On managing vulnerabilities in AI/ML systems

Jonathan M. Spring
jspringATseidotcmudotedu
CERT® Coordination Center
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA

Allen D. Householder
CERT® Coordination Center
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA

ABSTRACT

This paper explores how the current paradigm of vulnerability man-
agement might adapt to include machine learning systems through
a thought experiment: what if flaws in machine learning (ML) were
assigned Common Vulnerabilities and Exposures (CVE) identifiers
(CVE-IDs)? We consider both ML algorithms and model objects. The
hypothetical scenario is structured around exploring the changes to
the six areas of vulnerability management: discovery, report intake,
analysis, coordination, disclosure, and response. While algorithm
flaws are well-known in academic research community, there is no
apparent clear line of communication between this research com-
munity and the operational communities that deploy and manage
systems that use ML. The thought experiments identify some ways
in which CVE-IDs may establish some useful lines of communica-
tion between these two communities. In particular, it would start to
introduce the research community to operational security concepts,
which appears to be a gap left by existing efforts.

CCS CONCEPTS

« Computing methodologies — Machine learning algorithms;
« Software and its engineering — Maintaining software; « Secu-
rity and privacy — Vulnerability management.

KEYWORDS

vulnerability management, machine learning, CVE-ID, prioritiza-
tion

ACM Reference Format:

Jonathan M. Spring, April Galyardt, Allen D. Householder, and Nathan
VanHoudnos. 2020. On managing vulnerabilities in AI/ML systems. In New
Security Paradigms Workshop 2020 (NSPW °20), October 2629, 2020, Online,
USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/3442167.
3442177

(c0) @

This work is licensed under a Creative Commons Attribution International 4.0 License.

NSPW °20, October 26-29, 2020, Online, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8995-2/20/10...$15.00
https://doi.org/10.1145/3442167.3442177

111

April Galyardt
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA

Nathan VanHoudnos
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA

1 INTRODUCTION

The topic of this paper is more “security for automated reasoning”
and less “automated reasoning for security” We will introduce the
questions that need to be answered in order to adapt existing vul-
nerability management practices to support automated reasoning
systems. We suggest answers to some of the questions, but some are
quite thorny questions that may require a new paradigm of either
vulnerability management, development of automated reasoning
systems, or both.

First, some definitions. We follow the CERT® Coordination Cen-
ter (CERT/CC) definition of vulnerability: “a set of conditions or
behaviors that allows the violation of an explicit or implicit security
policy” [23, §1.2]. We will follow Spring et al. [51] and define ML as
“a set of statistical tools that analyze data to infer relationships and
patterns. Ideally, the relationships and patterns inferred by ML will
lead to a useful model of the object or phenomenon that the data
describes,” and define artificial intelligence (Al) as “a software agent
that takes actions based on its environment.” To be concrete, this
paper will focus on vulnerability management for just ML-enabled
systems.

One practical way to think of security services for an ML system
is via the set of services a Computer Security Incident Response
Team (CSIRT) might provide, which is produced by Forum of In-
cident Response and Security Teams (FIRST) and documented by
Benetis et al. [2]. A complete risk management and security perspec-
tive on ML would include more than the CSIRT services framework.
However, we will work from the assertion that to manage the se-
curity of an ML-enabled system, all CSIRT services will need to be
able to handle ML systems.

Specifically, of the CSIRT services, we are carving out just vul-
nerability management for discussion. The other services, as well
as wider issues such as risk management, all have challenges as
well, but we leave them as future work.

Vulnerability management includes six services [2, §7]:

o Vulnerability discovery / research
e Vulnerability report intake

e Vulnerability analysis

o Vulnerability coordination

o Vulnerability disclosure

e Vulnerability response

https://doi.org/10.1145/3442167.3442177
https://doi.org/10.1145/3442167.3442177
https://doi.org/10.1145/3442167.3442177
https://creativecommons.org/licenses/by/4.0/

NSPW °20, October 26-29, 2020, Online, USA

These areas cover a wide range. They span the interface between
software developers, software users, security teams, and people who
find flaws in software. There is national infrastructure in multiple
countries dedicated to support these services and facilitate com-
munication. For example, both the United States and the People’s
Republic of China have National Vulnerability Databases (NVDs).
FIRST, a global body, provides one definition of how to score the
severity of vulnerabilities, Common Vulnerability Scoring Sys-
tem (CVSS). The CVE scheme is designed to assist such cataloging
and ranking efforts.

This paper’s goal is to facilitate the creation of a trading zone be-
tween ML engineers, software architects, and security practitioners.
Any trading zone requires a shared language, whether it is a physi-
cal or intellectual trading zone [15]. All participants in a trading
zone want something of value they can take back to their respective
communities. These items of value are often “boundary objects,”
which mark boundaries by being recognizable and functional in
both cultures in the trading zone. Rawls and Mann [41] states that
the Mitre Corporation (MITRE) produces identifiers, such as Com-
mon Vulnerabilities and Exposures (CVE) identifiers (CVE-IDs),
in part for their value to trading zones as boundary objects. This
background makes CVE-IDs an attractive and useful focal point for
our thought experiments.

We will organize our exploration of a new paradigm for ML se-
curity around one hypothetical — what if flaws in ML systems were
assigned CVE-IDs? Sections 4 and 6 do the main work on exploring
the thought experiment. Before we can answer this question, we
first lay some background on the current ways of identifying soft-
ware vulnerabilities in Section 2. Section 3 will provide background
on the current state of adversarial attacks on ML algorithms. Sec-
tion 4 then steps through each of the services areas of vulnerability
management to explore the impact of giving ML algorithm flaws
CVE-IDs. Section 5 explores the ML algorithm thought experiment
from the perspective of CVE Numbering Authoritys (CNAs). Sec-
tion 6 steps through each of the service areas to explore the impact
of giving ML model object flaws CVE-IDs.

2 VULNERABILITY BACKGROUND

Expanding on the definition of vulnerability cited in Section 1, a
vulnerability is “a set of conditions or behaviors that allows the
violation of an explicit or implicit security policy. Vulnerabilities
can be caused by software defects, configuration or design deci-
sions, unexpected interactions between systems, or environmental
changes” [23, §1.2]. This definition is useful for the purposes of this
paper for clarity, but CERT/CC is also a CNA, so it bears on the
ensuing discussion as well.

An organization has a variety of options when responding to a
vulnerability. A fix (a.k.a remediation) is usually defined as a de-
ploying a patch that removes the vulnerable code or retiring the
vulnerable system. A mitigation reduces the impact of a vulnera-
bility without removing the vulnerable code. Example mitigations
include adding network segmentation or input and traffic filtering
that make it harder to exploit the vulnerability. Managing vulnera-
bilities in ML systems will use a combination of remediation and
mitigation, just as any other sector.

112

Spring, Galyardt, Householder, and VanHoudnos

There are two common axes that help distinguish vulnerabilities
in modern security practice. One is within vulnerability identifica-
tion. The second is level of abstraction of the vulnerable product.
Sections 2.1 and 2.2, respectively, discuss these levels. Section 2.3
summarizes background the the CVE project.

2.1 Vulnerability Identification

Vulnerability identification and classification spans from scanning
individual systems to organizing vulnerabilities into categories to
facilitate better programming principles. A number of vulnerabil-
ity identification methods exist. CVE is perhaps the most widely
known, but there are others.

In increasing broadness along the identification and classification
axis, we have:

e Instance of a vulnerable product

e Vulnerability in a product (e.g., CVE-ID, VU#)

o Category of which a vulnerability is an example (e.g., Common
Weakness Enumeration (CWE), Open Web Application Se-
curity Project (OWASP))

2.1.1 Instances of Vulnerable Products. On the very specific end
of this spectrum, we have instances of a vulnerable product. An
instance is a specific computer or service that uses a vulnerable
product. When an organization scans the systems it owns to per-
form asset management, it will find instances of a vulnerability.
Instances are often tagged as the association of a host or system
identifier accompanied by the ID of the vulnerability of which they
are an instance.! Instances may also be called findings or sightings.

2.1.2 Vulnerable Products. Moving up from instances, we find vul-
nerable products. The practitioner community’s expectation is that
a product is some sort of artificial information processing system.
This definition is vague because a vulnerable product is usually
the thing that security practitioners say “has” the vulnerability,
as defined above. Since a vulnerability may be introduced by a
software defect, configuration decision, design decision, system
interaction, or environmental mismatch, the “product” that has a
vulnerability cannot be constrained much. Section 2.2 will discuss
different categories of vulnerable products.

CVE-IDs are most closely associated with products. Section 2.3
will detail the CVE program.

CERT/CC publishes Vulnerability Notes using the VU# identifier.
Like CVE-IDs, these are also usually at the product level. However,
while VU# documents often describe a single CVE-ID, that is not
always the case. There are VU# documents which describe multiple
CVE-IDs, as well as ones that describe vulnerabilities that are out
of scope for CVE entirely.

Vulnerabilities in products are the main stock and trade of vulner-
ability management. Such vulnerabilities often need to be triaged to
prioritize actions. A popular scoring tool to communicate the tech-
nical severity of a vulnerability is CVSS. While CVSS and CVE-IDs
are managed by different organizations and are officially unaffil-
iated with each other, they are often mentally associated due to
the close relationship between uniquely identifying and triaging
vulnerabilities. Section 4.2 will address CVSS in more detail.

1Often, this association is mediated through specific versions of software. E.g., host A
has version X of software Y installed, and version X of software Y has vulnerability Z

On managing vulnerabilities in AI/ML systems

2.1.3 Vulnerability Categories. The next broader part is the cate-
gorization of vulnerabilities. A number of frameworks exist at this
level, with perhaps the best known being the CWE framework.

CWE is a "list of common software and hardware weakness types
that have security ramifications" [34]. CWE is not intended to be
a catalog of specific problems, but rather a collection of impor-
tant design flaws that lead to “weaknesses” in software and hard-
ware. Although MITRE is a bit inconsistent about the definition
of “weakness,” it is roughly equivalent to the CERT/CC definition
of vulnerability. So the two main things that can be members of
a CWE are a vulnerability and another CWE category. CWEs are
arranged hierarchically from 10 “pillar” weaknesses which are gen-
eral descriptions of all weaknesses, with intermediate and specific
weakness types categorized under them.

An example CWE is “buffer overflow,” and any number of CVE-IDs
may be an example of this CWE. A CWE can loosely be understood
as a conceptual way that someone might accidentally introduce a se-
curity weakness into some information processing system, whereas
a CVE-ID identifies a concrete product version in which someone
introduced a specifically identifiable security flaw.

Not all vulnerabilities associated with a CWE get a CVE-ID. This
situation is common with, for example, instances (Section 2.1.1) of
configuration-level vulnerabilities (see Section 2.2) in specific web
servers.

The CWE specification is ambiguous whether there can be in-
stances of software which match the description of the weakness
but cannot have a security impact due to some specific circum-
stance, such a the code being demonstrably unreachable. Various
secure coding guidance would certainly recommend avoiding such
design patterns because they are fragile [48]. This guidance holds
whether we name such circumstances a security weakness or not,
so pragmatically we shall leave this ambiguity as it is.

OWASP is another vulnerability categorization scheme, most
famous for its Top 10 document for web developers that “represents
a broad consensus about the most critical security risks to web
applications” [37]. Since OWASP is tailored to web applications,
it is more specific than CWE. The OWASP Top 10 is also more
pragmatic; the goal is to prioritize effective protective measures that
a web developer should ensure during their development life cycle.
OWASP focuses on secure configuration of web servers, rather than
secure coding. Only one of the top 10 — “9: Using Components with
Known Vulnerabilities” — overlaps with CVE-IDs; the other nine
represent categories of vulnerabilities that would not normally be
given a CVE-ID.

OWASP and CWE have different constituencies and reach differ-
ent audiences. The categorization schemes have differing emphases
that reflects their different constituencies. But both serve a similar
purpose — to organize knowledge about vulnerabilities in vulnerable
products.

2.2 Abstraction

The second axis, which is independent from vulnerability identifi-
cation, is a description of the level of abstraction of the vulnerable
product. The four levels of abstraction for vulnerable products, from
most specific to most abstract, are:

o Configuration-level vulnerability

113

NSPW ’20, October 26-29, 2020, Online, USA

e Implementation-level vulnerability
e Protocol-level vulnerability
o Algorithm-level vulnerability

The product may be a specifically-configured instance, an imple-
mentation, a protocol, or an algorithm.

2.2.1 Configuration vulnerability. A deployed product may be vul-
nerable due to its configuration in situ. For example, a linux host
may be vulnerable if its ‘/bin‘ directory is world-writable due to an
errant sysadmin. In such a case there is nothing inherently wrong
with the software, it has just been deployed in an insecure manner.

2.2.2 Implementation vulnerability. An implementation is, loosely,
the source code or binary executable that is distributed as a product.
Most vulnerabilities that are widely discussed are those found in
implemented products, hence CVE-IDs are most closely associated
with implementation vulnerabilities. The usual way of identifying
the vulnerable implementation of a product is to state the versions
that are vulnerable, such as “versions 3.2.9 and earlier are vulnera-
ble”

2.2.3 Protocol vulnerability. Implementations may often be based
on a protocol. The most common protocol vulnerabilities are in com-
munications protocols — agreed ways of exchanging information
between devices that devices may implement in their own, though
mutually compatible, way. Examples of protocols with documented
vulnerabilities include Bluetooth (e.g., CVE-2019-9506), Transport
Layer Security (TLS) (e.g., CVE-2014-3566), and Server Message
Block (SMB) (e.g., CVE-2020-0796). When there is a protocol vul-
nerability, all implementations of that protocol are, by definition,
vulnerable. There may be workarounds to reduce exposure, as usual,
but an implementation inherits many things from the protocol it
implements, including vulnerabilities.

Vulnerability managers need not localize a vulnerability to a
protocol; practically, it is every implementation of the protocol that
must change. The rules for assigning CVE-IDs address this directly.
A single ID is assigned to the protocol, standard, or Application Pro-
gramming Interface (API) rather than multiple CVE-IDs assigned
to each implementation if and only if “there is no option to use the
functionality or specification [e.g., protocol] in a secure manner” [9,
§7.2]. So in the case where the TLS protocol had a vulnerability,
every implementation of TLS would share the same CVE-ID. A prag-
matic effect of assigning CVE-IDs to protocols rather than their
various implementations is that it makes clear that the protocol de-
signer or standards body is responsible for fixing the vulnerability.

2.24 Algorithm vulnerability. The layer of abstraction above proto-
col is an algorithm vulnerability. Historically, this term has usually
applied to cryptographic algorithms. For example, the cryptanalysis
of Data Encryption Standard (DES) in the early 1990s [32] iden-
tified algorithmic vulnerabilities in DES that any protocol using
that algorithm inherited. Any implementations of those protocols
also inherited the algorithm vulnerabilities as well, as expected.
Thankfully, vulnerabilities in cryptographic algorithms have be-
come quite rare. Such vulnerabilities largely predate the current
vulnerability management apparatus of CVE-IDs which has come
to dominate since 2010. But there is precedent in CVE-2004-2761

NSPW °20, October 26-29, 2020, Online, USA

for assigning CVE-IDs for cryptographic weaknesses (in this case,
the MD5 algorithm’s susceptibility to hash collisions).

Our placement of “algorithm” as strictly above “protocol” in the
abstraction levels is an artifact of the history of networking and net-
work security. Communications protocols arrange certain building
blocks to reliably and securely exchange information. A particularly
important one of those building blocks is cryptographic algorithms.
Protocols infrequently but occasionally have vulnerabilities; this is
usually a problem in the structure of the protocol and how infor-
mation is exchanged or handled. But the protocol designers usually
treated the cryptographic algorithms as special, as a sort of root
of trust for the security of the protocol. However, the perspective
MITRE takes with the CVE-ID rules would consider both proto-
cols and cryptographic algorithms “products” whose functionality
would be shared by other products [9, §7.2].

The specificity and abstraction descriptions are orthogonal. One
can have an instance of a implementation vulnerability, a product
with an implementation vulnerability, or an implementation vul-
nerability which is an example of a weakness type. Similarly, one
can have an instance of a configuration vulnerability, a protocol
(that is, a product) with a specific vulnerability, a vulnerability in
an algorithm which is an example of a weakness type, etc.

This paper will discuss the hypothetical of assigning CVE-IDs
to ML algorithm vulnerabilities and/or to ML model objects. This
hypothetical is specifically about vulnerabilities the existing regime
does not handle. The existing vulnerability management regime
does not have any problem handling implementation-level vul-
nerabilities in ML libraries, such as buffer overflow mistakes in
TensorFlow (e.g., CVE-2018-10055). Such algorithm-level vulner-
abilities are well known within the ML research community, as
Section 3 will discuss. However, the current vulnerability man-
agement paradigm has not had to handle many algorithm-level
vulnerabilities in more traditional computing infrastructure; the
last one was probably 2008 with practical collision attacks against
the MD5 algorithm [11]. This mismatch is one aspect that will make
our thought experiments instructive.

2.3 CVE-ID background

CVE-IDs are designed to provide unique identifiers for the purpose
of tracking a vulnerability throughout vulnerability management
processes, with an emphasis on enabling communication among
constituents and stakeholders. The CVE program is not a stand-in
for all of vulnerability management: there are relevant vulnerabil-
ities that are never assigned CVE-IDs. Misconfigured file permis-
sions are a common example. However, since the CVE program
provides the unique identifiers that vulnerability managers use to
track their main work items, it is a useful entry point that enables
our thought experiments to touch, if not fully explore, all six areas
of vulnerability management.

MITRE is the lead organization, but they have delegated the
ability to assign CVE-IDs to about 120 CNAs [33]. The first CVE-IDs
were assigned in 1999, with 1,500 vulnerabilities assigned identifiers
that year — many of which had been discovered some time earlier
in the decade. As of Aug 19, 2020, about 140,000 vulnerabilities have
CVE entries.

114

Spring, Galyardt, Householder, and VanHoudnos

CVE-IDs have power within vulnerability management. For
example, the US NVD requires a CVE-ID for all entries (https:
//nvd.nist.gov/general/FAQ-Sections/CVE-FAQs). Because National
Institute of Standards and Technology (NIST) operates the NVD
and NIST produces the information security standards for the US
federal civilian government, when US government security regu-
lations say something like “patch all known vulnerabilities,” the
word “known” is usually understood to mean “in the NVD.” Which
implies that the only vulnerabilities US federal civilian government
entities are required to patch are those with CVE-IDs.

In the commercial vulnerability management space, a similar
scenario plays out. Asset management or vulnerability scanning
products have a tendency to be based on fingerprints or signatures
of device or software stacks. For example, if a scanner can determine
that a web server is Apache version 2.2.31, then a simple lookup
indicates it is vulnerable to CVE-2017-9788 and should be patched
to a more recent version. As a consequence, vulnerability manage-
ment is not driven by vulnerabilities so much as it is driven by
CVE-IDs. The only community in which CVE-IDs do not entirely
drive vulnerability management is website owners, where OWASP
and CWE are used to label configuration-level vulnerabilities such
as cross-site scripting and improper data protection configurations.

MITRE does not strictly control what counts as a vulnerability.
It is worth quoting their definition at length [9, §7]:

The CVE Program does not adhere to a strict def-
inition of a vulnerability. For the most part, CNAs
are left to their own discretion to determine whether
something is a vulnerability. Root CNAs may provide
additional guidance to their child CNAs. This allows
the program to adapt to definitions used in different
industries, legal regimes, and cultures.

7.1.1If a product owner considers an issue to be a vul-
nerability in its product, then the issue MUST be con-
sidered a vulnerability, regardless of whether other
parties (e.g., other vendors whose products share the
affected code) agree.

7.1.2 If the CNA determines that an issue violates the
security policy of a product, then the issue SHOULD
be considered a vulnerability.

7.1.3 If a CNA receives a report about a new vulner-
ability that has a negative impact, then the reported
vulnerability MAY be considered a vulnerability.

Section 5 will show this official definition allows space to con-
sider flaws in ML algorithms as vulnerabilities that get CVE-IDs.
Nothing in the current written guidance would need to change.
However, Section 4 will also show how ML algorithms present a
number of challenges to existing vulnerability management prac-
tices, including assumptions about the responsibility to fix CVE-IDs.
A trained model object (see Section 3.3) is fairly clearly a product to
which a CVE-ID could be assigned; Section 6 will show that choice
would present a related but distinct set of challenges to existing
vulnerability management practice.

3 ADVERSARIAL ML BACKGROUND

There are myriad ways in which an adversary can cause an ML
algorithm to behave unexpectedly and violate either implicit or

https://nvd.nist.gov/general/FAQ-Sections/CVE-FAQs
https://nvd.nist.gov/general/FAQ-Sections/CVE-FAQs

On managing vulnerabilities in AI/ML systems

explicit security policies. Statisticians and ML engineers rarely
express such problems in vulnerability management terms. This
section will introduce how the ML research, policy, and operational
communities have expressed the problem.

The name of this field is adversarial machine learning (AML).
Unfortunately, even here we have a terminology collision; some
communities use AML to refer to generative adversarial networks,
or training ML algorithms using game theory through adversarial
examples. This paper exclusively uses AML to refer to attacking
and defending ML algorithms. Section 3.1 summarizes the state of
academic AML work via the conclusions of two recent literature
reviews. Section 3.2 summarizes two recent attempts to translate
the conclusions out of the AML research space to policy makers.
Section 3.3 introduces modern operational considerations around
engineering reliable ML systems. The understanding of these other
efforts maps out empty spaces where a perspective from vulnera-
bility management may be helpful.

3.1 Summary of academic work

Biggio and Roli [3] is a highly cited literature review within the
statistical research community. Their abstract summarizes the state
of affairs as “adversarial input perturbations carefully crafted ei-
ther at training or at test time can easily subvert [ML systems’]
predictions. The vulnerability of machine learning to such wild
patterns (also referred to as adversarial examples), along with the
design of suitable countermeasures, have been investigated in the
research field of adversarial machine learning.” While Biggio and
Roli [3] does not use vulnerability management terms, their cat-
egorization is based on the basic security triad of confidentiality,
integrity, and availability. The earliest published work on attacking
ML algorithms documented by [3] dates to 2004.

Contemporary with Biggio and Roli [3], Papernot et al. [39] is an
excellent literature review of the space, but whose target audience
is the security research community. Similar to [3], Papernot et al.
[39] find that “there is growing recognition that ML exposes new
vulnerabilities in software systems, yet the technical community’s
understanding of the nature and extent of these vulnerabilities
remains limited”

Both Biggio and Roli [3] and Papernot et al. [39] taxonimize
attacks on ML algorithms similarly, though there are certainly dif-
ferences of emphasis. The rest of this section will discuss each of
the following aspects of their taxonomies in more detail.

e Both distinguish between training-time and test-time at-
tacks.

o Both differentiate based on how much the adversary needs
to know in order to perform the attack.

e They differ slightly on their implied security policies; Paper-
not et al. [39] identifies different kinds of attacks that violate
integrity and privacy, rather than the CIA triad Biggio and
Roli [3] uses.

o The papers differ in their proposed defenses.

Both distinguish between training-time and test-time attacks.
If an adversary can influence the data used to train a model, dif-
ferent attacks are possible than if the adversary can influence the
data items to be tested. The situation where an attacker can in-
fluence both test and training is often called poisoning, whereas

115

NSPW ’20, October 26-29, 2020, Online, USA

the situation is called evasion if just test data can be influenced [3,
§3.3]. Biggio and Roli [3] restrict their framework to supervised
learning algorithms. Papernot et al. [39, §5] notes the training-test
distinction is heavily biased towards just supervised classification
algorithms, but indicates that other types of algorithms, such as
unsupervised and reinforcement learning, seem to exhibit similar
vulnerability even though they are much less thoroughly studied.
Beyond algorithm type restrictions, this distinction covers only
the model building and validation life cycle and excludes model
deployment [16]. Restricting the scope to model building and vali-
dation makes sense for academic research, but our CVE-ID thought
experiment will need to include deployment and environmental
vulnerabilities, as discussed in Section 3.3.

Both differentiate based on how much the adversary needs to
know in order to perform the attack. The terms “white box” (full-
access) and “black box” (query-access) are used with similar mean-
ing in both papers, and their meanings are similar to the way the
terms are used in the fuzzing literature [31].2 Briefly, full-access
refers to the attacker having complete access to the model object,
such that the attacker can load it into a controlled environment
and inspect and modify its components. Query-access commonly
refers to the attacker being able to provide inputs to the model and
received outputs, but not be able to inspect the internals of the
model object.

In broad strokes, if the adversary knows more about the model
and the feature space, it is easier for them to attack the model.
However, query-access attacks on models are readily feasible. More
precisely, algorithms “can be threatened without any substantial
knowledge of the feature space, the learning algorithm and the
training data, if the attacker can query the system in a black-box
manner and get feedback” [3, §3.2]. At the extreme end, in special
cases an attacker can create a full-access situation from a query-
access situation by recreating the model (up to machine precision!)
through querying the model with carefully crafted examples [7].

Although Papernot et al. [39] and Biggio and Roli [3] differ
slightly on their implied security policies, both use the term “threat
model” to discuss the adversary’s capabilities and goals. This is part
of a security policy, but falls far short of defining a security policy
for an ML system. Within the AML literature, “threat model” is
used similar to the mathematical cryptography community, where
a threat model is a mathematical expression of the adversary’s
capabilities. In AML, a threat model is a declarative statement. In
operational security communities, a threat model is a the output of
an investigation or observations about what adversaries can in fact
do, or have done in the past, see for example Fox et al. [14]. The
difference between a declarative and observational threat model
is subtle, but it may cause members of the two communities to
miscommunicate.

One consequence of this disconnect is that the AML community
has adopted threat models that are mathematically tractable, but
not likely to be observed in practice. For example, the most popular
AML threat models are based on small changes to the input, usually
measured with an Lp norm. These are useful for two reasons: first,
they tractable to analyze, and second, they allow researchers to

2These terms based on color were commonly used in the literature, but we will use
the more descriptive and less divisive terms “full-access” and “query-access” in their
place in our discussion.

NSPW °20, October 26-29, 2020, Online, USA

develop a principled understanding of the fundamental properties
of these systems. These threat models, however, are divorced from
the constraints of the real world. Specifically, permissions are often
implemented on computer systems to be all or nothing; if an ad-
versary has write access to a file, they can make arbitrary changes.
If the threat model assumes the adversary has some form of write
access, as implied by the ability to make changes to the input, then
bounding the scope of the changes the adversary would choose to
make is somewhat implausible.

Portions of the AML community consider more realistic threat
models. An important class of these are modifications to the physi-
cal environment that must survive a data processing pipeline, such
as a sticker that would cause an object to be misclassfied, poisoning
the data that one would collect for training, or inserting trojans
or backdoors into publicly released models. However, these com-
munities are a minority within AML and have not yet received
the same amount of attention as those communities that rely on
mathematically tractable threat models that were the focus of the
literature reviews. Whether such mathematically bounded threat
models apply to these physical environments is unclear; if they
do, it is likely only in the context of a wider system where such
limits are either empirically motivated or enforced by other security
mechanisms (such as human guards).

The literature review papers also differ in their proposed de-
fenses. Biggio and Roli [3] recommends reactive defenses, security
by design, and security by obscurity. “Reactive defenses” are similar
to what a security practitioner might call “continuous monitoring
and evaluation” in conjunction with an appropriate risk assessment
[51, p.11]. Papernot et al. [39] presents a more conservative analysis
of defenses, emphasizing that defense against most known attacks
is an open area of research. Therefore, [39] prioritizes mapping out
a research plan for a science of security and privacy of ML.> The
broad recommendation is that ML algorithms will need to become
resilient to distribution drifts and incorporate privacy through dif-
ferential privacy methods. While this perspective essentially admits
researchers do not currently know how to defend ML algorithms,
that perspective should sit better with the security community than
uncritically endorsing security through obscurity.

3.2 Summary of policy work

This section is not a comprehensive survey of policy work related to
AML, but rather highlights two ongoing projects that are attempting
to bridge the gap between ML researchers and software engineers
or policy makers. The first is a private sector initiative, led by
Microsoft and Harvard. The second is an effort by NIST to bridge
the AML and information security policy communities.

The Microsoft/Harvard effort is perhaps centered on Kumar et al.
[28], but includes other collaborative documents such as Kumar
et al. [27]. Kumar et al. [26] specifically names tracking, scoring,
and responding to vulnerabilities in ML systems as a gap in current
practice when a ML system is under attack. This paper fleshes out
what it would take to fill that gap.

One important goal stated by Kumar et al. [28] is to “equip soft-
ware developers, security incident responders, lawyers, and policy

3“Science of security” is a broad term, and it is not clear which of the senses or goals
identified by Spring et al. [53] is meant by [39].

116

Spring, Galyardt, Householder, and VanHoudnos

makers with a common vernacular to talk about” AML through
a taxonomy of ML failure modes. The taxonomy expands beyond
the narrow research concerns of the academic literature, and so
includes deployment and environmental failures. However, the Ku-
mar et al. [28] taxonomy remains restricted by current research in
some ways, in that attacks on supervised classification algorithms
are better researched and better understood than failures of other
types of algorithms; the authors attempt to overcome this gap and
be as comprehensive as plausible.

Kumar et al. [28] adopt some taxonomic categories also used
in the academic literature reviews. The distinction between full-
access and query-access attacks (see footnote 2) is present here
with similar meaning. The connection to security policy is via the
CIA triad, similar to Biggio and Roli [3]. Kumar et al. [28] frames
CIA as assurances for the ML system, rather than capabilities of
the adversary, which aligns better with common security usage.*

Kumar et al. [28] identifies 11 intentionally motivated failure
modes, namely:

(1) Perturbation attack

(2) Poisoning attack

(3) Model inversion

(4) Membership inference

(5) Model Stealing

(6) Reprogramming ML system

(7) Adversarial example in physical domain
(8) Malicious ML provider recovering training data
(9) Attacking the ML supply chain

(10) Backdoor ML

(11) Exploit Software Dependencies

In relation to the CVE paradigm of vulnerability management, the
best way to understand these failure modes is as new candidate
CWEs. The failure modes are about general kinds of things that can
go wrong when designing, implementing, or using ML algorithms.
Also similar to CWE, Kumar et al. [28] is clear the authors are
curating a living document that will change as the community finds
further failure modes.

MITRE has published one CWE related to AML: CWE-1039, “Au-
tomated Recognition Mechanism with Inadequate Detection or
Handling of Adversarial Input Perturbations” CWE-1039 tracks
to “Perturbation attack” in Kumar et al. [28]. This suggests there
are at least 10 further CWEs to define. CWE-1039 is more general
than either of our proposed thought experiments — either a specific
algorithm or a specific model could be an example of this weakness
type.

NIST has a policy effort to bridge AML and information security
policy in Tabassi et al. [54]. The NISTIR is a draft, and so will likely
change and improve; at present, a comment period closed on Jan
30, 2020 and the authors are editing based on those comments.
The version presently available is essentially just an attempt to

“There are shortcomings with this common usage. One one hand, it is based on a
metaphor with the physical goods, such as fortifications, which breaks down when
applied to information systems [40]. On the other hand, some standards bodies, such
as the Internet Engineering Task Force (IETF), list several other recommended security
services in additional to just CIA, such as non-repudiation, and differentiate some
parts of CIA, such as between system integrity and data integrity [49, p.274]. Failure
modes in ML may put additional pressure on the basic CIA triad, and justify a change
to one of these more nuanced approaches.

On managing vulnerabilities in AI/ML systems

synthesize the academic surveys; these include [3, 39] as well as
three others as primary sources [54, p.2].

Despite being a NIST document, one thing that Tabassi et al.
[54] decidedly does not do is integrate or deconflict AML terminol-
ogy with the terminology in the NIST Computer Security Research
Center glossary, or any other set of standard information security
terms [16]. Unlike Kumar et al. [28], the NISTIR draft is narrowly
scoped to academic AML interests and does not account for deploy-
ment or environmental failures that would be of interest in practice
[16]. We expect the next draft will improve on these shortcomings.
However, for these reasons at present Tabassi et al. [54] does not
bridge the NVD, CVE program, or other vulnerability management
functions with the AML space.

3.3 Summary of operational work

The work on operational assurance that ML systems behave as
expected covers a broad space. First, this section introduces an
anatomy of an operational ML system to clearly define the parts
subject to our thought experiments and contextualize them. Sec-
ond, we will scope our thought experiment by summarizing valid
operational concerns that are and are not security vulnerabilities
through the lens of deployment context.

A deployed ML system has a broader attack surface than just the
training and testing of the ML model. Our thought experiment in
this paper is limited in scope to ML algorithms and model objects,
but it is important to recognize that these are just some parts of an
operational ML system.

Figure 1 provides a representation of the pieces involved in
developing and operating an ML system.> While this diagram is
only a rough representation of any particular system, it provides a
useful tool for conceptualizing the possible vulnerabilities of any
deployed ML system. Each of the components and processes in the
diagram represents a different point where a vulnerability could
be introduced; vulnerabilities may arise in sensors that collect the
data, the data processing component, or the runtime monitoring
tools, in addition to the model itself.

This perspective highlights the difference between an ML al-
gorithm and an ML system. The ML algorithm is the particular
mathematical procedure used to create an ML model object by con-
figuring/training it on the data. The ML system includes all of the
components illustrated in Figure 1. Horneman et al. [20] provides
general guidance for the design and management of ML systems.

As discussed in Section 3.1, the AML research community fo-
cuses on categories of vulnerabilities introduced during the Model
Building and Validation stage; particularly, categories of vulnera-
bilities that may be inherent in the Untrained Model or introduced
by manipulation of the Training Data or Test Data 1. Kumar et al.
[28], discussed in Section 3.2, broadens this focus; e.g., the cate-
gory "Attacking the ML supply chain" introduces the idea that a
vulnerability could be introduced to a trained model as it is being
downloaded in the Model Deployment stage. However, a deployed
system has yet more components which could introduce vulner-
abilities. For example, if an adversary wanted you to waste time

Note that this diagram can represent both supervised and unsupervised ML systems;
however for reinforcement learning, the general pipeline is the same, but the model
building and validation stage will require modification.

117

NSPW ’20, October 26-29, 2020, Online, USA

and money retraining your model, thus hurting you in a resource-
constrained environment, they could attack the Benchmark Data
to make your model seem as if performance was degrading for
unknown reasons.

To situate ML systems in their full context, one should observe
that deployed ML systems often are part of enforcing or developing
policies for organizations, including governments. Such systems
often embed power structures, biases, and inequity [35, 36, 58]. Both
ML researchers, e.g., [13, 47], and legal scholars, e.g., [8, 12, 25, 29],
have been struggling with how to seek out and eliminate these
problems from ML systems. However, designing an ML system
with an assured fidelity to a particular substantive policy choice
is not usually considered a security question. That is, assuring a
high-quality ML system generally involves assuring attributes other
than security, such as fairness, equity, stability, etc. We place these
other attributes out of the scope of this paper.

However, exceptions for these other attributes aside, the larger
context of deployment is essential for defining what constitutes
a vulnerability. Vulnerabilities live at the intersection of the soft-
ware system and its interaction with the environment. For example,
Householder [21] has argued that prior to the invention of airplanes,
buildings did not have airplane related vulnerabilities. Something
about the world changed with the invention of airplanes, and now
the interaction between buildings and their world contains a new
class of vulnerable states, damage caused by impacts with airplanes.
In the same way, before the advent of self-driving cars, ML systems
did not have vulnerabilities involving stickers on stop signs [18].
Since the deployment context has changed to include self-driving
cars, the interaction with the environment now includes such vul-
nerabilities. Accounting for these diverse environments is both a
challenge and a motivation for our thought experiments.

4 THOUGHT EXPERIMENT 1: ALGORITHMS

This section explores one hypothetical situation — what if flaws
in ML algorithms were assigned CVE-IDs? We explore the conse-
quences for vulnerability management by analyzing each of the
six vulnerability management service areas [2]. CERT/CC has pub-
lished one vulnerability note about an ML algorithm vulnerability,
but it is tracked only with the internal identifier VU#425163 and
does not list a CVE-ID [22]. The note describes how ML classifiers
trained via a gradient descent algorithm are vulnerable to arbitrary
misclassification attacks. Although the focus of our thought experi-
ment will tend to be generic, in cases where a concrete example is
helpful we will use the CERT/CC vul note.

As Section 3.3 discussed, there are many parts that go into an
operational ML system, and the algorithms are just one part. The
thought experiment here is just working through what would hap-
pen if CVE-IDs were assigned to algorithms. Of course, systems
that use the algorithm should likely inherit the CVE-ID; although
there is guidance for defending ML systems from vulnerabilities
in their algorithms, the guidance is evolving rapidly because most
guidance has been quickly shown to be inadequate [6].

Each of the following subsections examines our thought ex-
periment through one of the CSIRT services within vulnerability
management, as introduced in Section 1.

NSPW °20, October 26-29, 2020, Online, USA

Spring, Galyardt, Householder, and VanHoudnos

Model Building and Validation

)

Data Processing

Data
Labeling

)

Untrained Model Model

2ci Training

Cleaning

Training
Data

Feature
Engineering

Data
Collection

‘0om

Candidate

14 Test Data

Models Model

Selection

{}

Trained Model

Model Deployment

Testing

Test Data
2

Integrate
Model into
ML-Enabled
System

Test ML-Enabled
System

)

Trained Model

ML-
Enabled
System

Operational Environment

Runtime
Monitoring
Tools

ML-Enabled System

Benchmark

Data Collection
Data

Data
Entry

Software
Component A

Data

Processing Operational

Data

<<Software Component>>

ML Component

Software
Component B

Trained Model

Figure 1: Each of the green boxes represents a process, often with a human directly involved. Each of the burnt-orange boxes
represents a software component in the operational environment. In an operational ML system, the model needs frequent

updating, and this process could be represented by adding a loop to this diagram.

118

On managing vulnerabilities in AI/ML systems

4.1 Vulnerability discovery / research

In our scenario, vulnerability discovery will not change much. All
current vulnerability discovery work can continue as before. If we
start assigning CVE-IDs to ML algorithm vulnerabilities the number
of people who should be counted as doing vulnerability discovery
will jump higher overnight, as AML folks will be added to the ranks.
Although it is difficult to estimate the size of the AML community,
over 1,900 papers have been published since 2014 according to a
widely followed tracker [5], suggesting a substantial influx.

As in the current paradigm, in our thought experiment not all
ML algorithm vulnerabilities will end up with an assigned CVE-ID.
However, the reasons for this will remain the same; there are at
least three possible reasons why a CVE-ID may not be assigned:

e The vulnerability research is internal to product develop-
ment, and will be fixed without being made public

o The vulnerability is not independently fixable from another
vulnerability

o The vulnerability researcher plans to sell the vulnerability
or otherwise use it in attacks

The first two are expressly forbidden to have CVE-IDs in the CVE
specification [9, §7]. Those in the third category may be assigned a
CVE-ID eventually, once defenders detect attacks using it.

This first reason will not unduly stress our thought experiment.
Most mature software engineering projects conduct internal testing
before release. Tests may include fuzzing, program verification, code
review, or unit tests. In general, if code pre-release fails these tests,
it is fixed without being assigned a CVE-ID because it does not
need to be discussed publicly. Such testing regimes for ML systems
are one recommendation in both the academic and policy literature.

The second reason a vulnerability may not receive a CVE-ID
is more slippery in relation to ML algorithms. Given that how to
prevent these attacks on ML algorithms is not known in principle,
it may be considered an area of active research. However, we can
say something about what should get different CVE-IDs. If the
algorithms are distinct ML algorithms, then they should get distinct
CVE-IDs, even if they exhibit the same flaw type (as documented
by [28], for example). This practice would be analogous to the way
in which two web browsers get separate CVE-IDs even if they both
have a buffer overflow, even though buffer overflow is the same
kind of flaw in both. Similarly, if there are distinct versions of the
same algorithm, they will only get separate CVE-IDs if the fixes are
independent. This practice is analogous to the way that multiple
versions of a web browser may be affected by a single CVE-ID
today.

The abstraction level hierarchy presented in Section 2.2 presents
some further trouble for “independently fixable” that is not so easily
resolved. The hierarchy implies that all protocols or models that
use a vulnerable algorithm and implementations of those protocols
or models will share the same CVE-ID. This sharing is implied be-
cause the implementations are not independently fixable from each
other; the algorithm may need to be fixed and then this change
propagated down the abstraction levels. However, as is the case
currently where every instance of a product is not always suscepti-
ble to vulnerabilities in the product, due to configuration changes
or other workarounds in place, it may be possible to use a vulnera-
ble algorithm in a way that that does not expose every algorithm

119

NSPW ’20, October 26-29, 2020, Online, USA

Metric Name Group Options

Attack Vector Exploitability | Physical; Local; Adja-
cent; Network

Attack Complexity | Exploitability | Low; High

Privileges Required | Exploitability | None; Low; High

User Interaction Exploitability | None; Required

Scope Impact Changed; Unchanged

Confidentiality Impact None; Low; High

Integrity Impact None; Low; High

Availability Impact None; Low; High

Table 1: Summary of CVSS v3.1 base metrics [10].

vulnerability. This, too, is an area of active research, and a topic we
will return to in Sections 4.3 and 4.6.

Finally, vulnerabilities discovered for the purpose of attacking
others would mostly have the same properties in a world where ML
algorithms get CVE-IDs. It may seem that disambiguating different
attacks is harder with ML algorithms. But given the current pre-
vailing exploit-as-a-service [17] and crimeware-as-a-service [50]
situations, it is already exceedingly difficult to know which vulner-
ability an adversary exploited. And if ML algorithms get CVE-IDs,
it may slowly become easier to identify and catalog which attacks
an ML system is expected to be vulnerable to or resist.

4.2 Vulnerability report intake

In addition to receiving reports, this service area is where any ana-
lysts “review, categorize, prioritize, and process” a report [2]. There
are various human processes that will need to adjust if ML algo-
rithms receive CVE-IDs and become part of this process. We will
focus on prioritization. Review, categorization, and processing will
all require analysts to acquire new skills and expertise to under-
stand ML algorithms, but this may be handled in the medium term
by creating a CSIRT dedicated to the open-source ML community.
Such specialized CSIRTs exist for industrial control systems, for
example. And for broader security awareness beyond vulnerability
management, Information Sharing and Analysis Centers (ISACs)
serve a similar function. Prioritization cannot be so easily handed
off to a specialized workforce.

Prioritization implies giving a CVSS score to the vulnerabil-
ity [10]. Although a CVSS base score is explicitly not to be used on
its own as a prioritization score, the technical severity as measured
by CVSS is often considered an important factor in vulnerability
prioritization for many organizations today. The CVSS base score is
intended to reflect the “reasonable worst case impact”, and encapsu-
lates the relative ease of exploitation (exploitability) and the direct
consequences of a successful exploit (impact). The dimensions of
exploitability include attack vector, attack complexity, required
privileges, and user interaction; while impact considers scope and
the confidentiality-integrity-availability triad [10, §1]. Table 1 sum-
marizes the options for CVSS base metrics.

What would happen if we try to give a CVSS score to VU#425163?
The first thing we notice is that the guidance of evaluating the “rea-
sonable worst case impact” has limited utility when applied to ML
algorithms. The meaning of “reasonable” in the context of an algo-
rithm is difficult to bound, as an algorithm could be used in so many

NSPW °20, October 26-29, 2020, Online, USA

different contexts. When considering exploitability, there are plau-
sible scenarios where the misclassification can be forced remotely
(attack vector: network), the attack can be automated [38] (attack
complexity: low), the adversary can submit test cases without prior
authentication (privileges required: none), and the user does not
have to do anything (user interaction: none). For impact, the first
metric is scope — can the compromise of the vulnerable component
be used by the adversary to compromise other parts of the informa-
tion system of which it is a part to increase the scope of the attack.
For ML algorithms, attacking the behavior of the ML algorithm
can change the behavior of the car, robot, or system in which the
trained ML model is embedded (scope: changed). The last three
questions are about the CIA triad, but since scope is changed it is
the worse case of the algorithm itself or the wider scope of what is
the adversary can access. Kumar et al. [28] would characterize this
kind of misclassification attack as a failure of algorithm integrity,
so we can safely set integrity to high. The same CVE-ID will apply
to forcing a Tesla autopilot to change lanes, which, in a reasonable
worst case, could cause the car to crash, which sets availability to
high as well. Even if we ignore confidentiality and set it to none,
the CVSS score is maxed out at 10.0.

This is probably not a reasonable CVSS score, or at least it is out
of sync with scores for other vulnerabilities. It is unclear whether
this indicates our ML algorithm vulnerability is particularly bad,
or whether CVSS just is not suited to analyze such vulnerabilities.
Given that CVSS has a host of problems, including complaints it
does not apply properly to domains such as industrial control sys-
tems, medical devices, and robots, we hypothesize the problem lies
with CVSS in our thought experiment as well. Spring et al. [52]
proposes an alternative, stakeholder-specific vulnerability prioriti-
zation scheme that would be more easily adapted to ML algorithm
vulnerabilities.

4.3 Vulnerability analysis

The purpose of vulnerability analysis is to triage incoming reports,
understand the root cause of the vulnerability, and develop coun-
termeasures to fix or mitigate the vulnerability [2].

Triage is heavily dependent on prioritization, and so mirrors
the discussion in Section 4.2. The ingredient triage adds is asset
management. For example, if the vulnerable component identified
by the CVE-ID is not installed anywhere the security team is re-
sponsible for, then the priority does not matter. Asset management
of ML algorithms is a challenging problem. The modern cyberse-
curity paradigm already struggles with vulnerabilities in libraries
that may be used in diverse products; these challenges are well-
documented by the work on Software Bill of Materials (SBOM) [24].
Tracking vulnerable ML algorithms will only make this problem
more urgent. Such tracking may meet initial resistance from the
system vendors, under the argument that CVE-IDs may reveal the
algorithm they use and that choice may be intellectual property
or some such. Whether this legal argument carries will likely be
jurisdiction specific; in places with a strong right to explanation
(such as in the GDPR), such information seems less likely to be
protected.

Root cause analysis is affected in similar ways as vulnerability
discovery. The AML academic research field is currently engaged in

120

Spring, Galyardt, Householder, and VanHoudnos

root cause analysis for all the vulnerable algorithms. What assigning
CVE-IDs would change is to drive conversation between the AML
research community and system engineers and system owners,
who will likely gain increased awareness that their ML systems
have flaws. As Kumar et al. [28] identifies, there is a gap here
in that the two communities lack a shared language in which to
communicate. So far the main efforts seem to have been to teach
system owners the language from AML. Assigning CVE-IDs to
algorithm vulnerabilities would start the work of teaching the AML
researchers language from operational security.

Developing countermeasures for vulnerabilities in ML algorithms
will continue to be a hard problem. While there is 15 years of re-
search within the AML community, we are not aware of any public
discussion on how to build an ML system with appropriate mit-
igations or workarounds in place to isolate the algorithm from
adversary interference. Security professionals use mitigations and
workarounds for vulnerabilities regularly, when a fix is not avail-
able or not practical. For example, one recommended mitigation
for any SMB service is to only expose it to a trusted local network,
never the internet. This workaround does not fix SMB vulnerabili-
ties, but it does mitigate them. Biggio and Roli [3, §5.1] summarizes
six papers under the heading “reactive defenses” that likely map to
workarounds and mitigations. CVE-IDs may help system owners
and developers track which workarounds are necessary for their
systems. But the system engineering practices for ML-enabled sys-
tems are still a work in progress as well [20]. The need is especially
dire if such systems have a cybersecurity task such as malware iden-
tification, which must be exposed to adversary-crafted input [51].

4.4 Vulnerability coordination

Coordinated Vulnerability Disclosure (CVD) is “the process of gath-
ering information from vulnerability finders, coordinating the shar-
ing of that information between relevant stakeholders, and disclos-
ing the existence of software vulnerabilities and their mitigations
to various stakeholders, including the public” [23, §1.2]. The previ-
ous sections have highlighted the knowledge gap between security
operations and AML researchers. CVD is probably the place where
those knowledge gaps will evidence as barriers. All three steps —
gathering information, sharing that information, and disclosing
vulnerabilities — are dependent on shared knowledge.

For example, consider VU#425163. If that vulnerability were to
get a CVE-ID, its finders in the AML community would likely react
with confusion. The issue has been known for years; they would
have some questions about why assign an identifier now. Next,
who do we share information about the vulnerability with - it is
already public, after all. And there is no easy way, at present, to
notify specific vendors because there is no listing of which products
use which algorithms. Despite these facts, the statements from the
engineering and policy community are that the information about
these flaws is not getting where it needs to; that is the whole premise
of the efforts by [28]. Communication and coordination seem to be
failing somewhere, likely at multiple points. Assigning VU#425163
a CVE-ID would not solve any of these problems. But it might
start some conversations that may build some trust and shared
understanding that form the beginnings of coordination.

On managing vulnerabilities in AI/ML systems

4.5 Vulnerability disclosure

Disclosure is closely linked to coordination. Two topics that would
be affected here are announcements and timelines. Vulnerability an-
nouncements are affected because they include the results of several
things discussed above, such as severity scores, identifiers, recom-
mended fixes or mitigations, and a description using shared termi-
nology. The relevant constituents may also be different from current
vulnerability announcements, as Section 4.4 indicated. While these
are a lot of changes to announcements, none of them require further
discussion; timelines do.

In security operations, vulnerability disclosure timelines are al-
ready a contentious topic. The consensus position is often described
as “coordinated,” as in CVD, where a vendor is told about vulnera-
bilities in their software before the public or attackers so that the
vendor has a chance to develop and deploy a fix. The AML commu-
nity works under what might be called a zero notification paradigm
- results tend to be published with no prior warning to those who
develop or use the algorithm. There are security practitioners who
advocate and practice this for vulnerabilities in traditional systems,
but it is not the norm in most communities. These two differing
sets of norms would come into conflict if a widely used and dis-
tributed product were tagged with a CVE-ID because overnight
an ML algorithm vulnerability is discovered, posted to arXiv, and
assigned a CVE-ID. How this conflict would be resolved depends
on various political, operational, and technical factors. While we
cannot venture a prediction as to how the conflict will resolve, the
fact that there will be a conflict between these two norms is almost
certain.

4.6 Vulnerability response

Vulnerability response is where operations folks do something to
prevent vulnerabilities from being exploited. There are two basic
steps: detecting which systems an organization manages are vul-
nerable to which flaws and applying fixes or mitigations to those
systems. For any system, traditional IT or ML, some of the vul-
nerable systems an organization manages will not have CVE-IDs;
web server misconfigurations are a common example. We focus on
those vulnerabilities with CVE-IDs. Both detection and response
would need to adapt if ML algorithms are assigned CVE-IDs, be-
cause in practice many detection and response workflows are based
on CVE-IDs as the primary unit of work.

The change to detection would depend on how much work can
be done during analysis and coordination to link a vulnerable algo-
rithm to deployment in specific product versions. This connection
gets easier if the vulnerability is associated with certain published
models that use the algorithm, but may get harder if the vulner-
ability depends on features of the training or test data. However,
proprietary products rarely reveal their model or algorithm, which,
in the short term at least, will make detection challenging.

It is likely that there will not be simple vulnerability scans to
detect ML algorithm vulnerabilities, which upends the current de-
tection paradigm that relies heavily on operations like Nessus scans.
If detection does not adapt, one possible outcome of our thought
experiment is that while ML algorithms have CVE-IDs, there is
no operational impact because those CVE-IDs are never identi-
fied on deployed systems. For at least the medium term, detection

121

NSPW ’20, October 26-29, 2020, Online, USA

of systems with vulnerable ML algorithms would be manual or
mostly manual based on annotation of asset management databases.
Whether or not this is acceptable will depend on the volume of vul-
nerable systems and the volume of attacks against systems without
fixes or mitigations in place.

As Section 4.3 discussed, developing fixes and mitigations for
these algorithm vulnerabilities will continue to be a hard problem.
Response has a dependency on there being a fix or mitigation for
operations folks to apply. This alludes to another possible fate of
the thought experiment: there is raised awareness of exactly which
systems are vulnerable to which kinds of attacks, but nothing for
anyone to do about it. This statement is a bit overly dramatic, of
course. System owners can either make a risk management decision
that the system provides enough value to be worth the risk, or not.
And usual system security principles such as least access and least
privilege should still apply.

A more measured possible fate of our thought experiment is
that system owners become aware that they have taken on more
vulnerable systems than they expected or understood, and re-evaluate
either their need or deployed protections for those systems. Until the
AML community can provide more comprehensive fixes, this may
be the best response available. And, if we establish the connection
to between AML research and operational security sooner, then
it should reduce the time to communicate and deploy those fixes
when they become available.

5 BY THE LETTER OF THE RULES

Section 4 explored the impact of assigning CVE-IDs to ML algo-
rithm vulnerabilities in general. This section explores the details
of the CNA rules on assigning CVE-IDs to specifically ask whether
CERT/CC could be justified in assigning a CVE-ID to the vulnera-
bility note VU#425163 identifying gradient descent as vulnerable to
misclassification attacks [22]. The CNA rules [9] have four aspects
to consider:

(1) What is a Vulnerability?

(2) How many Vulnerabilities?

(3) CNA Scope

(4) Requirements for Assigning a CVE ID

We consider each of these in detail below.

5.1 What is a Vulnerability?

CVE-ID assignment rules [9] allow for a degree of latitude for CNA
judgement, but do provide some specific guidance. Each of these
criteria can be applied to VU#425163, though it takes a bit more
work than with a traditional implementation-level vulnerability in
a product.

Rule 7.1.1 says if the vendor recognizes the report as a vulnerabil-
ity, then the report must be considered a vulnerability. In the case of
most protocols and some algorithms, there is often a standards body
responsible for maintaining the specification. That standards body
is seen as the vendor for the purposes of CVE-ID assignment. For
example, the cryptographic algorithm MD5 is specified in IETF RFC-
1321 [45] and has at least one assigned CVE-ID (CVE-2004-2761).
But unlike MD5, the gradient descent algorithm is not "owned"
by a standards body. There are multiple variants of gradient de-
scent [46], but the basic stochastic algorithm for training neural

NSPW °20, October 26-29, 2020, Online, USA

networks dates to the late 1980s [1]. Therefore it is difficult to pin
down a specific "vendor" who would authoritatively judge 7.1.1.
The authors of the paper are the closest thing to the role of "ven-
dor", but this seems like a poor fit for assigning responsibility for
maintenance. Vulnerabilities can still be identified in abandonware
though, so this should not be a big problem.

Rule 7.1.2 says the report should be considered a vulnerability
if a product security policy is violated. In the case of a stochastic
algorithm such as a classification algorithm, it seems that acceptable
false positive or false negative rates might constitute such a policy. If
an attacker can present the system with inputs that would otherwise
be rare, it seems that a policy based on FPR or FNR would be violated.
One might make a similar argument about fit quality for a regression
needing to meet some specified tolerance. But stochastic policies
can be difficult for security analysts to reason about.

The question of negative impact posed in Rule 7.1.3 is somewhat
harder. The assertion of VU#425163 is that all systems in which
gradient descent is used are susceptible to exploitation by adversar-
ial input. So even though some implementations might not have
a security relevant impact were exploitation attempted, it seems
likely that some security relevant impact will occur in some imple-
mentations. So far, it seems our strongest arguments in favor of
treating VU#425163 as a vulnerability per CVE-ID assignment rules
are 7.1.2 and 7.1.3 coupled with CNA discretion.

5.2 How many Vulnerabilities?

Proceeding through the four questions, we reach section 7.2 of the
CNA rules, which focuses on the concept of independent fixes. Rule
7.2.1 simply prohibits duplicate assignments. Rule 7.2.2 prohibits
assignment when a dependency on another vulnerability exists,
which is not the case for our example. Rule 7.2.3 suggests resolving
uncertainty about independence by assigning a single CVE-ID. In
effect, splitting is taken to be easier than merging should revisions
be needed.

Rule 7.2.4 addresses what to do when “multiple products are
affected by the same independently fixable vulnerability” arising
from shared code. But both protocols and algorithms can have
multiple implementations and therefore may not share code even
though they share a vulnerability, making this rule inapplicable.

Rule 7.2.5 resolves the situation when the vulnerability originates
in functionality or specification, as is the case for both protocol
and algorithm vulnerabilities. If there is a way to implement the
functionality securely, then each implementation that fails to do
so must get its own CVE-ID according to rule 7.2.5.a. Conversely, a
single CVE-ID is required by rule 7.2.5.b when there is no way to
implement the specification or functionality securely. Rule 7.2.5.c
resolves ambiguity in favor of multiple assignments.

In understanding 7.2.5, compare the vulnerability in this gradient
descent algorithm to known errors in floating point handling algo-
rithms. There is not a vulnerability in floating point handling per
se because it is possible to handle floating points properly. Floating
point algorithms have known errors that can lead to vulnerabili-
ties, for example, CVE-2006-6499. This situation is an example of
7.2.5.a. The C Secure Coding standard discusses these floating point
algorithm issues under FLP00-C through FLP07-C [48]. However,
there is no known secure method for training a model with gradient

122

Spring, Galyardt, Householder, and VanHoudnos

descent (see Section 3.1). So it does not seem comparable to algo-
rithms like floating point handling — which have known problems
but also have known secure methods for use.

VU#425163 describes a problem with every system that uses
gradient descent in training models, so rule 7.2.5.b seems most
relevant here, thereby requiring a single CVE-ID assignment rather
than one per affected product. This is consistent with assigning
CVE-IDs to cryptographic algorithms and protocol specifications
as previously noted.

5.3 Scope and Requirements

The remainder of the CVE-ID assignment rules are easier to get
through: Rule 7.3 verifies that the vulnerability is in scope for the
CNA making the assignment. CERT/CC’s scope as a CNA covers
assignment related to its vulnerability coordination role, so this
falls within our scope.

Rules 7.4.1, and 7.4.2 verify that the report is intended to be
public, which is true because VU#425163 exists. Rule 7.4.3 prohibits
duplicate assignment to previously assigned CVE-IDs. Rules 7.4.4,
7.4.5, and 7.4.6 address the differences between vulnerabilities for
which someone other than the CNA must take action to resolve. The
only relevant one for our case is rule 7.4.6, which allows assignment
for cases where the affected product(s) or service(s) are not owned
by the CNA but are customer controlled. CERT/CC does not own
the gradient descent algorithm, and it is used in customer controlled
systems.

Rule 7.4.7 requires assignments not be made for products that are
neither licensable nor publicly available. For VU#425163, although
the gradient descent algorithm itself is not licensed, it is publicly
available, so rule 7.4.7 does not impede us.

Finally, rule 7.4.8 requires CNAs to consider only these rules
when making assignment decisions. Therefore per the CNA assign-
ment rules, it seems that VU#425163 deserves a CVE ID.

5.4 Assignment conclusions

In a discussion among the authors and the analyst staff at CERT/CC,
several of us hold the view that VU#425163 and issues like it might
be better suited as a category of vulnerability — such as CWE entries
or an OWASP item to avoid — rather than CVE-IDs. The lack of
vendor ownership of an algorithm (or family of algorithms) was
one recurring concern. This question of ownership is open around
ML systems generally; for example, what exactly can be patented
(and therefore owned) is unclear. But in general, a specific model
for a specific purpose can be patented but an algorithm like logistic
regression cannot. If an object is patented, it definitely has an owner;
but an unpatentable item may still have an “owner” in the CVE sense
if, for example, an algorithm is specified by an open standards body.
We have not been able to resolve the relevant algorithm ownership
question to our satisfaction.

Another concern centered on the fact that not all trained models
are exposed to attacker-controlled input to the same degree, so the
fact that gradient descent was used to train a model embedded in
the system may not imply that an attacker can exploit it. Finally,
from a vulnerability management operational perspective, many
organizations have policies that require known vulnerabilities (that
is, those with CVE-IDs assigned) to be fixed in a timely manner.

On managing vulnerabilities in AI/ML systems

Because the only known fix for VU#425163 basically boils down to
defense-in-depth, it was easier for many analysts to consider this
as a weakness — and therefore deserving of a CWE entry — rather
than a CVE-ID.

This situation does not resolve a final recommendation for or
against assigning a CVE-ID to VU#425163. On the one hand, the
CNA rules recommend assigning a CVE-ID. On the other hand, at
least some professional vulnerability analysts think of it as a weak-
ness and not a vulnerability. These tensions should be addressed in
either outcome; it is unclear whether the CNA rules should change
or the professional community intuitions should adapt.

6 THOUGHT EXPERIMENT 2:
MODEL OBJECTS

This section explores a second hypothetical situation, if algorithm
vulnerabilities such as VU#425163 are not assigned CVE-IDs, what
if the the trained model objects themselves were assigned CVE-IDs?

Specifically, as discussed in Section 3.3, the trained model object
within the ML system can enter a vulnerable state when the ML sys-
tem interacts with its environment. Since the trained model object
is a component of the software system that has a defined version,
can persist for long periods of time, and can enter a vulnerable state,
we explore the consequences of assigning trained model objects
CVE-IDs. It is possible this scenario has happened; CVE-2019-8760
identifies a vulnerability in Apple’s Face ID software that was fixed
by “improving Face ID machine learning models” However, our
thought experiment will cover ML models generally, not just mod-
els with a security function. Furthermore, Apple has not released
details about its response to CVE-2019-8760, therefore to achieve
a useful level of detail in the discussion we will exercise another
thought experiment about known flaws in a popular model object.

As the specific example, consider Xu et al. [57] which generated
an adversarial t-shirt pattern that successfully evaded the person
detection capability of two COCO [30] trained object detectors,
Faster R-CNN [44] and YOLO v2 [43]. Although Xu et al. [57] do not
release their code nor specify precisely which trained model objects
they used, there is sufficient detail in their paper that, at a minimum,
the torchvision implementation of Faster R-CNN, available in a
version pre-trained on COCO [55], and the darknet implementation
of YOLOv2, available in a version pre-trained on COCO [42], are
both vulnerable to the adversarial t-shirt pattern. For brevity, we
refer to this candidate CVE-ID as CVE-tee.

The hypothetical CVE-tee will focus on these pre-trained model
objects. However, this example makes space for further questions
about to what a CVE-ID should be assigned. YOLOV2 is a framework
for training a neural network on image data sets. In the terms of
Figure 1, it is a model building and validation framework. Some
aspects of YOLOv?2 are fixed — the ML algorithm it trains is a single
neural network. Many are configurable. Some aspects, such as the
training data set, are configurable. The CVE-tee example focuses
on the COCO data set. There are examples of problems localizable
to the training data set — for example, Buolamwini and Gebru
[4]. Whether a CVE-ID might be more productively assigned to
the model building framework or the training data set are open
questions for future work. This paper is focused on just two of the
more extreme points in the possible space of where a CVE-ID might

123

NSPW ’20, October 26-29, 2020, Online, USA

be assigned - the ML algorithm (Section 4) and a specific trained
model object (this section).

Each of the following subsections examines our thought exper-
iment through one of the CSIRT services withing vulnerability
management, following our thought experiment in Section 4.

6.1 Vulnerability discovery / research

As in the prior thought experiment, vulnerability discovery will
not change much beyond the substantial increase in the number of
persons who should be counted as doing vulnerability discovery.
For example, there are a growing collection of academic papers that
already take as a starting place a publicly available model object
and publish exploits that force those model objects into undesirable
states, such as our motivating example for CVE-tee.

As in the current paradigm, not all vulnerable model objects will
be assigned a CVE-ID, for reasons much the same as in the prior
thought experiment. A particular concern for assigning trained
model objects CVE-IDs is persistence of the the trained model. For
example, some versioned models might be so short-lived as to not
warrant CVE-ID assignment, such as during training itself or during
internal development. The CVE rules do not specifically address
a minimum time of existence to assign an ID, although there is
mention of the need for public notification, which implies mass
human-scale response times. That said, there are many trained
model objects that have a persistence measured in years, notably
the models released by popular deep learning frameworks, such
as in torchvision and keras.io. The YOLOv2 exemplar models for
CVE-tee, for example, has been available since 2016.

A second concern is that, as of this writing, all trained models are
vulnerable to an attacker who is aware of the defense strategies used
to defend the model [6, 56]. This implies that every machine learn-
ing system that is released would have open CVE-IDs associated
with its trained model. Such mass assignment is not necessarily a
negative thing, because it makes clear to both the machine learning
community and the security community that using these models
in situations that impact a given security policy is delicate matter
that requires careful thought.

6.2 Vulnerability report intake

In the prior thought experiment, the focus was on assigning al-
gorithms CVE-IDs. Section 4 has an underlying assumption that
there are relatively few algorithms to study. In this thought experi-
ment, we consider assigning CVE-IDs to trained model objects; this
suggests several orders of magnitude more CVE-IDs be assigned be-
cause one widely used algorithm can produce many such vulnerable
model objects.

For example, we identified two candidate models for CVE-tee,
the official torchvision and darknet implementations of Faster
R-CNN and YOLOv2, respectively. We chose those models out
of familiarity. However, there are many additional model files
available for download that have been pre-trained on COCO. For
example, Faster R-CNN was published at Neurips in 2015, and
their initial implementation was in MATLAB (https://github.com/
ShaogingRen/faster_rcnn). The authors later released a version
in python (https://github.com/rbgirshick/py-faster-rcnn), and the
success of their approach has led to multiple implementations in

https://github.com/ShaoqingRen/faster_rcnn
https://github.com/ShaoqingRen/faster_rcnn
https://github.com/rbgirshick/py-faster-rcnn

NSPW °20, October 26-29, 2020, Online, USA

pytorch, tensorflow, keras, etc. These model object versions may
be considered similar enough in some important sense to receive
the same CVE-ID. However, tracking all of the Faster R-CNN and
YOLOv2 model objects trained on COCO and their derivatives is a
non-trivial task.

An additional concern, as in the prior thought experiment, is
prioritization of an ML vulnerability. Although the trained model
is a more concrete product than an algorithm, there is still a wide
variety of contexts in which the trained models might be used.
The “worst case” reasoning of CVSS will lead to us giving this
vulnerability, and presumably most CVE-IDs in trained models, a
“critical” CVSS score (above 9.0). While this may be justified, it will
cause friction during report intake if there is a large influx of high
priority vulnerabilities.

6.3 Vulnerability analysis

As discussed in the prior thought experiment, root cause analysis
and the development of mitigations are open research questions in
the AML community.

The processes of understanding the root cause and developing
countermeasures may be aided by having a more concrete model
object and vulnerable state to focus on. For example, in the case
of CVE-tee, the vulnerability report is a demonstration that two
popular object detectors are fooled by a person wearing a particular
pattern on their clothing, specifically a t-shirt. This leads to various
mitigation strategies that may be more or less appropriate given
the broader context of why an object detector is used to detect the
presence of persons in a frame of video. These could range from
social interventions, such as requiring persons to wear a specific
uniform and enforcing that requirement without machine learning,
to technical ones. A particular technical approach might be to move
away from standard cameras and object detectors trained on COCO
to infra-red cameras and object detectors trained on IR data, such as
https://www.flir.com/oem/adas/adas-dataset-form/. Since the engi-
neering involved in creating a thermally active adversarial pattern
is harder than printing a t-shirt, this may be a useful mitigation.

6.4 Vulnerability coordination

As in the prior thought experiment, the AML community will likely
react with confusion if a CVE-ID is assigned to a set of trained
model objects, for much the same reasons as the confusion that
would result from an algorithm being assigned a CVE-ID. Again,
the general issue has been known for years, the vulnerabilities are
already public, and the notification of vendors is difficult because
there is no list of which vendors use which model objects (or their
derivatives) for their products. Assigning CVE-tee a CVE-ID would
not solve any of theses problems, but it might start some conversa-
tions that may build the trust and shared understanding necessary
for coordination to begin.

Assigning CVE-IDs may also have a chilling effect on the willing-
ness of researchers to share trained models with the public. If, for
example, the assignment of a CVE-ID is perceived by the researcher
as a negative mark upon their work, then this may make a given
researcher less likely to release the code and trained models that
make it easier for others to continue to move the field forward
or put the results of research to innovative uses. Similarly, since

124

Spring, Galyardt, Householder, and VanHoudnos

the current state of AML is unable to isolate the root causes of a
given vulnerability — that is, we do not know what lines of code to
change or different algorithm to use - researchers may perceive the
assignment of CVE-IDs as unnecessary, which may erode rather
than build trust.

Risks of chilling effects notwithstanding, there is reason to be-
lieve that the AML and security communities can build the neces-
sary relationships. First, the CSIRT community has been here before.
For example, the medical device community is on a path to more ma-
ture vulnerability management. Roughly, this has meant building
relationships between the CSIRT and medical device communities.
That journey has included Food and Drug Administration (FDA) reg-
ulations on pre-market and post-market handling of vulnerabilities
and the Health ISAC creating a community in which vulnerability
management skills can be cultivated and encouraged [19]. Such re-
lationship building has had fits and starts, but it provides historical
lessons that could facilitate improved outcomes for connecting the
AML and CSIRT communities. Second, there are high-profile ex-
amples within the AML community that attempt to perform CVD,
such as OpenAl staging the release of its GPT-2 model over a period
of six months (https://openai.com/blog/gpt-2-6-month-follow-up/).
This community building will be hard, and regulation is not the
right solution for every community, but ML is not going to become
less important and so it is probably wise to start this hard work.

6.5 Vulnerability disclosure

As in the prior thought experiment, there is likely to be a conflict
between the zero notification paradigm commonly practiced by the
AML community and the CVD paradigm adopted by other security
communities. This is not ameliorated by changing the level at which
the CVE is assigned. It remains to be seen how this conflict will
resolve. Specifically, it remains unclear if academic researchers,
who are under significant pressure to share their results as quickly
and widely as a possible, would be willing to wait to publish their
exploits.

6.6 Vulnerability response

The response portion is where operations takes some action to pre-
vent vulnerabilities from being exploited. As in the prior thought
experiment, the steps are similar: identify which systems are vulner-
able to which flaws, and then respond by mitigating those vulnera-
bilities as necessary. The modifications necessary to these processes
when ML algorithms are assigned CVE-IDs are broadly similar to
when model objects are assigned CVE-IDs. In both cases, it will
be challenging to identify which systems have which vuls, either
because the system was trained with a vulnerable algorithm or
contains a model object that has a known vulnerability.

We believe the key difference will be in developing mitigations.
For example, a CVE-ID assigned to VU#425163 could give only gen-
eral advice. For example, Figure 1 indicates the adversarial pattern
could be dealt with at a variety of levels. An operator could modify
the environment so that the sensor is unlikely to encounter the
adversarial pattern, or modify the sensor itself to make the pat-
tern more difficult to produce, or add a run-time monitoring tool
focusing on detecting such patterns, or modify the software compo-
nents upstream from the trained model to filter out such patterns,

https://www.flir.com/oem/adas/adas-dataset-form/
https://openai.com/blog/gpt-2-6-month-follow-up/

On managing vulnerabilities in AI/ML systems

or modify the software components downstream of the trained
model to ameliorate the effects of fooled inputs. In contrast, if a
CVE-ID were assigned to a model object — and a particular threat
to it, such as CVE-tee - the advice given could be more specific.
For example, suggested mitigations could include modifying the
social environment to enforce clothing norms that preclude such a
pattern, investing in infrared sensors so that an attack would need
to produce thermal patterns — which is much harder - to fool the
sensor, etc. Such increased focus and reduced scope may lead to
more productive conversations between the relevant stakeholders.

7 CONCLUSION

These changes to vulnerability management are simultaneously
minor and revolutionary. Although there are important practical
differences between assigning CVE-ID to algorithms versus model
objects, the two thought experiments result in similar changes to
the current vulnerability management paradigm.

From the following perspectives, the changes are minor.

e MITRE’s guidance for CNAs need not change.

o The number of ML algorithm vulnerabilities would only be a
small percentage increase over the 20,000 CVE-IDs assigned
annually (in 2019); model object vulnerability assignments
would create more CVE-IDs than algorithms but still not
more than several hundred per year.

o The presence of these vulnerabilities in existing ML algo-
rithms and model objects is well-known and repeatedly
demonstrated.

e Within vulnerability management and security management
more generally, it is normal for sector-specific groups (such
as ISACs or Information Sharing and Analysis Organizations
(ISAOs)) to form to handle sector-specific issues.

o Challenges in vulnerability management due to supply chain
and asset management may be emphasized, but are not new.

e Current CVSS scoring norms struggle to adapt to various
existing stakeholder communities, and it is not clear that
AML is worse than other areas such as medical devices.

On the other hand, the following changes indicate a paradigm
shift for either AML, vulnerability management, or both.

o Although cryptographic algorithms have had vulnerabilities
in the past, algorithm-level vulnerabilities have been essen-
tially unknown in the current vulnerability management
regime.

o How to fix the vulnerable algorithms or defend model objects
is not known, so any assigned CVE-IDs would be open issues
for an unknown length of time.

o Asset owners and security policy folks who are fluent in
vulnerability management do not currently speak a shared
language with academic AML researchers.

e Engineering guidance for ML systems is nascent [20] and it
is not clear how to handle supply chain documentation or
asset management, including whether algorithms should be
identified as assets; model objects are often not identified as
assets in practice, though it would be easier to identify them
than algorithms.

e Current CVSS scoring norms probably are not suitable for
either algorithm or model-object vulnerabilities.

125

NSPW ’20, October 26-29, 2020, Online, USA

e AML publication timelines and CVD norms are in conflict.

Many of these changes are in tension; sometimes one aspect of
a change is minor while from another perspective the same change
is revolutionary. The thought experiment does not provide a strong
recommendation for or against; like many problems in vulnerability
management, it is nuanced and complicated. However, many of the
major changes are probably things that would benefit both com-
munities. So while they may be hard, they are desirable. From this
perspective, the ML engineering, vulnerability management, and
AML communities probably should build the appropriate bridges
and communication infrastructure. Then the question is whether
we can make the time.

ACKNOWLEDGMENTS

Copyright 2020 ACM. This material is based upon work funded
and supported by the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the op-
eration of the Software Engineering Institute, a federally funded
research and development center. References herein to any specific
commercial product, process, or service by trade name, trade mark,
manufacturer, or otherwise, does not necessarily constitute or imply
its endorsement, recommendation, or favoring by Carnegie Mellon
University or its Software Engineering Institute. [DISTRIBUTION
STATEMENT A] This material has been approved for public release
and unlimited distribution. Please see Copyright notice for non-US
Government use and distribution. CERT Coordination Center®is
registered in the U.S. Patent and Trademark Office by Carnegie
Mellon University.

REFERENCES

[1] S Becker and Yann Lecun. 1989. Improving the convergence of back-propagation
learning with second-order methods. In Proceedings of the 1988 Connectionist
Models Summer School, San Mateo. Morgan Kaufmann, 29-37.

Vilius Benetis, Olivier Caleff, Cristine Hoepers, Angela Horneman, Allen House-
holder, Klaus-Peter Kossakowski, Art Manion, Amanda Mullens, Samuel Perl,
Daniel Roethlisberger, Sigitas Rokas, Mary Rossell, Robin M. Ruefle, D’esir’ee
Sacher, Krassimir T. Tzvetanov, and Mark Zajicek. 2019. Computer Security Inci-
dent Response Team (CSIRT) Services Framework. Technical Report ver. 2. FIRST,
Cary, NC, USA.

Battista Biggio and Fabio Roli. 2018. Wild patterns: Ten years after the rise of
adversarial machine learning. Pattern Recognition 84 (2018), 317-331.

[4] Joy Buolamwini and Timnit Gebru. 2018. Gender shades: Intersectional accu-
racy disparities in commercial gender classification. In Conference on fairness,
accountability and transparency. 77-91.

Nicholas Carlini. 2020. A Complete List of All Adversarial Example Papers.
https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html
Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas
Rauber, Dimitris Tsipras, lan Goodfellow, Aleksander Madry, and Alexey Kurakin.
2019. On Evaluating Adversarial Robustness. arXiv preprint arXiv:1902.06705
(2019).

Nicholas Carlini, Matthew Jagielski, and Ilya Mironov. 2020. Cryptanalytic
Extraction of Neural Network Models. arXiv:2003.04884 [cs] (July 2020). http:
//arxiv.org/abs/2003.04884 arXiv: 2003.04884.

Danielle Keats Citron and Frank A. Pasquale. 2014. The Scored Society: Due
Process for Automated Predictions. Washington Law Review 89, 8 (2014). https:
//ssrn.com/abstract=2376209

CVE Board. 2020. CVE Numbering Authority (CNA) rules. Technical Report ver.
3.0. MITRE, Bedford, MA. https://cve.mitre.org/cve/cna/rules.html

CVSS SIG. 2019. Common Vulnerability Scoring System. Technical Report version
3.1 r1. Forum of Incident Response and Security Teams, Cary, NC, USA. https:
/Iwww first.org/cvss/v3.1/specification-document

Chad R Dougherty. 2008. VU#836068: MD5 vulnerable to collision attacks. https:
//kb.cert.org/vuls/id/836068 Accessed 2020-08-10.

Vera Eidelman. 2018. The First Amendment Case for Public Access to Secret
Algorithms Used in Criminal Trials. Georgia State University Law Review 34, 4
(August 2018).

[2]

3

5

[6]

=
&,

https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html
http://arxiv.org/abs/2003.04884
http://arxiv.org/abs/2003.04884
https://ssrn.com/abstract=2376209
https://ssrn.com/abstract=2376209
https://cve.mitre.org/cve/cna/rules.html
https://www.first.org/cvss/v3.1/specification-document
https://www.first.org/cvss/v3.1/specification-document
https://kb.cert.org/vuls/id/836068
https://kb.cert.org/vuls/id/836068

NSPW °20, October 26-29, 2020, Online, USA

[13] Golnoosh Farnadi, Behrouz Babaki, and Lise Getoor. 2018. Fairness in Relational

Domains. In AIES ’18: Proceedings of the 2018 AAAI/ACM Conference on Al Ethics,

and Society, Jason Furman, Gary Marchant, Huw Price, and Francesca Rossi (Eds.).

New Orleans, LA, USA. https://doi.org/10.1145/3278721.3278733

David Fox, Eric Arnoth, Clement Skorupka, Catherine McCollum, and Deborah

Bodeau. 2018. Enhanced Cyber Threat Model for Financial Services Sector (FSS)

Institutions. Technical Report 18-1725. Homeland Security Systems Engineering

and Development Institute, McLean, VA.

Peter Galison. 1999. Trading zone: Coordinating action and belief. The Science

Studies Reader (1999), 137-160.

[16] April Galyardt, Nathan M. VanHoudnos, and Jonathan M. Spring. 2020. Comments
on NISTIR 8269 (A Taxonomy and Terminology of Adversarial Machine Learning).
Technical Report. Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA. https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=
637327

[17] Chris Grier, Lucas Ballard, Juan Caballero, Neha Chachra, Christian J. Dietrich,

Kirill Levchenko, Panayiotis Mavrommatis, Damon McCoy, Antonio Nappa,

Andreas Pitsillidis, Niels Provos, M. Zubair Rafique, Moheeb Abu Rajab, Christian

Rossow, Kurt Thomas, Vern Paxson, Stefan Savage, and Geoffrey M. Voelker.

2012. Manufacturing Compromise: The Emergence of Exploit-as-a-service. In

Conference on Computer and Communications Security. ACM, Raleigh, North

Carolina, USA, 821-832.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. 2019. BadNets: Identify-

ing Vulnerabilities in the Machine Learning Model Supply Chain. arXiv:1708.06733

[es] (March 2019). http://arxiv.org/abs/1708.06733 arXiv: 1708.06733.

[19] Health ISAC. 2019. Medical Device Security Media Education Materials. https:

//h-isac.org/cvd-media-kit/ Accessed Aug 18, 2020.

Angela Horneman, Andrew Mellinger, and Ipek Ozkaya. 2019. AI Engineering:

11 Foundational Practices. Technical Report. Software Engineering Institute,

Carnegie Mellon University, Pittsburgh, PA.

[21] Allen Householder. 2015. Systemic Vulnerabilities: An Allegorical Tale of Steam-

punk Vulnerability to Aero-Physical Threats. https://www.youtube.com/watch?

v=4AHpL3kVHw4

Allen Householder, Jonathan M. Spring, Nathan VanHoudnos, and Oren Wright.

2020. Machine learning classifiers trained via gradient descent are vulnerable to

arbitrary misclassification attack. https://kb.cert.org/vuls/id/425163/

Allen D. Householder, Garret Wassermann, Art Manion, and Christopher King.

2020. The CERT® Guide to Coordinated Vulnerability Disclosure. Technical

Report CMU/SEI-2017-TR-022. Software Engineering Institute, Carnegie Mellon

University, Pittsburgh, PA. https://vuls.cert.org/confluence/display/CVD

[24] Michelle Jump and Art Manion. 2019. Framing Software Component Transparency:
Establishing a Common Software Bill of Material (SBOM). Technical Report.
National Telecommunications and Information Administration, Washington,
DC.

[25] Joshua A.Kroll, Joanna Huey, Solon Barocas, Edward W. Felten, Joel R. Reidenberg,

David G. Robinson, and Harlan Yu. 2017. Accountable Algorithms. U. PA.

Law Review (2017), 633~. https://scholarship.law.upenn.edu/penn_law_review/

vol165/iss3/3

Ram Shankar Siva Kumar, Magnus NystrAqm, John Lambert, Andrew Marshall,

Mario Goertzel, Andi Comissoneru, Matt Swann, and Sharon Xia. 2020. Adver-

sarial Machine Learning — Industry Perspectives. arXiv:cs.CY/2002.05646

[27] Ram Shankar Siva Kumar, David R. O’Brien, Kendra Albert, and SalomA® Viljoen.
2018. Law and Adversarial Machine Learning. arXiv:cs.LG/1810.10731

[28] Ram Shankar Siva Kumar, David R. O’Brien, Kendra Albert, SalomA®© Viljoen,
and Jeffrey Snover. 2019. Failure Modes in Machine Learning Systems. arXiv
preprint 1911.11034 (2019).

[29] David Lehr and Paul Ohm. 2017. Playing with the Data: What Legal Scholars
Should Learn About Machine Learning. UCDL Rev. 51 (2017), 653.

[30] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick,

James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr DollAjr.

2015. Microsoft COCO: Common Objects in Context. arXiv:1405.0312 [cs] (Feb.

2015). http://arxiv.org/abs/1405.0312 arXiv: 1405.0312.

Valentin Jean Marie Manés, HyungSeok Han, Choongwoo Han, Sang Kil Cha,

Manuel Egele, Edward J Schwartz, and Maverick Woo. 2019. The art, science,

and engineering of fuzzing: A survey. IEEE Transactions on Software Engineering

(2019).

Mitsuru Matsui. 1993. Linear Cryptanalysis Method for DES Cipher. In Advances

in Cryptology — EUROCRYPT (LNCS 765), Tor Helleseth (Ed.). Springer, Lofthus,

Norway, 386-397.

[33] MITRE Corporation. 2010. Common Vulnerabilities and Exposures. http://cve.

mitre.org. last access May 2, 2020.

MITRE Corporation. 2014. Common Weakness Enumeration: A Community-

Developed Dictionary of Software Weakness Types. http://cwe.mitre.org.

[35] Safiya Umoja Noble. 2018. Algorithms of oppression: How search engines reinforce

racism. NYU Press, New York, NY.

Cathy O’Neil. 2016. Weapons of math destruction: How big data increases inequality

and threatens democracy. Broadway Books, New York, NY.

[14

[15

[18

[20

[22

[23

[26

[31

[32

[34

[36

126

[37

[38

[39

=
=

[41

[42

[43

[44

S
&

(46

[47

(48

[49

o
2.0

[51

(52

[53

[54

[55

[56

[57

(58]

Spring, Galyardt, Householder, and VanHoudnos

OWASP Foundation. 2017. OWASP Top Ten. https://owasp.org/www-project-
top-ten/ Accessed 2020-08-10.

Nicolas Papernot, Fartash Faghri, Nicholas Carlini, Ian Goodfellow, Reuben Fein-
man, Alexey Kurakin, Cihang Xie, Yash Sharma, Tom Brown, Aurko Roy, Alexan-
der Matyasko, Vahid Behzadan, Karen Hambardzumyan, Zhishuai Zhang, Yi-Lin
Juang, Zhi Li, Ryan Sheatsley, Abhibhav Garg, Jonathan Uesato, Willi Gierke,
Yinpeng Dong, David Berthelot, Paul Hendricks, Jonas Rauber, Rujun Long, and
Patrick McDaniel. 2016. Technical Report on the CleverHans v2.1.0 Adversarial
Examples Library. arXiv 1610.00768 (2016).

Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael P Wellman.
2018. SoK: Security and privacy in machine learning. In European Symposium on
Security and Privacy. IEEE, London, UK, 399-414.

Wolter Pieters. 2011. The (social) construction of information security. The
Information Society 27, 5 (2011), 326-335.

Anne W Rawls and David Mann. 2010. The Thing is What is Our ‘What’: An
Ethnographic Study of a Design Team’s Discussion of ‘Object’ Clarity as a Problem
in Designing an Information System to Facilitate System Interoperability. Technical
Report 10-2594. MITRE Corp, McLean, VA, United States.

Joseph Redmon. 2016. yolov2.weights. https://pjreddie.com/media/files/yolov2.
weights Accessed Aug 10, 2020.

Joseph Redmon and Ali Farhadi. 2016. YOLO9000: Better, Faster, Stronger. arXiv
preprint arXiv:1612.08242 (2016).

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2016. Faster R-
CNN: Towards Real-Time Object Detection with Region Proposal Networks.
arXiv:1506.01497 [cs] (Jan. 2016). http://arxiv.org/abs/1506.01497 arXiv:
1506.01497.

R. Rivest. 1992. The MD5 Message-Digest Algorithm. RFC 1321 (Informational). ,
21 pages. https://www.rfc-editor.org/rfc/rfc1321.txt Updated by RFC 6151.
Sebastian Ruder. 2016. An overview of gradient descent optimization algorithms.
arXiv preprint arXiv:1609.04747 (2016).

Stuart Russell, Daniel Dewey, and Max Tegmark. 2015. Research Priorities for
Robust and Beneficiall Artificial Inteligence. AI Magazine 36, 4 (2015).

Robert C Seacord. 2005. Secure Coding in C and C++. Pearson Education, Upper
Saddle Ridge, NJ.

R. Shirey. 2007. Internet Security Glossary, Version 2. RFC 4949 (Informational).
Aditya K Sood and Richard J Enbody. 2013. Crimeware-as-a-service: A survey of
commoditized crimeware in the underground market. International Journal of
Critical Infrastructure Protection 6, 1 (2013), 28-38.

Jonathan M. Spring, Joshua Fallon, April Galyardt, Angela Horneman, Leigh
Metcalf, and Ed Stoner. 2019. Machine Learning in Cybersecurity: A Guide. Tech-
nical Report CMU/SEI-2019-TR-005. Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA. http://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=633583

Jonathan M Spring, Eric Hatleback, Allen D. Householder, Art Manion, and
Deana Shick. 2020. Prioritizing vulnerability response: A stakeholder-specific
vulnerability categorization. In Workshop on the Economics of Information Security.
Brussels, Belgium.

Jonathan M Spring, Tyler Moore, and David Pym. 2017. Practicing a Science
of Security: A philosophy of science perspective. In New Security Paradigms
Workshop. ACM, Santa Cruz, CA, USA.

Elham Tabassi, Kevin Burns, Michael Hadjimichael, Andres Molina-Markham,
and Julian Sexton. 2019. A Taxonomy and Terminology of Adversarial Machine
Learning. Technical Report Draft NISTIR 8269. National Institute of Standards and
Technology, Gathersburg, MD, USA. https://csrc.nist.gov/publications/detail/
nistir/8269/draft

Torchvision. 2017. fasterrcnn_resnet50_fpn_coco. https://download.pytorch.
org/models/fasterrcnn_resnet50_fpn_coco-258fb6c6.pth Accessed Aug 10, 2020.
Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. 2020.
On Adaptive Attacks to Adversarial Example Defenses. arXiv:2002.08347 [cs, stat]
(Feb. 2020). http://arxiv.org/abs/2002.08347 arXiv: 2002.08347 version: 1.

Kaidi Xu, Gaoyuan Zhang, Sijia Liu, Quanfu Fan, Mengshu Sun, Hongge Chen,
Pin-Yu Chen, Yanzhi Wang, and Xue Lin. 2019. Adversarial T-shirt! Evading
Person Detectors in A Physical World. arXiv:1910.11099 [cs] (Nov. 2019). http:
//arxiv.org/abs/1910.11099 arXiv: 1910.11099.

James Zou and Londa Schiebinger. 2018. Al can be sexist and racista€”ita€™s
time to make it fair. Nature 559 (2018), 324-326.

https://doi.org/10.1145/3278721.3278733
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=637327
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=637327
http://arxiv.org/abs/1708.06733
https://h-isac.org/cvd-media-kit/
https://h-isac.org/cvd-media-kit/
https://www.youtube.com/watch?v=4AHpL3kVHw4
https://www.youtube.com/watch?v=4AHpL3kVHw4
https://kb.cert.org/vuls/id/425163/
https://vuls.cert.org/confluence/display/CVD
https://scholarship.law.upenn.edu/penn_law_review/vol165/iss3/3
https://scholarship.law.upenn.edu/penn_law_review/vol165/iss3/3
https://arxiv.org/abs/cs.CY/2002.05646
https://arxiv.org/abs/cs.LG/1810.10731
http://arxiv.org/abs/1405.0312
http://cve.mitre.org
http://cve.mitre.org
http://cwe.mitre.org
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://pjreddie.com/media/files/yolov2.weights
https://pjreddie.com/media/files/yolov2.weights
http://arxiv.org/abs/1506.01497
https://www.rfc-editor.org/rfc/rfc1321.txt
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=633583
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=633583
https://csrc.nist.gov/publications/detail/nistir/8269/draft
https://csrc.nist.gov/publications/detail/nistir/8269/draft
https://download.pytorch.org/models/fasterrcnn_resnet50_fpn_coco-258fb6c6.pth
https://download.pytorch.org/models/fasterrcnn_resnet50_fpn_coco-258fb6c6.pth
http://arxiv.org/abs/2002.08347
http://arxiv.org/abs/1910.11099
http://arxiv.org/abs/1910.11099

	Abstract
	1 Introduction
	2 Vulnerability background
	2.1 Vulnerability Identification
	2.2 Abstraction
	2.3 CVE-ID background

	3 Adversarial ML background
	3.1 Summary of academic work
	3.2 Summary of policy work
	3.3 Summary of operational work

	4 Thought experiment 1: Algorithms
	4.1 Vulnerability discovery / research
	4.2 Vulnerability report intake
	4.3 Vulnerability analysis
	4.4 Vulnerability coordination
	4.5 Vulnerability disclosure
	4.6 Vulnerability response

	5 By the letter of the rules
	5.1 What is a Vulnerability?
	5.2 How many Vulnerabilities?
	5.3 Scope and Requirements
	5.4 Assignment conclusions

	6 Thought experiment 2: Model objects
	6.1 Vulnerability discovery / research
	6.2 Vulnerability report intake
	6.3 Vulnerability analysis
	6.4 Vulnerability coordination
	6.5 Vulnerability disclosure
	6.6 Vulnerability response

	7 Conclusion
	Acknowledgments
	References

