative risk analysis to choose a subset of predefined controls.
The OCTAVE framework uses a more open-ended approach and em-
phasizes participation in the evaluation process by organizational
stakeholders. As PCI-DSS deals with a specific situation (processing
credit card purchases), it skips the risk analysis step completely
and provides an entirely prescriptive set of controls to implement.

6FISMA is technically the legislation mandating the application of FIPS 200 for fed-
eral agencies, but the risk analysis methodology using this FIPS is commonly called
“FISMA”.

Only FISMA, specifically NIST SP800-39, delves into significant
discussion of trust relationships. The Common Criteria comes some-
what close in requiring analysis of hypotheses of flaws. Of the rest,
we found only one mention of trust relationships [14], without an
accompanying definition.7 We found even that discussion of trust
was largely limited to an assumed understanding of “trusted host”
or “trusted user.”

NIST SP800-39 provides a good working definition of trust re-
lationships, and points out a myriad of ways in which trust rela-
tionships can exist. However, the FISMA risk analysis process is
described in a grand bouquet of documents, many of which are
guidelines that do not need to be followed or even read in order to
achieve FISMA compliance.8 The concepts of trust in SP 800-39 are
not carried through to the documents that a compliance plan would
focus on, such as NIST SP800-30 and SP800-53. Furthermore, while
NIST SP800-39 mentions trust relationships at a variety of levels,
the detailed discussion focuses on third-party trust. This focus is
further amplified in NIST SP800-37 and NIST SP800-53A, which
only mention trust relationships in the context of third parties.

All other trust relationships get addressed by asserting a trusted
system is “trustworthy,” resulting from the application of the con-
trols outlined in NIST SP800-53. The rhetoric used in NIST SP800-39
implies that such trust relationships are a positive because the sys-
tem is trustworthy since it is “secure” (in reality, compliant). We
also highlight here the assumption that the application of controls
(controls-based security) assumes that the controls provide effective
security. Finally, as stated above, many practitioners will not take
the time to read NIST SP800-39, let alone translate the information
provided into an actual risk assessment; indeed, they may not un-
derstand the NIST risk analysis procedure, or be unable to apply
it in their environment. In fact, with FISMA’s focus on controls,
one can largely produce a FISMA compliant plan by following only
FIPS-199 and NIST 800-53.

The identification of vulnerabilities is fundamental to performing
a risk analysis. One would expect that risk analysis methodologies
would provide considerable detail as to how to reliably do so. We
found that, in contrast to lengthy discussions of how to identify
and enumerate threats, short shrift was given to the identification
of vulnerabilities. In almost all cases they essentially say to identify
known vulnerabilities, using published catalogs such as the CVE,
NVD, CAPEC, and/or using vulnerability assessment tools.

The Common Criteria is somewhat of an exception, in that it
explicitly calls for the assessor to identify the design for potential
vulnerabilities, using a flaw hypothesis methodology. This may
lead to inference of trust relationships, but it is not driven by trust
relationships. NIST SP800-39 also discusses architectural and config-
uration flaws, but again at such a high level that neither are useful
to a practitioner not already trained to make such an assessment.9

These approaches to vulnerability assessment are fraught with
potential for failure. To begin with, they essentially rely on the
assessor, tool and/or catalog to be a perfect oracle of all vulnerabili-
ties. More importantly, relying on catalogs of known vulnerabilities

7We infer from the context that it refers specifically to Microsoft Windows cross-
domain authentication.
8And will not be read by any practitioner that is trying to complete a risk assessment
in their lifetime.
9This would appear to be a bootstrapping problem.
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(and scanners are essentially an automation of those catalogs) com-
pletely overlooks risks created by configuration choices and the
trust relationships created from such. For example, NFS servers
have a configuration option that blocks mounts from “unprivileged
ports” (port numbers greater than 1024). When that option is dis-
abled, a user on any NFS client can masquerade as any user known
to the NFS server. The vulnerability created by disabling that option
is not cataloged in the CVE nor in CAPEC.

In contrast, an assessment that documents trust relationships
would identify the trust an NFS places in clients (and in the net-
work in general) and would naturally consider this as a point of
potential vulnerability, and highlight not only the need for proper
configuration of the NFS server, but policies for configuration and
management of the clients and client networks.

Instead of the short shrift given to vulnerability assessment,
the frameworks devote considerable effort to the process of threat
assessment, and claim that once threats of concern are identified,
one can ignore any other threats (and their corresponding risk).
This approach has the same fundamental problem as the approach
to vulnerability assessment: it relies on the assessor being a perfect
oracle of threats to the organization. We believe that many cases of
compromise were the result of failure to identify valid threats, and
in many cases the threats were not even of consideration when the
assessment was performed.

Now, it might seem that our paradigm merely rotates the shield
harmonics;10 rather than being a perfect oracle of vulnerabilities,
one has to be a perfect oracle of trust.We argue that identifying trust
relationships does not require the very specific technical expertise
that identifying vulnerabilities does. Concepts of trust are more
universally understood. Where the details of a trust relationship
require more technical expertise, the analyst can enlist someone
with the necessary technical expertise.11

As an example, consider ransomware. Ransomware first ap-
peared in 1989 [15]. It is similar to the threat of data deletion, as
it makes data unavailable, but the victim can, at least in theory,
recover the data by complying with the demands embodied in the
ransomware (usually, paying some sum of money). It also combines
malware with data deletion. But this threat was not considered
critical until recently, because ransomware has become more wide-
spread than in the past. In our paradigm, one might identify the
data as a valuable asset, that a trust relationship exists with the
systems and people authorized to modify the data. A control to
reduce that trust might be to archive immutable copies of the data,
enabling recovery of corrupted data. The control minimizes the
risk from ransomware regardless of existence or awareness of the
specific threat.

4 TRUST-FIRST PARADIGM
We propose a new paradigm of basing security upon trust. The
difference between our paradigm and the current one is that the
current paradigm takes a threat model, derives requirements, de-
signs, implementations, and so forth, and then might examine trust
relationships induced by the implementation and deployment (and

10https://memory-alpha.fandom.com/wiki/Shield_frequency
11One of the authors approaches this by having people knowledgeable about the
system (e.g. developers, system administrators) participate in the analysis.

in those cases, the trust relationship are more often implied than
explicit). Within the threat model and requirements, one makes
assumptions about the environment, the use of the system, and the
policies and procedures used to manage the system. Our paradigm
inverts this. At each step, we ask what assumptions of trust have
been made, and whether that trust is (or must be) acceptable. When
trust is not acceptable, we then ask how we reduce or eliminate
that trust, how do we monitor for violation of that trust, and what
assumptions we must make. Then we base our development of
threats, requirements, design, and so forth on those assumptions.

As a simple example, consider the architecting of a local area
network. Such a network needs to be protected, and one way to do
so is to position a guard — a firewall — at the connection between
the LAN and the Internet. Doing so assumes the LAN at its site is
secure from internal attack, so we note the assumption. The use of
such a guard also requires us to trust the guard works, and does
not act inimically to us. To determine this, we can ask the vendor
about what the guard trusts, and examine those trust relationships.
We also explicitly assume that any additional functionality is not
inimical to the institution of the LAN, or the LAN itself. Proceeding
further, we now know we need to focus on:

• The insider threat (from the assumption that the LAN is
secure from inside attack); and

• The firewall’s ability to protect the organization and the
network (from the assumption that the guard works), and
its inability to protect the organization from the payload of
traffic allowed through the firewall. Indeed, one might say
the firewall is only trusted for the things that it blocks, the
allowed traffic being a separate trust relationship (e.g., with
the source endpoint). One might even conclude that, if the
local network is not trusted, the firewall does not add much
value.

As another example, we trust vendors to implement patches
correctly, and maintain the changes through future releases. Hence,
before installing a patch, examining the trust gives two possible
threats: that the vendor can implement the patch incorrectly, or
the correctly implemented patch will not interfere with our needs.
Many years ago, an anti-virus program given to one university for
testing turned out to have a virus in itself. WhenMicrosoft deployed
Windows NT Service Pack 2 to improve the security of the system,
many people who installed it found it blocked their processes —
effectively, a denial of service attack.12 In another case, a failure to
reload pages that a debugger had altered allowed anyone to become
the administrative user [8]. The vendor’s next minor release fixed
the problem. But on the minor release after that, the vulnerability
returned. Focusing on threats rather than deriving them from trust
would fail to identify these problems.

Furthermore, the entire anti-virus software industry has devel-
oped from an implicit lack of trust in software. To the extent that
anti-virus software reduces trust in the software it ostensibly pro-
tects, the trust has simply been moved to another piece of software
— the anti-virus software itself.

12The problem was that the service pack activated an internal firewall that blocked
ports used by the processes. Once the firewall’s ruleset allowed traffic through those
ports, the problems vanished.
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This leads to the observation that trust is not binary. Drawn
from the social sphere, we may trust our spouse completely. We
may trust an acquaintance enough to lend them $5.00, but not
$5,000.00. We may trust a complete stranger not at all. The first and
last examples are complete trust and no trust. The middle example
is partial trust — we trust our acquaintance for small amounts of
money, but balk at trusting him for large amounts. Note however
that for computer-based trust, often one cannot partially trust.

A system administrator may configure a server, creating a trust
relationship with an untrustworthy system without realizing it,
or improperly assessing the risks associated with the relationship.
This trust relationship gets established at such a low level that it
never rises to the attention of the risk assessment group. Thus the
configuration decision could cause a cascading effect, and a small
configuration error can have a profound impact on security.

This also leads to a second observation. Looking at things through
the lens of trust (reliance) enables the assignment of priorities, and
in particular when something cannot be relied upon (or, if it must
be, when to assume reliability – and here vulnerabilities may arise).
This immediately leads to Elgesem’s observation [18] that trust
management minimizes trust, because it reduces what and how
trust must be given. We argue that reliance is analogous to trust
management here.

In high assurance development, evaluating assurance trust in the
product requires the development of assurance evidence that can
be evaluated by experts in the area. Experts may weigh the various
types of evidence differently; they then iron out their differences
to come to a common evaluation level. The point is they must
reconcile differing ideas, and values, of trust in both the assurance
evidence and the methodology used to gather them.

But trust is ubiquitous; we do not argue here that all trust must
be eliminated — ultimately, something must be trusted. We trust
in the laws of physics (despite several attempts to repeal the Law
of Gravity). We trust vendors who build hardware to use reliable
hardware, but the degree of trust is shown in whether we purchase
an extended warranty. Again, trust is not binary.

The important aspect of trust is to understand what is being
trusted, andwhat happens if the trust ismisplaced. Stanley Kubrick’s
movie Dr. Strangelove; Or, How I Learned to Stop Worrying and Trust
the Bomb makes this point in two effective ways. The first is when
the fail-safe box on a B-52 failed due to a near hit by a Russian mis-
sile. When the recall code is sent, the President and US Air Force
believe the bombers have all been recalled because the fail-safe
boxes show the bomber crews that they are to return to base. But
the bomber with the damaged box continues, much to the surprise
of everyone. Here, the fail-safe boxes were trusted to work; when
one failed, a bomber carrying nuclear bombs continued on its mis-
sion. The story does not end there, as the Russians have developed
a “doomsday machine” that will destroy the world should they be
attacked.13 The Russians realize that the US attack was launched
by accident, but the doomsday machine cannot be disarmed be-
cause, as Dr. Strangelove points out, that would defeat its purpose.
Hence the second trust, placed in the belief that no attack can be
launched by accident, was misplaced trust, and — more critically —

13This parallels an effort led by Dr. Strangelove to develop a similar system for the US;
the Russians learned about it from a story in The New York Times.

no-one thought of how to handle such a situation. A (somewhat
eerily similar) real-life example is the Permissive Action Links put
on nuclear missile control systems in the 1960s. The Strategic Air
Command worried about trusting NATO allies with US warheads
stationed in their respective countries, along with concerns about
US generals being able to unilaterally launch missiles. However,
a fear of (or, in other terms, a lack of trust in) missile operations
properly managing the keys (and rendering themselves unable to
arm the missiles) resulted in the PAL passcodes being set to all
zeros, and remained that way for over a decade [7].

Trust in the computer security world is often considered to be
transitive.14 Return to the case of the remote user. The user is
trusted to prevent their credentials from getting stolen and used.
The system administrator of the remote workstation is trusted
to not bypass access controls (or allow a malicious third party
to do so) and gain access to the user’s credentials and/or hijack
the authenticated session to the server. The client software and
operating system is trusted to enforce access controls and ensure
that only the authorized user has access to their local account.
The client software and OS developer are trusted to not introduce
malware in software updates. The system administrators working
for the software developer are likewise trusted.

The transitivity of trust does indeed turn into a case of “turtles
all the way down” [37]. Again, our point is simply to emphasize
understanding the trust relationships and then decide whether they
are acceptable or whether some other solution is more appropriate.
For example, when providing remote access to the controls of a
very expensive detector for an astrophysics experiment, the organi-
zation may choose to allow remote access only from workstations
configured, maintained, and monitored by the organization, that
do not in turn allow remote access, and conforming to the same
security policy as the instrument’s local network. By doing so, the
organization is reducing the trust in the remote access to the same
trust relationships as at the local network.15

Security consists of two main categories of actions: monitoring
and controlling [9]. This ties directly into our point of trust under-
lying everything. One can view monitoring as observing trust, and
controlling as reducing trust. For example, we trust networks to
some degree; otherwise we would not connect our computers to
them. But we monitor the network traffic to detect violations of that
trust, because we do not completely trust the networks. Similarly,
we use firewalls and other mechanisms to reduce the amount of
trust we must place in network traffic, transferring some of that
trust to the firewall and other mechanisms. So our “trust surface”
shifts from the network and network traffic to the controlling mech-
anisms. And that which we do not monitor or control, we must
trust completely. The phrase “trust but verify” is quite apt here,
with the understanding that some things are simply infeasible to
verify.

5 REAL WORLD COMPROMISES
The problem of identifying trust relationships is at the root of many
recent compromises. The compromised organizations either did not

14In reality, this is not true; but it is usually assumed in practice.
15To forestall criticism, we assume that the local network is trusted no more than the
remote network; we touch on the problems of local network trust elsewhere.
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identify the trust relationships that the attackers exploited, or did
not consider what could happen given an existing trust relationship.
Several examples will make this point.

5.1 Target Compromise
In 2012, the Target Corporation had millions of customer credit
card numbers stolen as the result of compromised point-of-sale
(POS) systems [46]. Several key mistakes contributed heavily to
the success of the intrusion. The Target network was relatively flat,
so that the POS systems were accessible through the company’s
general network. The POS systems had vulnerabilities exploitable
via the network. An HVAC vendor’s network was connected to
Target’s internal network, to provide the vendor with access to
Target’s internal systems. The attackers compromised the vendor’s
network, then a host on the Target network, and then compromised
the POS system.

The POS systems trusted Target’s network, and Target trusted
the vendor’s network. When selecting the POS system to use, did
Target ask the vendor what assumptions the vendor made about
the network on which the POS system was to be installed? Did
Target consider the connection to the vendor network to be a trust
relationship? Perhaps, had Target understood that the POS systems
trusted the networks they were connected to, they might have cho-
sen to keep the POS systems isolated from the rest of the network,
and impose more restriction on activity from the vendor network,
or ask the vendor about the security practices on their network.

5.2 Stakkatto
Between 2003-2005, an attacker calling himself Stakkatto compro-
mised systems at numerous universities, research facilities, govern-
ment and military sites, and more [47, 48].16 These incidents are
rich with examples of exploited trust relationships. Stakkatto used
a trojaned SSH client to get user credentials as users logged into
remote hosts. At some sites, system administrators would log from
their workstation, laptop, or home computer directly into systems
as the user root. Once Stakkatto had installed the trojan on their
workstations, he17 obtained root access to the organization’s sys-
tems without any additional effort.18 The target systems trusted the
system administrators’ workstations, which often did not adhere
to the same security policies as the systems themselves.

Stakkatto also exploited another trust relationship that often
goes unnoticed. He used a 10-year old tool called nfsshell [38, 53]
to execute the NFS client protocol from the command line of a
user-level account. This allowed him a variety of exploits. At a
site with shared user home directories, he was able to access files
using the UID of any user on the system. At a site that had a filesys-
tem mounted by both a Linux cluster and an AIX cluster, and had
used neither the root-squash nor the disable setuid options, he com-
promised the AIX system from the (already compromised) Linux
system, by writing setuid-to-root scripts on the shared filesystem,
logging into a compromised user account on the AIX system, and
then simply executing the script. These exploits did not make use

16Estimates of the number of sites compromised number in the thousands.
17Stakkatto was eventually caught; his identity is public knowledge.
18Logging in directly as root is deprecated for exactly this reason, but it is still done by
many of the younger generation of system administrators.

of any software bugs, but took advantage of the NFS protocol’s
trust in the NFS clients, and in the latter case, the trust relationship
between the two clusters as a result of their shared filesystem and
its configuration.

The NFS protocol requires almost complete trust in the clients,
and so lets the client assert the numeric UID of the user making a
file request. The server has no means to validate the UID provided.
This means that the NFS server trusts the client to provide valid
UIDs. Furthermore, once a file has been opened and an NFS file
handle obtained, mere possession of it gives the type of access
requested when the file handle was obtained. So the NFS protocol
requires not only that the server trust all of its clients, but also any
host that can communicate with it.

5.3 Apache.org Compromise
In 2001, a group of friendly attackers compromised apache.org [3]
through a combination of configuration errors, beginning with the
document root for the web server and the FTP server (on the same
host) being the same directory. An upload of a script via the FTP
server could be executed as a CGI program using the web server.
When this was done, the system was compromised. The enabling
trust relationship in this attack was the decision to trust the web
server to execute scripts that could be uploaded via FTP.19 Did the
system administrator who made this decision realize that (s)he was
creating a trust relationship between the two services?

5.4 RSA Corporation Compromise
The RSA Corporation compromise of 2011 resulted in theft of the
seeds to the SecurID tokens used by their customers to harden
access to their own systems [29]. The attacks began with successful
phishing attacks against RSA staff (“low priority targets”), which
gave intruders command-level access to systems at RSA. The attack-
ers were then able to escalate privileges to administrator accounts,
and uncover credentials used to access databases containing un-
encrypted seeds used by the SecurID tokens. The first trust rela-
tionship violated was that of trusting users to not get phished20
followed by trusting users who had access to systems from which
sensitive information could be exfiltrated. Next was trusting local
users not to exploit privilege escalation vulnerabilities,21 and finally
trusting anyone at RSA to obtain unencrypted access to customer
seeds. Our final example of trust here is the trust that customers
placed in RSA (a classic “third party”) to protect the security of the
customer’s tokens.22

Phishing has become a common point of entry for Internet at-
tacks, and is an interesting example of misplaced trust. Phishing
attacks rely on the target user unwittingly handing over creden-
tials to the attackers, or opening a file containing malware which
provides the attackers with access to the target user’s workstation.
From there, the attacker leverages authorizations granted to the
user. The “best practice” to combat phishing attacks has been to

19It is likely this trust relationship was not identified during the choice of configuration;
that is the point here.
20Admittedly a difficult problem, but misplaced trust in users is commonplace.
21Also a common oversight, in our observation.
22Indeed, some RSA customers did get systems compromised as a result of the stolen
keys.
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educate the users. But this practice is doomed to failure; it is im-
probable that all users have enough expertise to understand how
to avoid such attacks. Even the users who do must be able to act
correctly each and every time without mistake. The organization
has a trust relationship that the users will act correctly, but there
cannot be an expectation of proper behavior at all times.

The other increasingly common technology used to address
phishing is two-factor authentication, typically with one of the
factors being a one-time password.23 When a user successfully
authenticates using the two factors, the organization trusts that the
entity connecting is actually the user. However, the organization is
also trusting the user’s endpoint (remote computer), not just the
user. The authentication does not validate the trustworthiness of
the user’s endpoint. All the user has done is prove that (s)he was
inputting data at some time in order to authenticate.

5.5 Equifax Compromise
Equifax, a credit reporting agency, is trusted by most individuals in
the US to protect their credit information and related personally
identifiable information (PII). It failed to do so in 2017 [22]. Equifax
reported that intruders had gained access to the records of over
145 million people. The intrusion began through exploitation of a
recently announced vulnerability in a web server. Two months after
the intrusion began, the attackers began accessing PII information.
Similar to the RSA compromise, the attackers not only obtained ac-
cess to databases with PII through the host they had compromised,
but they also found a repository with cleartext usernames and pass-
words, which they used to obtain access to many more databases.
Equifax did not discover the compromise until 76 days after data
exfiltration began. Ironically, one thing that contributed to their
failure to detect the incident sooner was that the system that they
trusted to monitoring network traffic and detect suspicious activity
had not been doing so for over 10 months, due to an expired SSL
certificate. Equifax also appears to have placed too much trust in
hosts on their network to access databases with PII, let alone trust
anyone who could access the repository with cleartext credentials.

5.6 Stanford Incident
Finally, we harken back to an incident that began at Stanford Uni-
versity and resulted in the compromise of a number of systems
across the ARPANET [40]. An “obscure” mail gateway was com-
promised as a result of attackers guessing the password of a guest
account. The intruders were able to escalate privileges due to de-
fault permissions on a directory in root’s path; this allowed the
guest account to write a script that root would then execute. From
the root account, the intruder could assume the identify of any user
on the system. The intruder was able to use the rlogin program to
compromise user accounts on other systems, on which the users
had configured their rhosts file to allow access from their account
on the compromised system. The intruder repeated this process
to compromise machine after machine.24 The author of a report
on the incident notes: “The machine on which the initial break-in
occurred was one I did not even know existed, and no one in my

23Note this is what RSA SecurID does.
24The modus operandi of the intruder was eerily similar to that of Stakkatto almost 20
years later.

department had any control over it.” Here users created the trust
relationships between independent systems without the knowledge
of the respective system administrators.25

6 TRUST-BASED ANALYSIS
Here we outline, at a very high level, how a risk analysis might be
implemented under this paradigm. We do not intend to provide a
complete or even working framework, but merely to illustrate how
this approach compares to common practice.

Consider a design for an enterprise network. We begin with
identifying assets that, if compromised, can result in damage to the
organization. We then query what each of those assets trust; what
(or who) has the ability to access ormodify the assets, and label them
as trusted entities. Those trust relationships are vectors of potential
compromise. We then evaluate whether those trust relationships
are acceptable, and where not, what controls are required to reduce
the trust. 26 While our discussion is presented at a rather high and
abstract level, in practice this process would be applied at various
levels, taking into consideration the operating system, services and
software, hardware, people (users, system administrators), network
topology, and so forth.

We then repeat the process, with the trusted entities treated as
assets, and identifying what they in turn trust. By doing so we
identify transitive trust relationships that can provide a path to
compromise our primary assets.

Figure 1 shows this process. Part (a) shows a trusted asset. Part
(b) shows how that trust relationship can be handled: it can be
eliminated, reduced, or monitored; in the absence of these, it must
be accepted. Parts (c) and (d) show one iteration of the process. Part
(e) emphasizes the iterative process as “turtles all the way down”.

For example, for a computer system that is a primary asset, we
would identify the operating system as a trusted entity. We would
then identify the system administrator, who has privileged access
to the operating system, as a trusted entity with respect to the
operating system. Then we would identify any system used by the
administrator to remotely access the operating system, and label it
as trusted by the administrator. We might then ask whether that
trust is acceptable, or what controls on the remote system would
be required to make it acceptable.27

One might dismiss this paradigm as creating an Everlasting
Gobstopper28 of trust evaluation, each trusted entity leading to
a new set of transitive trust relationships. But the same is true
for other methods of risk analysis, because (for example) the risk
involved in installing software goes through the vendor to the
systems the vendor uses and their programmers, and the software
they use, leading to the vendors of that software, and so forth. In
practice, all risk analysis methodologies have a finite scope and
25This was a common practice in the day, and similar to today’s users not using
passwords to protect ssh keys that enable them to move between systems without
further authentication.
26The ability to identify trusted entities may be the first control required. One of the
authors has more than once conducted reviews in which he asked “who has the root
password to this system?” and was told “We don’t know”.
27Such a trust relationship frequently gets overlooked. One of the authors, while
being presented with a detailed design for a HIPAA-compliant environment that was
designed for remote contractor access, asked about the requirements for the remote
systems and was told “we would expect that they have implemented good security on
their systems.”
28A hard candy that never disappears no matter how hard it is sucked [17].
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(a) Trust and an asset

(b) How the trust can be handled

(c) Iterating this process

(d) Handling the iterated trust

(e) Turtles all the way down

Figure 1: The iterative process of analyzing trust relation-
ships

depth; we do not claim that our approach is any different in that
respect. However we do claim that it may have a better outcome.

At some point, one may simply declare an entity trusted and
move on. The common case of doing so is trusting hardware.29

29Although recent events with Huawei has some people rethinking that.

The benefit of our paradigm is that, where the scope of the
analysis ends, the accepted trust relationships are made explicit,
acknowledged, and naturally align on a trust boundary.

6.1 Example: Internet Voting
Using the Internet to cast votes in civic elections provides a good
example of our approach. Instead of examining the attack surface
to find threats and evaluate risks, we approach the problem in an
inverse way. The key issue is, what is the attack surface? To answer
that question, we examine what needs to be trusted, what can be
trusted but monitored, and what cannot be trusted.

A brief description of an Internet voting system will place our
paradigm in context. We postulate a voter sitting at their home
computer. On Election Day, they connect to their election office
server and authenticate as required by their state law. They then
are taken to a web page that presents an appropriate ballot. The
voter marks the ballot using their input devices, either selecting
items in each race or writing in names. They then click on a button
to display their votes, allowing them to recheck that they cast their
proper votes. At that point, they can either go back and correct any
errors, or click another button to cast their votes. Once cast, the
server saves both the votes and an image of the filled-out ballot. At
the end of the election day (or period, if it extends over multiple
days), the election servers tally the votes.

The trust points range over the entire system. The election
server’s software and hardware must be trusted, as must physi-
cal access to that system. The user’s home computer must also be
trusted to render the ballot correctly and record and transmit the
user inputs correctly to the server. The communication between the
user and server must be trusted and secret, so an observer cannot
determine how the voter voted. (That a particular voter voted is
not confidential; indeed, in an in-person election, lists of those who
voted are posted at the polling stations every hour.) Indeed, the
user’s computer must be talking to the legitimate election server.
Further, the reporting of the votes must correctly reflect the cast
votes, and the user must be able to read the ballot, understand it,
and mark it appropriately. Finally, the method of authentication
must satisfy the relevant (in the U.S., usually state) law.

Other points of trust are more subtle. First, the voter must be
able to access the election server on election day, and do so within a
reasonable time. Next, the voter cannot record the cast vote in such
a way that they can prove how they voted — this prevents both
the selling of votes and people voting a certain way under threat.
Third, the authentication must be independent of the casting of
the votes, lest the two be combined to breach voter anonymity and
ballot secrecy. The results must be correctly reported.

Now that we have identified the “trust surface,” we can minimize
it. We can reduce our trust in the election server by ensuring it is
tested and analyzed by experts — or, even better, developed with
high-assurance techniques. But this simply transfers some of the
trust to the examination, and in turn the examiners and those
who prepare the system for examination. The communication can
be secured by a suitable network protocol, such as TLSv1.3, but
with anonymous certificates on the part of the voter. This also
ensures the user’s computer is connected to the genuine election
server — and again, the trust is not eliminated but transferred to the
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management of keys. The same is true with access; here, the trust is
in both system management and on the ability of the election office
to handle DDoS attacks. And the software and hardware of the
user’s home computer is required to ensure the votes are properly
recorded and transmitted.

So, the trust surface consists of:

• the voter voting;
• the voter’s home computer;
• the voter’s authentication information;
• the authentication system or method;
• the election server;
• the connection between the election server and voter’s com-
puter;

• the tallying of the votes; and
• the reporting of the votes.

We can now look at ameliorating these. The details are beyond
the scope of the paper, but it is instructive to contrast this with
in-person voting on paper ballots, the traditional method in most
of the U.S. The trust surface is similar:

• the voter voting;
• the voting instrument (marker) working30
• the voter’s authentication information;
• the authentication system or method;
• the processing and counting of the ballots at Election Central;
• the movement of the ballots from the polling station to Elec-
tion Central;

• the tallying of the votes; and
• the reporting of the votes.

Here, minimizing the trust surface uses very different methods.
For example, one can follow behind the car transporting the ballots
from polling stations to Election Central, to ensure they arrive. At
least two people are always with the ballots until after they are
counted. These differ from the Internet voting control because the
observer can watch the process of transport, whereas with Internet
voting, one must trust that the communication protocols work
correctly and that the voter’s workstation is not compromised.

Now consider elections in which voters vote on DREs, and con-
trast that with the Internet voting process described there. To vote
on a DRE, the voter physically goes to a polling station and, after
signing in and being validated as a voter, then goes to the DRE and
votes. With in-person voting, the voting authority has to trust a
relatively small number of machines which (theoretically) have a
validated initial state, and compromise of which requires physical
access and does not scale. In comparison, Internet voting requires
the voting authority to trust as many systems as there are voters,
with no means to validate any state, and which can be compromised
remotely at scale. It effectively allows voters to each have their own
unvalidated voting system. The trust surface is much larger, and
there is no means of reducing the trust.

30In one jurisdiction that conducted voting on paper, the markers used at one precinct
ran out of ink. After that, voters were told the pens used ink that was visible only to
the counting systems. This lasted about an hour until a roving inspector arrived. New
markers were quickly obtained.

Thus, focusing on trust shows how to develop risk models and
attack surfaces. Further, it provides a direct way to compare differ-
ent systems designed to achieve the same goal — focus on the trust
surface.

6.2 Example: Password Policy
As another example, let us look at common password policies
through the lens of our approach. We require users to choose a pass-
word unique to our system (that is, distinct from other systems they
might use), as we do not want to trust that the password will not get
exposed by compromise of one of those other sites. But in practice,
we can neither prevent the user from actually doing so (controlling),
nor detect whether the user has done so (monitoring); we have to
trust the user. We also give users requirements for the composition
of their password, to make the passwords resistant to dictionary
attacks. We can force a user to meet the letter of the requirement;
unless the requirement is carefully drawn and completely enforced,
we will have to trust that the user’s chosen password has a high
entropy across the field of all possible user chosen passwords. Yet
numerous studies have shown that for both requirements, users
routinely violate this trust. For the latter, in addition to other mo-
tivations, the user is rarely capable of determining whether their
password meets the intended goal.31 Acknowledging this potential
failure of trust, we might choose a different approach that trusts
the user less. For example, we might not allow users to create their
own password, but instead let the user choose from a small set
of randomly generated passwords, to ensure sufficient entropy in
the password space [49]. Or we might use a one-time password
system, which prevents the user from re-using a password. A side
benefit is that, if most sites required users to choose from randomly
generated passwords, users would not be able to re-use passwords
across sites.

6.3 Framing
The above examples illustrate how our paradigm contributes to bet-
ter understanding of threats. One’s use of language has an impact
on understanding. Greenwald [25] showed how the use of specific
verbs in security policies affects people’s understanding and prop-
erly applying the policies. Fichtner et al. [20] shows how “framing”
of security discussion affects understanding of security issues; by
reframing the discussion one can do a better job of getting one’s
point across.

The concept of “trust” is generally understood by most people at
a visceral level, even if they can’t provide a good working definition.
In the authors’ experiences, one of the difficulties with the threat-
vulnerability-risk approach is in getting stakeholders, especially
non-technical ones, to understand the risk. Viewing “trust” as “re-
lies on” helps. For example, describing a risk as “an attacker could
execute a SQL injection attack and override the authorization table”
is incomprehensible to the non-technical listener, with a concomi-
tant glazed-over response, or responding in denials such as “why
would anyone do that?” or “nobody will ever be able to figure that
out.” But describing a risk as “the server is relying on people we

31This is also a case of the security policy not properly aligned with the goal, but that
is a different topic.
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don’t necessarily trust to access the system in a particular manner”
is much easier for the stakeholder to understand and accept.

In our internet voting example above, framing the issues in
terms of trust makes it much easier to show how it is infeasible to
ensure then integrity of the voting process when the trust surface
encompasses millions of systems, with no means to detect let alone
prevent compromise. In our password policy example, framing the
policies in terms of trusting the user illuminates how the problem
with non-compliance is not a matter of tweaking the password
rules, but that the policy has resulted in misplaced trust (in the
users).

7 RELATEDWORK
Trust has been a subject of much study. All definitions seems to
have common elements. For our purposes, the key element is that
trust springs from belief in that which we do not, or cannot, moni-
tor [21]. Castelfranchi and Falcone [13] identify several belief types
underlying trust, including a dependence belief (in which one needs
a second to perform some action, relies on the second performing
some action, or sees relying on the second as better than not doing
so) and a disposition belief (in which one believes that a second
will carry out what is needed for the first to reach a goal). From
our perspective, these two beliefs underlie the notion of trust in
computing, because systems depend on what they trust, and assume
the trusted entities will behave properly.

Policy trust models evaluate trust based on a given policy [10,
11, 51] and recommendation systems [4, 55]. Tucker [52] presents
a graph-based methodology for analyzing trust. Similarly, Huang
and Nicol [26] develop an analytic technique to represent trust and
risk associated with a public key infrastructure. Marsh presents
formalizations of trust that can be used to identify trust/risk mis-
matches [31]. These techniques could be applied to analyze trust
within our paradigm, as we simply shift the analysis of trust in the
development cycle.

Karger and Schell [28] examined the trust systems placed in
programming infrastructure such as compilers and linkers. As noted
above, Thompson [50] presents an example of this trust going
wrong.

In his introduction to trust mapping, Tucker comments on risks
introduced by trust relationships, and states that some vulnerabil-
ities derive from trust. This is in line with our argument, the key
difference being that we assert trust is the cause of all vulnerabilities
[52].

SATAN [19, 39], perhaps the first widely distributed vulnera-
bility scanner, developed maps of trust relationships based on the
connections machines made to each other and the services they
provided. For example, it would detect that the DNS servers were
trusted by hosts in the domain, or used as a resolver. It would also
detect which systems trusted the authentication mechanisms of
other systems, and what the consequences of misplaced trust might
be. Unfortunately, to our knowledge, no vulnerability scanner since
then has included any identification of trust relationships.

The term zero trust [41] refers to ideas and methods for mini-
mizing uncertainty in policy enforcement. This paradigm is sim-
ply an extension of an earlier paradigm, before firewalls became
ubiquitous. Hosts connected to the ARPANET had to be hardened,

because there was no intermediate agent. This minimized trust in
the network, instead allocating it to non-network entities, and to
those in a degree depending on how much the system managers
trusted those remote entities not to be vulnerable to attack, or have
vulnerabilities that can be exploited. Our paradigm inverts this;
we ask what vulnerabilities may arise by the placement of trust
in particular entities. In other words, we ask what is considered
reliable enough that we can rely on it. This may involve some of
the technologies used in zero trust, or it may involve determining
some other level or means (including non-technical32) of trust or
control. In other terms, we look for the trust boundaries [45] of our
system and consider what lies beyond them, that is, how reliable
external components are.

As an example of how our paradigm differs from the one is use
today, consider the methodology proposed by Jøsang and Knap-
skog [27]. This paper, like many others, discusses security eval-
uations as a method for determining trust. Our paradigm is the
opposite: determine trust as a basis for security evaluation. This
seems simpler, as security rests on assumptions, and those assump-
tions are based on trust.

8 FUTUREWORK
Future work could expand the paradigm presented here to a full-
fledged risk analysis methodology that can get used in practice. A
comparative test would demonstrate the efficacy of this framework
compared to other, current frameworks. A real-world A/B compar-
ative test would be optimal, but difficult; a simpler approach would
be to taking an existing organization that has applied a traditional
framework, subject it to a trust-based analysis, and see how the
vulnerability assessment and resulting controls differ.

9 CONCLUSION
Organizations have been repeatedly compromised, often to cat-
astrophic effect, either financially or reputationally. These com-
promises invariably are traced to systems that were improperly
maintained or configured, or to attacks from trusted systems or
accounts. These arise from misplaced trust — trust that the system
configuration would prevent compromises, trust that users of the
accounts would not attack the system. So, trust and trust relation-
ships should be among the first aspects of design of systems and
networks to be derived and examined. Unfortunately, existing risk
management approaches fail to address trust and trust relationships
as a key element of risk.

Our paradigm is to use trust relationships as a basis for assess-
ing security and developing security policies and mechanisms to
protect systems. Then security can be realistically assessed, and
relationships where trust is present but unnecessary (because the
trusted component(s) can be monitored or controlled) can provide a
basis for acknowledging vulnerabilities that an attacker can exploit.
After all, security rests on assumptions; and these assumptions
themselves are a result of trust relationships.
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