
COLBAC: Shifting Cybersecurity from Hierarchical to
Horizontal Designs

Kevin Gallagher

kevin.gallagher@tecnico.ulisboa.pt

DCentral/DEI

Instituto Superior Técnico, Universidade de Lisboa

Lisboa, Portugal

Department Of Computer Science and Engineering

New York University

Brooklyn, New York, USA

Defend Our Privacy Association (PrivacyLX)

Lisbon, Portugal

Santiago Torres-Arias

santiagotorres@purdue.edu

Department of Electrical and Computer Engineering

Purdue University

West Lafayette, Indiana, USA

Nasir Memon

memon@nyu.edu

Department of Computer Science and Engineering

New York University

Brooklyn, New York, USA

Jessica Feldman

jfeldman@aup.edu

Department of Communication, Media, and Culture

American University of Paris

Paris, France

ABSTRACT
Cybersecurity suffers from an oversaturation of centralized, hierar-

chical systems and a lack of exploration in the area of horizontal

security, or security techniques and technologies which utilize

democratic participation for security decision-making. Because of

this, many horizontally governed organizations such as activist

groups, worker cooperatives, trade unions, not-for-profit associ-

ations, and others are not represented in current cybersecurity

solutions, and are forced to adopt hierarchical solutions to cyber-

security problems. This causes power dynamic mismatches that

lead to cybersecurity and organizational operations failures. In this

work we introduce COLBAC, a collective based access control sys-

tem aimed at addressing this lack. COLBAC uses democratically

authorized capability tokens to express access control policies. It

allows for a flexible and dynamic degree of horizontality to meet

the needs of different horizontally governed organizations. After

introducing COLBAC, we finish with a discussion on future work

needed to realize more horizontal security techniques, tools, and

technologies.

CCS CONCEPTS
• Security and privacy→Access control;Authorization;Usabil-
ity in security and privacy; Social aspects of security and pri-
vacy.

This work is licensed under a Creative Commons Attribution International

4.0 License.

NSPW ’21, October 25–28, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8573-2/21/10.

https://doi.org/10.1145/3498891.3498903

KEYWORDS
security, democracy, activism, horizontality, participation, partici-

patory design, distributed systems, authorization, access control

ACM Reference Format:
Kevin Gallagher, Santiago Torres-Arias, Nasir Memon, and Jessica Feldman.

2021. COLBAC: Shifting Cybersecurity from Hierarchical to Horizontal

Designs. In New Security Paradigms Workshop (NSPW ’21), October 25–28,
2021, Virtual Event, USA. ACM, New York, NY, USA, 15 pages. https://doi.

org/10.1145/3498891.3498903

1 INTRODUCTION
The struggle of power between centralized, hierarchical structures

and decentralized, horizontal structures has existed for millennia.

This struggle has expressed itself in all forms of life: politics, eco-

nomics, social interaction, and more. Recent events all around the

globe have demonstrated the continuance of this struggle: while

wealth inequality increases and political power centralizes in the

hands of political families, economic elites, or dictators, other ele-

ments of society demonstrate a desire for more inclusive, partici-

patory, and fair social structures. Examples of this can be seen in

the “Arab Spring” movements, which demanded more democratic

participation in governments of the Arab world, and the Occupy

Movement, which demanded more democratic participation in eco-

nomic and political policies. More recently, in Hong Kong, recent

protests have demanded the right to participate in their own gov-

ernment through democratic vote. In the Movement for Black Lives,

some Black Lives Matter chapters are demanding more than just

increased police oversight and funding reallocation, but community

control of police, including access to relevant local, state, and federal

law enforcement agency information [26]. In the economic sector,

worker cooperatives and worker participation in their place of em-

ployment is becoming more prevalent, and research is beginning

to demonstrate economic advantages to cooperative organization

of the workplace [19, 25, 43]. In the tech sector, Free Open Source

13

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3498891.3498903
https://doi.org/10.1145/3498891.3498903
https://doi.org/10.1145/3498891.3498903

NSPW ’21, October 25–28, 2021, Virtual Event, USA Gallagher, Torres-Arias, Memon and Feldman

Software (FOSS) projects practice a range of democratic governance

mechanisms [1]. Even some schools are beginning to include the

democratic participation of the school children to their decision

making processes, encouraging engagement and investment in the

child’s own education [30]. In many sectors of life, the centraliza-

tion and strict hierarchy of current organization is being challenged

by a demand for more participatory structures.

Despite the increasing demand for a changed structure of organi-

zation, Cybersecurity tools, technologies and techniques continue

to remain highly hierarchical. Security policies are written by a se-

curity team or imported from pre-existing (and sometimes external)

templates and imposed on the rest of the organization, with at most

the limited oversight and approval of a manager or higher-up. Even

still, not every member of a security team participates in deciding

what these policies are meant to achieve. This decision is often

made by a manager, who ensures that the policies do not get in the

way of the visions of the individuals on the top of the hierarchies.

In developing security policies and implementing security technolo-

gies, the resulting technologies and policies entrench the political

dynamics in place during their creation [41]. The resulting policies

and technologies then themselves have political implications that

affect the individuals, organizations, and societies that use them, in-

tensifying intertia and preventing change. Since most security tools

have their historical roots in hierarchical entities such as military

or corporate business, these tools tend to reflect the assumptions

of hierarchy that exist in those communities. While this may make

sense for the military or corporate sectors, these technologies are

not the best fit for horizontal and participatory sectors such as

worker cooperatives, activist groups, and more horizontally run

nonprofits, as well as cities and states that are experimenting with

direct democracy initiatives.

One example of this is the access to organization-controlled

secrets. Secrets such as organizational passwords to third-party

services are often trusted to one individual or a small group in an

organization, but easily recovered by an administrator or other

individual higher in the hierarchy in the case that the individual

responsible leaves the organization or performs a violation. How-

ever, when an organization becomes less hierarchical, the decision

of who should have access to such secrets becomes more difficult

to make. If everyone should have access to the secrets, such as pass-

words, then any insider can change the passwords and cause denial

of service for the organization. If only a few people have access

to the password, then a hierarchy forms based on one’s access to

confidential organizational material. This mismatch between gov-

ernance structure and assumed governance structures entrenched

in technologies leads to events like password wars [21], or issues

like the “digital vanguard problem”, discussed below. [13].

A case in point: one of the organizations we have observed in our

ethnographic research was a democratic trade union, which had

recently transitioned from a more hierarchical and bureaucratic

organizational structure to one which involved more transparent

decision-making and meetings, with direct participation by mem-

bers (meetings were open to all, membership became less exclusive,

and contract bargaining was open to all members, among other

reforms.) This change came about through years of grass-roots or-

ganizing within the union, and was implemented through a demo-

cratic election in which a new slate of representatives took power

within the union. In this model – neither purely direct nor purely

representative democracy – a committee affiliated with the ruling

caucus was charged with handling communications to the mem-

bers, through consensus-based decision-making. For this purpose,

access to the union’s email contacts and digital archives had to be

transferred to the committee.

Here is where the trouble began. Although a democratic pro-

cess had put the committee in power, and although the committee

shared decision-making power equally across all members, access

to digital communications and member lists was controlled by sin-

gle passwords. In the past, these communications had been handled

by one or a few people who had the passwords and who worked

within a hierarchical structure, implementing the wishes of their

superiors. These actors refused to share the passwords with the

new committee, and a great struggle ensued, for weeks. During

this period, communications to the membership were sent illegiti-

mately and by those who previously held power. A great deal of

time and energy was spent coming to a compromise, and forcing

the former caucus to share access. Here we see a clear case wherein

the digital security design does not respond to or mirror changes

in the political structure of a democratic collective. This can be the

site of injustice, struggle, and a place where a lot of time, energy,

and credibility is lost. A more distributed version of access control

could have averted this situation.

Similar stories arise in other research at the intersection of com-

munications and social movements: Anastasia Kavada, in her re-

search on the Occupy movement, describes multiple cases, in dif-

ferent cities, of administrators being locked out of Facebook pages

or hijacking the group’s twitter account to tell their own narra-

tive [20] Similarly, Paulo Gerbaudo theorizes what he calls a “digital

vanguard” in non-hierarchical social movements, wherein those in

control of the social media accounts become the default voice of,

and ideological leaders, of the group. Gerbaudo describes

the emergence of new forms of power stratification

embedded in the hierarchy of content management

systems used by activists, and the explosion of power

struggles for the control of social media accounts [13].

However, the issue does not stop at secrets or accounts. Indeed,

these cases are specific instances of a more general problem: a

mismatch between the governance structures of an organization

and the governance structures assumed by technologies. In this

specific case, it is the mismatch between horizontally governed

organizations and hierarchical access control.

In current access control systems, whether or not an entity

should be allowed to access a resource is decided by a hierarchi-

cal process. In discretionary access control the owner of an object

decides whether or not others can read from, write to, or execute

that object. With the recognition that some files are more impor-

tant to operations than others, it is easy to see that this creates a

hierarchy. This access control information itself must be stored in

an object, and that object must have an owner. Thus, the owner

of that object has the ability to change the system and reallocate

permissions, putting themselves on top of that hierarchy. Similarly,

in Role Based Access Control at least one role needs to be able to as-

sign and remove roles, allowing them to grant themselves whatever

role they need to access to any object they wish. More generally,

14

COLBAC: Shifting Cybersecurity from Hierarchical to Horizontal Designs NSPW ’21, October 25–28, 2021, Virtual Event, USA

the authorization process of access control is centralized at the top

of the hierarchies of each individual organization.

In his work The Moral Character of CryptographicWork, Rogaway
states “Cryptography can be developed in directions that tend to

benefit the weak or the powerful.” [34]. However, there is no reason

why this must stop at cryptography, and cannot generalize to all

the fields of security. Why, then, have we not developedmore tech-
nologies that benefit the community by limiting the privileges of

the powerful within an organization via democratic participation?

Why have no access control methods been developed to allow for

authorization via horizontal, participatory protocols?

In this work we address this gap. In the following sections we

propose COLBAC, a collective based system that allows for access

control via flexible and dynamic democratic participation to fit the

needs of the organization using it.We start by discussing the current

hierarchical state of access control in Section 2.1 and discussing

previous attempts at hierarchical security in Section 2.2. We then

discuss COLBAC’s threat model in Section 4 and introduce the

design goals of COLBAC in Section 5.1. We informally describe the

COLBAC system design in Sections 5.2, 5.3 and 5.4, and formally

define COLBAC in Section 5.5. We then discuss the properties of

COLBAC in Section 5.6 and discuss the intersection of Democracy

and COLBAC in Section 3. In Section 6 we perform a security

analysis of COLBAC and in Section 7 we discuss its usability and

scalability. We then discuss COLBAC’s limitations in Section 8.

Finally, we discuss open research and future work in Section 9 and

in Section 10 we conclude.

2 ENVISIONING HORIZONTAL SECURITY
Central to the issue of Horizontal Security are the notions of au-
thorization (i.e., who is allowed to access a particular resource) and

authentication (i.e., determining who a given individual is). If an

authorized party reads, modifies, or destroys information, the def-

initions imply that there is no breach of policy
1
. Thus, whether

or not the security of an organization has been breached depends

highly on whether or not an entity is authorized to perform an

action. This decision as to whether or not an entity is authorized is

heavily informed by an organization’s security policy.

However, as is natural with the notion of authorization, two

fundamental pieces must exist: authorization policies that represent
collective-based authorization, and an access control system that

can enforce such policies. Though authentication is also a vital

piece of this process, in this work we assume that authentication is

performed by another system and do not consider it further in this

work.

2.1 Hierarchy and Access Control
Access control is commonly both encoded and enforced in a top-

down fashion. The CISO of an organization holds institutional

power to define access control policies within an organization.

Further lower-level administrators may have some decision making

power in how to define subsets of a policy, yet, they typically do not

have decision making power to change the direction of the policy

completely.

1
though there may still be a breach of trust from other individuals in the organization

This concept typically holds true not just with access control

and authorization, but with all aspects of an organization’s security

policy. Decisions about how infringements are dealt with or the

scope of the policies are also made in this manner. Decisions about

how these policies are enforced, and what security mechanisms are

used, are also made up top, with entities at the bottom left to enact

the desires passed down to them.

We see, then, that hierarchy introduces itself in multiple dimen-

sions of security. These dimensions include the different decision-

making processes of security. However, in democratic institutions

security can be multilateral [32], and thus hierarchical security

decision making is not appropriate. Instead, it is possible that hori-

zontal security may be achieved by shifting policy-making powers,

implementation decisions, enforcement powers, and other dimen-

sions of security away from individuals and towards democratic,

participatory processes
2
.

However, organizations that attempt to create their access con-

trol policies horizontally may run into problems when they move

to implement them. Currently, access control systems force the cre-

ation of a hierarchy. In access control systems such as MAC, DAC,

or RBAC, certain entities in the organization have the power to

implement the access control rules that were democratically created

by the organization. Thus, if the individuals who have the ability

to enforce the rules decide not to, the newly created access control

policies become ineffective. This forms a hierarchy with the entities

capable of enforcing access control sitting at the top. Similarly, if

an organization were to attempt to temporarily act hierarchically

and to implement that using tools that assumed horizontality, this

may cause the hierarchy to lose any potential efficiency benefits.

Thus, a question arises: can we develop technology that allows

an organization to be flexible and dynamic in its horizontality, be-

ing participatory or hierarchical depending on the needs at hand,

without jeopardizing the ability to return to horizontality when

desired?

2.2 Previous Attempts at Horizontal Security
Having explored the principles that unlock horizontality, we can

move on to creating specific systems that allow entities to organize

in such a way. Achieving horizontality is not trivial. In fact, many

projects and organizations have attempted to do so with varying

degrees of success. In this section, we argue that these failings are

a consequence of a missing building block: Collective-based Access

Control (or COLBAC).

When laying out known horizontal software systems, perhaps

the most widely-known example is Bitcoin [28]. This cryptocur-

rency was developed to allow for financial transactions between

two individuals without the need for a trusted third party to detect

and prevent double spending. By design, the network prevents the

modification of past blocks of the Blockchain unless there exists col-

lusion of a large group of entities with computing [4] (or to a lesser

extent, network [14]) resources. This decision was made specifically

to make it difficult for malicious actors in the network to perform

2
Further questions arise when we consider the structures of organizations with flexible

memberships, who operate on principles of open participation (plein-air citizens

assemblies, etc.), but these will be explored in future work

15

NSPW ’21, October 25–28, 2021, Virtual Event, USA Gallagher, Torres-Arias, Memon and Feldman

malicious activities, such as stealing bitcoin or deleting past trans-

actions. The implication of this design is that Bitcoin cannot be

centrally regulated [40], at least in theory. Thus, a core element of

cryptocurrencies, the consensus protocol is an instantiation of a

democratically-based access control policy.

Yet there exist many shortcomings in the Bitcoin/cryptocurrency

model. First is identifying who is part of the collective: are only min-

ers stakeholders, or are users stakeholders as well, are developers

stakeholders? This question raises the fundamental limitation of

Bitcoin. Although it can be considered “network-horizontal” it does

not provide horizontality mechanisms for other elements of the

ecosystem. This is apparent when considering historical events in

Blockchain-based systems, such as the DAO hack [38], the Bitcoin

Classic fork [18] and more. Indeed, it seems that developers of a

Blockchain, those blessed with public visibility (or even just commit

access) can have more impact on the nature of the Blockchain than

a large mining cartel.

Another issuewith this approach is its competitive nature. Rather

than cooperating miners attempting to create, implement, and en-

force transaction policies, we have competing miners interested in

their own profit. One implication of this competitive focus is that

there is no mechanism to vote in Bitcoin; rather, what is referred

to as “regulation” in this work is seen by the Bitcoin community

as an attack. However, the design property of requiring a majority

of participating members to agree in order to make a change on

the system may still be useful to inspire future horizontal system

designs. In the case of cryptocurrencies, the competitive design

tends to centralize the network over time. Bitcoin’s Proof of Work

algorithm tends to favor those who can afford highly specialized

hardware, eventually leading to a centralization of the network

into the hands of those who are wealthy enough to control large

amounts of machines specifically made for mining Bitcoins. Proof

of Stake, another consensus algorithm for Blockchain, bypasses this

middle step and directly benefits those who control larger amounts

of monetary stake in the network.

Other, more voluntary (and less profit-driven) designs also at-

tempt to achieve horizontality. Perhaps the most well known ex-

ample of a security system meant to be horizontal by design is

the PGP Web of Trust (WoT) design. This ecosystem attempts to

allow entities to authenticate (i.e., tie public key material to emails,

names, or identities) and exchange signed or encrypted messages

without a central authority. This is done through a transitive trust

process: known-good entities can sign trust relationships with other

entities and various WoT algorithms will compute resulting trust

levels based on a personal security policy that ranges frommarginal

trust to full trust. There is however no global notion of policing or

enforcement in the PGP ecosystem. As such, it is impossible for

entities in a group to agree access control policies in a distributed

ecosystem.

In addition to the Blockchain approach used by Bitcoin, and to

the web of trust used by PGP, many other attempted approaches

towards horizontal security already exist. These include other con-

sensus algorithms such as Practical Byzantine Fault Tolerance

(PBFT) [7], Paxos [23], Raft [29], and more. However, most of these

protocols do not allow for flexible horizontality; rather, they have a

set percentage of entities in the system that must agree. More, these

systems are more concerned with fault tolerance rather than access

control. However, using these solutions for the distribution of hori-

zontal security technologies may be beneficial in future projects.

In addition to consensus algorithms, secret sharing schemes

like Shamir Secret Sharing [36], Blakley’s Secret Sharing [3], and

Verifiable Secret Sharing [8] schemes can be used for distributed

secret management in organizations. This allows for individuals

to recover access to a resource if a set fraction of the participants

agree and submit their secret share. However, these approaches are

inefficient and are also rigid in their horizontality.

Other solutions to small horizontal security problems exist. Ap-

plications like OAuth [24] can be used to grantminimal and ephemeral

access to organization accounts to members of the organization

who need it, without revealing a password. However, someone in

the organization still must control the password, causing hierar-

chy issues. Capability [10] based schemes and systems can be used

to allow for transfer of control over resources in a more flexible

way, but is not sufficient alone: a collective authorization scheme is

required to determine whether or not to issue capability tokens.

Previous attempts of expanding access control to fill some of

these gaps have been made, but each of them has its flaw. Most

work centers around the idea of multi-ownership access control or

multi-party access control (MPAC), where different files in a system

are owned by multiple different users who need to agree on who

may see a given resource and who may not. These schemes are

usually specifically designed for online social networks (OSNs), and

generally use either majority voting ([15, 17], etc.) secret sharing

techniques ([16], etc.), or conflict resolution protocols ([5, 6, 33], etc.)

to determine with whom files should be shared. Other approaches

rely on the relationships between the owners of a resource and

other users within a community or (OSN) to determine who gets to

access a file. However, these approaches are different from ours in

many ways. Primarily, none of the MPAC solutions focus on flexible

horizontality: instead, they assume either majority voting or some

form of conflict resolution, rather than begin flexible enough to

cover multiple forms of horizontal structure. More, these systems

focus on specific issues related to OSNs, such as privacy rights and

concerns for photo sharing, and as such these systems emphasize

read decisions over write or execute decisions, making them in-

sufficient for the purpose of access control and authorization on

a general-purpose system. Finally, previous attempts to fill this

gap consider resource sharing and authorization within a complex

community where individuals who belong to the community own

files and make decisions regarding those files. They do not consider

the problem of access control and authorization in the name of the

community or collective as a whole, as our solution does.

To address these gaps we present COLBAC, a collective based

access control system to provide the fundamental basis for more

democratic and participatory security software and systems.

3 DEMOCRACY AND COLBAC
Democracy is colloquially defined as ”government by the people.“

The term has its root in the Ancient Greek demos, which meant

both the village (demos, the smallest possible administrative unit

in the state), and “the people” (Demos, which, in ancient Athens,

meant anyone who could participate in the governing Assembly –

adult men, not slaves, who had completed their military training,

and whose parents were from Athens.) In Athenian democracy,

16

COLBAC: Shifting Cybersecurity from Hierarchical to Horizontal Designs NSPW ’21, October 25–28, 2021, Virtual Event, USA

the Assembly practiced direct democracy, wherein the Assembly

made decisions through deliberative processes and without elected

representatives [2]. Forms of governance in which no one has more

political or managerial power than any other are sometimes called

horizontal, drawing from the Spanish horizontalidad, which was

first used to describe new political practices in Argentina after a

popular rebellion in 2001 [37]. In most contemporary democratic

states, most governance at the national level is performed by rep-

resentative democracy, wherein the citizens vote for leaders who

are entrusted with the work of running the state. These two forms

— representative and direct/horizontal democracy – can be seen

as the most basic types of democracy. Many, many democratic

practices and groups exist which mix these two forms in different

ways, and which use different techniques for decision-making, and

the distribution of power and resources. Furthermore, a plentitude

of solutions and debates exist around the democratic “boundary

problem” [22], wherein the definition of who constitutes the Demos
is differently decided, and, certainly, has changed over time.

3

While we do not have the space here to delve into a history of

democracy and debates over its various forms, a few key concepts

are important to outline. Decision-making within democracies can

take many forms. Consensus refers to a process of decision-making

wherein the group comes to a shared agreement on a decision (ev-

eryone agrees (unanimity), or, more commonly, a certain threshold

of agreement is reached (75% of the group agrees, for example), or,

no one disagrees enough to block a decision in going forward.)
4

Deliberation is a process of discussion and argument that is usually

considered essential for consensus and healthy for all modes of

democracy. Deliberation ideally involves authentic, nonhierarchi-

cal conversations, a plurality of participants, and the incorporation

of relevant knowledge and information on the subject under debate,

undergirded by the idea that such discussions allow for people

to learn and to change their minds, and for a general wisdom to

emerge that is agreeable to the Demos and greater than the sum of

its parts (that is, individual positions). Neither consensus nor delib-

eration necessarily requires voting, but sometimes they employ it.

Voting can be defined as a process by which an individual registers

their preferences (on an issue, for a representative, regarding where

to order lunch, etc.) via some system for counting (a ballot, a stone,

a raised hand, an online form). Election is the selection of political

representatives through a voting process. Sortition is a process for

choosing representatives or assembly members through random-

ization (lottery). Sortition was used in ancient Athens to choose

the city council and juries, and is currently used by many Citizens’

assemblies in the EU and UK, and to form juries in many countries.

In all these cases, technologies have always performed an im-

portant role. Tools for counting, randomization, and deliberation

3
For example, almost all self-identifying democratic states now allow women to vote.

The question of citizenship and national borders as definitive of a Demos is becoming

contested in current times of increased migration, and given the problem of governing

objects of a global nature, such as communication technologies, economies, and climate

change.

4
Consensus is used in Quaker communities, by the Haudenosaunee (Iroquois) Con-

federacy Grand Council, in Indonesia native cultures. It was used in the 2015 United

Nations climate change conference, and the 2020 French Citizen’s Assembly for the

Climate, and has also been used by many political groups and movements such as

the SNCC, the alter-globalization movement of the 1990s, and the Occupy and 15M

movements. In the world of technology, the Internet Engineering Task Force (IETF)

also uses consensus.

(sortition machines, amplification architectures) were important

to ancient democracies. Technologies and political practices have

changed together; voting machines and mass media have been key

to practicing (and perhaps compromising or warping) representa-

tive democracy. More cutting-edge developments (such as decidim
5
,

democracy.os
6
) use online platforms and AI to aid in projects like

participatory budgeting, referenda, and direct decision-making, and

have been adopted by organizations, social movements, municipal

and even national governments (including Barcelona, the French

National Assembly referendum platform, New York City, and many

others.) While solutions exist for sharing power at the application

layer, very little has been done to implement horizontality at the

security/access control layer.

4 THREAT MODEL
Collective management of resources opens an organization to a col-

lection of both internal and external threats. As such, it is expected

that attackers may be outsiders impersonating members of a com-

munity as well as disgruntled insiders that are trying to subvert the

system. We expect, however, that at least a simple majority of users

will not collude, and will attempt to use the system to represent the

collective goal of the broader community.

However, we also expect attackers to attempt to inject accounts

in attempts to dilute the democratic process (e.g., a Sybil attack [11,

39]).While these types of attacks are often performed in thewild [42],

we assume this can be solved by a strong authentication scheme,

implemented as each organization sees fit, and thus we consider

this outside of our threat model. One example of how this can be

solved separately from the authorization is the membership authen-

tication of the Debian project, for which membership is often gated

through physically-present PGP key signing processes, forming a

strong authentication method. This has been widely documented

in work by Coleman [9].

Malicious users may abuse other elements beyond raw voting

power. They could, for example, gather a group colluding users, who

could abuse time-zones (e.g., making decisions and calling votes

when many other people are not online), system availability (e.g.,

network outages, net-splits) to carry out exceptional votes. This can

likely be mitigated by ensuring the vote parameters are adjusted to

the nature of the community (e.g., by adjusting simple majority to

relative majority or set a necessary threshold for quorum).

5 COLBAC: COLLECTIVE BASED ACCESS
CONTROL

As discussed in previous sections, the choice of certain software,

protocols, or techniques such as X509 certificates or PGP web of

trust has implications in the level of horizontality possible for sys-

tems built on top of those software, protocols, or techniques. How,

then, can we build a foundation such that organizations of differ-

ent horizontality can use the same foundation and arrive at much

differently structured organizations?

In this section we describe Collective Based Access Control, or

COLBAC: our approach to a dynamic horizontality access control

system that performs authorization and execution of access control

5
https://decidim.org

6
https://worldjusticeproject.org/our-work/programs/democracyos

17

NSPW ’21, October 25–28, 2021, Virtual Event, USA Gallagher, Torres-Arias, Memon and Feldman

policies via democratic processes. We describe its requirements in

Section 5.1, focusing on the dynamic horizontality that separates

COLBAC from other access control systems. We then define the

system itself in Sections 5.2, 5.3, 5.4 and 5.5. Finally, we discuss the

properties of COLBAC in Section 5.6. We discuss the limitations

of this system later in the paper in Section 8. Though this is, to

our knowledge
7
, the first attempt at defining a collective based

access control system with dynamic and flexible horizontality, it

is far from the only potential approach. Section 9 discusses some

potential future work to improve upon it.

Democracy is a complex concept, and COLBAConly incorporates

some aspects of democracy. For example, sortition is not utilized

at all in COLBAC. For our definition of the Demos, we consider

all members of a system using COLBAC do be part of the Demos
and thus eligible to vote. Our design of COLBAC also assumes

there exists an external channel for deliberation that is used by all

members of the Demos, and that there may exist external channels

for other forms of decision-making. However, every decision made

in these external channels that affects the systemmust eventually be

reflected by a vote within COLBAC, be it an Action Token Petition

or a Delegation Token Petition.

Given these assumptions and the design of COLBAC, we can

see that COLBAC allows for a large variety of different democratic

governance schemes. More direct forms of democracy can be done

using Action Tokens, and elective representation can be done using

Delegation Tokens (described in Section 5.3). The spectrum be-

tween full consensus and majority decision-making is represented

through the security parameter f and the decision of how much

participation is required per vote and, therefore, how difficult it is to

create a quorum can be fine-tuned using the security parameterm.

The amount of time a petition remains open to votes is specificied

by t . These security parameters are described in Section 5.2.

5.1 System Requirements
COLBAC is aimed at addressing a novel requirement in Cybersecu-

rity research: access control and authorization given an organiza-

tion with dynamic levels of horizontal control. Though previous ap-

proaches exist for hierarchical access control (such as MAC, RBAC,

etc.), to our knowledge no access control model exists for organi-

zations of dynamic and flexible horizontality. To realize this, our

solution must be able to be flexible in terms of horizontality. Said an-

other way, our system must not assume or define a pre-determined

threshold for horizontal control, i.e., it must not assume majority, or

super-majority, or full consensus is the preferred method of demo-

cratic participation. Instead, the threshold must be configured by

the collective itself, and must be able to be changed when necessary.

This allows for rapid temporary centralization of the system to re-

spond to crises, or to perform a task that requires expertise that

few members of the collective contain. However, these moments

of centralization must be quick to expire and easy to override in

order to prevent abuse of centralized power. Said another way, it

must always be easier for the collective to return to more horizontal

7
This lack of democratic access control systems was identified through a review of all

systemization of knowledge or survey papers in the ACM Computing Surveys Journal

mentioning access control. Out of the 288 entries, none explicitly aimed at creating

a flexibly horizontal access control system. The closest access control systems are

described in Section 2.2

control than for a centralized entity to maintain control over the

system.

However, it makes no sense to have horizontal or democratic

control without transparency. An individual cannot meaningfully

vote or otherwise decide on a practice, or place confidence in a rep-

resentative, without understanding what action is going to be taken,

and what actions have been taken in the past. More, if authority is

abused, the collective must be able to notice the abuse, and remove

the powers that allowed the abuse to take place. Thus, we can see

that any horizontal access control system requires transparency.

Towards this end, our system must have a method of logging infor-

mation about the actions of individuals and the collective that is

immutable and available.

Finally, our system is an authorization system, not an authenti-

cation system. We assume that there is a working authentication

system for the system, and that all COLBAC users are already au-

thenticated when they interact with the COLBAC referencemonitor.

5.2 System Design
COLBAC presents a solution to access control that relies on the

collective. However, as will be discussed later in this section, not

all objects on the system will need to be collectively controlled

or administered. As such, we define three distinct spheres of the
system, or areas that require different approaches to access control.

These spheres are the Collective Sphere, the User Spheres, and
the Immutable Sphere.

In order to achieve different degrees of horizontality, there must

be a portion of the system that is controlled not by any individual

user of the system, but by some democratic process of the users

of the system. We call this portion of the system the Collective
Sphere, as it contains programs, files, and other resources only

accessed based on collective authorization. In any horizontal system,

the administrative functions of the operating system would need to

exist within this portion of the system to allow for true collective

control. Additionally, all services that the collective offers, or official

sources of collective information, must also exist in this sphere.

However, not everything should be directly managed by the

collective. Individual users may have their own files and programs,

which they intend to use only in ways that do not affect other

users of the system or the resources of the collective. This sphere,

called the User Sphere, can use traditional DAC systems without

affecting the horizontality of the system as a whole.

Finally, to have meaningful control of the system we must have

transparency. To achieve this, a system must have an Immutable
Sphere, or a portion of the file system and programs that cannot

be altered once written to, including by democratic control. This

allows for the system to provide append-only logs that are vital

to maintaining collective control, as described later in this section.

Additionally, this section can hold a list of inalienable rights that

each participant in the system has, such as the right to a vote.

When the system is first installed, a Registration Phase will occur.
During this phase, at least 2 users will be signed up in the system.

These users will need to supply their public keys, which correspond

to offline private keys, since they will be needed for later interac-

tions with the system. In addition to supplying their public keys,

the users will need to decide on an initial fraction f , a minimum

18

COLBAC: Shifting Cybersecurity from Hierarchical to Horizontal Designs NSPW ’21, October 25–28, 2021, Virtual Event, USA

fractionm that will be used for action and delegation petitions, and

the voting timeout parameter t , as explained later.

After the system is set up, users can interact with objects in the

User Sphere as they would in any other system. However, to interact

with any objects in the Collective Sphere, users would need to follow

a specific authorization procedure consisting of three phases: the

Draft Phase, the Petition Phase, and the Authorization Phase.
In the Draft Phase, depending on the action the user wishes to

perform, they will write the code or commands that will interact

with objects in the Collective Sphere, or will identify the permis-

sions they will need to accomplish their task or tasks. At the end of

this process, the user will have a draft Action or Delegation Token,

as described later in Sections 5.3 and 5.4.

After the user has completed their token, they move on to the

Petition Phase. In this phase the user sends their draft token to the

reference monitor running on the system. This reference monitor

will then forward the draft token to all other members of the system

and ask for a vote. The users will then vote one of the following

ways: yes, no, or abstain
8
. The system will wait for a pre-configured

amount of time before marking all individuals who did not vote as

abstaining.

After all votes are collected or the response period has timed

out, the system enters the authorization phase. During the action

phase the reference monitor counts all of the votes. If the number of

votes divided by the total number of users is greater than or equal

tom, and the fraction of yes votes to the total number of votes is

greater than or equal to f , the petition is considered successful

and the token is returned to the petitioning user. In addition to

taking the action, the system logs the action, the edited file, and the

permissions used in log files held in the immutable sphere. However,

if the number of all votes divided by the total number of users is less

thanm or if the number of yes votes divided by the total number

of votes is less than f , the petition fails, and the attempted action

is logged in the immutable sphere.

5.3 Types of Tokens
As the previous section demonstrates, the token is the main form

of interacting with the Collective Sphere. Users who wish to affect

the Collective Sphere do so by creating a token which is then voted

on by the users of the system. In order to facilitate easy interaction

with the COLBAC system, there are multiple types of tokens.

The first token is called the Action Token. This token allows

a single command, a small script, or a program to be run in the

Collective Sphere, and to enjoy Collective Sphere access. This is

the most straightforward type of token, since everything the token

will allow to occur is known during the Petition Phase. However,

this type of token is rigid and inflexible. If there is an error in the

command, or in the code, a user would need to re-enter the Draft

Phase, fix the error, and re-enter the Petition Phase to authorize

a new token. The more a single Action Token attempts to do, the

more likely there will be errors, causing frustration for both the

users drafting the tokens and the users voting on them.

8
It is important to mention that this is not the only way of performing democratic

participation. However, other models of democratic participation are left to future

work.

To avoid these issues, COLBAC also allows for Delegation To-
kens, which allow the drafting user to act in the Collective Sphere

for a given set of time, and with a given set of restrictions. The

procedure is obtaining a Delegation Token is the same as that for

an Action Token. However, the information that would be put in

the token would be slightly different. The format for Action Tokens

and Delegation Tokens are shown in Section 5.4.

Consider the example of the democratically run trade union

introduced in Section 1. In this example, a new communication

committee was put in power though a slate of democratic elections.

However, former individuals who had access to read the emails that

arrived to the collective’s inbox did not allow members of the new

committee to read or send emails. If this trade union had been using

COLBAC, after the elections a Delegation Token would have been

drafted to grant the new committee access to both read and send

emails. This Delegation Token would then gone through a Petition

Phase, where presumably it would pass
9
. Thus, the individuals

previously in charge of email would be incapable of denying access

to the new committee.

There are some instances in which one needs to respond to

emergency situations as soon as possible, and cannot wait for a

slow authorization process by a potentially large set of users. To ac-

commodate these situations, COLBAC has an Emergency Token.
These tokens allow users to run short scripts, single commands, or

small programs in the Collective Sphere without immediate autho-

rization. However, this action is immediately logged and all users

are informed by the Reference Monitor that an Emergency Token

was used. In the case that an Emergency Token was incorrectly

used (say, to overwrite the result of a democratically made decision),

a member can create a new Action Token to undo the actions of

the Emergency Token, which will be pushed to a Petition Phase

for democratic decision making. To avoid large-scale misuse of the

Emergency Token, and to avoid Emergency Token Wars
10
, each

member only has a small number of Emergency Tokens for a given

period of time. Additionally, there are limits placed on what can be

done with Emergency Tokens.

5.4 Token Format
Each token contains three sections, a header, a body, and a footer.

Different types of tokens (Action Tokens, Delegation Tokens, or

Emergency Tokens) contain different fields in their body sections.

However, the headers and footers of all token types contain the

same fields. For a graphical representation of the token format,

please see Figure 1.

The first portion of a token is called the header. The header

contains the following fields:

(1) Nonce/ID:
An integer used to both identify the token and avoid replay

attacks.

(2) Token Type:
The type of token. Can only be Action, Delegation, or Emer-

gency.

9
This assumption is based off of the results of the democratic elections that occurred

before.

10
We define Emergency Token Wars as instances in which different members in the

organization use Emergency Tokens to undo the actions taken in the name of the

collective.

19

NSPW ’21, October 25–28, 2021, Virtual Event, USA Gallagher, Torres-Arias, Memon and Feldman

Figure 1: COLBAC Token Structures

(3) Party(s) Being Authorized:
A single entity or set of entities requesting authorization to

perform an action or set of actions in the Collective Sphere.

(4) Petitioning Party:
The single entity petitioning for authorization. This user

usually also exists in the list of parties being authorized.

(5) Token Expiration:
The expiration time of the token in Unix format.

For Action Tokens or Emergency Tokens, the token body con-

tains the following fields:

(1) Code to be Run:
The command, script, or program to be run in the Collective

Sphere.

(2) Permissions Requested:
A set of permissions requested to complete the task. These

permissions include negative and positive permissions, of

which negative permissions take precedence. The inclusion

of both negative and positive permissions make it easier for

permissions to be specified. For example, if a folder in the

Collective Sphere contains 950 files, and the code running

needs read access to 940 of them, it is easier to specify posi-

tive read permissions on the whole folder and negative read

permissions on the 10 files, rather than specify 940 positive

read permissions and no negative read permissions.

(3) Comments (optional):
Comments explaining what the code included in the token

does, and why it is necessary. This field is similar to mes-

sages included in version control systems like a Git commit

message.

For Delegation Tokens, the body contains the following fields:

(1) Permissions Needed:
Similar to the set of permissions requested in the Action or

Emergency Token body.

(2) Comments (optional):
Similar to the comments section of the Action or Emergency

Token body.

As we can see, the Delegation Token body is similar to the Action

or Emergency Token body, except in that it does not specify the

code that is running. This design is ideal for sessions that require

troubleshooting, or tasks that may require back-and-forth between

the system and the individual or group performing the task. How-

ever, when using Delegation Tokens it is more important to ensure

that the Permissions Needed section follows the principle of least

privilege. If not, individuals can use the privileges they gain from

the Delegation Token to perform actions that were not originally

intended for their task(s). Though these actions will be logged into

the Immutable sphere, it still requires time and effort of the system

users to undo the actions of an individual who abused the power

granted to them through Delegation Tokens.

Each token, regardless of type, ends with a footer. The footer

simply contains one field, a field which states if it is approved or

denied, along with a verifiable authentication value that is difficult

to predict and easy to verify, such as an HMAC of the permission

token keyed by a secret value known only to the Reference Monitor.

5.5 Formalizing COLBAC
In this section we formalize COLBAC, a collective based access

control system. To begin, we define important sets. We then go on

to discuss which permissions are possible in COLBAC, what abbre-

viations are used in our notation, and what functions we rely on in

our formalization. Finally, we introduce different algorithms used

by the reference monitor in our proposed model. This formalization

serves as a basis for our access control model.

Definition 1 - Spheres of COLBAC.

In COLBAC, a Sphere is a set which contains both subjects (users,

processes, etc.) and objects (files, etc.).

Let U be the User Sphere, I be the Immutable Sphere, and C be

the Collective Sphere. Let ξ be the set of all subjects and objects in

the system. Let ∅ be the Empty Set. These sets have the following

properties:

U ∪ I ∪C = ξ
U ∩ I = ∅

U ∩C = ∅

I ∩C = ∅

In addition to the sets above, our access control model also requires

a set of permissions, similar to the sets of permissions used in

other access control systems. These permissions will be used later

when the reference monitor is deciding whether or not to permit

an action.

Definition 2 - Permissions in COLBAC.

Create allows the creation of an object.

Append allows a subject to append to the end of an object.

Write allows arbitrary rights to an object.

Read allows a subject to read from an object.

Delete allows a subject to delete an object.

20

COLBAC: Shifting Cybersecurity from Hierarchical to Horizontal Designs NSPW ’21, October 25–28, 2021, Virtual Event, USA

Execute allows a subject to run an object as a program.

The first important function we need to define is the GetSphere
function. When passed a subject or object, the GetSphere function
will return the Sphere that the subject or object belongs to. Given

the properties mentioned in Definition 1, we can see that a subject

or object will be in exactly one Sphere, meaning that this function

will never return NULL or more than one value.

Definition 3 - GetSphere.

GetSphere(o : Subject or Object) → U iff o ∈ U , C iff o ∈ C , I iff
o ∈ I

A very important building block of COLBAC is the token, which
is a primitive taken from Capability based access control. A token

will allow a subject which exists inU to perform an action on an

object that exists inC . These tokens can be of typeAction, denoted
by a sub-scripted a, Delegation, denoted by a sub-scripted d , or
Emergency, denoted by a sub-scripted e . Before authorization, a
token is first created by a Draf tToken function, which calls one of

the following three functions depending on the type of token the

subject wishes to create. In addition, COLBAC requires a function

to get the type of a given token.

Definition 4 - Token Functions.

Let u be a user of the system.

Let o be the object or set if objects the user is attempting to access.

Let p be the set of permissions the user is requesting.

Let τ be the type of token the user is attempting to create.

Let e be the proposed expiration time of the token.

Let c be the comment attached to a token, or in the case it doesn’t

exist, let c be NULL.
Let a be the action (command, script, or program) the user wants

to run in the Collective Sphere, or in the case that it doesn’t exist,

let a be NULL.
Let d be the set of delegates the user is proposing, or in the case

where it doesn’t exist, let d be NULL.
Draf tToken(u,o,p, e,a, c, τ) → T of type Ta or Td or Te
Draf tTokena (u,o,p, e,a, c) → Ta = (u,o,p, e,a, c)
Draf tTokend (u,o,p, e,d, c) → Td = (u,o,p, e,d, c)
Draf tTokene (u,o,p,a, c) → Te = (u,o,p,a, c)
GetTokenType(τ : token) → {the type of token τ from Action,
Deleдation, or Emerдency}

Unlike other capability based access control systems, COLBAC does

not rely on a centralized authority or resource owner in the system

to grant capability tokens. Instead, when a token is drafted by

the user requesting it, the token enters a Petition function, which

sends the token to all other users
11

of the system for a participatory

decision-making process on whether or not the token should be

authorized. This process lasts t seconds, as per the parameter of the

11
Here we mean human users of the system, not subjects or user accounts on the

system that don’t correspond to humans.

system. The Petition function returns a set of votes on the tokenT ,
referred to as VT , and can only be called on tokens of type action
or delegation.

Let’s consider again the example of the democratic trade union

presented in Section 1. As mentioned in Section 5.3, in COLBAC this

change of power would occur through a Delegation Token. Relating

to the notation in Definition 4, if uwere a member of the committee,

o was the set of files, folders, and programs needed to read, write,

and send emails, p was the necessary set of permissions to perform

these actions
12
, e was the expiration date of the token

13
, d was

the list of all members of the committee, and c was any human-

readable comment the token drafter deemed necessary. Then, the

token drafter would compute Td = Draf tTokend (u,o,p, e,d, c),
and run Petition(T , t) as follows.

Definition 5 - Petition Function.

Let T be a token created through Draf tToken.
Let t be the system parameter that specifies how long voting is

open.

Petition(T , t) → {set of votes VT on authorizing T iff T is of type

Ta or Td , else NULL}.

This Petition Phase would collect votes from all of the members

on the system after waiting t seconds. The returned set of votes,

V , can then be split into more useful sets, such as the set of votes

that affirm the authorization of T , V(T ,Yes), the set of votes that
negate the authorization of T , V(T ,No), and the set of abstentions,

V(T ,Blank). After votes are sorted into their respective sets, the

process of authorizing the votes comes down to a simple task of

comparing the number of votes to fractions of voters initially de-

fined at system registration. Said another way, a function called

AuthorizeToken will count the votes and compare the results to

two security parameters, f , or the fraction of yes votes required

to authorize a token, andm, the fraction of voters required to par-

ticipate in order for a vote to be considered. These two security

parameters, along with the time a petition remains open to votes,

are chosen at the initialization of the system, and can be changed by

a successful Action Token
14
. If the vote is successful, the token is

then authorized by the addition of a signature field that is difficult

to predict or replicate, but easy for the reference monitor to later

verify. One example of this is a keyed HMAC.

Definition 6 - Authorization in COLBAC.

Let V be the set of all votes on token T.

Let V(T ,Yes) = {v ∈ V s.t. v = True}
Let V(T ,No) = {v ∈ V s.t. v = False}
Let V(T ,Blank) = {v ∈ V s.t. v = NULL}

AuthorizeToken(T ,VT) → True iff
|V(T ,Yes) |

|V |
> f ∧

12
Such as the Execute permission for the email program, the Create andWrite

permission for temporary files, the Read permission for the files the emails are stored

in, etc.

13
Which should be set to the last day of the mandate of the elected body.

14
These parameters cannot be changed by a delegate or by an Emergency Token. This

is discussed more in Section 5.6.

21

NSPW ’21, October 25–28, 2021, Virtual Event, USA Gallagher, Torres-Arias, Memon and Feldman

|V(T ,Yes)∪V(T ,No) |

|V |
≥ m, else False

The process of determining authorization in COLBAC occurs in

one or two phases, depending on which Sphere contains the object

the subject wants to access. If the object is in the User Sphere, the

reference monitor simply performs a traditional DAC check, like

one would see on a typical Unix-like operating system.

If the object is in the Collective Sphere, the subject is expected to

provide a previously authorized token or draft a new token for the

reference monitor. If the subject provides a previously authorized

token, the validity of that token is checked, and if it is valid, the

action is taken. If the subject does not have a valid token, they

instead provide a draft token. The reference monitor then takes this

draft token and enters the Petition Phase, where all users of the

system are given the opportunity to vote on the token. If the petition

succeeds, the token is authorized and returned to the subject. If

the petition fails, the token is not returned. In either case, the

submission of the token to the reference monitor is logged in the

Immutable Sphere. In the example provided in Section 1, all of the

data required to access the collective email exists in the Collective

Sphere.

If the object the subject is trying to access is in the Immutable

Sphere, the reference monitor performs a very simple access con-

trol check. If the type of access on the resource in the Immutable

Sphere is a read operation, it always succeeds. This is to provide

transparency on the different operations that are attempted in the

Collective Sphere, since the Immutable Sphere mainly contains logs

of what was done in the Collective Sphere. If the type of access on

the resource in the Immutable Sphere is awrite operation, it always
fails, since write operations can arbitrarily write to any portion

of a file. Likewise, delete operations always fail. If the operation
is an execute , create or append operation, the reference monitor

must check that the subject has a valid token to do so. If not, they

may not perform the action. The reference monitor, however, may

always execute, append or create in the Immutable Sphere.

An algorithmic representation of these access control decisions

are included in Algorithm 1. To continue with our example from

Section 1, imagine that a member of the committee wants to read an

email in the Collective Sphere. We can see thatGetSphere(o)would
return C , since the email program exists in the Collective Sphere.

Thus, the block of code from lines 14 to 20 would be executed,

and the token would be checked. Assuming that the previous vote

on the Petition Phase for the Delegation Token has passed, line

14 would return the non-NULL Delegation Token that u has as a

member of the elected committee. Then, since the action that they

wish to perform (read an email) is covered by the permissions of

the Delegation Token T , the action will be logged on line 17 and

then performed on line 18. However, if u were not a member of

the committee, then theGetToken function would return NULL, or

would return tokens that do not have the relevant permissions. As

such, lines 22 – 32 or line 19 would be executed, respectively.

Perhaps the most important part of this logic lies in the IsValid

function. This function must ensure that the token itself has been

issued by the reference monitor, that the token has not expired,

and that the permissions of the actions that the token grants are

Algorithm 1 The main decision making process of COLBAC

1: Let u be a user of the system.

2: Let s be the subject attempting access.

3: Let o be the object or set if objects the user is attempting to

access.

4: Let p be the set of permissions the user is requesting.

5: Let τ be the type of token the user is attempting to create.

6: Let e be the proposed expiration time of the token.

7: Let c be the comment attached to a token, or in the case it

doesn’t exist, let c be NULL.
8: Let a be the action the user wants to run in the Collective

Sphere, or in the case that it doesn’t exist, let a be NULL.
9: Let d be the set of delegates the user is proposing, or in the

case where it doesn’t exist, let d be NULL.
10: Let f ,m and t be the system parameters reflecting approval

fraction, quorum fraction, and petition voting time.

11: Let DAC(s : Subject,o : Object) be a Discretionary Access

Control system.

12: if GetSphere(o) = U then
13: Return DAC(s,o)
14: else if GetSphere(o) = C then
15: T = GetToken(u)
16: if T , NULL then
17: if IsValid(C,T ,a) then
18: LogAction(a,u)
19: PerformAction(a)
20: else
21: LogFailedAction(a,u)

22: else
23: T = Draf tToken(u,o,p, τ, e, c,a,d)
24: if GetTokenType(T) ∈ (Ta ,Td) then
25: VT = Petition(T , t)
26: V(T ,Yes) = {v ∈ V s.t. v = True}.
27: V(T ,No) = {v ∈ V s.t. v = False}.
28: V(T ,Blank) = {v ∈ V s.t. v = NULL}.
29: ifAuthorizeToken(T ,V(T ,Yes),V(T ,No),V(T ,Blank), f ,m)

then
30: LogSuccess(T)
31: Return T
32: else
33: LogFailure(T)

34: else
35: T = GetToken(u)
36: if IsValid(I ,T ,a) then
37: LogAction(a,u)
38: PerformAction(a)
39: else
40: LogFailedAction(a,u)

consistent with what the action is attempting to do. In the case

that one of these three conditions is not true, the reference monitor

must not perform an action. We present the logic of the IsValid

function in Algorithm 2.

To understand this Algorithm we still need to introduce one

more function definition. In order to be able to decide whether

22

COLBAC: Shifting Cybersecurity from Hierarchical to Horizontal Designs NSPW ’21, October 25–28, 2021, Virtual Event, USA

or not a given action should be allowed, the reference monitor

must be able to see what permissions the action requires. Thus, we

introduce the GetRequiredPermissions function as follows. This

function works on the level of commands, instead of actions, to

allow for granular identification of which portion of the action is

causing issues (if indeed the action is longer than one command).

Definition 7.

GetRequiredPermissions(c : Command) → {the set of permissions,

p′ needed to complete the proposed command.}

PermissionType(p : Permission) → {the type of access the permis-

sion is requesting among the permissions listed in Definition 2}

Algorithm 2 The IsValid function of COLBAC.

1: procedure IsValid(S : Sphere, T : Token, a: Action)
2: Let C be the Collective Sphere.

3: Let I be the Immutable Sphere.

4: if S = C then
5: if GetTokenType(T) , Te then
6: for c ∈ a do ▷ For each command in the action

7: p = GetRequiredPermissions(c)
8: if p < T .p then
9: Return False
10: Return True
11: else
12: p = GetRequiredPermissions(c)
13: if CheckEmergencyPermissions(p) , True then
14: Return False
15: Return True
16: else if S = I then
17: for c ∈ a do ▷ For each command in the action

18: p = GetRequiredPermissions(c)
19: if PermissionType(p) ∈ (write,delete, execute)

then
20: Return False
21: else if PermissionType(p) ∈ (create,append) then
22: if p < T .p then
23: Return False
24: Return True
25: else ▷ The permission is read

26: Return True

In this paper we leave CheckEmergencyPermissions as yet unde-

fined, but discuss some possibilities for this function in Section 5.6.

5.6 Properties of COLBAC
In Section 5.2 we introduced the design of COLBAC, an access

control system meant to serve as a primitive that can be used

to achieve a more horizontal form of security. In Section 5.5 we

presented a more formal definition of the system, filling in some of

the details of how the system worked.

As stated in Section 5.1, the goals of the system design were to

provide flexible and dynamic horizontality, and to provide trans-

parency such that individuals participating in the system could

reasonably participate in the decision-making process. Through

the design of COLBAC we have created an access control system

that meets these goals. We achieve flexible and dynamic horizon-

tality in our design through the modification of our two security

parameters, f andm. We achieve transparency through the use of

the Immutable Sphere, and the logging that our reference monitor

does during its operation (as described in Algorithm 1.

Though our design does provide for flexible and dynamic hor-

izontality, it does not allow for every level of horizontality. For

example, in our design a strictly-hierarchical approach is not possi-

ble: even if f is set to
1

n , where n is the number of users, that simply

means that one person needs to vote in favor to authorize an action,

but it does not say which individual has that power, meaning that

any single vote from any user is capable of authorizing an action.

This is far from a dictatorial structure, in which all power is fixed

in the hands of one individual or a small set of individuals.

This design does allow for many different expressions of hori-

zontal structures, however. For example, because of the existence

of Delegation Tokens which expire, our design allows for an autho-

rization structure that reflects those of representative democracies,

where elected individuals preside over certain responsibilities in

the system. However, if the collective does not approve of how the

elected individual is performing their duties, our solution allows

for users to call for a democratic vote that invalidates the token of

the delegate, thus forcing a new delegate to be chosen, or bringing

the responsibility back into the collective.

More, our system allows for Action Tokens to modify the values

of f andm, thus making it possible for an organization to adjust

how many individuals in the collective must agree on authorizing

a token in order for the token to be authorized. This allows the

organization to decide if they want to work with a full consensus

based approach, a super majority approach, a majority approach,

or something else entirely. A consequence of this system is that

it is easier to require more consensus than it is to require less
consensus. This property is obvious when one realizes that if an

organization calls a vote to switch from f to f ′ where f > f ′,
that action token still needs f votes, the larger number, to become

authorized. However, if the organization wants to require more
consensus, in other words a user petitions a token to change from

f to f ′ where f < f ′, then that vote requires f votes, the smaller

number of the two, to be authorized. A similar claim can be made

about the amount of interaction required, which would be affected

by changing the security parameterm.

Another interesting property of this system is that it contains

in it the inalienable right to vote. Whenever a vote is called, the

reference monitor does not send it to a small set of individuals

who are marked as having a right to vote. Instead, it sends it to all

individuals who are a part of the system. Thus, in the COLBAC

system the right to vote is inalienable as long as one remains part of

the system. Likewise, because the reference monitor grants all read

access to any object in the Immutable Sphere and disallows any

deletions or arbitrary writes in the Immutable Sphere, transparency

of the system is guaranteed so long as the referencemonitor behaves

according to the system design.

However, in order to avoid the equivalent of a coup d’état on the

system, we must set some limitations of what certain tokens can do.

23

NSPW ’21, October 25–28, 2021, Virtual Event, USA Gallagher, Torres-Arias, Memon and Feldman

For example, if an individual user of the system wishes to perform

a coup d’état, one approach would be to use an emergency token

to set f andm to
1

n where n is the number of users in the system,

then create and authorize action tokens to remove users from the

system until only user accounts that are loyal to that user remain.

To avoid this, there must be limitations on what Emergency Tokens

and delegation tokens can do. For this case specifically, emergency

and Delegation Tokens must not be able to alter the values of f and

m. Similarly there must be a limitation on the number of emergency

tokens an individual has, and individuals with access to delegation

tokens must not be able to remove many members. It is likely that

even more restrictions are required to maintain the safety of the

system, but we leave the identification of those limitations, and

further analysis of the properties of COLBAC, to future work.

6 SECURITY ANALYSIS OF COLBAC
In this section, we explore the security properties of COLBAC in two

possible scenarios. First, Section 6.1 explores some of the possible

technical attacks against the COLBAC system at different system

endpoints. After, we elaborate on some well-known attacks against

democracy, and how they fit into and are mitigated by COLBAC’s

design.

6.1 COLBAC failure modes and technical
attack surfaces

COLBAC’s ability to carry out collective decision making is de-

pendent on the attackers’ ability to affect foundational elements

of Information Security: Confidentiality, Availability, Integrity and

Non-repudiation. Although COLBAC is still in the “theoretical”

space, we are able to explore the failure modes within the system

and derive a taxonomy of potential attacks by malicious users (as

per the categorization outlined in Section 4). In this taxonomy, the

potential threats we face are:

• Collective bypass: a cadre of malicious users is able to

perform actions bypassing the democratic process.

• Sybil attack: a malicious user is able to impersonate legiti-

mate voters. Though we consider authentication as out of

scope for this work, we do acknowledge that because of

the democratic nature of COLBAC Sybill attacks can cause

sustem takeover, which is a threat unique to democratic

authorization systems.

• System disruption: a cadre of malicious users is able to halt

the system from operating by disrupting voting operations.

To explore the attack surface, we enumerate the states and inter-

faces of COLBAC described in Sections 5.2 through 5.5 and explore

the impact if these interfaces were compromised/mis-implemented.

Draf tToken
Failure in the DraftToken function may materialize by a failure to

authenticate the originator. As a consequence, it may allow ma-

licious users to create tokens that impersonate actions on behalf

of other users. This could lead to a Collective bypass or a Sybil attack.

PetitionToken
Within Draf tToken, the Petition endpoint may fail as well. In this

case, it is likely that a system stalled waiting for peer input (i.e.,

votes) may halt in a similar way as a SYN-flood attack. As such,

the Petition function could be abused to cause a System Disruption.
Similarly,Vote can be abused by attackers to flood the system with

bogus votes, with a similar consequence.

AuthorizeToken
Finally, AuthorizeToken likely serves as a gatekeeper for actions

running on the system. An attacker in control of this endpoint is

able to bypass any democratic process (i.e., a Collective Bypass).
However, in contrast to failure in Draf tToken functions, it is likely

that a compromised AuthorizeToken endpoint could leave no trace

of compromise. With this in mind, we envision this functionality of

COLBAC to run as part of a hardened environment (e.g., a hardware

enclave [35]).

6.2 Democratic Attacks and COLBAC
In addition to the technical attacks enumerated above, there are

also political attacks that can occur against the system. Each of

these attacks are not specific to our system, but rather are attacks

against democratic forms of organization and management.

Malicious Representative
One such attack is the concept of a malicious representative, or

an entity in the organization that has gained access to a resource

through aDelegation Token but then does not perform the promised

actions, or, worse, performs other actions that are not in the interest

of the organization, causing a Collective bypass. Unfortunately, no
technical solution exists to the problem of malicious representa-

tives. However, previous democracies have mitigated this problem

through accountability in the form of checks and balances.
In order to have checks and balances, a democratic system must

have a group that is responsible for over-ruling the decisions made

by potentially malicious representatives, and that group must have

transparency into the actions of the representatives and the ability

to undo the actions these representatives have done. In COLBAC,

the group responsible for over-ruling the decisions made by the

malicious representatives are the users themselves. Transparency

is achieved through the existence of COLBAC’s Immutable Sphere,

where the elected representative cannot remove traces of their ac-

tions, nor can they deny members of the system the right to see the

Immutable Sphere. If the users have decided that the representative

has acted maliciously, they can call a Petition Phase for an Action

Token that will revoke the representative’s rights. They can also

undo any actions that the representative has made through addi-

tional Action Tokens, or elect a new representative to do that via a

new Delegation Token.

Misuse of Emergency Tokens
Similar to the Malicious Representative attack, individuals in the

organization can use Emergency Tokens to perform an action that

is against the collective will, causing a Collective bypass attack.
Similar to the Malicious Representative attack, these attacks are

mitigated through checks and balances within the system.

Artificial Quorum through Collusion
An Artificial Quorum attack occurs when a minority group in the

24

COLBAC: Shifting Cybersecurity from Hierarchical to Horizontal Designs NSPW ’21, October 25–28, 2021, Virtual Event, USA

organization attempts to manipulate who is present at a vote to

increase the chances of an unpopular outcome. This can result in a

Collective bypass. This attack is likely to occur for organizations that
have a low f value, and thus it can be mitigated through selecting

a large enough value f to ensure a large group is needed for quorum.

Quorum Denial through Collusion
In direct contrast to an Artificial Quorum attack, a Quorum Denial

attack occurs when a minority group in the organization refuses to

log into the system to vote on a popular token, potentially denying

quorum and resulting in a Collective bypass. This attack is likely

to occur for organization that have a high f value, and thus it can

be mitigated through selecting a large enough value f to ensure a

small group cannot deny quorum.

7 USABILITY OF COLBAC
One of the largest potential issues that COLBAC faces is lack of

usability. However, before we can discuss methods of improving

COLBAC’s usability, we first must analyze it.

The most obvious usability concern of the COLBAC system is

the amount of time that a given petition phase may take. However,

in order to reason about the usability of COLBAC’s petition phase,

we first need to define its factors. These include:

(1) The number of members of a COLBAC based system,m.

(2) The amount of time COLBAC petition phases are open, t .
(3) The average amount of time it takes for members to vote, a.
(4) Fraction of people required to form a quorum, f .

In order to measure the total time for a Petition Phase, we studied

the users’ access patterns to a running server. Our goal is to identify

how often k different users log in to a system, assuming they would

vote after logging in. To do this, we used nearly 10 years of entries

from the Wikimedia database and event log dump system [27]. We

obtained the actions performed by all administrators of the English

Wikipedia site, including edition, creation and deletion events. With

this information in hand, we measured the time it takes for a server

to receive k consecutive accesses from unique administrator ids.

In other words, we assumed that if a user were to start a Petition

Phase at any point in the log the k subsequent actions performed

by unique ids would be preceded by a successful login and by our

assumption, a vote. After this, we normalized our results using the

quorum value of votes needed to perform a Petition Phase. Using

this data we can derive the vote times for a certain number of users.

For example, for a quorum of 4, the Petition Phase times ranged

from 60 seconds, to under 4 minutes in the 99
th
percentile. Likewise,

a COLBAC system configured with a quorum of 8 should finish a

Petition Phase in around 80 seconds on average. Thus, on average,

for each individual required to make a quorum, the average time for

the Petition Phase increases by 10 seconds. It is worth mentioning

that the number of active administrators oscillated around 5,000

at all times; however, the average vote time decreased from ≈24

seconds to ≈10 seconds.

However, the amount of time for the petition phase of a token

is not the only usability or user experience concern of the COL-

BAC system. Additionally, issues may arise with voting fatigue.

Specifically, large amount of votes on action tokens could cause

users to become fatigued, and thus pay less attention to the details

of each vote. To avoid this, voting can be simplified through the

use of simplified democratic structures like elected representatives.

Here we can have seats for administrating different functions of a

system, and these seats can be elected by democratic vote. This can

be done via long-lived delegation tokens with permissions relevant

only to the elected representative’s role within the system. If the

representative misbehaves, their current tokens could be revoked

with an action token, and new elections can be held. Similarly to

how workers in some worker cooperatives hire their managers, or

how union members elect their stewards, members in COLBAC can

elect their administrators.

For organizations that prefer more direct democratic approaches,

issues with voting fatigue can be avoided using non-technological

organizational practices. For example, many more horizontally run

organizations (such as some of the Mondragon15 cooperatives in
Spain or the democratic free school Escola da Ponte 16

in Portugal)

have regular meetings where organizational decisions are made.

Organizations that run COLBAC can also use these meetings to

decide aspects of system administration. This alleviates voting fa-

tigue, since results of these discussions can be batched into a few

action tokens and the participants will know exactly what they are

voting on before the Petition Phase of COLBAC even begins.

8 LIMITATIONS
Though COLBAC provides a first step towards democratic technol-

ogy and horizontal security, it still suffers from some setbacks. Like

most access control systems, COLBAC does not aim to solve issues

regarding account takeover or fake accounts. Rather, solving these

problems is left to outside solutions such as salted, peppered, and

hashed passwords and identity confirmation by the organization

running COLBAC. However, if identity verification and account se-

curity are not well handled they could lead to Sybill attacks against

the COLBAC system. This could lead to tokens that would have

failed to move past the Petition Phase to pass instead, or tokens that

would have passed to fail because of compromised or fake accounts.

Additionally, while our work is, to our knowledge, the first to

apply democratic processes to access control, it does not provide

any new defenses to these democratic processes. If a democratic

process is weak to an attack (for example, a group of individuals

refusing to vote to deny the quorum needed to authenticate a token,

or a Petition Phase being held when the opponents of the petition

are likely to be busy and unable to vote), then COLBAC will also be

vulnerable to that attack. Future work, including ethnographic and

technical work, can explore how to defend against attacks aimed at

democratic systems.

Moreover, in this work we do not cover all participatory or-

ganizational or governance schemes. Some governance schemes

(such as plein-air citizens assemblies, or representative democracies

that do not permit referendums) cannot trivially be represented

with COLBAC. Future work will explore how to expand the set of

governance schemes COLBAC can represent.

Other limitations of the COLBAC system fall in the area of usabil-

ity and user experience. Democratic processes can be difficult for

people to learn and participate in at first [31], and while COLBAC

15
https://www.mondragon-corporation.com/en/

16
https://www.escoladaponte.pt/

25

NSPW ’21, October 25–28, 2021, Virtual Event, USA Gallagher, Torres-Arias, Memon and Feldman

does bring democratic processes to technology, it does not provide a

method of making democratic processes any simpler. This is a social

problem, and is outside of the scope of this paper. Further, there will

be a learning curve for individuals moving to the COLBAC system,

even if they are familiar with democratic processes. In order to

effectively use the COLBAC system, one must know what it is they

are voting for, and what the potential outcomes of these votes are.

Future work will explore methods of presenting this information to

users such that they can make an informed decision while voting

on a token. Such potential solutions could include static or dynamic

analysis of the code proposed to be run, or performing "dry runs" of

the software on a virtualized environment to determine its effects.

Ultimately, difficulties introduced by purely horizontal demo-

cratic processes may cause some organizations, specifically larger

organizations, to adopt a more hierarchical elected representative

system. However, this is not a limitation of the scalability of COL-

BAC, but rather a limitation of scalability of participatory struc-

tures themselves. However, COLBAC addresses this difficulty by

providing the ability for organizations’ systems to operate as repre-

sentational democracies, allowing for organizations to choose the

level of horizontality that works for them at a given time.

Though COLBAC does have limitations, no system is perfect

when first created. Hierarchical access control systems are built on

top of a monumental amount of previous work and lessons learned

from previous adoptions. However, COLBAC is the first attempt at

constructing a democratic access control system. As such, we will

build upon the proposed system in future work to solve some of

the security and usability issues, and we expect to arrive at a more

usable and secure democratic access control system.

9 FUTUREWORK
A collective based access control system is a step in the direction

of horizontally controlled technology: it provides an access control

foundation that other democratically controlled technologies can

build on top of. However, COLBAC’s limitations leads to some inter-

esting questions. Specifically, COLBAC’s inability to represent all

methods of democratic and participatory design leads us to wonder

an access control method could be created that covers more modes

of organization and governance. In order to achieve this, it would

be necessary to first understand a few key points. How do horizon-

tally run communities organize themselves? How do they develop

trust? How do they view and interact with technologies, and how

would they interact with more horizontal security technologies like

COLBAC?

Answering these questions requires a mixture of ethnographic

research, theoretical computer security research, systems construc-

tion with iterative design, and user experience and usability re-

search. Thus, the creation of more horizontal security does not end

with this work, but rather this work takes a small step into a much

larger world of horizontal technologies.

The concept of horizontality of security introduces many op-

portunities for future work. The first, and possibly most obvious,

opportunity is determining the horizontality of security in different

types of organizations, including typical corporations, worker co-

operatives, trade unions, activist groups, government agencies, and

more. Through ethnographic research we can determine how they

organize, develop trust, make security decisions in the physical

world, and how they interact with centralized organizations.

After the ethnographic work begins to generate insights, we can

begin to develop tools, techniques, and technologies that facilitate

or encourage horizontal security. One potential positive outcome

of this ethnographic research is adjusting COLBAC to be flexible

enough to fit the democratic practices of potential COLBAC users.

This will allow us to address the some of the well-known HCI is-

sues of infrastructure [12] by making deep changes to COLBAC

to reflect the users’ mental models of democracy. Through this,

we can mitigate the problem of constrained possibilities [12] by ad-

justing COLBAC’s design to incorporate more forms of democracy.

However, this seems to necessitate more configuration options for

COLBAC, potentially requiring more unmediated interactions [12].
We leave solving this problem to future work.

Another potential positive outcome of this ethnographic research

is observing how these organizations work with centralized orga-

nizations and systems, and using these established practices to

generate methods of designing interfaces between COLBAC and

more centralized, hierarchical systems. For example, how would

a COLBAC-based system handle a request issues by law enforce-

ment using a warrant? Can exceptions such as these be included

in COLBAC without creating an easy path for those who which to

turn the system strictly hierarchical?

Perhaps the most obvious previous work created by the COLBAC

access control model is the creation of a COLBAC access control

system, both as a single machine and in a distributed system. This

will allow us to measure the impacts of different parameter choices

for COLBAC and their implicaitons on the system, both in terms of

security and usability.

After improving COLBAC based on our findings, we can begin to

solve other current horizontal security problems, such as password

wars [21], and other aspects of horizontal secret sharing. However,

in addition to the small advancements, one cannot lose sight of the

bigger picture. Larger advances must also be made to allow for a

large-scale shift to horizontal technology. Taking what we learn

from our ethnographic work, we can begin to implement other

technology that reflects the organization, trust development, and

security decision making they display in physical matters. We can

alsomeasure how the introduction of horizontal security techniques

affect the organization of the communities, and reflect these changes

in new technologies as well.

More, we must ensure that the solutions we develop are usable.

The creation of a horizontal security system, or any system, is

only useful if people are willing to use it, and are able to use it

effectively. Thus, research into the user experience and usability

of these solutions is a requirement for their continued growth and

development.

Finally, the ultimate aim of our work would be a general system.

Canwe create a concrete and parseable language to express different

methods of organization with varying levels of horizontality? If

so, can this language cover all possible forms of governance and

organization, or only a subset of them? If this languagewere created,

could we create a system that takes as input a description of a

governance system in this language, and dynamically adjusts the

access control needs to fit the governance structure? If so, how

would this system operate? What would it output? And can it, itself,

26

COLBAC: Shifting Cybersecurity from Hierarchical to Horizontal Designs NSPW ’21, October 25–28, 2021, Virtual Event, USA

be secured from misuse? Future research examines these questions

and more.

10 CONCLUSIONS
In this work we presented the concept of horizontal security and

presented COLBAC, a collective based access control system with

dynamic and flexible horizontality to fit the needs of the orga-

nization. We both informally and formally described the system,

discussed its properties, and outlined its limitations. We then dis-

cussed the potential impact of the introduction of COLBAC, and

concluded with several opportunities for interdisciplinary future

work, including ethnographic research, theoretical computer se-

curity research, system design research, user experience research,

and more.

ACKNOWLEDGMENTS
The authors with to thank Brendan Dolan-Gavitt for his input and

feedback, New Security Paradigm Workshop’s anonymous peer

reviewers for their insightful feedback, and Shamal Faily for shep-

herding, assistance, and comments on this article. Jessica Feldman

gratefully acknowledges the Ford Foundation and Alfred P. Sloan

Foundation for their support of her research into Critical Digital In-

frastructures, which informed this paper. Feldman’s research with

this project was also supported by l’Institut français du Monde as-
sociatif, under the aegis of the Foundation for the University of

Lyon, and by l’Institut National pour la Jeunesse et l’Éducation Pop-
ulaire. This research work has received funding from the European

Union’s Horizon 2020 research and innovation programme under

grant agreement no 952226.

REFERENCES
[1] [n.d.]. Free and Open Source Governance. https://fossgovernance.org/

[2] Christopher W Blackwell. 2003. Athenian democracy: an overview. Dēmos:
Classical Athenian Democracy (2003), 1–57.

[3] GR Blakley and GA Kabatianskii. 1993. Linear algebra approach to secret sharing

schemes. In Workshop on Information Protection. Springer, 33–40.
[4] Joseph Bonneau. 2018. Hostile blockchain takeovers (short paper). In International

Conference on Financial Cryptography and Data Security. Springer, 92–100.
[5] Glenn Bruns and Michael Huth. 2011. Access control via belnap logic: Intuitive,

expressive, and analyzable policy composition. ACM Transactions on Information
and System Security 14, 1 (May 2011), 1–27. https://doi.org/10.1145/1952982.

1952991

[6] Barbara Carminati and Elena Ferrari. 2011. Collaborative Access Control in

On-line Social Networks. In Proceedings of the 7th International Conference on
Collaborative Computing: Networking, Applications and Worksharing. IEEE. https:

//doi.org/10.4108/icst.collaboratecom.2011.247109

[7] Miguel Castro, Barbara Liskov, et al. 1999. Practical byzantine fault tolerance. In

OSDI, Vol. 99. 173–186.
[8] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. 1985. Ver-

ifiable secret sharing and achieving simultaneity in the presence of faults. In

26th Annual Symposium on Foundations of Computer Science (sfcs 1985). IEEE,
383–395.

[9] E Gabriella Coleman. 2012. Coding freedom. Princeton University Press.

[10] Jack B Dennis and Earl C Van Horn. 1966. Programming semantics for multipro-

grammed computations. Commun. ACM 9, 3 (1966), 143–155.

[11] John R. Douceur. 2002. The Sybil Attack. In Peer-to-Peer Systems, Peter Druschel,
Frans Kaashoek, and Antony Rowstron (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 251–260.

[12] W Keith Edwards, Mark W Newman, and Erika Shehan Poole. 2010. The in-

frastructure problem in HCI. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. 423–432.

[13] Paolo Gerbaudo. 2017. Social media teams as digital vanguards: the question of

leadership in the management of key Facebook and Twitter accounts of Occupy

Wall Street, Indignados and UK Uncut. Information, Communication & Society 20,

2 (2017), 185–202.

[14] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. 2015. Eclipse

attacks on bitcoin’s peer-to-peer network. In 24th USENIX Security Symposium
(USENIX Security 15). 129–144.

[15] Hongxin Hu, Gail-Joon Ahn, and Jan Jorgensen. 2013. Multiparty Access

Control for Online Social Networks: Model and Mechanisms. IEEE Transac-
tions on Knowledge and Data Engineering 25, 7 (Jul 2013), 1614–1627. https:

//doi.org/10.1109/TKDE.2012.97

[16] Panagiotis Ilia, Barbara Carminati, Elena Ferrari, Paraskevi Fragopoulou, and

Sotiris Ioannidis. 2017. SAMPAC: Socially-Aware collaborative Multi-Party Ac-

cess Control. In Proceedings of the Seventh ACM on Conference on Data and Applica-
tion Security and Privacy. ACM, 71–82. https://doi.org/10.1145/3029806.3029834

[17] Panagiotis Ilia, Iasonas Polakis, Elias Athanasopoulos, Federico Maggi, and Sotiris

Ioannidis. 2015. Face/Off: Preventing Privacy Leakage From Photos in Social

Networks. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security. ACM, 781–792. https://doi.org/10.1145/2810103.

2813603

[18] Investopedia. [n.d.]. A History of Bitcoin Hard Forks. https://www.investopedia.

com/tech/history-bitcoin-hard-forks/.

[19] Robert Jackall. 1984. 6. Paradoxes of CollectiveWork: A Study of the Cheeseboard,

Berkeley, California. In Worker cooperatives in America. University of California

Press, 109–136.

[20] Anastasia Kavada. 2015. Creating the collective: social media, the Occupy Move-

ment and its constitution as a collective actor. Information, Communication and
Society 18, 8 (2015), 872–886.

[21] Anastasia Kavada and Thomas Poell. 2020. From Counterpublics to Contentious

Publicness: Tracing the Temporal, Spatial, and Material Articulations of Popular

Protest Through Social Media. Communication Theory (2020).

[22] Jonathan Kuyper. 2016. Global Democracy. In The Stanford Encyclopedia of
Philosophy (Winter 2016 ed.), Edward N. Zalta (Ed.). Metaphysics Research Lab,

Stanford University.

[23] Leslie Lamport. 2019. The part-time parliament. In Concurrency: the Works of
Leslie Lamport. 277–317.

[24] Barry Leiba. 2012. Oauth web authorization protocol. IEEE Internet Computing
16, 1 (2012), 74–77.

[25] Frank Lindenfeld. 1982. Workplace democracy and social change. Extending

Horizons Books.

[26] M4BL. [n.d.]. Policy Platforms: Community Control. https://m4bl.org/policy-

platforms/community-control/.

[27] Meta. 2021. Data dumps — Meta, discussion about Wikimedia projects. https:

//meta.wikimedia.org/w/index.php?title=Data_dumps [Online; accessed 20-

August-2021].

[28] Satoshi Nakamoto. 2019. Bitcoin: A peer-to-peer electronic cash system. Technical

Report. Manubot.

[29] Diego Ongaro and John Ousterhout. 2013. In search of an understandable con-

sensus algorithm (extended version).

[30] José Pacheco. 2008. Escola da ponte. Formação e Transformação da Educação. Sl
(2008).

[31] Francesca Polletta. 2012. Freedom is an endless meeting. In Freedom Is an Endless
Meeting. University of Chicago Press.

[32] Kai Rannenberg. 2000. Multilateral security a concept and examples for balanced

security. In Proceedings of the 2000 workshop on New security paradigms - NSPW
’00. ACM Press, 151–162. https://doi.org/10.1145/366173.366208

[33] Prathima Rao, Dan Lin, Elisa Bertino, Ninghui Li, and Jorge Lobo. 2011. Fine-

grained integration of access control policies. Computers & Security 30, 2–3 (Mar

2011), 91–107. https://doi.org/10.1016/j.cose.2010.10.006

[34] Phillip Rogaway. 2015. The Moral Character of Cryptographic Work. IACR
Cryptol. ePrint Arch. 2015 (2015), 1162.

[35] Carlos Rozas. 2013. Intel® Software Guard Extensions (Intel® SGX).

[36] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.

[37] Marina A Sitrin. 2012. Everyday revolutions: Horizontalism and autonomy in
Argentina. Bloomsbury Publishing.

[38] Cryptopedia Staff. [n.d.]. What was the DAO? https://www.gemini.com/

cryptopedia/the-dao-hack-makerdao.

[39] Zied Trifa and Maher Khemakhem. 2014. Sybil Nodes as a Mitigation Strat-

egy Against Sybil Attack. Procedia Computer Science 32 (2014), 1135–1140.

https://doi.org/10.1016/j.procs.2014.05.544 The 5th International Conference

on Ambient Systems, Networks and Technologies (ANT-2014), the 4th Interna-

tional Conference on Sustainable Energy Information Technology (SEIT-2014).

[40] Kevin V Tu andMichaelWMeredith. 2015. Rethinking virtual currency regulation

in the Bitcoin age. Wash. L. Rev. 90 (2015), 271.
[41] Langdon Winner. 1980. Do artifacts have politics? Daedalus (1980), 121–136.
[42] Philipp Winter, Roya Ensafi, Karsten Loesing, and Nick Feamster. 2016. Iden-

tifying and Characterizing Sybils in the Tor Network. In 25th USENIX Secu-
rity Symposium (USENIX Security 16). USENIX Association, Austin, TX, 1169–

1185. https://www.usenix.org/conference/usenixsecurity16/technical-sessions/

presentation/winter

[43] Chris Wright. 2014. Worker cooperatives and revolution: History and possibilities
in the United States. BookLocker.

27

https://fossgovernance.org/
https://doi.org/10.1145/1952982.1952991
https://doi.org/10.1145/1952982.1952991
https://doi.org/10.4108/icst.collaboratecom.2011.247109
https://doi.org/10.4108/icst.collaboratecom.2011.247109
https://doi.org/10.1109/TKDE.2012.97
https://doi.org/10.1109/TKDE.2012.97
https://doi.org/10.1145/3029806.3029834
https://doi.org/10.1145/2810103.2813603
https://doi.org/10.1145/2810103.2813603
https://www.investopedia.com/tech/history-bitcoin-hard-forks/
https://www.investopedia.com/tech/history-bitcoin-hard-forks/
https://m4bl.org/policy-platforms/community-control/
https://m4bl.org/policy-platforms/community-control/
https://meta.wikimedia.org/w/index.php?title=Data_dumps
https://meta.wikimedia.org/w/index.php?title=Data_dumps
https://doi.org/10.1145/366173.366208
https://doi.org/10.1016/j.cose.2010.10.006
https://www.gemini.com/cryptopedia/the-dao-hack-makerdao
https://www.gemini.com/cryptopedia/the-dao-hack-makerdao
https://doi.org/10.1016/j.procs.2014.05.544
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/winter
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/winter

	Abstract
	1 Introduction
	2 Envisioning Horizontal Security
	2.1 Hierarchy and Access Control
	2.2 Previous Attempts at Horizontal Security

	3 Democracy and COLBAC
	4 Threat Model
	5 COLBAC: Collective Based Access Control
	5.1 System Requirements
	5.2 System Design
	5.3 Types of Tokens
	5.4 Token Format
	5.5 Formalizing COLBAC
	5.6 Properties of COLBAC

	6 Security Analysis of COLBAC
	6.1 COLBAC failure modes and technical attack surfaces
	6.2 Democratic Attacks and COLBAC

	7 Usability of COLBAC
	8 Limitations
	9 Future Work
	10 Conclusions
	Acknowledgments
	References

