
Out of Sight, Out of Mind:
UI Design and the Inhibition of Mental Models of Security

Eric Spero
Carleton University
Ottawa, Canada

eric.spero@carleton.ca

Robert Biddle
Carleton University
Ottawa, Canada

robert.biddle@carleton.ca

ABSTRACT
In this paper we make the case that UI design inhibits mental mod-
els of security by concealing most of the security-relevant aspects
of software functionality. Users are frequently required to make
decisions that have important security implications, that requires
a mental model of software infrastructure to know what actions
are ‘safe’ versus ‘unsafe’. People build internal causal models of
what they experience that have explanatory and predictive power,
and therefore form the basis of the decision-making faculty. By
concealing security information, user interfaces hinder the user
from building the kinds of models that will keep them safer, and
only the small minority who are willing to go beyond the interface
will acquire this knowledge. We suggest increasing the visibility of
some essential information about the security-relevant aspects of
software functionality in a way that ordinary users will be able to
make sense of, so that through normal interactions with software
everyone develops the kind of knowledge needed to better sup-
port security. We review the cognitive science and cybersecurity
literature on mental models, present three ‘case studies’ which em-
body the security concealment problem, and present preliminary
suggestions for how UI design might amend this problem.

CCS CONCEPTS
• Security and privacy→ Usability in security and privacy; •
Human-centered computing→ HCI theory, concepts and models.

KEYWORDS
mental models, usable cybersecurity, human-computer interaction
ACM Reference Format:
Eric Spero and Robert Biddle. 2020. Out of Sight, Out of Mind: UI Design
and the Inhibition of Mental Models of Security. In New Security Paradigms
Workshop 2020 (NSPW ’20), October 26–29, 2020, Online, USA. ACM, New
York, NY, USA, 17 pages. https://doi.org/10.1145/3442167.3442174

1 INTRODUCTION
Usability and security have a complex and subtle relationship. In
this paper, we identify a new aspect of this relationship. An issue
often discussed in security is that users have weakmental models, of
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
NSPW ’20, October 26–29, 2020, Online, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8995-2/20/10. . . $15.00
https://doi.org/10.1145/3442167.3442174

security threats and of the mechanisms designed to defend against
those threats. One of the most well-established approaches to the
design of usable software is to create a representation that allows
users to interact with software while concealing the inner workings
involved. Users develop mental models in large part as a result of
their interactions with the user interface, and whatever is concealed
is prevented from becoming part of user understanding. This is
acceptable and even desirable where understanding will not have
a meaningful impact on the lives of users. But we argue that so
much security information has been hidden from users that they
cannot develop the kind of knowledge that will guide safe action.
This issue needs to be addressed in order to better support user
security.

In the security literature, the term “mental model” is typically
used informally. In the psychology and cognitive science literature,
however, there is serious consideration of the nature of mental
models, how they are formed, and how they are used. In particular,
it is suggested that mental models are formed from observable
experience linking causes and effects, and this leads to expectations
and predictions of phenomena [18].

One of the earliest and most influential approaches to human-
computer interaction design stems from the observation that the
internal workings of software need not be the way the software is
presented to the user. Instead, a “system image” can be created that
allows the user to control and interpret the software behaviour in
a way that eases the interaction. Typically, this might use language
already familiar to the user from the task domain, and would avoid
any mention of any internal software technology.

The problem that arises is that attacks on the security of software
often involve the internal levels of software that “good” interaction
design has concealed from users. This means that users will typ-
ically not understand the attack mechanisms, and have difficulty
with any defensive measures that require user involvement. Indeed,
users may be unaware that attacks occur, and unaware of whether
defences succeed or fail. This suggests a need for a new approach
to user interaction design.

The rest of this paper proceeds as follows. First is a review of
the relevant literature: about mental models in psychology and cog-
nitive science, in cybersecurity, and finally from human-computer
interaction. We then present our argument in detail: that concealing
all implementation details from the user impedes good mental mod-
els of security. This is followed with several cases where security is
weakened in this way. We conclude by offering suggestions for a
more nuanced approach to user interaction design for security.

127

https://doi.org/10.1145/3442167.3442174
https://doi.org/10.1145/3442167.3442174

NSPW ’20, October 26–29, 2020, Online, USA Eric Spero and Robert Biddle

2 MENTAL MODELS
2.1 In Cognitive Science
The “mental models” view regards the mind as a flexible ‘imita-
tor’ of the external world [18]. When observing the world, special
attention is paid to the causal relations between things, and this
information is used to build-up abstract internal models that work
in the same way. Because mental models have the same causal
structure as the real-world entities and processes they imitate, they
can be used to simulate the outcomes of various conditions. This
predictive power of mental models is essential in decision-making.
The greater the correspondence between the internal causal struc-
ture and the outside-world thing or process imitated, the more
accurately one will be able to predict what will happen in as a
result of some condition, and the more one is better able to align
their actions with their goals.

This view was first articulated by Craik in The Nature of Expla-
nation [18]. For Craik the ultimate test of a concept—in science,
but also in everyday life—is not the exactness or consistency of its
internal/intensional properties, but rather the degree to which they
impose order on diverse instances and enable successful predictions.
That is, what matters about concepts is whether they work. Useful
concepts are created not by considering single instances in isolation,
but by observing many instances, creating general principles that
explain them, and updating these rules in light of later observations.

According to Craik, models are able to make predictions about
the world by virtue of a three-part process: (1) translating some as-
pect of the external world into an internal symbolic representation;
(2) manipulating the symbolic representation to arrive at other sym-
bolic representations; and (3) translating the symbol representation
back to the external world through the execution of a plan of action,
or a recognition of a correspondence between the predicted and ac-
tual world [18]. Craik mentions a few physical devices which mimic
real-world processes in this way, such as Kelvin’s tide-predicting
machine (pictured in Figure 1). A successful prediction requires
that the symbolic representation bears the same “relation-structure”
as the state of affairs it imitates; in other words, the two must work
in the same way. As the tide-predicting machine shows, the model
need not bear a pictorial resemblance to the thing it imitates.

Craik suggests that the mind, in its capacity to anticipate the
future, works according to the same principle as Kelvin’s tide-
predicting machine. However, the mind is far more flexible, en-
abling humans to cope with the novelty and variability so common
to human experience. This tool is used to test out possible actions
before undertaking them: one can simulate the implementation of
various designs for bridges, say, and run stress tests to find out
which among them is best before actual construction begins; thus
danger can be anticipated and avoided. Simulating the outcomes of
conditions through manipulation of mental models is cheap, quick,
and convenient. This ability seems to offer a survival advantage,
and for Craik is the “definite function” of thought.

The term mental models was popularized by Johnson-Laird [28].
He developed a mental model theory of reasoning, which included
the implementation of ‘mental models’ accounts for various mental
phenomena as effective procedures. For Johnson-Laird, people rea-
son not by application of internalized formal rules of logic, but by
generating a representation of the events described by the premises:

Figure 1: Craik likened mental models to prediction ma-
chines of his day, such as Kelvin’s Tide-Predicting Ma-
chine [11]. It can predict the tide because it works in the
same way: each gear corresponds to a tidal constituent, and
the sum of these gears determines the position of a needle
representing the tide level.

a mental model. This representation depends on the meaning of
the premises, and on inferences from general knowledge.

Johnson-Laird makes the point that more detailed mental models
are not necessarily more useful, and the amount of accuracy needed
to make good predictions depends on one’s goals. For example, to
successfully operate a piece of software like a word processor, a
mental model relating user interface elements to the appearance
and content in a written document is sufficient. Activities like trou-
bleshooting software installation issues, writing word processor
software, and designing computer architectures will each require
different mental models of varying complexity. Having good men-
tal models of CPU architecture will not help one compose better
documents using a word processor software, even though the latter
ultimately depends on the former. As long as one’s model is suffi-
ciently complex to successfully mimic the goal-relevant behaviour
of some real-world system, it is adequate.

The mental models used in reasoning are representations (or
simulations) of specific entities and events—tokens rather than
types [5]. They are generated with the help of “deep” structures
that make up general knowledge. These more abstract structures
have been given different formulations under different theoreti-
cal frameworks, going by names such as frames, prototypes, and
schema [5, 21, 28]. What matters to us is not the details separating
these various formulations, but what unites them: that they provide
layers of abstraction linking together disparate instances by their
causal properties. We adopt the term “schema” here.

Schemas correspond to categories of experience, and consist of
abstract entities and events and relationships between them. They
are built up from memories of perceptual experience: whenever
something is attended to, information from this experience is ex-
tracted and put toward the creation or elaboration of one or more
schema (see Barsalou [5] for an account of how this system might

128

Out of Sight, Out of Mind: UI Design and the Inhibition of Mental Models of Security NSPW ’20, October 26–29, 2020, Online, USA

be implemented computationally). The more instances of a category
observed, the richer the schema, and thus the more ‘true to life’ the
simulations it generates.

Humans have a natural ability for finding common causal struc-
ture across domains and situations which may vary widely in their
surface features. In analogical reasoning, knowledge from a well-
understood source domain is transferred to a less-understood target
domain through mapping. Analogies provide a powerful method
of coping with new situations, and are extensively relied upon in
education, as in the familiar case of comparing the structure of an
atom to that of a solar system (though it is really more complex). In
order for the transfer to succeed, the two analogs must share a com-
mon schema. Gick and Holyoak [21] conducted numerous studies
demonstrating the effectiveness of analogical transfer when solving
new problems. Participants’ ability to solve a difficult problem was
dramatically improved by exposure to problem-solution pairs from
radically different domains. For example, one target problem asked
subjects how to treat a tumour with radiation, and were helped with
a story about troops storming a fortress. Participants were even
aided by analogs that took the form of simple diagrams depicting
relations between entities.

Norman applied the idea of mental models to user interface
design with his Theory of Action [40]. Users come to software
with goals in mind (representations of desirable state of affairs),
which tools like software help make manifest. Successful use of
the interface requires developing a model of the causal structure
relating the elements of the UI, and a mapping between the UI
elements and the user’s goals. This coupling between the physical
state of the interface and the psychological state corresponding to
the user’s representation of the current goal-relevant state of affairs
enables the user to track progress toward their goal. Anticipating
user needs, the user interface designer tries to provide a straight-
forward correspondence between UI elements and users’ goals. We
discuss Norman’s Theory of Action more in Section 3.1.

Mental models give meaning to UI elements and guide interac-
tions with software. Interactions with software also feed back into
the user’s mental models, teaching the user about what is possible,
and what the software is really doing. Anything software does that
is not represented in the user interface may never become part of a
user’s working understanding of software. In Section 3.2 we argue
that this has happened with the security-related aspects of software
functionality, which have been backgrounded in favour of a focus
on primary domain-oriented tasks (checking emails, composing
documents, etc.). This keeps the user in the dark about how they
are vulnerable, and prevents the kind of understanding that lead to
safe behaviour.

Mental Model Definition. In this paper we adopt the Craikian
definition of a mental model, which may be paraphrased as:

An internal representation that relates to something in
the external world (e.g. an entity or process) by “imitat-
ing” its causal structure; i.e. it works in the same way.
This isomorphism between mental models and the real
world things they imitate gives rise to their essential
function: simulating the consequences of various pos-
sible conditions for the purposes of guiding behaviour.

2.2 In Cybersecurity
L. Jean Camp and colleagues’ “mental model approach” [14] advo-
cates for the use of knowledge from better-understood domains
in communicating to users the risks involved in computer use.
According to this approach, users conceptualize computer secu-
rity in terms of other domains such as physical safety, medical
infections, criminal behaviour, warfare, and markets [4], and each
individual’s mental model of computer security risks was seen as
a multidimensional combination of one or more of these. These
extra-domain schemas have different implications for behaviour:
for example, the criminal behaviour schema emphasizes investiga-
tion and punishment from a central authority, and physical security
emphasizes lock-down measures [9]. However, each extra-domain
schema has incongruities with cybersecurity, and none on their
own will perfectly communicate the relevant risks. It is recom-
mended that different schemas be used to emphasize a particular
dimension of cybersecurity risk at appropriate times.

Wash conducted a series of interviews with ordinary computer
users to investigate their mental models of computer security [58].
His interviewees generally distinguished between ‘hacker’ and
‘virus’, considering them two distinct threats. All used the term
‘virus’ as a catch-all for malware, and also used related medical
terms like ‘infection’ and ‘immunity’. Wash asked respondents
about the purposes, effects, and methods of transmission of mal-
ware, and found four patterns of responses, which for him indicate
four mental models: (1) viruses are generically ‘bad’, (2) viruses are
buggy software, (3) viruses cause mischief, (4) viruses support crime.
He also asked about ‘hackers’, including what they did, why they
did it, and who they would target. He also identified four mental
models of hackers: (1) hackers are digital graffiti artists, (2) hackers
are burglars who break into computers for criminal purposes, (3)
hackers are criminals who target big fish, (4) hackers are contractors
who support criminals. Some participants were in the possession
of several of these mental models for hackers and viruses. Partici-
pants were given a questionnaire gauging participant opinion on
the importance of following various security advice, and found a
relationship between these beliefs and the eight mental models. He
closes the paper by showing how malware like botnets defy these
mental models, which he conjectures could be a contributing factor
to their success.

Rader, Wash, and Brooks [43] found evidence that people came
to have the mental models identified earlier by Wash as a result of
stories heard from others. People share with each other accounts of
security incidents which included information about the dangers
involved and what was done to re-secure their computer. The victim
will share these stories, typically with their friends and family, who
will often re-tell this story to others. Participants reported that these
stories had an influence on their future thought and behaviour about
computer security.

There are numerous studies comparing the mental models held
by technical users with those held by non-technical users. Bravo-
Lillo et al. [10] were interested in how users processed and re-
sponded to computer security warnings. They conducted open-
ended interviews with users asking them to describe the process
of receiving warnings to taking action, and created a flow chart

129

NSPW ’20, October 26–29, 2020, Online, USA Eric Spero and Robert Biddle

schematizing this process. They found that experts had more com-
plex models, and proposed examples of how warnings could help
compensate for weaknesses in the mental models of non-technical
users. They note some misconceptions on the part of non-technical
users, including a disregard of SSL warnings on banking websites
because banks must be safe, a reliance on the appearance of the web-
site when making security judgments, and the belief that opening
a file is safer than saving it to local storage. Participants were con-
fused by technical language such as “encryption” and “disk”. Kang
et al. [29] asked participants to draw their understanding of how
the internet worked. They found that non-technical users tended to
demonstrate vaguer understanding, and relied more on metaphors
(e.g. “cloud”, “main hub”) in their depictions. They showed aware-
ness of only those organizations and services they had direct ex-
perience of. Asgharpour, Liu, and Camp [4] asked technical and
non-technical users to assign extra-domain schemas (e.g. physi-
cal safety, medical infections) to various security risks, and found
differences between the two groups.

Klasnja et al. [30] conducted diagramming exercises and inter-
views with participants to assess their knowledge of wifi, and re-
lated security and privacy threats. Their participants demonstrated
good practical knowledge of wifi including a network’s range, sig-
nal strength, and signal propagation. They understood that wifi
range extended outside the buildings containing the wireless access
point, that signal strength weakened as distance from the wireless
access point increased, that signal strength is impaired after passing
through solid objects, and that weak signal strength is related to
one’s ability to connect to a network. They demonstrated weak
knowledge of how wifi and the technologies it uses worked, and
this seemed to lead to a poor understanding of security and privacy
issues related to wifi use. Their mental models of cybersecurity
threats while using wifi consisted of hackers attempting to break
into their computers to read their files and spy on them, or people
overlooking their shoulders when in public spaces. They were not
aware of encryption, or that wifi is a broadcast medium, and there-
fore they did not know that unencrypted data sent over public wifi
could be intercepted by others on that network. In other words,
their relevant mental models of cybersecurity were insufficient.

2.3 Discussion
The research on mental models in cybersecurity suggests that the
typical non-technical user has a weak understanding of how com-
puters, software, and the internet work, which impairs their ability
to detect threats, and take appropriate measures to defend them-
selves. The source of users’ mental models is a combination of (1)
their direct experience as users, (2) analogies to other domains, and
(3) stories they hear from others.

The influential research by Camp, Wash, and Rader suggests that
the mental models users have relating to cybersecurity are largely
metaphorical/analogical in nature, borrowing information from
better understood domains. The approach taken by these authors is
generally pragmatic and descriptive: their goal is to understand how
users think, so they can improve communications of cybersecurity
concepts. While they point out shortcomings of these metaphor-
heavy models, they are careful not to say they are ‘right’ or ‘wrong’.

It is stressed that mental models need not be technically accurate,
they just should support safe behaviour.

Metaphorical/analogical models perform the useful function of
supporting behaviour during embryonic stages of learning. How-
ever, in all analogies there will be some incongruities between
source and target, and these can lead to dysfunctional behaviour.
For example, Whitten and Tygar [59] found the ‘key’ metaphor in
PGP harmful because of mismatches with users’ everyday concept
of keys. Demjaha et al. [19] tested seven different metaphors for
end-to-end encryption, and found that all caused varying degrees
of harm. In a domain as complex as cybersecurity these incon-
gruities are immense, and as others have noted [4] each of these
metaphorical schemas can only imperfectly cover but a single facet
of cybersecurity. In an adversarial context these incongruities are
equivalent to gaps in defences, which attackers work to exploit.

One solution to the problem of cybersecurity education for typi-
cal users is to impart knowledge to users facet-by-facet by making
reference to models they have from other domains, and then at-
tempt to remove or reduce the harmful effects of incongruities by
pointing each of them out. However, the end-result of this type of
education—a patchwork of overlapping models augmented with
large lists of exceptions—seems unparsimonious, requiring more
effort than considering security more on its own terms.

It seems there is no substitute for directly representing the do-
main of cybersecurity. At first glance this might seem unrealistic:
we obviously cannot ask users to become experts on topics like
TCP/IP and encryption. Success will depend on the careful use of
user interface encapsulation. This technique has been successfully
applied in a number of domains and contexts, enabling the use
of complicated machinery with only high-level knowledge. In UI
support for primary tasks it enables users to browse the web and
send and receive email without understanding the HTTP or SMTP
protocols; in automotive interface design it enables one to operate
a motor vehicle without deep knowledge of automotive mechanics.

We could provide users with key information about the system’s
security status and any relevant explanatory structures, in such
a way that is intelligible to regular users and directly relatable
to their security goals. In theory, this would make it possible for
users to develop internal models of the system’s security status
that are equivalent to those of technical users at a high level of
abstraction. Just as the design of automobile interfaces has made
it in principle possible for anyone to drive a car with performance
levels meeting or exceeding those of a car designer or mechanic, it
might be possible for regular users to operate a computer as safely
as a security expert. We emphasize that what we are proposing is
not a form of persuasion nor conditioning. Rather, we want to help
users build the kind of conceptual machinery enables successful
mapping of potential user actions to outcomes.

We think that mental models of cybersecurity are generally weak
because UI developers have chosen to focus on supporting users’
primary domain-oriented goals, while backgrounding or outright
ignoring security-related information. In the sections following, we
begin to sketch how security aspects of software might be better
represented in the user interface.

130

Out of Sight, Out of Mind: UI Design and the Inhibition of Mental Models of Security NSPW ’20, October 26–29, 2020, Online, USA

Figure 2: Seven stages of user activities involved in the per-
formance of a task. From Norman [41].

3 INTERFACES AND SECURITY
3.1 Norman’s Theory of Action
In a landmark paper from 1986, Norman [41] presents his Theory
of Action: an “approximate theory” of goal-oriented interaction
between a human user and a computer system. It describes the
key problem facing users and UI designers as the gulf between
user goals, which are psychological in nature, and the terms of the
computer system, which are material. Users must be able to map
their goals to the system controls and state so that they can manip-
ulate the system state to bring about their goals, and to understand
if these manipulations had the desired effect. The gulf between
human and computer gulf can be narrowed from either side: the
user learns to recast their goals and intentions in terms that are
more system-like, and system designers create interfaces that are
human-intelligible and match the user’s needs.

The user and computer participate in an iterative, interactive
loop (see Figure 2), consisting of the following stages:

(1) Establishing the Goal
(2) Forming the Intention
(3) Executing the Action
(4) Perceiving the System State
(5) Interpreting the State
(6) Evaluating the System State with respect to the Goals and

Intentions
In short, users have a goal, use the interface provided to express

how to achieve that goal, and then execute the appropriate actions.
After executing the action, they monitor the system state as ex-
pressed through the UI, and evaluate the outcome based on whether
it brought them closer to their goal or not.

Norman suggests this feedback loop involves an interplay be-
tween three representations of the system: the design model, the

Figure 3: Three concepts involved in interaction: the design
model, the user’s model, and the system image. From Nor-
man [41].

user model, and the system image (see Figure 3). The design model is
the mental model of the system held by designers and implementers,
which ideally contains the user’s needs as a key component. The
user model is the user’s mental model of the system: what it is and
how it seems to work. The system image is the part of the system
the user sees and interacts with, including the UI and physical in-
teraction devices. The user constructs their model of the system
from the system image, and not the designer’s model.

Norman calls for tools that reveal their conceptual structure
to provide a strong sense of understanding and control. Systems
that are too powerful (i.e. where the user has too little control)
impair users’ understanding of the system, leaving them feeling
powerless. On the other hand, systems that are too simple, while
offering much control, can fail to bridge the gulf between mind and
system, preventing the user from mapping their goals into system
states. The optimal amount of control given to the user versus the
machine will vary based on the abilities of the user and the task at
hand; this presents a difficult design challenge.

Any aspect of the underlying structure and functionality of soft-
ware that is not made intelligible to users in the system image
cannot become integrated into their mental model. We argue that
this is what has happened with the security-relevant aspects of
software. Most indications of the security status of the system state
are obscured from most users, accessible only to those with the
technical knowledge required to use arcane tools. It is certainly
the case that users have security as only a secondary and ancillary
goal, and even then software does not adequately support them. UI
designers have instead chosen to focus only on primary domain-
oriented goals such as sending emails and composing documents.
We discuss this issue more, and begin to sketch our idea of possible
remedies in Section 3.2.

3.2 (In)visibility of Security
Over 30 years after his landmark paper [41], Norman’s dream for
better interaction design has largely been realized. Software occu-
pies a central role in daily life, and users of all technical capabilities
are able to manipulate computers to bring about their goals. User

131

NSPW ’20, October 26–29, 2020, Online, USA Eric Spero and Robert Biddle

interfaces elements are intelligible by ordinary users, and readily
mappable to goals. Users have enough power to accomplish their
goals, but not so much as to overwhelm them.

An important caveat, however, is that only primary domain-
oriented goals are well-supported by software UIs—the kind of goals
that bring people to their computers in the first place, such as writ-
ing text documents, sending emails, and sharing photos. Almost no
support is provided for security—a secondary but important goal.
Seldom does the user interface attempt to communicate to the user
anything about the security status of the running program. When
it does, it is often not effective. For example, browser certificate
indicators have been a visible (though arguably inconspicuous) part
of every browser user interface for years, yet users still appear to
be largely unaware of web certificates or the assurances they offer.
Security tools and concepts are notoriously difficult [59]. Cyber-
attackers are aware of the user-computer gulfs when it comes to
security, and in recent years they have increasingly shifted their
focus toward the user [20].

A related problem is that whenever UIs do attempt to commu-
nicate security information to users, it is not done so in way that
facilitates understanding by users who lack mental models rich
enough to take the appropriate course of action. The system image
of the security-relevant aspects of software functionality typically
does not have a relation-structure—the user is not provided visibil-
ity into the relevant entities and processes and the causal relations
between them—which makes it impossible to develop mental mod-
els rich enough to guide behaviour, unless they are prepared to
seek external educational resources. If the average user is asked
if they are “sure” that they want to download a piece of software
they found on the internet, they will have no principled way of
answering one way or the other.

In addition, we think this backgrounding of security issues and
extreme foregrounding of primary-tasks promotes the idea that
software does not have security issues. Humans build mental mod-
els based on their observations, so if users only see system feedback
related to primary tasks, this will foster a notion that software is
only concerned with performing primary task–related functions.
When planning actions, if users only consider the primary-task–
related consequences of their actions, they will be susceptible to
any attack which presents itself as useful. Guided by such a mental
model of software, why should the user ever practice caution?

When designing to defend against security threats, system de-
signers generally favour a paternalistic approach: security matters
are handled automagically by the underlying infrastructure, and
the user is occasionally brought into the loop when absolutely nec-
essary. Given the complexity of computer security issues, this may
seem a sensible and effective approach. The user’s input is required
wherever there are gaps in the infrastructural solution—where it
cannot be determined with certainty that a given action will cause
the user harm, and the user must make a decision. For example, if
a website offering a useful service to the user has a misconfigured
certificate—or no certificate—what should be done? This site could
be perfectly safe, and outright preventing the user from visiting
the site could get in the way of them achieving a primary goal
for no purpose. On the other hand, the typical user does not have
the knowledge required to understand the risks they are taking by
visiting the site.

One approach to this problem is “soft paternalism” [33] wherein
the user is “nudged” toward making a conservative security deci-
sion in an uncertain situation. HTTPS warnings in web browsers
are an example of this, where a warning message is displayed, along
with a prominent ‘back’ button (labelled “Back to Safety”). The user
may proceed to the site, but the link to do so is hidden until an
inconspicuous “Advanced” link is clicked. While the “soft paternal-
istic” approach is more effective than providing no guidance at all,
it is far from perfect. In the HTTPS warning example, there will be
many situations where the user will be dissuaded from visiting a
safe website, and others where the user clicks through the warning
and visits an attack site. A “softer” paternalism yet is shown when
operating systems provide vague warnings about running software
from unknown sources: the user might be asked if they are sure they
want to run this software. In these situations the user must draw
on their understanding of the relevant issues to make a decision.
But will their understanding be sufficient?

In cases like those just mentioned, where the infrastructure is
unable to determine whether an action is safe or unsafe, it must
be up to the user to make the right decision. There is in principle
enough information ‘out there’ for the user to make good decisions,
but at present it practically inaccessible to most users. It should be
the responsibility of the system designer to write interfaces that
enable the development of security mental models rich enough to
support safe behaviour.

There are a number of challenges relating to security—and com-
puter security in particular—which may explain why interfaces do
not yet support effortless mapping. First, security has a secondary
or ancillary status in the minds of users. Users typically do not
begin interacting with a computer with a security goal in mind,
and frustration may set in if their progress toward achieving a pri-
mary goal is unduly interrupted by secondary concerns. Second,
security issues are complex, and it may be difficult to separate what
should be conveyed to users from what should be left concealed.
Computer security is particularly difficult because users cannot
as readily bring their everyday physical world mental models to
bear on problems as they can in the case of physical security. One
can easily leverage everyday knowledge to envision some ways in
which our home security can be compromised, which also suggests
how it may be defended. However, most of us do not have the kind
of everyday experience which will enable the configuration of, say,
a firewall, which requires some domain-specific knowledge of top-
ics like TCP/IP. Third, security is essentially adversarial: security
incidents are carried out by skilled attackers who actively aim to
undermine defensive efforts. This adds an extra layer of psycholog-
ical complexity, as interface designers not only need to be sensitive
to the goals and intentions of users, as is usually the case, but also
to how attackers might exploit these goals and intentions to bene-
fit themselves. Attempts to help improve user vision into system
security can also be exploited.

While we call security goals secondary and ancillary, this is not
to say they are unimportant. Everyone has security goals and places
high value on them; nobody wants to have their credentials copied
or be exploited for money. User interfaces should make it easy for
users to map the system state to their security goals, just as it has for
primary domain-oriented goals. This will enable the construction

132

Out of Sight, Out of Mind: UI Design and the Inhibition of Mental Models of Security NSPW ’20, October 26–29, 2020, Online, USA

of good mental models of system security, which will allow users
to make decisions that align with their goals.

UI designers will still have to practice extreme care in deciding
what information is made visible, how it is expressed, and what
information is concealed.

4 CASE STUDIES
In this section we present case studies of three cybersecurity at-
tack methods—malware, phishing email, and fraudulent websites—
which embody the problem of security (in)visibility just introduced.
We show how they are presently supported in system images, and
make preliminary suggestions for how this might be improved.
These case studies focus on desktop, mobile, and web platforms,
but the problem extends to IoT devices as well [47].

In general, these attack methods succeed where there are mis-
alignments between the user’s mental model of what the software
is doing, and what it is actually doing. The user believes they are
taking actions that are wholly beneficial to them, but in reality they
benefit an attacker, and can be harmful to the user.

User interface design contributes to this problem in the short-
term by failing to provide intelligible cues to the security state of
the system during key moments (such as when software is about to
be installed), and in the long-term by concealing too much of the
security-relevant aspects of software functionality. We claim the
proper solution to the short-term problem depends on developing
good high-level mental models of computer security.

4.1 Malware
Malware is software that runs on the user’s device, and is in some
way harmful to the user (e.g. exfiltrating their personal information;
hijacking resources to mine bitcoin). In other words, malware is
software that is misaligned with, or counter to, the user’s goals.

Being affected by malware is a two-step process. First the mal-
ware has to be installed on the host machine. Second, the malware
has to run.

Installing malware can happen in a number of ways, such as
installing software from dubious sources, connecting to dangerous
websites, and opening malicious email attachments. If the attack
is to succeed, each of these actions typically presents themselves
as consistent with the user’s goals. Software updates and real-time
antivirus protection can help protect the user from installing mal-
ware. Besides these, it is helpful if the user knows whether they can
trust the software or not; support for trust in software is provided
by digital certificates, which we discuss next.

4.1.1 Software Certificates. The user can avoid installing malware
by knowing something about the trustworthiness of the code they
execute. Properly used, code signing and digital certificates provide
just this assurance. Code signing uses public key infrastructure and
cryptographic hash algorithms to ensure that the program has not
been modified by someone other than the original author. Certifi-
cate Authorities (CAs) are trusted third parties who can oversee
the issuing of keys and/or certificates. In an OS context, the CAs
are the OS provider (e.g. Microsoft, Apple). CAs can perform iden-
tity checks on the author of the code, which in turn provides the
user an indication of their trustworthiness. For example, developers
are asked to provide uniquely identifying information to CAs [34],

and organizations seeking certificates must be bound to a legal en-
tity (e.g. [3]), enabling recourse when there are problems. In other
words, digital certificates can help give users confidence about the
integrity and authenticity of the software they consider installing.

Ideally, each time the user installs new software on their device
they are provided some intelligible information about the integrity
and authenticity of the code. If all trustworthy developers partici-
pate in CA-mediated code signing, and all untrustworthy authors
are denied from participating in this process, the information shown
to users will provide a very strong signal of the safety of the code
they are considering installing and running.

Desktop operating systems communicate information about the
trustworthiness of software through prompts displayed to the user
before they run the software. In Windows 10, a “User Account
Control” prompt is shown each time they run a program which
requires administrator rights, such as installers. These ask if the
user wants to allow the program to “make changes” to their device.
The prompts differ depending on whether the software is “verified”
or not. Being “verified” means the software has a signed certificate
from amember of theMicrosoft Trusted Root Program [36]. Verified
app prompts are shown with a blue banner, and the publisher’s
name and logo are shown (e.g. Figure 4a). Prompts with “unknown”
publishers are shown with a yellow banner (e.g. Figure 4b).

In macOS Catalina, the default security settings allow users to
install software from the macOS App Store, and from outside the
App Store provided it has been developer-signed and “notarized” by
Apple. When developers submit their apps for “notarization”, the
app is automatically checked for code signing issues, and scanned
for malicious content [2]. If notarization is successful, a “ticket” is
generated which the developer must “staple” to their software. A
copy of the “ticket” is also sent to “Gatekeeper”, the macOS security
feature which ensures that apps have been notarized before running.
Apple attempts to communicate whether an app has been notarized
or not through warning prompts such as those shown in Figure 5
(which never explicitly refer to “notarization” or “signing”).

If the user attempts to open an app from outside the App Store
that has been signed and notarized, they are shown the prompt
in Figure 5a. This prompt says that the app was downloaded from
“the Internet” and that it has been scanned for malware by Apple,
and asks if they are “sure” they want to open it. When attempting
to run an app that has not been signed or notarized, the prompt in
Figure 5b is shown, saying that the app cannot be opened because
the publisher is “unverified”. In order to run the app, the user can
control-click the app icon before selecting “Open”, which creates
an exception for the app in security settings. After this is done,
they are shown the prompt in Figure 5c, warning the user about
the potential security and privacy dangers of running unverified
software, and asking if they are “sure” they want to open it.

In Windows, the only differences between attempting to run
apps from “verified” versus “unknown” publishers are the colour of
the banner prompts, the inclusion of “verified” or “unverified” signi-
fiers, and the presence or absence of a logo. The sequence of actions
they need to take is identical. The user may never take notice of
the difference between these two prompts. If they are paying close
attention and notice the “verified” language, one wonders what
significance it would have. No attempt has been made to build the
user’s mental models of Microsoft’s verification process, so the user

133

NSPW ’20, October 26–29, 2020, Online, USA Eric Spero and Robert Biddle

(a) Requesting write access for software from a “verified” publisher,
i.e. the software has a signed certificate from a trusted authority.

(b) Requesting write access for software from an “unknown” pub-
lisher.

Figure 4: Windows 10 User Account Control prompts for
“Verified” (4a) and “Unknown” (4b) publishers

cannot see the assurances it provides. Indeed, a user study on Win-
dows User Account Control prompts by Motiee et al. [37] showed
a general lack of their effectiveness. Only 13% of participants rec-
ognized “unverified” software as being potentially dangerous or
malware, 77% had an incorrect understanding of the purpose of the
prompts, and 49% consented to a random fake prompt.

macOS more clearly distinguishes between software that has
passed the OS legitimacy tests from those that haven’t. By disabling
the running of unidentified apps in the normal way, macOS makes
it difficult for users to miss the distinction between the two. The
warning shown when the user tries to open the non-notarized app
makes explicit reference to malware, which may help give the user a
basic impression of the significance of their verification process. It is
not obvious how to bypass this feature, and to find this out the user
will have to seek external resources. Many will be dissuaded from
running the app, and may seek out alternatives instead. For those
who do find out how to run apps from unidentified developers, the
prompt shown when they try to do so warns the user of potential
harmful consequences (i.e. harm to Mac; compromise of privacy).

Each of the prompts shown in Figures 4 & 5 asks the users to
make a decision, but it will be difficult for many to know how to
respond. Both Windows and macOS aim to express a distinction
between apps which have been ‘checked’ in some way from those

(a) Attempting to open an app from outside the App Store that has
passed the “Gatekeeper” check, i.e. it is developer-signed and “nota-
rized” by Apple.

(b) Attempting to open an app that has failed the “Gatekeeper”
check.

(c) Attempting to open the same app shown in Figure 5b after having
made an exception.

Figure 5: macOS software certificate warnings

that have not, but the meaning of this distinction depends on a
basic model of this checking process and what it means for user
trust and safety. For example, if the process involves some identity
checks on the developer and a careful inspection of the software
for possible security issues, it will be evident to the user that this
check has high relevance to their decision. On the other hand, if
there are no background checks, there are no malware scans, or
if the malware scans are easily defeatable, these checks will have
less relevance for the user. Without attempting to inform the user
of the checking process, the user does not know how much trust
they can put in this process, and therefore the software. (This is of

134

Out of Sight, Out of Mind: UI Design and the Inhibition of Mental Models of Security NSPW ’20, October 26–29, 2020, Online, USA

course assuming that the user even recognizes a difference to begin
with, which they quite possibly will not in the case of Windows.)

An attempt should be made to impart a schema of the certifi-
cation process to users both in the case of running non-certified
software, and when running certified software as well. A mental
model of the certification process will help users envision the con-
sequences for their actions in a way that is not presently possible.
We think the reference to malware scans in the macOS prompt is a
step in the right direction, but more should be done.

In addition to these issues of communication, there are wider
systemic issues with software certificates and CAs. It is common
for seemingly legitimate developers to forego the OS certification
process—Open Hardware Monitor (Figure 4b) and MuPDF (Fig-
ure 5b) are two examples. There are a number of potential reasons
for this relating to challenges relating to the notarization process
and cost. The macOS process is easiest with Xcode, which in turn
requires macOS (and therefore Mac hardware) to run. Developers
using other SDKs must invest development time into building their
own tools and scripts [25]. Developers have noted frustrating bugs
with Xcode and the notarization process [38], and in getting no-
tarization for apps that use external libraries [25, 38]. Notarizing
also imposes additional “hardening” restrictions [1] which can add
extra development time (e.g. [24]). Finally, membership in the Ap-
ple Developer Program—a requirement for notarization—costs 99
USD annually, which appears to be a barrier for some (e.g. [60]). If
many useful and legitimate apps from reputable developers forego
the notarization process, it substantially weakens the ability for
software certificates to signal trustworthiness.

4.1.2 Detect and Mitigate. If the user happens to install malware,
they must detect it before any measures can be taken to remove
it. The difficulty is that users are provided very little visibility into
the underlying functionality of software, which makes it easy for
malware to carry out malicious functions undetected.

Many users rely on antivirus software to perform this task for
them [26], but their actual effectiveness is highly questionable. One
study reported that 70% of malware today exists only once, and
80% disappears after one hour [12]—much too quickly for antivirus
threat libraries to keep up. On Linux-based systems, AppArmor [27]
defines what processes can be accessed on a per-application basis,
which can limit the power of malware once it is installed on the
user’s system.

There are tools that can help improve the visibility of the activity
of running processes, which can be used to find evidence ofmalware.
For example, Little Snitch [42] reports the network requests made
by each application, and allows users to restrict network access per-
application. However, a significant amount of technical knowledge,
attention, and fine-tuning is required to make use of such tools.

4.1.3 Primary Task Tunnel Vision. We suspect that the extreme
backgrounding of security issues in user interfaces in favour of a
near-exclusive focus on primary tasks fosters a dangerously naive
conception of software in which security-relevant consequences for
software use are simply not considered at all, and users instead think
of software as something that essentially supports primary tasks.
Such a view would lead users to think only of the primary task–
related consequences for their action, increasing their susceptibility.
For example, running an app is ‘good’ if it appears to align with

primary goals, and ‘bad’ only if it does not. Attackers can exploit
such a view by bundling malware with useful software, which is a
common technique (e.g. ‘cracked’ software).

Indeed, Spero et al. [51] found evidence that users tended to think
of malware in primary-task terms. Their study featured a diagram-
ming exercise where participants drew their understanding of how
a malware-affected word processor worked, and they found that
many participants focus exclusively on the capacity for malware to
disturb productivity. Malware destroyed and corrupted documents
and devices, and interrupted the user’s input, but seldom did it
exploit the user or their device for someone else’s benefit.

4.2 Phishing Email
In a phishing attack, the user is solicited to perform an action
that the user believes is consistent with their goals (e.g. recovering
their online identity or bank account, sending money to a friend in
need, or responding to an urgent request). In reality, these actions
typically lead to handing something over to an attacker (e.g. banking
credentials, money). A key component of this scam is the attacker
“spoofing” their identity (impersonating another). The attacker may
pretend to be from a reputable organization, or a friend of the victim.
In “spear-phishing” attacks, attackers use information acquired
about the target to make their pitch more effective. For example,
attackers may study the email communications of an employee for a
while, and then at some opportune moment send an email spoofing
the identity of a trusted other asking for a transfer of funds, which
will be deposited into the attacker’s account.

Phishing attacks are often attempted using email. In email, user
interfaces provide users with relatively little identifying informa-
tion about their conversational partner: mainly the From header
and body text. The From header lists the email address and given
name of the sender. Both of these pieces of information can be
easily modified to make the message appear as if it is coming from
someone other than the actual source. The ‘real’ source of the email
message is not clearly visible in the main UI, and one has to know
where to find it. Attackers use the body of the email to make their
pitch to the user, which involves adopting the writing conventions
of the person or role they wish to impersonate. They may make
mistakes in grammar or style which can lead to suspicion, but more
careful attacks can seem quite genuine.

DMARC (Domain-based Message Authentication, Reporting &
Conformance) authentication checks provide the best-available
infrastructural protection from fraudulentmodifications to the From
header [16]. DMARC includes other authentication mechanisms
Sender Policy Framework (SPF) and DomainKeys Identified Mail
(DKIM). SPF authenticates the Mail-from header—the true source
of the email—and DKIM verifies digital signatures attached to the
email. When performing a DMARC check on an incoming email,
the receiving server queries the domain in the From header for its
DMARC policy, which provides a list of domains which may use it
in the From header. The receiving server then compares this list to
the domains provided by SPF and DKIM, and if there is no match
the DMARC check fails.

Unfortunately, there are some implementation issues with
DMARC. A recent paper by Chen et al. [16] shows that there are in-
consistencies between the various components involved in DMARC

135

NSPW ’20, October 26–29, 2020, Online, USA Eric Spero and Robert Biddle

authentication, and also in their implementation by mail servers
and clients, which leads to a number of vulnerabilities. According
to Microsoft, only 9% of Fortune 500 companies publish strong
DMARC policies [35]. Even where DMARC is enabled, users may
be vulnerable to From header forgeries and other fraudulent misuse.

Email providers defend against phishing emails by using authen-
tication mechanisms like DMARC, and through analysis of message
content including attachments and the body text. When an incom-
ing email is determined to be malicious it is typically directed to a
“junk” or “spam” folder, which are rarely checked by users, and it is
therefore likely that the message will never be seen. We think this
is a lost opportunity to give users insight into the phishing email
threat. These phishing email could be shown to users along with
the factors that the anti-spoofing procedures used to determine it
was fraudulent, allowing users to start building mental models of
how these scams work, so they are better prepared to act safely if
they ever have to make these determinations themselves.

Some spoofing tricks fall outside the scope of anti-phishing mea-
sures, such as changing the given name component of the From
header, and creating email addresses from legitimate providers
which look like they might be owned by the individual they are
impersonating (e.g. John.Smith1@gmail.com impersonating John.
Smith@gmail.com). At present, the user is offered no support for
attacks of these types.

In general, we think increasing users’ vision into the true source
of the message would help them build the mental models of email
necessary to identify fraudulent email whenever they are required
to do so. This means more pieces of identifying information, pro-
vided in a way that might be intelligible to ordinary users.

We think that making the Mail-from (the true origin of the
email) more visible would be beneficial, along with some informa-
tion about the Mail-from domain. In addition, it would be helpful
if users could be provided some information about this domain,
including any cues regarding its trustworthiness.

Digital signatures would also be a useful additional piece of
identifying information, providing assurance of the authenticity
and integrity of an email through the use of public key cryptography.
Just like software, email can be signed, and incoming messages can
be accompanied by an indication that the message has or has not
been signed by someone they trust (see Figure 6 for an example
of this from browser-based PGP implementation Mailvelope [32]).
Digital signatures add an extra layer of difficulty to the task of
impersonating another, as the attacker now must also acquire a
private piece of data owned by person they with to impersonate.

Email clients could in principle pre-trust email signatures from
known trustworthy domains, including those who are most imper-
sonated in phishing email (e.g. banks, tech companies). Users would
then manually add people they regularly interact to their list of
trusted accounts. Email from outside sources would be flagged as
untrusted—similar to Figure 6b, but perhaps more obvious—which
should put the user into a vigilant mindset. They could then be
guided through a process of verifying the unknown sender to see
if they should be trusted.

Support for digitial signatures in email are available today through
many implementations of PGP. Unfortunately, the UIs of these im-
plementations of PGP have long been notorious for their usability

(a) Mailvelope indicator for a known signature

(b) Mailvelope indicator for an unknown signature

Figure 6: For signed emails, Mailvelope performs an auto-
matic check to see if the signature matches a key in the
user’s keychain, and shows the results under the body text.

issues [59] which prevent its adoption by non-technical users. Mail-
velope [32] is a browser extension that augments web email clients
with PGP, allowing users to send signed and encrypted emails
through providers like Gmail and Outlook.com. Mailvelope repre-
sents a step forward for usable PGP, but a basic mental model of
concepts involved in public key encryption is still required to make
use of it, and to understand how users can trust that a signed mes-
sage comes from a particular individual. The app does not attempt
to impart this mental model to users, and therefore remains truly
usable only for a technical audience.

4.3 Fraudulent Websites
Similar to phishing email, fraudulent websites try to convince the
user that they are offering a legitimate service in order to take
advantage of the user. They are often used as part of phishing
attacks to do things like capture passwords, accept payments, and
deliver malware. Users might also find them through web search,
or by mistyping a URL.

X.509 certificates [17] provide infrastructural assurances about
the legitimacy of a website, and are part of the HTTPS protocol.
These “web certificates” can be signed by CAs, who perform identity
checks as part of the signing process. Browsers come pre-configured
with a set of trusted CAs, and others can be added by the user.

CAs offer three validation standards to authenticate websites
corresponding to different amounts of rigour in the checking pro-
cess. Domain Validation (DV) offers the least assurance of identity,
ensuring that the domain is controlled by the individual applying
for the certificate. Organization Validation (OV) performs further
checks that the organization exists, for example by checking gov-
ernment registries. The Extended Validation (EV) standard ensures
that the website is controlled by a legal entity, and CAs take steps to
establish the legitimacy of the business operating the website [13].
EV provides the most assurance.

Web browsers provide a visual indication of the website’s cer-
tificate next to the URL. The indicators have changed over time,
and vary between browsers; the discussion here reflects the current
(mid-2020) version of Google Chrome. A “lock” symbol denotes
that the website has a certificate that has been signed by a CA

136

Out of Sight, Out of Mind: UI Design and the Inhibition of Mental Models of Security NSPW ’20, October 26–29, 2020, Online, USA

(a) DV / OV / EV certificate

(b) No certificate

Figure 7: Web certificate indicators in Google Chrome (mid-
2020). HTTPS connections are shown with a “lock” symbol
meaning they are “secure” (e.g. Figure 7a), and HTTP con-
nections are shown as “Not secure” (e.g. Figure 7b).

(Figure 7a), and the words “Not Secure” are shown if the site has no
certificate (Figure 7b). Clicking on the certificate indicator opens
a menu in which more detailed information about the certificate,
including the validation standard, can be seen.

A number of issues in the communication of web certificate
information to users impair their ability to meaningfully signal a
website’s authenticity and trustworthiness. For example, the “lock”
symbol shown with DV, OV, and EV certificates is meant to indicate
“secure” [22], but no attempt is made to explain to the user what
“secure” means. Understandingwhat these certificates mean for user
security requires working knowledge of the X.509 infrastructure,
including CAs, encryption, and the client-server model.

A related issue is that a single “lock” symbol is now used for all
three validation levels, despite large variations in the respective
assurances they offer. DV certificates offer next to no assurances
about identity: they are easily, freely, and quickly obtainable by any-
one with a registered domain—malicious actors included: over 50%
of malicious websites now use HTTPS [39]. With DV certificates,
users know nothing about where their data is going. EV certificates,
on the other hand, require substantial checks on the website owner
and their affiliated business, cost hundreds of dollars, and the pro-
cess takes days to complete. If a website has an EV certificate, users
can have vision into who they are connected to, and also the knowl-
edge that they have been vetted by a trusted authority—provided
they have the appropriate mental models of web certificates.

What the three validation levels have in common is that they
ensure an encrypted channel of communication between client and
server. These connections are “secure” from man-in-the-middle
attacks. However, if the endpoint of the encrypted channel is mali-
cious, encryption will do little to protect the user.

There is empirical evidence that the current way of signalling
identity and web certificate information is ineffective. In two sepa-
rate studies by Stojmenović et al. [52, 53], eye-tracking was used
to show that the vast majority of participants never look at the
certificate indicator when making trust decisions, even when they
are specifically asked to look for things which could be help them
identify the page. Until late 2019 browsers distinguished EV indica-
tors from OV/DV by showing the legal entity tied to the website
to the right of the “lock” icon, but a large-scale study of Chrome
usage by Google researchers showed that this way of signalling
EV did not have a meaningful effect on user behaviour, and likely
did not help users defend against fraudulent websites [54]. How-
ever, users did click on “Page Info” (accessible by clicking the “lock”

icon) significantly more often when the EV indicator was present.
It seems that users do not understand EV certificates, or what the
EV indicator meant, or both. This is hardly surprising as little effort
has been made to develop the user mental models involved. In a
study on URL parsing, Reynolds et al. [46] found evidence of weak
mental models of URL structure, and that users could not determine
the correct identity of obfuscated URLs in 60% of cases.

There are at least two dimensions of security concerning con-
nections to websites (encryption and identity), and the presence or
absence of a single “lock” icon is incapable of communicating this
status. Indeed, Biddle et al. [8] showed that the separate presenta-
tion of these dimensions in UI indicators improved user compre-
hension and feelings of safety. The larger problem is that the user
does not know what these dimensions of security status mean, and
they cannot develop an understanding without seeking external
resources. We think that UI indicators for website certificate infor-
mation should be rich enough so that over time users can develop
good high-level mental models of certificates and the infrastructure
surrounding them. Once they have a basic understanding of how
certificates work, they can know what they signify, and therefore
their relevance for the trust decisions they make online.

Besides web certificates, exclusion lists of knownmalicious URLs
can help protect users from fraudulent websites. Perhaps the best
known use of these exclusion lists in the context of web browsing
is Google Safe Browsing, which is integrated with all major web
browsers (i.e. Chrome, Firefox, Safari). When users attempt to visit a
malicious URL, Google Safe Browsing shows a full-screen warning
before the connection is made. Figure 8b shows a “Deceptive site”
warning displayed by Google Chrome, which might be shown for
URLs tied to known phishing sites. The format is similar to HTTPS
warnings, and so are the options available to the user: they can
abort visiting the URL by clicking the “Back to safety” button, or
they can bypass the warning by clicking the “DETAILS” link, and
then a clicking a link labelled “I understand the risks”. The security
status is shown as “Dangerous” to the left of the URL (Figure 8a).

According to a 2016 report Google Safe Browsing is the most
effective exclusion list web browsing service, yet it only detects a
small fraction of malicious websites [56]. In an informal analysis,
we visited 20 active phishing domains from the Phishing Domain
Database [31] at random, and none were flagged by Google Safe
Browsing. There is some evidence that phishing sites are quite
short-lived [6], and perhaps Safe Browsing faces similar challenges
to those faced by antivirus software.

The warning page shown to users provides only generic infor-
mation about the threat is provided. For example:

• The site ahead contains malware
• This page is trying to load scripts from unauthenticated
sources

• Deceptive site ahead
• The site ahead contains harmful programs
• Suspicious site [23]

The goal is to alarm the user and turn them back around to prevent
them from falling victim to an attack. This is good, but providing
the user with more information would be beneficial for the devel-
opment of richer mental models, which we think would make for
a better long-term solution. Landing on this warning page is an

137

NSPW ’20, October 26–29, 2020, Online, USA Eric Spero and Robert Biddle

(a) “Dangerous” security status

(b) Deceptive site warning

Figure 8: Google Safe Browsing uses an exclusion list of
known malicious URLs to protect users from fraudulent
sites, and is integrated with all major web browsers. When a
user attempts to visit an unsafe site in Google Chrome they
are shown a full-page warning (e.g. Figure 8b) and a “Dan-
gerous” security status indicator (e.g. Figure 8a).

opportunity for education, and given that the user’s own actions
have brought them to a potentially unsafe situation they may in a
particularly receptive state. We should provide the user with more
detail about the nature of the threat to help prepare them for situa-
tions where Google Safe Browsing or similar defensive measures
do not catch the problem. This could include communicating the
evidence Google used to determine that the site is malicious. For
example, was it deceptive domains, suspicious code execution, du-
bious claims made on the website (such as affiliations with major
companies)? It might also be helpful to show the user how the
suspicious page looks, as they might be surprised that an attack
site can have a professional look-and-feel.

5 POSSIBLE SOLUTIONS
Wherever there are imperfections in infrastructural cybersecurity
defences, it is up to the user to make the right decision. The user’s
ability to protect themselves depends on mental models of the
situations they are in that are accurate and detailed enough to
guide safe action. They must decide if they want to install a piece
of software, visit and enter sensitive information into a website,
and respond to requests for action made through an email. In these
examples, the decision rests on user ascertainment of the identity
or origin of something. The user must also be able to detect and
remove any malicious software running on their device, which
requires a model of the activity of applications.

There is infrastructural support for assurances about identity
and origins in the form of digital certificates and signatures (though
there are systemic and implementation issues), along with their UI

indicators, and for understanding process activity, but the relevant
information is not being properly communicated to ordinary users.

Understanding is model-based, consisting of elements bound
together in a causal relation structure. If the aim is to provide
users with enough information about the state of their system
to inform their behaviour, it is not enough to say that software or
websites are “verified” or “unknown”, “secure” or “not secure”. Users
need to develop a gist representation of the real-world situation(s)
underpinning these labels to know what they really mean.

UI designers must help users build the knowledge to generate
accurate security-relevant representations. Ordinary users will not
read documentation or seek external knowledge sources to build
their understanding, so the source of this knowledge must be the
user interface. This is a non-trivial challenge, especially considering
that much of this knowledge will be domain-specific, which means
the development of new knowledge structures. However, this same
challenge has already been faced and met for support of mental
models for primary domain-oriented use of software, and we see
no reason why the same can’t be done for security.

A unique challenge for the support of security models is to avoid
major distractions from the primary task that led the user to use
software in the first place. Economy of presentation will be key, and
improvements will likely be very gradual. We identify two general
strategies for meeting the goal of improved security understand-
ing in light of the challenges faced. The first is to leverage analogy
wherever possible, which includes references to structurally isomor-
phic knowledge from more-familiar domains, and visualizations in
which causal relations are expressed through pictorial analogies.
The second is to provide user with model-building information not
just when there is a potential security risk, as is typically the case
at present, but when the user is safe as well. For example, provide
an indication of the verification process when software is deemed
trustworthy as well as dubious. Increasing the number and range of
situations in which this model-supporting information is provided
is a way of coping with the relatively low amount of information
that can be conveyed at a time.

In the remainder of this section we discuss some approaches
which we think will be useful in devising a solution to this problem.

5.1 Ecological Interface Design
The issue of interface complexity is not new, long predating soft-
ware systems. For example, the levers, knobs, and dials of steam
engines required substantial training and experience to master. In
the context of modern complex system engineering, an established
approach developed by Rasmussen and Vicente is that of Ecological
Interface Design (EID) [57].

The origins of EID include earlier work on mental models [44]
but there is a specific focus on the needs of operating complex
engineering systems, including the need for fault diagnosis and
managing human error. EID involves an operation model distin-
guishing skills, rules, and knowledge (SRK), and establishing an
abstraction hierarchy based both on physical elements and func-
tional purposes. In this way, simple skill-based interfaces can be
used for normal operation, with the deeper levels quickly available
when needed.

138

Out of Sight, Out of Mind: UI Design and the Inhibition of Mental Models of Security NSPW ’20, October 26–29, 2020, Online, USA

Figure 9: Systems can be described at several levels of a
means-ends hierarchy. From Rasmussen [45]

This general structure, the abstraction hierarchy, is familiar (in
different ways) to both end-users and to programmers. To end-
users, it is sometimes called “progressive disclosure”, and allows
simple screens that handle most things, with an “Advanced” button
or similar to allow handling of less common needs. The structure
therefore limits cognitive load much of time, without prohibiting
access to more detailed control. For programmers, the structure
resembles levels of decomposition, whether in structured program-
ming, object-oriented, or functional programming. The structure
enables reuse, but also supports program comprehension, main-
tenance, and debugging. EID certainly has a place in addressing
security. For operations centres, for example, it supports oversight
of systems or networks, allowing easy ascertainment of normal
states, while providing access to levels of detail in abnormal and
potentially problematic states [7].

Applying the approach to software security for end-users, how-
ever, would present some different challenges. The reasons involve
the nature of security understanding and the SRK model. From the
perspective of the end-user, at the top of the abstraction hierar-
chy, there would be two common situations. In one, the situation
detected is known to be harmful and is therefore forbidden. For
example, access over a network to private data. In the other, the
situation is potentially harmful, but needs detail consideration of
the implementation levels of the software. End-users will not have,
and likely not want, knowledge to engage—indeed, engagement
might even make matters worse, for example by approving inse-
cure operations such as unexpected requests to access interprocess
communication sockets. Considering the SRK model, the end-users
might be seen as having the skills to operate the software normally,
but not the rules or knowledge of the implementation and security.
Stated more carefully, the issue is that the end-users may well have
mastery of rules and knowledge for their application domain, but
not of the implementation or of the security domain.

Figure 10: Windows 10 network status visualization.

5.2 Visualization for Understanding
In day to day life, people see various displays that indicate aspects
of the inner states of systems, even when they do not have spe-
cific control of those inner states. Simple examples include battery
meters, fuel gauges, and, network activity monitors.

Amore complex example is theWindows 10 display to help users
understand network connectivity issues (Figure 10). The idea seems
to be to help users understand where the problem is, for example
with a network connection to their own machine, or with a more
distant connection issue. In the case of a more distant problem,
there might be little the user can do, but at least they know that is
the location of the problem, so they may contact support personnel.

More complicated yet is a dashboard element on the Toyota
Prius, a popular hybrid car that involves both a gasoline and an
electric engine. The display is called the “Energy Monitor”: see
Figure 11. The diagram shows the elements of the drive system,
including both engines and the battery pack, and shows which is
currently being used to provide power; it also shows when the
battery is being charged by regenerative braking. The driver of
the car does not have precise control over these elements, but the
display helps the user understand what is happening, and thus
helps guide driver expectations about driving performance and
economy. Similar visualizations have been proposed for “smart
home” environments [15].

The common approach in all these examples is that they do not
support directly controlling the system internals, but do reflect the
impact of external events. They can therefore illustrate states that
the user will understand, including the effects of errors or even
malice. For example, even a simple batterymeter on a smartphone or
laptop computer can show an unexpected strong drain, potentially
indicating the presence of malware.

If we were to apply this approach to all software systems, the is-
sues then are what we could show, whether users could understand
the implications, and how easily the approach could be defeated
by attackers. Moreover, if the only way of involving users is a vi-
sual display, then damage may well be done before a user detects
anything anomalous. If more active user involvement is required,
then the situation resembles that of web browsers or smartphones,
where software is tightly restricted, but allows access to resources
with user permission on an as-needed basis. The interaction often
required ensures user attention, and the timing means the user
has some context for the request. However, apparently reasonable

139

NSPW ’20, October 26–29, 2020, Online, USA Eric Spero and Robert Biddle

Figure 11: 2019 Toyota Prius Owner’s Manual entry about
the Energy Monitor dashboard display [55].

requests can be fraudulent, and repeated requests will be annoying
and likely approved without appropriate consideration.

Visualization can also be used to aid end-user understanding
by showing users the effects of their interactions with the sys-
tem. Again, there many simple examples. Some are very primitive,
e.g., volume knobs or buttons that indicate the directions for loud
and quiet, and are typically standarized. Some are a little more
sophisticated, such the diagrams on gearshift levers in standard
transmission cars. These do vary between car models, but once the
driver has learned the pattern, the diagram is seldom needed. In
such cases, we might consider the diagram as having helped the
driver build a mental model for controlling the transmission.

Visualization can also be a powerful method for delivering meta-
phors/analogies. As we mentioned in Section 2, humans rely on
metaphor/analogy particularly for copingwith novelty, by ‘bridging-
in’ existing knowledge. UI elements can be made to pictorially
resemble real-world entities or, more abstractly, causal relations,
which could help the user understand something about system func-
tionality. This technique enabled the desktop UI metaphor, which
gave many users a newfound understanding of computer usage and
capabilities [48].

6 A NEW SECURITY PARADIGM
We have identified issues in user interfaces that inhibit the develop-
ment of security mental models, provided cases demonstrating the
problem in context, and suggested how these might be resolved.
In Section 6.1 we draw the main ideas in this paper together as a
new security paradigm that we call Security Attention Visibility
and Evaluation (SAVE). In Section 6.2 we describe this paradigm’s
major principles.

6.1 Security Awareness Visibility and
Evaluation (SAVE)

When deciding how to act, people simulate the outcomes of various
actions and conditions using mental models (Section 2.1). The sim-
ulations are accurate to the extent that the mental model and the
thing it represents have the same causal structure. Building good

causal structures requires repeated observation of the real world
thing as it participates in various cause-effect events. When coping
with novelty, there are situations where it is helpful to ‘borrow’
structure from similar models via analogical transfer. Using analogy
is not strictly necessarily, but where it is not employed, high quality
observations have an even greater importance.

In Norman’s Theory of Action (Section 3.1), the observable parts
of the system (the “system image”) should serve as a bridge between
the user’s model of the system and the system’s deeper engineer-
ing design; between the user’s goals and the system’s state. Users
must be able to map the system image to their goals, and to the
system state. The system often requires users to make decisions
with security implications that depend on richer mental models
than what they have. We suggest the weakness of security mental
models is the result of an impoverishment of security information
in the system image (Section 3.2).

Systems frequently ask users to make security-sensitive deci-
sions while failing to provide the information they need to build
the kind of models that can make those decisions. In software
installation (Section 4.1), email (Section 4.2), and web browsing
(Section 4.3), users are asked to make trust decisions without (a)
understanding what the possible consequences of misplacing trust
might be, or (b) knowing anything about the trustworthiness of the
source.

We propose the SAVE paradigm as a solution to this problem,
which is defined as follows:

SAVEparadigm:User security can be greatly improved
by building into the system image better bridges be-
tween the user’s security goals and the system’s secu-
rity state. Security information must be made salient
in the user interface, in terms that users find intelligi-
ble, while making frugal use of user attention. These
security bridges must prepare users to make informed
security decisions whenever they are required by the
system to do so.

SAVE is not a form of persuasion nor conditioning; rather, it
aims to build users’ understanding of system security so that they
are able to successfully map potential actions with outcomes.

In the following section we present four main principles for the
SAVE paradigm. These capture the essential qualities interfaces
must have to avoid the ‘impoverishment’ problem just mentioned—
providing richer system images of security, which will help users
build richer mental models of system security. We are flexible on
details regarding how these principles may be implemented: Our
main objective in this paper has been to articulate the nature of the
problem and the general form of the solution. We plan to consider
solutions and their implementation more thoroughly in future work.

However, we do identify some existing UI paradigms that we
expect will play an important role in the implementation of SAVE:
Ecological Interface Design (EID; Section 5.1), Visualization (Sec-
tion 5.2), and metaphor/analogy (Section 2 & 5.2). EID supports
investigating activity by emphasizing functional layers, allowing
users to drill down layer by layer. Progressive disclosure can allow
for a frugal communication of security issues by making details
available on demand. Visualization supports users by displaying
functional models of system activity, showing consequences of user

140

Out of Sight, Out of Mind: UI Design and the Inhibition of Mental Models of Security NSPW ’20, October 26–29, 2020, Online, USA

actions (Section 5.2). Visualizations also provide an effective and
efficient way of communicating causal relationships between enti-
ties in a system, which will be a major advantage for mental model
development. Metaphor/analogy can help improve intelligibility by
allowing users to bridge-in existing knowledge (e.g. the desktop
metaphor). While useful, metaphors/analogies are a partial solu-
tion at best, and they can easily mislead (e.g. [59]); designers must
carefully consider potential issues. None of these paradigms has
been much employed to support security in the way we suggest,
though we feel they all have significant potential.

6.2 Principles for SAVE
The following principles areminimal requirements for SAVE-abiding
interfaces. We think these principles could be useful as UI evalu-
ation heuristics, and could serve as helpful scaffolding for other
HCI researchers who may wish to implement their own particular
solutions.

Principle of Visibility: Make the system’s security state, and the
security consequences of actions, visible to users. Where there exists
infrastructural support for a user’s security decision (e.g. X.509
certificates; PGP signatures), make sure it is easy to find in the
system image. The way it is presented in the system image must
be in terms the user will understand in terms of their goals, the
actions and the consequences—see below. Where the user’s actions
have consequences for security, make these visible as well. If this
information is absent in UIs, there is little opportunity for the user
to develop understanding.

Principle of Intelligibility: Make it possible for users tomap visible
UI elements to security goals, regardless of their technical background.
It is not enough for the security state and consequences to be
visible: the information must be presented in a form that is human-
intelligible for all users, and it must be relatable to the user’s security
goals.

Principle of Frugality: Treat attention as a scarce resource. Atten-
tion is capacity limited, and managing users’ attention is always
important. Security is a secondary task, so it is especially important
that frugality is practised when communicating security informa-
tion to users.

Principle of Preparedness: Make sure the user is able to make the
security decisions required of them. The ultimate test of whether a UI
succeeds or fails is whether the system has adequately prepared the
user (through mental model building) to make informed decisions
whenever they are called upon by the system to do so.

6.3 Challenges
Our proposition is essentially to improve security behaviour through
education, where the content is delivered through UI widgets repre-
senting relevant aspects of the underlying system state. We take the
challenges that come with such a proposal seriously. We understand
that computer security concepts are inherently complex and alien
to most users. We consider intelligibility as the core principle of this
paradigm, and demonstrating that users can make sense of what
is being communicated to them will be the highest criterion for
success. We also understand that security matters have a secondary

status for users, meaning that users have less patience for being
asked by the system to consider security. This constrains the band-
width of communication between us and the user, exacerbating
the challenges of intelligibility. We do not expect to find a single
solution that will work perfectly for all users in all cases. However,
by adhering to the principles just described, we do think that that
practical gains can be achieved with at least a subset of users.

Another potential challenge is that the security system images
could have the unfortunate consequence of helping attackers plan
their attacks. The UI enhancements we propose would let attackers
would know what aspects of the system security users are aware of,
and they would then know to focus their attacks on other aspects
of the system. This could create an ’arms race’ where UI developers
are making continual UI changes to respond to new vulnerabilities.
While a plausible scenario, the implications for user security would
never be worse than the current state of affairs, where users are
kept mostly in the dark and attackers need not be concerned about
being detected by users.

7 FUTUREWORK
The ultimate aim of this project is to create user interface elements
that help build users’ understanding of the system security state.
We expect that these will make use of techniques borrowed from
the existing UI paradigms visualization and Ecological Interface
Design (particularly the abstraction hierarchy), and perhaps others.

We plan to make prototypes of these security-mental-model-
building UI elements aimed at solving real-world usable security
problems such as those described in our case studies (Section 4). We
will test these prototypes with real users and compare the security
behaviour and knowledge outcomes of those who use the prototype
against a baseline (e.g. those who use the existing, ‘unenhanced’
system).

To help us design intelligible security interfaces we will first
study the knowledge people have about everyday, physical world
security. This work is already underway: we conducted a focus
group on everyday security behaviour [50], and we are in the midst
of conducting a series of one-on-one interviews on the same topic.
Our main finding in this work so far is that people tend to cluster
their real-world security behaviour around certain key contexts,
and we think these contexts map well to the digital domain. We
think that designing interfaces with people’s existing real-world
security tendencies in mind can help improve security. In recent
work, we described a number of UI design patterns that conform to
our findings regarding everyday security behaviour [49], and these
patterns will inform the design of our implementations of SAVE.

8 CONCLUSIONS
Many papers on usable security have commented on the problem
of users having weak mental models of security issues. In this
paper, we reviewed the major cognitive science literature on mental
models to provide a situating framework for our discussions of what
information users need, and we examine how this idea has been
used in cybersecurity research. We presented three case studies
of security problems which are the result of this (in)visibility of
security problem, and suggest how it might be resolved through UI

141

NSPW ’20, October 26–29, 2020, Online, USA Eric Spero and Robert Biddle

design. Finally, we discuss three approaches which we think will
be useful in the development of more comprehensive solution.

Users must make decisions with security consequences, but their
internal representations of the security-relevant aspects of software
are not rich enough to enable safe behaviour. We suggest that user
interfaces should provide better vision into the security-relevant
inner workings of software to better support security behaviour.
There are several challenges: we must not over-burden the user, and
we must not expect the user to become a security expert. Instead,
we must expose security considerations in a way that relates to the
user’s goals, and over time provide observable cause and effect re-
lationships that will build helpful mental models. Where users bear
responsibility for making security decisions, they must have the
understanding to make those decisions, and it should be the design
of the user interface that helps them develop that understanding.

REFERENCES
[1] Apple Inc. 2020. Hardened Runtime. Apple Inc. Retrieved May 23, 2020 from

https://developer.apple.com/documentation/security/hardened_runtime
[2] Apple Inc. 2020. Notarizing macOS Software Before Distribution. Apple Inc.

Retrieved May 22, 2020 from https://developer.apple.com/documentation/xcode/
notarizing_macos_software_before_distribution

[3] Apple Inc. 2020. What You Need To Enroll. Apple Inc. Retrieved May 17, 2020
from https://developer.apple.com/programs/enroll/

[4] Farzaneh Asgharpour, Debin Liu, and L. Jean Camp. 2007. Mental Models of Se-
curity Risks. In Financial Cryptography and Data Security (Scarborough, Trinidad
and Tobago) (FC ’07), Sven Dietrich and Rachna Dhamija (Eds.). Springer, Berlin,
Germany, 367–377.

[5] Lawrence W. Barsalou. 1999. Perceptual symbol systems. Behavioral and Brain
Sciences 22, 4 (1999), 577–660. https://doi.org/10.1017/S0140525X99002149

[6] Simon Bell and Peter Komisarczuk. 2020. An Analysis of Phishing Blacklists:
Google Safe Browsing, OpenPhish, and PhishTank. In Proceedings of the Aus-
tralasian Computer Science Week Multiconference (Melbourne, Australia). ACM,
New York, NY, USA, 1–11.

[7] Kevin B. Bennett, Adam Bryant, and Christen Sushereba. 2018. Ecological Inter-
face Design for Computer Network Defense. Human Factors 60, 5 (2018), 610–625.
https://doi.org/10.1177/0018720818769233 PMID: 29741960.

[8] Robert Biddle, P. C. van Oorschot, Andrew S. Patrick, Jennifer Sobey, and Tara
Whalen. 2009. Browser Interfaces and Extended Validation SSL Certificates: An
Empirical Study. In Proceedings of the 2009 ACM Workshop on Cloud Computing
Security (Chicago, IL, USA) (CCSW ’09). ACM, New York, NY, USA, 19–30. https:
//doi.org/10.1145/1655008.1655012

[9] Jim Blythe and L Jean Camp. 2012. Implementing mental models. In 2012 IEEE
Symposium on Security and Privacy Workshops (San Francisco, CA, USA). IEEE,
New York, NY, USA, 86–90.

[10] Cristian Bravo-Lillo, Lorrie Faith Cranor, Julie Downs, and Saranga Komanduri.
2011. Bridging the Gap in Computer Security Warnings: A Mental Model Ap-
proach. In IEEE Symposium on Security and Privacy (Oakland, CA, USA) (SP ’11).
IEEE, New York, NY, USA, 18–26. https://doi.org/10.1109/MSP.2010.198

[11] British Association for the Advancement of Science (per Lord Kelvin).
1876. Thomson’s (Lord Kelvin) First Tide Predicting Machine, 1876.
https://collection.sciencemuseumgroup.org.uk/objects/co53901/thomsons-lord-
kelvin-first-tide-predicting-machine-1876-tide-predictor

[12] Zheng Bu and Rob Rachwald. 2014. Industry Perspectives: Ghost-Hunting with
Anti-Virus. FireEye, Inc. Retrieved May 20, 2020 from https://www.fireeye.com/
blog/executive-perspective/2014/05/ghost-hunting-with-anti-virus.html

[13] CA/Browser Forum. 2018. Guidelines for the Issuance and Management of
Extended Validation Certificates. https://cabforum.org/wp-content/uploads/CA-
Browser-Forum-EV-Guidelines-v1.6.8.pdf

[14] L. Jean Camp. 2009. Mental Models of Privacy and Security. IEEE Technology and
Society Magazine 28, 3 (2009), 37–46. https://doi.org/10.1109/MTS.2009.934142

[15] Nico Castelli, Corinna Ogonowski, Timo Jakobi, Martin Stein, Gunnar Stevens,
and Volker Wulf. 2017. What Happened in my Home? An End-User Development
Approach for Smart Home Data Visualization. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems (Denver, CO, USA) (CHI ’17).
ACM, New York, NY, USA, 853–866. https://doi.org/10.1145/3025453.3025485

[16] Jianjun Chen, Vern Paxson, and Jian Jiang. 2020. Composition Kills: A Case Study
of Email Sender Authentication. In 29th USENIX Security Symposium (Boston,
MA, USA) (USENIX Security ’20). USENIX Association, Berkeley, CA, USA. https:
//www.usenix.org/conference/usenixsecurity20/presentation/chen-jianjun

[17] D. Cooper, S. Santesson, S. Farell, S. Boeyen, R. Housley, and W. Polk. 2008.
Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List

(CRL) Profile. RFC 5280. RFC Editor. https://www.rfc-editor.org/info/rfc5280
[18] Kenneth Craik. 1943. The Nature of Explanation. Cambridge University Press,

Cambridge, United Kingdom.
[19] Albese Demjaha, Jonathan M Spring, Ingolf F Becker, Simon Parkin, and M An-

gela Sasse. 2018. Metaphors considered harmful? An exploratory study of the
effectiveness of functional metaphors for end-to-end encryption. In Workshop on
Usable Security (San Diego, CA, 2018-02-18) (USEC ’18). ISOC, Reston, VA, USA,
1–11.

[20] Simson Garfinkel and Heather R. Lipford. 2014. Usable Security: History, Themes,
and Challenges. Morgan & Claypool, San Rafael, CA, USA. https://doi.org/10.
2200/S00594ED1V01Y201408SPT011

[21] Mary L. Gick and Keith J. Holyoak. 1983. Schema Induction and Analogical
Transfer. Cognitive Psychology 15, 1 (1983), 1 – 38. https://doi.org/10.1016/0010-
0285(83)90002-6

[22] Google ChromeHelp. 2020. Check if a site’s connection is secure. Google. Retrieved
May 17, 2020 from https://support.google.com/chrome/answer/95617?hl=en

[23] Google Chrome Help. 2020. Manage warnings about unsafe sites. Google. Re-
trieved May 17, 2020 from https://support.google.com/chrome/answer/99020?

[24] hoakley. 2019. Last Week on my Mac: Notarization devalued? The Eclectic Light
Company. Retrieved May 14, 2020 from https://eclecticlight.co/2019/09/08/last-
week-on-my-mac-notarization-devalued/

[25] hoakley. 2020. Hardening and notarization finally arrive in Catalina. The Eclectic
Light Company. Retrieved May 14, 2020 from https://eclecticlight.co/2020/02/
03/hardening-and-notarization-finally-arrive-in-catalina/

[26] Iulia Ion, Rob Reeder, and Sunny Consolvo. 2015. “...no one can hack my mind”:
Comparing Expert and Non-Expert Security Practices. In Proceedings of the
Eleventh SymposiumOn Usable Privacy and Security (Ottawa, ON, Canada) (SOUPS
’15). USENIX Association, Berkeley, CA, USA, 327–346.

[27] John Johansen. 2020. AppArmor Wiki: Home. AppArmor. Retrieved May 20, 2020
from https://gitlab.com/apparmor/apparmor/-/wikis/home

[28] Philip N. Johnson-Laird. 1983. Mental Models: Towards a Cognitive Science of
Language, Inference, and Consciousness. Harvard University Press, Cambridge,
MA, USA.

[29] Ruogu Kang, Laura Dabbish, Nathaniel Fruchter, and Sara Kiesler. 2015. My Data
Just Goes Everywhere: User Mental Models of the Internet and Implications for
Privacy and Security. In Proceedings of the Eleventh Symposium On Usable Privacy
and Security (Ottawa, ON, Canada) (SOUPS ’15). USENIX Association, Berkeley,
CA, USA, 39–52.

[30] Predrag Klasnja, Sunny Consolvo, Jaeyeon Jung, Benjamin M. Greenstein, Louis
LeGrand, Pauline Powledge, and David Wetherall. 2009. When I am on Wi-Fi, I
am Fearless: Privacy Concerns & Practices in Everyday Wi-Fi Use. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (Boston, MA,
USA) (CHI ’09). ACM, New York, NY, USA, 1993–2002.

[31] Mitchell Krog and Nissar Chababy. 2020. Phishing Domain Database. https:
//github.com/mitchellkrogza/Phishing.Database

[32] Mailvelope. 2020. Mailvelope Homepage. Mailvelope GmbH. Retrieved May 18,
2020 from https://www.mailvelope.com/en

[33] Nathan Malkin, Arunesh Mathur, Marian Harbach, and Serge Egelman. 2017.
Personalized Security Messaging: Nudges for Compliance with Browser Warn-
ings. In 2nd European Workshop on Usable Security (Paris, France) (EuroUSEC ’17).
Internet Society, Reston, VA, USA.

[34] Microsoft. 2017. Digital Certificates. Microsoft. Retrieved May 17,
2020 from https://docs.microsoft.com/en-us/windows-hardware/drivers/install/
digital-certificates

[35] Microsoft. 2020. Anti-spoofing protection in EOP. Microsoft. Retrieved May 20,
2020 from https://docs.microsoft.com/en-us/microsoft-365/security/office-365-
security/anti-spoofing-protection

[36] Microsoft. 2020. Program Requirements - Microsoft Trusted Root Program. Mi-
crosoft. Retrieved May 17, 2020 from https://docs.microsoft.com/en-us/security/
trusted-root/program-requirements

[37] Sara Motiee, Kirstie Hawkey, and Konstantin Beznosov. 2010. Do Windows
Users Follow the Principle of Least Privilege? Investigating User Account Control
Practices. In Proceedings of the Sixth Symposium on Usable Privacy and Security
(Redmond, WA) (SOUPS ’10). ACM, New York, NY, USA, 13 pages. https://doi.
org/10.1145/1837110.1837112

[38] NeoFinder Developer Team. 2020. The Gates to Hell: Apples Notarizing. NeoFinder
blog. Retrieved May 14, 2020 from https://www.cdfinder.de/guide/blog/apple_
hell.html

[39] Patrick Nohe. 2019. 58% of Phishing Websites Now Use HTTPS. The SSL Store.
Retrieved May 17, 2020 from https://www.thesslstore.com/blog/58-of-phishing-
websites-now-use-https/

[40] Don Norman. 2013. The Design of Everyday Things: Revised and Expanded Edition.
Basic Books, Inc., Hachette, NY, USA.

[41] Donald A. Norman. 1986. Cognitive Engineering. In User Centered System
Design: New Perspectives on Human-computer Interaction, Donald A. Norman and
Stephen W. Draper (Eds.). CRC Press, Boca Raton, FL, USA, 266–290.

[42] Objective Development Software. 2020. Little Snitch. Objective Development Soft-
ware GmbH. Retrieved May 5, 2020 from https://obdev.at/products/littlesnitch/

142

https://developer.apple.com/documentation/security/hardened_runtime
https://developer.apple.com/documentation/xcode/notarizing_macos_software_before_distribution
https://developer.apple.com/documentation/xcode/notarizing_macos_software_before_distribution
https://developer.apple.com/programs/enroll/
https://doi.org/10.1017/S0140525X99002149
https://doi.org/10.1177/0018720818769233
https://doi.org/10.1145/1655008.1655012
https://doi.org/10.1145/1655008.1655012
https://doi.org/10.1109/MSP.2010.198
https://collection.sciencemuseumgroup.org.uk/objects/co53901/thomsons-lord-kelvin-first-tide-predicting-machine-1876-tide-predictor
https://collection.sciencemuseumgroup.org.uk/objects/co53901/thomsons-lord-kelvin-first-tide-predicting-machine-1876-tide-predictor
https://www.fireeye.com/blog/executive-perspective/2014/05/ghost-hunting-with-anti-virus.html
https://www.fireeye.com/blog/executive-perspective/2014/05/ghost-hunting-with-anti-virus.html
https://cabforum.org/wp-content/uploads/CA-Browser-Forum-EV-Guidelines-v1.6.8.pdf
https://cabforum.org/wp-content/uploads/CA-Browser-Forum-EV-Guidelines-v1.6.8.pdf
https://doi.org/10.1109/MTS.2009.934142
https://doi.org/10.1145/3025453.3025485
https://www.usenix.org/conference/usenixsecurity20/presentation/chen-jianjun
https://www.usenix.org/conference/usenixsecurity20/presentation/chen-jianjun
https://www.rfc-editor.org/info/rfc5280
https://doi.org/10.2200/S00594ED1V01Y201408SPT011
https://doi.org/10.2200/S00594ED1V01Y201408SPT011
https://doi.org/10.1016/0010-0285(83)90002-6
https://doi.org/10.1016/0010-0285(83)90002-6
https://support.google.com/chrome/answer/95617?hl=en
https://support.google.com/chrome/answer/99020?
https://eclecticlight.co/2019/09/08/last-week-on-my-mac-notarization-devalued/
https://eclecticlight.co/2019/09/08/last-week-on-my-mac-notarization-devalued/
https://eclecticlight.co/2020/02/03/hardening-and-notarization-finally-arrive-in-catalina/
https://eclecticlight.co/2020/02/03/hardening-and-notarization-finally-arrive-in-catalina/
https://gitlab.com/apparmor/apparmor/-/wikis/home
https://github.com/mitchellkrogza/Phishing.Database
https://github.com/mitchellkrogza/Phishing.Database
https://www.mailvelope.com/en
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/digital-certificates
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/digital-certificates
https://docs.microsoft.com/en-us/microsoft-365/security/office-365-security/anti-spoofing-protection
https://docs.microsoft.com/en-us/microsoft-365/security/office-365-security/anti-spoofing-protection
https://docs.microsoft.com/en-us/security/trusted-root/program-requirements
https://docs.microsoft.com/en-us/security/trusted-root/program-requirements
https://doi.org/10.1145/1837110.1837112
https://doi.org/10.1145/1837110.1837112
https://www.cdfinder.de/guide/blog/apple_hell.html
https://www.cdfinder.de/guide/blog/apple_hell.html
https://www.thesslstore.com/blog/58-of-phishing-websites-now-use-https/
https://www.thesslstore.com/blog/58-of-phishing-websites-now-use-https/
https://obdev.at/products/littlesnitch/index.html
https://obdev.at/products/littlesnitch/index.html

Out of Sight, Out of Mind: UI Design and the Inhibition of Mental Models of Security NSPW ’20, October 26–29, 2020, Online, USA

index.html
[43] Emilee Rader, Rick Wash, and Brandon Brooks. 2012. Stories as Informal Lessons

about Security. In Proceedings of the Eighth Symposium on Usable Privacy and
Security (Washington, D.C., USA) (SOUPS ’12). ACM, New York, NY, USA, Article
6, 17 pages. https://doi.org/10.1145/2335356.2335364

[44] Jens Rasmussen. 1987. Mental Models and the Control of Actions in Complex En-
vironments. In Selected papers of the 6th Interdisciplinary Workshop on Informatics
and Psychology: Mental Models and Human-Computer Interaction 1 (Schärding,
Austria) (Risø-M, 2656). North Holland Publishing Co., Amsterdam, Netherlands,
41–69.

[45] Jens Rasmussen. 1999. Ecological Interface Design for Reliable Human-Machine
Systems. The International Journal of Aviation Psychology 9, 3 (1999), 203–223.
https://doi.org/10.1207/s15327108ijap0903_2

[46] Joshua Reynolds, Deepak Kumar, Zane Ma, Rohan Subramanian, Meishan Wu,
Martin Shelton, Joshua Mason, Emily Stark, and Michael Bailey. 2020. Measuring
Identity Confusion with Uniform Resource Locators. In Proceedings of the 2020
CHI Conference on Human Factors in Computing Systems (Virtual conference).
ACM, New York, NY, USA, 1–12.

[47] F. Sharevski, P. Treebridge, and J. Westbrook. 2019. Experiential User-Centered
Security in a Classroom: Secure Design for IoT. IEEE Communications Magazine
57, 11 (2019), 48–53. https://doi.org/10.1109/MCOM.001.1900223

[48] David Canfield Smith, Eric Harslem, Charles Irby, Ralph Kimball, and Bill Ver-
plank. 1982. Designing the Star user interface. Byte 7, 1982 (1982), 242–282.

[49] Eric Spero and Robert Biddle. 2019. Home and Away: UI Design Patterns for
Supporting End-User Security. In Proceedings of the 2020 European Conference on
Pattern Languages of Programs (Virtual conference) (EuroPLoP ’20). ACM, New
York, NY, USA, 1–9. Forthcoming.

[50] Eric Spero and Robert Biddle. 2019. Security Begins at Home: Everyday Security
Behaviour and Lessons for Cybersecurity Research. In Proceedings of the 26th
Conference on Pattern Languages of Programs (Ottawa, ON, Canada) (PLoP ’19).
ACM, New York, NY, USA, 1–9. Forthcoming.

[51] Eric Spero, Milica Stojmenović, Sonia Chiasson, and Robert Biddle. 2019. Control
and Understanding in Malware and Legitimate Software. In 2019 APWG Sympo-
sium on Electronic Crime Research (Pittsburgh, PA, USA) (eCrime ’19). IEEE, New

York, NY, USA, 1–11.
[52] Milica Stojmenović and Robert Biddle. 2018. Hide-and-Seek withWebsite Identity

Information. In 2018 16th Annual Conference on Privacy, Security and Trust (Belfast,
United Kingdom) (PST ’18). IEEE, New York, NY, USA, 1–6.

[53] Milica Stojmenović, Eric Spero, Temitayo Oyelowo, and Robert Biddle. 2019.
Website Identity Notification: Testing the Simplest Thing that Could Possibly
Work. In 17th Annual Conference on Privacy, Security and Trust (Fredericton, NB,
Canada) (PST ’19). IEEE, New York, NY, USA, 310–316.

[54] Christopher Thompson, Martin Shelton, Emily Stark, Maximilian Walker, Emily
Schechter, and Adrienne Porter Felt. 2019. The Web’s Identity Crisis: Under-
standing the Effectiveness of Website Identity Indicators. In 28th USENIX Security
Symposium (Santa Clara, CA, USA) (USENIX Security ’19). USENIX Association,
Berkeley, CA, USA, 1715–1732.

[55] ToyotaMotor Corporation. 2019. 2019 Prius Owner’s Manual (OM47C35U). https:
//www.toyota.com/t3Portal/document/om-s/OM47C35U/pdf/OM47C35U.pdf

[56] Liam Tung. 2016. Google Safe Browsing beats rivals but still only
flags up 10 percent of hacked sites. ZDNet. Retrieved May 17,
2020 from https://www.zdnet.com/article/google-safe-browsing-beats-rivals-
but-still-only-flags-up-10-percent-of-hacked-sites/

[57] Kim J. Vicente and Jens Rasmussen. 1992. Ecological Interface Design: Theoretical
Foundations. IEEE Transactions on Systems, Man, and Cybernetics 22, 4 (7 1992),
589–606. https://doi.org/10.1109/21.156574

[58] Rick Wash. 2010. Folk Models of Home Computer Security. In Proceedings of
the Sixth Symposium on Usable Privacy and Security (Redmond, WA) (SOUPS ’10).
ACM, New York, NY, USA, Article 11, 16 pages. https://doi.org/10.1145/1837110.
1837125

[59] Alma Whitten and J.D. Tygar. 1999. Why Johnny Can’t Encrypt: A Usability
Evaluation of PGP 5.0. In 8th USENIX Security Symposium (Washington, D.C.,
USA) (SSYM ’99, Vol. 348). USENIX Association, Berkeley, CA, USA, 169–184.

[60] [winglett]. 2019, October 26. Can we talk about Apple and macOS notariza-
tion? Reddit. Retrieved May 22, 2020 from https://www.reddit.com/r/gamedev/
comments/dnjc17/can_we_talk_about_apple_and_macos_notarization/

143

https://obdev.at/products/littlesnitch/index.html
https://doi.org/10.1145/2335356.2335364
https://doi.org/10.1207/s15327108ijap0903_2
https://doi.org/10.1109/MCOM.001.1900223
https://www.toyota.com/t3Portal/document/om-s/OM47C35U/pdf/OM47C35U.pdf
https://www.toyota.com/t3Portal/document/om-s/OM47C35U/pdf/OM47C35U.pdf
https://www.zdnet.com/article/google-safe-browsing-beats-rivals-but-still-only-flags-up-10-percent-of-hacked-sites/
https://www.zdnet.com/article/google-safe-browsing-beats-rivals-but-still-only-flags-up-10-percent-of-hacked-sites/
https://doi.org/10.1109/21.156574
https://doi.org/10.1145/1837110.1837125
https://doi.org/10.1145/1837110.1837125
https://www.reddit.com/r/gamedev/comments/dnjc17/can_we_talk_about_apple_and_macos_notarization/
https://www.reddit.com/r/gamedev/comments/dnjc17/can_we_talk_about_apple_and_macos_notarization/

	Abstract
	1 Introduction
	2 Mental models
	2.1 In Cognitive Science
	2.2 In Cybersecurity
	2.3 Discussion

	3 Interfaces and Security
	3.1 Norman's Theory of Action
	3.2 (In)visibility of Security

	4 Case Studies
	4.1 Malware
	4.2 Phishing Email
	4.3 Fraudulent Websites

	5 Possible Solutions
	5.1 Ecological Interface Design
	5.2 Visualization for Understanding

	6 A New Security Paradigm
	6.1 Security Awareness Visibility and Evaluation (SAVE)
	6.2 Principles for SAVE
	6.3 Challenges

	7 Future Work
	8 Conclusions
	References

