
Autonomous Vehicle Security: Composing Attack, Defense, and
Policy Surfaces

Michael Clifford
Toyota InfoTech Labs

Mountain View, California, USA
michael.clifford@toyota.com

Matt Bishop
Department of Computer Science
University of California at Davis

Davis, California, USA
bishop@cs.ucdavis.edu

Miriam Heller
MHITech Systems
Arlington, VA, USA
heller@mhitech.com

Karl Levitt
Department of Computer Science
University of California at Davis

Davis, California, USA
levitt@cs.ucdavis.edu

ABSTRACT
An attack surface enumerates resources accessible to an attacker for
cyber attacks on a system. These resources are: methods that can
be called as part of an attack; channels that an attacker outside the
system can use to get to a system’s interface; and untrusted data
that an attacker can use in conjunction with the system’s programs
and channels. Historically, a system’s attacks surface has provided
a metric on the vulnerability of a system, in part to compare two
systems’ exposure to attack.

In this paper we extend the attack surface to (1) include rules
on the system’s methods and channels that if enforced would pre-
vent many attacks, and (2) be a composition of more primitive
surfaces each characterizing vulnerabilities associated with types
of resources, application-specific or system-specific, e.g., files, di-
rectories, and channels. We also introduce two additional surfaces.
The defense surface identifies system mechanisms that can thwart
cyber-attacks through prevention, or through detection followed by
mitigation of an attack in progress and then system restoration. The
policy surface defines the security policy of a system as reflected by
constraints on its interface expected to be satisfied in the system’s
operation.

The security policy for a corporation would include steps the
organization takes to prevent attacks and actions required to ad-
dress a security incident. More relevant to this paper, the security
policy for a community of autonomous vehicles would specify the
minimum separation among vehicles that must be maintained even
in the presence of a cyber-attack, i.e. a (safety) property. Through
an analysis of the intersection of the three surfaces, it is, in princi-
ple, possible to determine if a defense exists for every attack that
causes a policy violation. And, through computationally-efficient
model checking, the defense action can be identified. If more than

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
NSPW ’22, October 24–27, 2022, North Conway, NH, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9866-4/22/10.
https://doi.org/10.1145/3584318.3584325

one defense action exists, model checking will identify all of them,
thus enabling the selection of the optimal action based on criteria
associated with a CAV.

CCS CONCEPTS
• Security and privacy→ Distributed systems security; Vul-
nerability management;Malware and its mitigation; Intru-
sion detection systems; Formal security models; Authorization;
• Computer systems organization → Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.

KEYWORDS
Attack surface, defense surface, policy surface, informed defense
against cyber attack, security of connected autonomous vehicles

ACM Reference Format:
Michael Clifford, Matt Bishop, Miriam Heller, and Karl Levitt. 2022. Au-
tonomous Vehicle Security: Composing Attack, Defense, and Policy Sur-
faces. In New Security Paradigms Workshop (NSPW ’22), October 24–27,

2022, North Conway, NH, USA. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3584318.3584325

1 INTRODUCTION
1.1 Background
The Internet has expanded beyond traditional computers and net-
works to incorporate the rapidly expanding Internet of Things (IoT),
as well as cyber-physical systems. IoT devices often have very lim-
ited security capabilities and poor security maintenance, making
them particularly vulnerable to attack. Cybercrime is estimated
to have exceeded $6 trillion by 2021 [41]. Cyber-physical systems
operate critical infrastructure, and form the basis for control of au-
tonomous systems such as Connected, Autonomous Vehicles (CAV).
Consequently, increasing device connectivity provides not only
new entry points into systems and networks, but also the potential
for increased risks and costs from attack damage.

Connected, mobile devices reflect this risk. While many such
devices are targeted by attackers because of their access to sensitive
or personal data, or because of their importance in a wide variety of
activities, mobility-focused systems such as CAV are a particularly
tempting target. If attackers can manipulate the behavior of CAV,

90

https://doi.org/10.1145/3584318.3584325
https://doi.org/10.1145/3584318.3584325
https://doi.org/10.1145/3584318.3584325
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3584318.3584325&domain=pdf&date_stamp=2023-06-26

NSPW ’22, October 24–27, 2022, North Conway, NH, USA Clifford et al.

they can disrupt traffic, cause accidents, and endanger lives [29].
Preventing attacks on CAV is, therefore, critical to the future of
autonomous transportation. In the future, we expect that both CAV,
and other types of devices, will work together to achieve complex
goals. Ensuring that attackers cannot control, manipulate, deceive,
or disrupt connected devices is required in order to protect their
users, and the larger scale systems that incorporate them.

The increase in attack risk and cost implies the need for improved
defensive tools, such as those that provide prevention, detection,
and analysis, as well as enhanced attack monitoring and response.
Such tools exist in many forms. The MITRE ATT&CK framework
[49] provides a standardized categorization of attacks. In 2021,
MITRE introduced a complementary knowledge base, D3FEND
[25] is a knowledge graph of cybersecurity countermeasures associ-
ated with offensive and adversarial techniques. It currently serves
to standardize the security vocabulary. One software tool, Bishop-
Fox’s Cosmos [4], analyzes systems and networks to identify and
manage attack surfaces. Another, Penetra, is an automated penetra-
tion tool that gives information that can be used to minimize attack
surfaces [42]. An attack is defined as “a sequence of actions that
create a violation of a security policy” [2, p. 959]. Thus, whether
some sequence of actions is an attack depends on the security pol-
icy. Unfortunately, these tools do not address policy, and therefore
can not identify certain classes of attacks.

A simple example is a buffer overflow attack resulting in root
access. Suppose a security policy states that “all input shall be
checked for proper length.” In that case, any input that avoids this
check is an attack, as it violates the security policy. But if the policy
instead stated “only authorized users shall acquire root privileges,”
then input that causes a buffer overflow may or may not be an
attack. Specifically, if the program with the buffer overflow were
not setuid to root, then the user will not gain any extra privileges,
and hence this is not an attack. But if the program were setuid
to root, then the buffer overflow would enable the user to gain
privileges they are not authorized to have — hence, an attack.

This study develops a surface, analogous to an attack surface,
but for policy. By examining the intersection of the two surfaces,
the attacks of interest can be identified. Then it goes a step further,
defining a defense surface that implements defenses as required
by the policy surface. In this way, reasoning and identifying at-
tacks takes policy into account. Moreover, the explicit, structured
relationship of policies defined in the policy surface, in combina-
tion with the attack and defense surfaces, could enable explicit
verification and updating.1

The next section of the paper reviews the extensive prior work
on attack surfaces, attack trees and attack much more on prior work
1) examining the concept of “attack surfaces” in detail and tying
them to the Requires/Provides model [50] of attacks; 2) extending
the definition of attack surfaces to incorporate attack trees, graphs
and paths, formally defining attack, defense and policy surfaces,
and analyzing how all three surfaces interact; 3) arguing that these
surfaces can be divided into an object-oriented set of sub-surfaces
representation, and showing that this simplifies analysis and may
reduce attack and defense costs; 4) showing that this representation
1While we primarily discuss surfaces in the context of autonomous systems, they can
be applied to non-autonomous systems, such as cloud systems or machine learning
models as well. We elaborate on attacks on machine learning models in 5.3.11.

allows for the use of iterative and recursive surfaces, which sim-
plifies the modeling of attack, defense, and policy interactions at
many different levels and scales; 5) applying these new paradigms
to the attack and defense of complex systems, such as platoons of
CAV.

Following a section that discusses surfaces, the next three sec-
tions present attack, defense, and policy surfaces. The next two
sections give examples, and the section after presents a represen-
tation of an attack on CAVs to show how the surfaces work in
practice. The remaining sections cover root cause analysis, cost,
strategies, and other real world applications. We conclude with a
discussion of the paper’s key ideas directions for future work.

2 RELATEDWORK
2.1 Attack Trees and Attack/Defense Trees
Attack trees [44] represent the possible ways for an attacker to
reach some goal state (at the tree’s root node). Each goal has its
own attack tree, with the goal state represented by the root node.
Leaf nodes represent attacks. Tree branches are combined using
Boolean expressions or comparisons. While attack trees model
potential ways for an attack to occur, they do not model whether
an attacker currently has the ability to carry them out. This idea
was extended by Kordy, et al. [28], which introduced the concept of
an Attack/Defense Tree (ADT). An ADT allows attack and defense
nodes (or subtrees) to be added as countermeasures to each other.

2.2 Fault Tree Analysis
A related approach, Fault Tree Analysis, is summarized in [13, 30].
While attack trees look at how things fail, fault trees model whether
or not failures can occur at all.

2.3 Process Analysis
Process analysis [3] has been used to model insider threat attacks.
In this approach, process models represent specifications of agents,
activities, artifacts, and required model precision. The approach
utilizes fault tree analysis, but also adds in Finite-State Verification,
which is used to verify whether it is possible for an agent to corrupt
a process.

2.4 Capability Paths
The Requires/Provides Model [50] addressed a limitation of attack
trees — the inability to model whether an attacker can actually carry
out an attack. It describes attacks using sequences of capabilities
(preconditions that attackers must satisfy in order to carry out
attacks) and concepts (Boolean expressions of subtasks that the
attacker must complete in order to reach a goal.) These sequences
forms paths that the attacker follows from their current state to
some goal state.

2.5 Attack Graphs
Attack graphs [46] extend the idea behind the Requires/Provides
model by combining multiple attack paths into a graph. This graph
accounts for attacks that can be carried out in multiple ways, with
each attack path representing a different sequence of atomic attacks
that ends in some ultimate objective. This work was extended in

91

Autonomous Vehicle Security: Composing Attack, Defense, and Policy Surfaces NSPW ’22, October 24–27, 2022, North Conway, NH, USA

[23], which applied model checking to attack graphs, introduced
automated graph generation, and represented attack graphs us-
ing preconditions. Additionally, tools for the automatic mapping
of attack graphs [22] have been developed. More recently, attack
and defense graphs have been used for mapping, simulation, and
automated response simulation of network threats.

2.6 Graph Scalability and Performance
Predictive graphs [32, 33] attempt to address the scalability and
performance of attack graphs by only adding one instance of each
new vulnerability to the attack graph. Improvements to improve
scalability and performance using multiple-prerequisite graphs
were presented in [21].

2.7 Attack Surfaces
Attack surfaces were described conceptually in [20], and formally
in both [35] and in [37] using state-machines and I/O automata
[34] respectively, in order to model system state transitions. The
formal treatments of both consider a system’s attack surface in
terms of data, interfaces (such as networks), and methods (such as
programming interfaces). In both cases, if a system resource can
be used by an attacker to attack a system, then it is part of the
system’s attack surface [36]. In both the 2004 and 2011 references,
a resource’s damage potential and effort are considered in terms
of the resource’s attributes, e.g., “method privilege, access rights,
channel protocol, and data item type. Our estimation method is a
specific instantiation of our [sic] general measurement framework
and includes only technical impact (e.g., privilege elevation).”

Theisen et al. [51] discuss the methods and results of a systematic
literature review (SLR) of the term, attack surface, in the context of
security. A key goal of the study was to motivate standardizing the
definition of attack surface. The SLR first screened the titles and
abstracts of 1433 papers, reducing the set of papers to 644. These
papers were categorized: 7% provided their own definition; 13%
referred to another paper’s definition; 71% used the term without
definition or reference; 9% were not relevant. While 55% of these
papers were theoretical, the remaining 45% percent were catego-
rized as: 23% pertaining to systems, e.g., operating systems, 8%
pertaining to networks, 4% corresponding to functions, methods,
or operations within the code, and 2% were associated with binary
files. The remainder were not categorized. Theisen et al. recommend
that researchers and practitioners use one of six themes identified
in the analysis: “Reachable Vulnerabilities: The attack surface is
the vulnerabilities that are exposed to the end users via paths or
flows, rather than the paths or flows themselves” [51]. Separately,
forty-eight different definitions for attack surface were identified
by Manadhata and Wing [36]. This paper’s working definition was
cited the most, at 43 times.

Kim et al. [26] provides a review of 151 papers addressing au-
tonomous vehicle cybersecurity. Several identify or refer to attack

surfaces. Miller and Valasek (2014) provided a survey of remote
attack surfaces on various vehicles based on their internal network
architectures. They identified physically controllable features and
noted defense strategies were needed, such as the detection of
message injection.

The local and remote attack surfaces for vehicles, and the soft-
ware that they interact with, has been another area of prior work.
Li et al [31] looked at an infotainment system attack and included a
description of the attack surface of modern vehicles. Eriksson et al.
[14] investigated the attack surface and vulnerability of in-vehicle
Android apps and suggested countermeasures for fine-grained per-
mission, API control, system support, and information flow. Check-
oway et al. [7] claim to be the first to apply the notion of attack
surfaces from outside rather than inside cars, and include an exper-
imental demonstration of these attack surfaces. Foster et al. [15]
described the local and remote attack surfaces of the car’s telem-
atics control unit. The local attack surface was also explained for
web, telnet console access, NAND dump, and SSH service methods.

2.8 CAV Attack Surfaces
Finding the attack surface of a Connected, Autonomous Vehicle
(CAV) is critical, as it allows attackers to find feasible points of attack
for the vehicle, and defenders to determine both how to allocate
defensive resources, and how to block potential attacks.2 Maple, et
al. [39] presents a reference architecture for a CAV, draws on it to
model an attack surface, and explores attack graphs that incorporate
specific points of entry within the attack surface. However, this
work does not address either attacker goals, or defender defenses
and policies.

2.9 Relationships Between Entities and
Properties

The properties of the entities participating in an attack (the at-
tackers, from the defender’s perspective, and vice-versa) are of-
ten uncertain. Neither party normally has complete information
about the other. This is especially true when the attackers and tar-
gets in an attack may both be unknown, as in the case of fleets of
connected, autonomous vehicles. Probabilistic Relational Models
(PRMs) attempt to address this uncertainty by reasoning about the
probabilistic relationships between entities and their properties.
[17, 27]

2.10 Path Discovery
Finally, both attackers and defenders need to be able to determine
the set of possible state changes that are reachable from either their
current states, or from that of their adversary. Attackers need to
know what attacks are possible, and what defenders could do to
counter their moves. Likewise, defenders need to predict potential
attacker moves, as well as what responses they could take to counter
them. Both need to be able to do so efficiently. The Solar Trust
Model [10–12] computes trust relations between entities along
dynamically generated paths using a Path Discovery Algorithm.

3 THE SURFACES
A “surface” is an abstraction of a system that represents some prop-
erties of that system. For a system composed of a single program,
one surface of interest is a specification of the program’s functional

2Note that the “defender” of a CAV is likely to be an autonomy stack, or other software,
that makes decisions for the vehicle, rather than a human driver. In some cases, that
software may be remote from the vehicle.

92

NSPW ’22, October 24–27, 2022, North Conway, NH, USA Clifford et al.

behavior that hides details of the implementation. A different sur-
face would represent the system’s performance under different
conditions. For a system claimed to be tolerant to independently
failing components, a surface could represent the system’s ability
to perform as components fail and the failures are addressed [53].
A common approach to representing a surface is as a state machine,
possibly defined by a set of constraints induced by the properties
of interest.

Three surfaces represent the security of a system: (1) the attacks
for which the system is vulnerable (the attack surface), (2) the
defenses that can be deployed to counter an attack (the defense

surface), and (3) the policy that defines the security of the system
(the policy surface).

A brief description of the relationships of the surfaces will orient
the reader to what follows.

• The attack surface is composed of points that an attacker
can use to attempt to compromise the system. Put another
way, in order for a successful attack to occur, the attacker
must find points that are in, or can be transitioned (perhaps
through an exploit) to, a state in which the policy constraints
are not satisfied. This ties attack surfaces to attack trees. At-
tack trees encapsulate the steps needed to find and exploit
the vulnerabilities that lead to a failure to meet policy con-
straints.

• The policy surface is the set of points of the system, and con-
straints upon those points that define “security”.3 The points
have attributes such as permissions and policy constraints
that specify the allowed settings of these points. If any point
is set in such a way as to not satisfy those constraints, the
system is not secure.

• The defense surface consists of the points and their settings
that satisfy the policy constraints, and the points that detect
unauthorized changes to the point settings or the points
themselves, and that reset settings back to values allowed by
the policy surface constraints. These points are a (possibly
improper) subset of the points composing the policy surface.
Ideally, the attack surface points will be a subset of these also,
so the attacks cannot be realized. In practice, the defense
surface points are a proper subset of those of the policy
surface, and hence the system is vulnerable to attack.

We now formally define the surfaces, as well as how they interact.

3.1 Attack Surfaces
As an attack surface is tied to points needed to reach a goal, the
points’ use must violate the security policy. We augment the defi-
nition of an attack surface [36] with a set 𝑅 of rules that describe
the actions in which an attacker could use those resources to vi-
olate the policy, and how the attacker would do so. The security
policy is created based on a threat model, because the policy must
address the threats. So the threat model defines the rules 𝑅, and
the resources necessary to instantiate those rules. Hence it also
describes the attack surface

3A subset of these constraints may define the system boundary. Policies may also
specify contexts, defining conditions under which specific constraints do, or do not,
apply.

Definition. Given a system with environment 𝐸, the system’s
attack surface is the tuple (𝑀𝐸 ,𝐶𝐸 , 𝐼𝐸 , 𝑅𝐸) where𝑀𝐸 is the set of
entry and exit points in the system, 𝐶𝐸 is the set of channels of the
system, 𝐼𝐸 is the set of untrusted data items in the system, and 𝑅𝐸
is a set of rules that an attacker can apply to the resources (𝑀𝐸 ,𝐶𝐸 ,
and 𝐼𝐸) to launch or further an attack.

Intuitively, the attack surface is a set of points (resources) that
can be used to (attempt to) compromise the system and the rules
an attacker must apply to do so. An attack tree (vector) describes
the steps needed to carry out such a compromise. The rules are
what the attacker applies to take steps. The rules and resources
are time dependent, for example when the attacker is launching a
race condition attack. For simplicity, we consider time a part of the
environment 𝐸.

Example 1. Consider a network port, which is both an entry and
exit point. The rule is “sweep ports”. An attacker does a port sweep.
Thus, the attacker is applying a rule (sweep ports) to a point (the
network port).

Example 2. A platoon of CAVs has a large attack surface, as each
car can be attacked in such a way as to disrupt the platoon, and the
platoon itself can be attacked. Here, the attacker determines the
frequency of the communications among the cars (and, possibly, any
other entities that guide the platoon) and masquerades as one of the
cars. They then send bogus information to the platoon, indicating
that there are obstructions ahead, causing the platoon to stop. Here,
the entry point is the CAV’s receiver controlling the position, speed,
and direction of the car; the untrusted data items are the messages,
which are neither digitally signed nor authenticated; and the rule
being applied is to force perception of an illusion.

3.1.1 Describing an Attack Surface Using Preconditions. An attack
surface can be described using sets of preconditions, state transi-
tions, and post-conditions. The system has some current state 𝜎 .
A precondition represents the conditions that must be satisfied in
order for 𝜎 to transition to some state 𝜎′. If the precondition is au-
thorized to be satisfied, then no violation of policy occurs. However,
if the precondition is satisfied without authorization by policy, then
we can say that an attack has occurred.

A precondition can be represented by a pair (𝜎, 𝑓), where 𝜎

is the required state of the system and 𝑓 is a description of the
conditions that are to be satisfied. Considering this description to be
written as a set of logic formulae provides one approach to analysis.
Suppose a precondition 𝑝1 requires that 3 specific conditions in
an environment must be true; call these 𝑐11, 𝑐12, and 𝑐13. Then
𝑝1 (𝑓) = 𝑐11 ∧ 𝑐12 ∧ 𝑐13. If preconditions 𝑝1 or 𝑝2 must hold for
an attacker to successfully penetrate the attack surface 𝐴𝑆 , then
𝐴𝑆 = 𝑝1∨𝑝2 = (𝜎, (𝑐11∧𝑐12∧𝑐13) ∨ (𝑐21∧𝑐22∧𝑐23)). This reduces
to a satisfiability problem.

The set of resources in the attack surface are included as part of
the conditions. A typical condition will define the resource(s) and
state components that are required to exercise a capability. Thus,
intuitively, a precondition is the conjunction of conditions enabling
the attacker to advance towards a goal. This also implies that an
attack tree can be embedded in the augmented attack surface.

Additionally, in practice, postconditions may not hold even
though the corresponding preconditions hold. The reason is that

93

Autonomous Vehicle Security: Composing Attack, Defense, and Policy Surfaces NSPW ’22, October 24–27, 2022, North Conway, NH, USA

the attack may disrupt or compromise the mechanism that causes
the postconditions to hold. To detect this, an intrusion detection
system can analyze the variables in the postcondition that define
the state. In what follows, we consider this as a part of the rules,
and hence do not distinguish it from other rules.

Attack surfaces can be dynamic. For example, a path might work
from 8 AM until 5 PM each day (as dictated by a system policy), or
until blocked (by making some required capabilities unreachable).
An attack surface could also be spatially dynamic, with certain
attacks only becoming possible when the target system, or certain
capabilities, are located within a certain set of locations. Spatial and
temporal attack surface dynamics are of particular importance for
autonomous vehicles, since they are subject to attacks that are only
possible when vehicles are within certain parts of the space-time
continuum (such as near an electronic sign, at night) [40].

3.1.2 FromAttack Surfaces to AttackGraphs. The Requires/Provides
Model [50] describes attacks in terms of capabilities (the precon-
ditions required for some subset of an attack to take place) and
concepts (a set of sub-tasks that must be satisfied, represented as
a Boolean expression).4 These can be represented as a graph, in
which edges represent concepts, and nodes represent capabilities.
While reaching a new node may add capabilities, traversing an edge
may consume them. To succeed in an attack, an attacker with some
initial set of capabilities (represented by a leaf node) must traverse
some path through the graph until they reach their goal state, at the
root of the graph. There may be multiple paths available between
the attacker’s leaf node and the graph root.

We extend this idea to an attack surface. As an initial approach,
we describe the attack surface in terms of its entry points — the
leaf nodes representing the capabilities to launch an attack. But
any intermediate node may represent a set of capabilities that the
attacker already has, and is therefore also an entry point. Further,
the attacker may already possess the goal state. Therefore, our
initial attack surface consists of all nodes (entry points) such that
there is a sequence of rule applications of length 𝑛 ≥ 0 from that
node to the goal state. (See Figure 1.)

Note that both temporal and spatial limitations on a system can
be represented using capabilities, and that these capabilities must
be acquired by the attacker for certain attacks. For example, if an
attack only works in a specific location, or in a specified time range,
the attacker may utilize other capabilities to force a vehicle into
the required region of space-time. The set of valid attack paths
would, therefore, include nodes that have appropriate space and
time requirements.

3.2 Defense Surfaces
A defense surface is similar in structure to an attack surface, but
models how attacks can be addressed. That is, it also consists of en-
try and exit points, channels, and untrusted data, and is augmented
by a set of rules that the system enforces.

Definition. For a systemwith environment 𝐸, the system’s defense
surface is the tuple (𝑀𝐸 ,𝐶𝐸 , 𝐼𝐸 , 𝐴𝐸) where 𝑀𝐸 is the set of entry
and exit points in the system,𝐶𝐸 is the set of channels of the system,
𝐼𝐸 is the set of untrusted data items in the system, and 𝐴𝐸 is a set

4The required state is collapsed into the capabilities and so is omitted in what follows.

Figure 1: The attacker wants to reach their goal state, G.
While the attacker can enter the surface at any state in the
surface, only “threat states” (T) are connected by a capability
path to G. All other states are “non-threat states”, N. An entry
at T offers the potential for a successful attack. An entry at
N offers no possibility of success. A defender can block an
attack by removing capabilities from a path, so that the at-
tacker can no longer traverse the path to the goal state. This
removal can be implemented using policy.

of actions that a defender can apply to the resources (𝑀𝐸 , 𝐶𝐸 , and
𝐼𝐸) and rules 𝑅𝐸 to prevent, detect, or monitor an attack.

An action here is some step or steps the defender can take to
handle the attack. For example, the action may be to delete or
modify a rule, which would involve preventing the attacker from
using the rule in some way. It may involve validating untrusted
data to remove it from 𝐼𝐸 . The defender also can simply set up
monitoring to see when the rule is used.

Key to instantiating this surface is to identify what defense mech-
anisms support attacks being prevented, or detected and actions
dispatched to mitigate the attack (the “Resilience” cycle). Detection
is often achieved at runtime by intrusion detection, but code in-
spection or validating cryptographic signatures of code and data
may identify that attacks have occurred. Once an attack is detected,
actions can be taken to (1) block or at least slow the progression of
the attack and (2) recover from the attack. The defender is able, in
principle, to address attacks at numerous locations in an intercon-
nected system. These include not only the ultimate target of the
attack, but also nodes upstream from the target, so as to block the
attack from reaching its ultimate destination. Thus the defender
can, again in principle, dispatch ”methods” to locations in the net-
work where effective attack counter actions can be taken, provided
these locations are accessible to the defender.

Example 1 (continued). The defense surface includes the action
of responding. The security policy would determine whether the
system should respond, and if so, how. In the former case, where the
system should not respond, the point of the action in the defense
surface would be that the system remain silent.

94

NSPW ’22, October 24–27, 2022, North Conway, NH, USA Clifford et al.

Example 2 (continued). The defense surface for the platooning
CAVs is the mechanism used to detect masqueraders and spoof-
ing. One defense is to require each vehicle to authenticate itself
when joining the platoon, and require all messages to be digitally
signed using a public key algorithm. This prevents forged mes-
sages from being accepted. Here, the action is to accept the initial
authentication and validate each message.

Again, similar to an attack surface, a defense surface consists of
rules (modeled with pre-conditions and post-conditions), communi-
cation channels and data objects. We can think of the preconditions
defining capabilities a “defender” needs to invoke a method and the
post-conditions as defining the capabilities the defender gains or
loses through execution of the method.

Thus a defense surface models the points and settings needed
to prevent an attacker from gaining the capabilities enabling them
to reach a given goal state (root node), or anything that alters a
path from the attacker’s current state to a goal state in such a way
that no capability set can be used to traverse it. The basic defense
surface, therefore, includes a defense mechanism that removes the
capability of an attacker to traverse an edge along a path to a root
node.

Note that capabilities need to be blocked along a path, not just at
a single node. An attacker who is blocked from obtaining a required
capability at one node might add that capability at another node
along the attack path. Failure to remove the capability from the
entire path may delay, but not block, the attacker. Additionally,
because multiple paths might be traversable from the attacker’s
current state to the goal state, an ideal defense surface must block
all such paths in order to guarantee that the attacker cannot reach
the goal state. In practice, the defender may not know, or be able to
learn of, or block, all such paths, or even all edges that make up all
such paths. Therefore, in practice, a defense surface blocks a subset
of all edges that make up the set of all traversable attack paths.

Note also that blocking the discoverability of a capability is not
equivalent to controlling access to that capability. For example,
if the defender cannot block a path, but can block the attacker
from being able to infer the existence of that path (essentially,
making critical attack path segments invisible to the attacker), then
the defender wins (at least in the short term). Short term path
invisibility is equivalent to security through obscurity, and shares
its susceptibility to discovery.

3.3 Policy Surfaces
A policy surface represents the security policy of the system.

Definition. Given a system with environment 𝐸, the system’s
policy surface is the tuple (𝑀𝐸 ,𝐶𝐸 , 𝐼𝐸 , 𝑃𝐸) where𝑀𝐸 is the set of
entry and exit points in the system, 𝐶𝐸 is the set of channels of the
system, 𝐼𝐸 is the set of untrusted data items in the system, and 𝑃𝐸
is a set of constraints applied to the use of a set of resources (𝑀𝐸 ,
𝐶𝐸 , and 𝐼𝐸).

The constraints apply to the use of the resources. There are three
types of constraints: what is required to be done, what is allowed
but not required to be done, andwhat is disallowed to be done. As an
example, starting a car is required to use it. Adjusting seats, mirrors,
and so forth are allowed but the car will run without the driver

doing so. Not fastening your seat belt is disallowed, as a driver can
receive a ticket for not doing so.5 In theory, these constraints cover
every possible action and state. In practice, they do not, as a system
with non-trivial uses rarely (if ever) has its security policy complete.
What usually happens is that users take actions resulting in a state
that should have been explicitly disallowed but was not. So a new
constraint is added to the policy. Contrariwise, some action may be
blocked even though a job requires the system to enter that state.
So an existing constraint is altered or removed. We address this
case in the future work section; for now, we assume the constraints
cover every case, and so the security policy is complete.

This contrasts the policy surface with the defense surface. The
latter deals with the points and settings that (usually imperfectly)
enforce the policy. Hence the surfaces overlap at points where the
defense techniques and mechanisms correctly enforce the policy,
and gaps between the surfaces exist where they do not. This is the
traditional view of policy vs. mechanism: policy says what is and
is not allowed, and mechanisms (attempt to) enforce the policy.

Example 1 (continued). The policy surface constraints includes
constraints that enable the detection and countering of port sweeps.
These guide the actions in the defense surface. For example, the
policymay say not to respond to any probes; the defensemechanism
would then ensure only exchanges that are correct for the protocol
tied to that port.

Example 2 (continued). The policy surface for the platooning CAVs
contains constraints that require the CAVs all be legitimate mem-
bers of the platoon, in the sense that they are providing accurate
information to the other CAVs, and that any messages come from
cars in the platoon. The defense surface chooses the mechanism
used to ensure this. In our example, it is to require authentication
and validate digital signatures on the messages.

Policies can be expressed in many ways, for example, using
invariants, or using constraints. Four forms of constraints compose
the rules of the policy surface.

• Assumptions — for example, any new user will be properly
identified and vetted before being given a login and pass-
word;

• Technical constraints — for example, a privileged program
will function correctly and not grant privileges unless the
security policy requires it;

• Physical constraints — for example, a computer that mea-
sures the speed of a car, and will prevent the car from ex-
ceeding the safe speed for the road; and

• Social constraints — these include laws and regulations, the
rules of the environment in which the policy is defined, and
customs of that environment.

The first three can be validated by intrusion detection systems.
For example, the IDS could monitor the fan temperature through
a different circuit than the computer controlling the fan uses, and
if the fan overheats and is not shut down, the IDS could signal
a failure. Similarly, the IDS can verify that technical constraints
are valid. Of course, the assumptions cannot be mechanistically
validated by their nature, such as a belief that another organization’s
systems meet certain requirements. In this case, one must trust the
5At least in many US states.

95

Autonomous Vehicle Security: Composing Attack, Defense, and Policy Surfaces NSPW ’22, October 24–27, 2022, North Conway, NH, USA

Figure 2: Relationships between surfaces at the same recur-
sion level. The attack surface contains the set of states that
are under threat of potential attack. The defense surface con-
tains the set of states that the defender can use to prevent
or mitigate attacks. The policy surface contains the set of
states where the system policy is complete - that is, where the
policy specifies what is required to be done, what is allowed
but not required to be done, and what is disallowed to be
done. Where the attack and defense surfaces intersect, the
attacker can disrupt defenses, and the defender can disrupt
attacks. Where the attack and policy surfaces intersect, the
attacker can alter policies to aid attacks. Where the policy
and defense surfaces intersect, the defender can use policy
to defend the system. Where all three surfaces intersect, the
attacker and defender can make moves and counter-moves
against each other. They can also alter policy to enable their
moves, and block those of their adversary.

assumptions, and as Singer and Bishop argued [47], the basis for
trust is that set of assumptions that cannot be checked. As for local
constraints, those that can be encoded into rules or other analysis
mechanisms can be verified to hold in the system, and those that
cannot be must be trusted to hold.

For our example of a network port, the policy surface would
state whether the system should reply. How this is implemented is
not relevant to this surface. As for the user interface that does not
check for buffer overflow, the policy surface would constrain the
user interface so as to prevent actions beyond those intended for
the user interface. Again, the implementation is embodied in the
defense surface.

We illustrate the relationships among the three types of surfaces
in Figure 2.

3.4 Combining the Surfaces
The surfaces are related to one another, as hinted above. We now
examine those relationships.

3.4.1 Relationship of Attack and Defense Surfaces. We can use
attack and defense surfaces to determine whether it is possible
for either the attacker, or the defender, to achieve their goals. If a
defense surface is applied, and a path still exists from the attacker
state to the attacker’s goal state, then the attacker wins. Otherwise,
the defender wins.

We can measure the vulnerability of a system by finding the
intersection of the attack and defense surfaces. The portion of
an attack surface that does not intersect with the defense surface
contains the set of entry points, exit points, untrusted data, and rules
— in short, the capabilities — that the attacker can use to achieve
their goal. The portion of the defense surface that does not intersect
the attack surface is not useful against the attacker’s capabilities
(although they may deter the addition of new capabilities). The
portion of the two surfaces that intersects is the set of attacks that
the defender can defend against.

In terms of preconditions, the defense surface should be the
complement of the attack surface, thus ensuring the mechanisms
block the attacks.6 So if the attack surface is 𝐴𝑆 = 𝑝1 ∨ 𝑝2 =

(𝑐11 ∧ 𝑐12 ∧ 𝑐13) ∨ (𝑐21 ∧ 𝑐22 ∧ 𝑐23), then the ideal defense surface
should simply be𝐷𝑆 = ¬𝐴𝑆 . For this to be true, the policymust have
two parts: ¬𝑝1 ∧ ¬𝑝2. This means ¬𝑝1 = (¬𝑐11 ∨ ¬𝑐12 ∨ ¬𝑐13)and
similarly for ¬𝑝2. And as before, this reduces to a satisfiability
problem.

Example 1 (continued). Here, the surfaces intersect at the point
where the defense is active and the attacker attempts to enter the
system. The action of the defense mechanism would block the
attacker, or would detect the attacker and give appropriate warning.

Example 2 (continued). The attack surface and the defense surface
are related by the entry point rules and actions. Here, the entry
points are the receptors of the CAVs, and the rule is to spoof a
legitimate CAV. The attack entry point is the receptors that receive
the messages guiding the platoon. The defense entry point is the
use of cryptography and digital signatures to enable detection of
bogus messages.

3.4.2 Relationship of Attack and Policy Surfaces. The policy surface
is a representation of the security policy of the system. It defines
the resources (entry and exit points, channels, and untrusted data)
relevant to the security state of the system. In theory, it is complete;
that is, it partitions all states into allowed and disallowed states.
Were it complete, it would define the attack surface. The resources
for both are the same; the requirement is that the attacker make
some set of those resources not satisfy the constraints of the policy
surface. Thus, the policy and attack surfaces are related by the
constraints. The constraints defining the rules of the attack surface
are the complement of those defining the policy surface, so every
attack represents a violation of the policy.

The key word is “in theory”. In practice, policies are set up
initially, and then they evolve as new compromises of the system
are discovered. One way to think of this is that a policy has two

6Note that, in practice, this is exceptionally rare.

96

NSPW ’22, October 24–27, 2022, North Conway, NH, USA Clifford et al.

parts, one explicit, the other implicit. New attacks compromise the
implicit policy, after which those parts become explicit. Thus, in
practice, the policy surface does not cover all resources in the attack
surface.

3.4.3 Relationship of Defense and Policy Surfaces. Given a generic
policy surface, there is no algorithm to construct a generic defense
surface [24]. So defense surfaces must be constructed based on a
specific (or a class of specific) policy surfaces.

The policy surface composition drives that of the defense sur-
face. The defense surface attempts to implement the policy surface
constraints. The mechanisms it uses to do so are prevention, detec-
tion and recovery mechanisms. Prevention occurs when a resource
cannot be used in an attack, and hence are not points of the attack
surface, Detection and recovery mechanisms observe the resources.
If settings of a resource violate the policy surface constraints, the
detection mechanisms report a possible security breach, and the re-
covery mechanisms attempt to restore the valid settings and either
remove or monitor the attacker’s actions.

Example 1 (continued). The intersection of the policy surface
and the defense surface lies in the actions and constraints upon
those actions. The policy surface constraints define what actions
the defensive mechanisms are allowed to exercise. Here, the policy
constraint is that only legitimate messages will be accepted by the
CAVs. The defense surface actions to enforce this constraint are
to require initial authentication and subsequent verification of the
digital signatures.

Example 2 (continued). As in Example 1, the policy surface and
the defense surface are related by the constraints and the defense
mechanisms enforcing those constraints. The policy constraints
relevant here are the ones that require the CAVs are legitimate
members of the platoon, and send signed, unforgeable messages
within the platoon. The defense actions are the use of cryptography
and digital signatures to enable detection of bogus messages.

3.4.4 Relationship of the Three Surfaces. The simplest way to ex-
plain this is that the policy surface consists of resources and con-
straints; the defense surface describes what resources, settings, and
mechanisms are involved in ensuring the settings of those resources
meet the constraints of the policy surface; and the attack surface
consists of those gaps where the policy and defense surfaces do not
overlap.

More precisely, let 𝐴𝑆 be the attack surface. Then the defense
surface 𝐷𝑆 relies on a set of mechanisms,𝑀 , that enforce precon-
ditions. Thus, the set of attacks that will fail is 𝐴𝑆 − 𝐷𝑆 , that is,
the resources used by the attack surface that are not protected by
the defense surface. Ideally, the policy surface 𝑃𝑆 = 𝐷𝑆 ; in practice,
𝑃𝑆 ∩ 𝐷𝑆 ≠ ∅, and that intersection describes the vulnerabilities.

3.4.5 Information Asymmetry in Surfaces. An information asym-
metry exists between the attackers and defenders. The attackers
know their capabilities and probe systems for weaknesses. They
need find only one. The defenders know (or believe they know)
the capabilities of the defense mechanisms, but they do not know
where all the weaknesses are. And to prevent any attacks from
succeeding, the defenders must defend all weaknesses.

Using policy surfaces, part or all of a surface may be rendered
hidden, vulnerable, or invulnerable, to sets of attackers or defenders.
This highlights the importance of establishing where the policy
surface and the attack surface overlap. The part of the attack surface
not being overlapped represents the weaknesses that the attacker
can exploit. This shows a flaw in the policy, and presumably the
requirements.

The same is true for the defense and attack surfaces. Here the
danger is more immediate, as that part of the attack surface that is
not overlapped represents ways the system can be attacked without
defense mechanisms interfering.

By manipulating the overlaps of the three surfaces, the attacker
can identify and implement attacks that the defender either can
not, or will choose not, to defend against. In doing so, the attacker
may not only reach their desired goal state, but can also force the
defender to consume their resources to defend against attacks that
the attacker does not plan to implement. Using the same manipula-
tion, the defender can attempt to predict, identify, and block attacks,
make parts of their system invisible or inaccessible, or change the
cost or value to the attacker of implementing attacks.

This illustrates information asymmetry between attackers (who
have perfect knowledge of their own capabilities, but incomplete
system knowledge) and defenders (who have perfect system knowl-
edge but incomplete knowledge of current and potential attacker
capabilities). Manipulating these surfaces alters this information
asymmetry, and both attackers and defenders can use this to their
advantage. Specifically, to be more in their favor, attackers can learn
of new paths and capabilities, while defenders can detect, neutralize,
and respond to threats more efficiently.

3.4.6 Selecting a Defense Action. An attack becomes possible if
some satisfiable attack path exists from the attacker’s current point
on the attack surface to some point that violates policy. If the
attacker is not yet at the violation point, the defender might predict
that the attacker will reach it by determining whether any attack
paths exist from the attacker’s current point to the violation point.
The defender can then attempt to block the attacker by removing
capabilities or negating preconditions, such that the attacker can
not satisfy the requirements to traverse the attack path. On the
other hand, if the attacker is already at the violation point, then
the defender needs to find a way to move them out of that point,
and into a point that does not cause a policy violation. One way
to do this is to remove capabilities from the attacker, such that
they no longer have the ability to remain at the violation point.
The other option is to force the attacker to transition to some new
point that does not violate policy by changing the state of the
system through a change in policy, capabilities, or resources. Such
a transition should, if possible, also not lead to a point that allows
the attacker to directly transition to a violation point.7

Assume an attack 𝐴 ∈ A has postcondition 𝑝𝑜 that violates a
policy rule 𝑅. There exists a defense action 𝐷 with precondition
𝐷𝑝𝑟 and post-condition 𝐷𝑝𝑜 such that 𝐴𝑝𝑜 ∧ 𝑅 ⇒ 𝐷𝑝𝑟 and 𝐷𝑝𝑜 ⇒
𝑛𝑜𝑡𝐴𝑝𝑜 and 𝐷𝑝𝑜 does not violate any policy (that is, 𝐷𝑝𝑜 ∧policy =

𝐹𝑎𝑙𝑠𝑒). Then any 𝐷 that satisfies these conditions is an acceptable
defense action.

7We believe that model checking [9, 38], which is efficient for reasonably small prob-
lems, is likely to provide the best solution. This is an area of future research.

97

Autonomous Vehicle Security: Composing Attack, Defense, and Policy Surfaces NSPW ’22, October 24–27, 2022, North Conway, NH, USA

4 STRATEGIES FOR ATTACK AND DEFENSE
Our model can be used to develop attack and defense strategies for
given systems. We have identified some of these strategies.

4.1 Information Asymmetry in Policy Surfaces
An information asymmetry exists between the attackers and de-
fenders. The attackers know their capabilities and probe systems
for weaknesses. They need find only one. The defenders know (or
believe they know) the capabilities of the defense mechanisms, but
they do not know where all the weaknesses are. And to prevent any
attacks from succeeding, the defenders must defend all weaknesses.

Using policy surfaces, part or all of a surface may be rendered
hidden, vulnerable, or invulnerable, to sets of attackers or defenders.
This highlights the importance of establishing where the policy
surface and the attack surface overlap. The part of the attack surface
not being overlapped represents the weaknesses that the attacker
can exploit. This shows a flaw in the policy, and presumably the
requirements.

The same is true for the defense and attack surfaces. Here the
danger is more immediate, as that part of the attack surface that is
not overlapped represents ways the system can be attacked without
defense mechanisms interfering.

By manipulating the overlaps of the three surfaces, the attacker
can identify and implement attacks that the defender either can
not, or will choose not, to defend against. In doing so, the attacker
may not only reach their desired goal state, but can also force the
defender to consume their resources to defend against attacks that
the attacker does not plan to implement. Using the same manipula-
tion, the defender can attempt to predict, identify, and block attacks,
make parts of their system invisible or inaccessible, or change the
cost or value to the attacker of implementing attacks.

This illustrates information asymmetry between attackers (who
have perfect knowledge of their own capabilities, but incomplete
system knowledge) and defenders (who have perfect system knowl-
edge but incomplete knowledge of current and potential attacker
capabilities). Manipulating these surfaces alters this information
asymmetry, and both attackers and defenders can use this to their
advantage. Specifically, to be more in their favor, attackers can learn
of new paths and capabilities, while defenders can detect, neutralize,
and respond to threats more efficiently.

4.2 Attacker Strategies
If the cost of a defense is too high, the defender will be unwilling
or unable to carry it out. The attacker can raise the defense cost
to a level that is higher than the defender is willing to commit to
the defense of the system. In particular, if the cost of the defense is
more than the losses resulting from the attack being successful, the
defender may choose to allow the attack to succeed.

The attacker may wish to exhaust the available resources of the
defender, in order to increase the feasibility of future attacks. The
attacker can drive up the defender’s costs by focusing on the paths
with the highest cost of defense. However, because the attacker
may have only partial information about the cost of defending
those paths, the attacker may not have sufficient information to
implement this strategy successfully.

Finally, the attacker can force the defender to reveal a subset of
their defensive capabilities by finding attack paths in which the
defender must either block the attacker by revealing a capability, or
allow the attacker to reach some intermediate state. (This is similar
to a “fork” in chess.)

4.3 Defender Strategies
4.3.1 Root Cause Analysis. In order for a given failure to occur, the
preconditions for that failure must be satisfied. If the failure can
occur if one or more independent failures occur, then at least one of
the preconditions must be satisfied. Given a particular failure, we
can perform a root cause analysis by tracing back from the failure,
examining which capabilities were (or must have been) utilized in
order for the failure to occur. We can continue to trace back until
the root cause of a failure is identified. A vulnerability exists if a
failure has not yet occurred, but the preconditions for that failure
are satisfiable.

In the case of recursive surfaces, this may involve starting with
a failure at a higher level, then tracing through to potential lower
level causes. Or, we may start with a low level failure, then examine
the dependencies for the subsystem that failed, moving through
system layers until we reach all possible consequences of the failure.

4.3.2 Utilizing Information Asymmetry for Defense. The attacker
may not know all possible policies, and may not know what de-
fenses have been implemented. To avoid wasting resources or re-
vealing their capabilities prematurely, the attacker must choose
to attack only those paths for which they believe that they have
sufficient capabilities to achieve their goal.

The defender can force the attacker to reveal capabilities. In the
absence of sufficient information, the attacker may decrease their
capability set by using them in unsuccessful attacks, or even by
revealing them in successful attacks. (As an example, a zero-day
attack ceases to be a zero-day attack once it has been used, because
the capability that it utilizes has been revealed to the defender.)
Defenses that force the attacker to reveal capabilities allow the
defender to block the use of those capabilities.

The defender can drive up the cost to the attacker of reaching a
certain goal state by eliminating the attacker’s ability to traverse
some possible paths leading to that goal. The defender must defend
all possible attack paths. The attacker need traverse only one valid
path. However, the defender may have only partial information
about the cost of attacking those paths.

4.3.3 Defender Path Manipulation. Finally, in some cases, two
paths to a given goal state may merge at a given node. (i.e. There
may be two ways for the attacker to reach some intermediate node.)
The defender can block both paths simultaneously by preventing
satisfaction of the preconditions for any required state transitions
out of the intermediate node.

5 DISCUSSION AND FUTUREWORK
In this section, we discuss how our model might be applied to
system design and operation, and to attack detection and system
defense. We also analyze some of the challenges that we intend to
address in future versions of the model.

98

NSPW ’22, October 24–27, 2022, North Conway, NH, USA Clifford et al.

5.1 System Design and Operation
The first question is how to use our model to design systems that
have resilient architectures, and how to generate requirements for
those architectures.

5.1.1 Resilient Architectures. Some systems are brittle when at-
tacked. They may enter a state in which they can no longer achieve
their intended objectives (for example, if a CAV crashes, it can
no longer achieve its goal of safely transporting its passengers to
their destination). They may experience degraded performance
(the CAV gets the passengers to their destination, but provides
an unsatisfactory experience while doing so). Or, they may not
be vulnerable to the capabilities and attack strategy used by the
attacker. Other systems are resilient [5]. They maintain sufficient

functionality to achieve some goal of the system, even if it was
not the system’s original or primary goal. For example, a resilient
CAV may have the primary goal of transporting its passengers to
their destination safely within certain time and cost constraints.
But if an attack occurs, the CAV may switch goals (coming to a safe
stop in a protected area instead of reaching the specified destina-
tion or switching passengers to a different vehicle), or may alter
its constraints (degrading service quality, timeliness, or value for
money) in order to provide the best service that it still can while
avoiding system failure. Using our model, the system can dynami-
cally (re)-evaluate possible actions, given its current capabilities and
reachable set of goals. If, starting in its current state, the system can
not find a sequence of moves that would allow it to reach a specific
goal state, that goal state can be pruned from its set of potential
options. The system can then evaluate the costs of the paths to
the remaining goal states, add them to the rewards associated with
those goal states, and select the goal with the highest net reward.

5.1.2 Generating Requirements. Requirement specification allows
system architects and engineers to determine whether or not their
designs meet legal, social, technical, operational, or other require-
ments. While requirement generation is an area for future work,
one potential approach is to make (a subset of) requirements equiva-
lent to satisfaction of state transition preconditions. For a transition
to occur, the right preconditions, capabilities, and policies must
have been satisfied by the relevant user, or by the system itself.
Requirements could be translated into policies, lists of capabilities,
and design constraints to be applied in different circumstances. For
example, a requirement to protect CAV passenger safety might be
translated into a set of safety capabilities that would satisfy that
requirement. The CAV’s surface graphs could then be analyzed to
determine whether required goal states were reachable with those
capabilities in place, or in the event that one or more capabilities
were disabled.

5.1.3 System Operation. Modeling of attack, defense, and policy
surfaces improves the ability of system operators to track and pre-
dict the current and future states of a system, respectively. As capa-
bilities and system states change, those changes can be applied to
the models of each surface, and any new or updated paths through
the surfaces can be (re)evaluated. Note that while these models
can be detailed, they likely can never be complete for systems of
non-trivial complexity. While model completeness is a potential
limitation, a lack of complete knowledge always affects attackers

and defenders. Both attackers and defenders have limited knowl-
edge of each other’s capabilities, strategies, policies, and state. If
either an attacker or defender does not know that they can make a
specific move, it is very unlikely that they will execute that move.
Thus, an incomplete model reflects what is both possible and known
to the attacker and defender, rather than all possible moves.

5.2 Defending Systems
Another question is how to use the model to improve the ability
of defenders to protect their systems. Our future work on system
defense will focus on the application of our model to three areas —
attack detection, attack diagnosis, and resilient response.

5.2.1 Attack Prediction and Detection. Traditionally, attack detec-
tion focuses on the identification of attacks that either have already
occurred, or that are currently ongoing. But our surface models
provide an additional alternative — the possibility of predicting
both attack preconditions and attack effects, given available capa-
bilities and current or future system states. One option may be to
identify sets of preconditions required to gain entry to paths to
specific goals, and then to monitor systems to determine whether
those preconditions have been satisfied. Another option is to pre-
dict the effects of potential attacks, as represented by changes in
available capabilities, satisfaction of transition prerequisites, and
traversal of users or systems across paths to specific goals. Those
predicted effects can then be used as signatures to detect ongoing
and past attacks. In future work, we will analyze these options,
and demonstrate how surface modeling can make them feasible to
implement.

5.2.2 Attack Diagnosis. Attack detection and attack diagnosis are
distinct. While attack detection focuses on determining whether or
not an attack is occurring, attack diagnosis focuses on identifying
the nature of current and past attacks, including classification of
attack family, Tactics, Techniques and Procedures (TTPs), attack
stages, and attack goals. One potential advantage to our model is
that it can track and relate multiple, simultaneous attacks. Consider
two attacks that are targeted towards achieving the same goal, but
that appear to be implemented by two different external attackers.
In traditional attack detection, it is possible to detect each attack,
but it is difficult or infeasible to relate the two attacks. Using our
surfaces, it is possible to track whether capabilities gained in one
attack are applied in other attacks, and whether two attacks may ul-
timately be converging towards the same (intermediate) goal along
intersecting paths. In future work, we will demonstrate relation
finding between attacks that would otherwise appear to be distinct.

5.2.3 Example: Honeypots. A security policy may contain entry
points for attackers to exploit something in the system. This oc-
curs in honeypots, where the goal is not to prevent attacks, but
encourage them — so they can be monitored. In this case, the secu-
rity policy either states or implies a certain class of attacks do not
violate the policy. Here, the defense surface does not overlap the
policy surface at those points, but it does overlap the attack surface.
Here, though, the mechanism is to monitor the steps in the attack.

99

Autonomous Vehicle Security: Composing Attack, Defense, and Policy Surfaces NSPW ’22, October 24–27, 2022, North Conway, NH, USA

5.3 Analysis
Finally, we explore ways in which our model could be enhanced to
improve reasoning about security and strategic analysis, to improve
modeling of surface interactions, address temporal and probabilis-
tic constraints, and to compute metrics with respect to different
surfaces.

5.3.1 Reasoning About Security. Our model may make it easier to
reason about the security of a system, from the perspectives of both
attackers and defenders. Attackers can evaluate the cost, number
of steps, required capabilities, or other parameters for both simple
and complex attacks, including the coordination of multiple attack
strategies. Defenders can do the same with respect to their defenses.
Comparisons can be made between different strategies — not just
of cost, but also of probability of success. Developing techniques
for automating this reasoning capability is an area for future work.

5.3.2 Edge Cost Annotation. Each step in an attack may cause
the attacker to incur one set of costs, and the defender to incur
another. If an attack causes dependencies within a system to fail
or degrade in functionality, the degradation of those dependencies
may also result in a cost — even if the attacker does not attack
the dependencies directly. While it is very difficult to accurately
estimate the cost of an attack to either the attacker or defender, it
may be much easier to do so if the costs for transitions to new states,
including potential dependencies, are annotated along each path
edge. Finding the best way to derive these costs is an area for future
work. However, if edges have been annotatedwith costs, it should be
possible to make direct comparisons of the costs of different attack
and defense strategies, and to use these comparisons in strategy
evaluation. For example, a defender might dynamically adjust the
cost of reaching certain goals by changing policies and capability
requirements in order to make reaching those goals too costly for
an attacker. Likewise, an attacker might alter their strategy in order
to consume or misdirect most of a defenders resources, thus making
it more difficult to defend the attacker’s actual target.

While it is also possible to annotate an edge with the probability
of an attacker move, this is problematic for several reasons. One
reason is that there may be many attackers (some of whom may
collude). The probability of a given move may be very different
for each attacker, depending on their goals, capabilities, and ability
to see different parts of the attack surface. Another reason is that
individual attackers may need to change strategy and goals as those
same things change. While a probability of any user following a
certain edge or path can be computed, individual attackers have
different goals and behavior than ordinary users, and possibly from
each other. Thus, while probabilities can be assigned to edges, they
may be inaccurate, or even misleading.

5.3.3 Uncertainty. A key limitation of our work is that in many
cases, it is not possible to know the probability with which certain
events will occur in the future. This limitation stems from the lack
of complete information that both attackers and defenders must
contend with. The attacker’s view of the target system is limited.
The defender, while potentially able to see the entire target system,
has a limited view of attacker capabilities, as well as limited insight
into attacker incentives and motivations. This is further compli-
cated by the fact that many systems have sufficient complexity that

it is not feasible to map out all possible moves, dependencies, state
transitions, or impacts on dependent subsystems. Discrete event
systems [6, 43] may provide a solution to this problem. Their appli-
cation to ourmodel is an area of future work. Discrete event systems
[6, 43] may provide a solution to this problem. Their application to
our model is an area of future work.

5.3.4 Underspecification. Neither the attacker nor the defender is
likely to have a complete view into any non-trivial system. From
the perspective each, the system being attacked or defended will be
underspecified, which may result in emergent behaviors [19]. The
manipulation of behaviors emergent to an adversary is a potential
tool for both attackers and defenders, who may manipulate the
visibility and accessibility of points and paths within a system’s
surfaces. Whether or not this can be used to make a known path to
goal unreachable, or to render acquisition of the goal irrelevant, is
an area for further study.

5.3.5 Dynamic Surfaces. Systems do not stay static. Their config-
urations change over time. While some portions of a surface may
remain highly stable, others may change frequently. Somemay even
incorporate feedback loops and control mechanisms. By focusing
on stable portions of a surface, attackers can increase their odds
of reaching a desired goal without their chosen attack path being
interrupted. Likewise, defenders may use surface instability as a
defensive measure. This is effectively a moving target defense [8].
Focusing monitoring on stable surfaces may improve the ability
of both attackers and defenders to achieve their goals. In future
research, we will address the value to the defender of maintaining
points requiring defense within stable regions of surfaces, and to
the attacker of using surface region instability to improve attack
stealthiness, and to find or manipulate windows in which attack
goals can be reached.

5.3.6 Complex Attacks and Multiple Attackers. An attack may have
multiple starting points on a surface, or across multiple surfaces.
This allows the attacker to gain additional capabilities, potentially
using a capability gained in one attack to aid in another. This en-
ables the attacker to make it more difficult to detect and defend all
active attack paths. For example, the use of multiple attack paths
may prevent the defender from correlating and associating specific
actions, or the acquisition and use of particular capabilities. Un-
fortunately for the attacker, the defender can add uniqueness to
capabilities in order to detect use across attack paths. For example,
the defender could require the use of a token to traverse a given
edge. If that token incorporates a non-forgeable unique identifier,
then using it would allow the defender to create a binding between
the acquisition and use of the token along different paths.

An attack may also have multiple (potentially unrelated) goals
with the same starting point. Using our model, an attack could
be traced as it moves from one point to the next within a surface.
These paths could be traced back to their common starting point,
allowing them to be associated.

Multiple attacks may also occur simultaneously. Sometimes,
these attacks will be related. In this case, if there is any sharing of
capabilities or path usage, then an association between the attacks
can be made. In the case where the attacks are not related, the
defender should still be able to track and counter each of the attack.

100

NSPW ’22, October 24–27, 2022, North Conway, NH, USA Clifford et al.

In each of these cases the attacker can also attempt to evaluate
whether making a countermove to block the use of one attack
path would cause an attack on a different path to gain a capability
on a subsequent move. The defender can evaluate the potential
consequences of possible responses to each attack, making trade-
offs between them to achieve a better overall outcome.

5.3.7 Metrics. The effectiveness of the defense mechanisms can
be measured in one of several ways. First, how much of the attack
surface does the defense surface cover? If there are parts of the
attack surface that the defense surface does not cover, the system
is vulnerable. The ratio of coverage versus non-coverage for a
particular institution’s policy and defenses can be measured by
these gaps. Note the defense surface may not intersect with the
attack surface at some points, indicating the defense mechanisms
may block legitimate work. This can be factored into any metric.

A second useful measure would be the amount of the policy sur-
face that the defense surface covers. Again, if there are gaps, those
gaps identify parts of the policy not enforced by the defense mecha-
nisms. The places where the defense surface does not intersect with
the policy surface may indicate the defense mechanisms prevent
authorized actions. Perhaps this can be handled in the same way as
the attack and defense surfaces; this is an area ripe for exploration.

5.3.8 Avoiding Cycles. Paths between any two nodes must termi-
nate, but it is possible that a path could be created that contains
a cycle, resulting in an infinitely long path. To prevent this, any
algorithm that finds or evaluates paths between nodes must incor-
porate cycle detection, and must terminate if a cycle is detected.
One possible way to do this may be to assign each node a unique
identifier (UID), and to track whether a node with a given UID has
already been visited by a given algorithm. However, it might be
possible for an attacker to engineer an attack that would cause
cycle detection to fail. Finding ways to preclude such an attack
from becoming possible is an area for future work.

5.3.9 Predicates. If we represent the attack and policy surfaces as a
disjunction of predicates, with each predicate being derived from a
requirement, we can combine the policy and defense surfaces. The
defense surface would characterize possible values of the variables
in the predicates. Then if the attack surface and policy surface
contradict each other, the defense must be changed in order to
enforce the policy. Under this view, one would need to include
positive requirements (what is allowed) as well as the more usual
negative requirements (what is not allowed). If there is a successful
attack, then there is no contradiction between the policy surface and
the attack surface for the values that allow the attack to match the
policy, and thereby succeed. Finding the values of the variables that
would allow either of these alternatives is a problem in satisfiability.
One could also attach varyingweights to the values of the predicates
to obtain a measurement of the effectiveness of the defense and
policy surface. How to do this, and what measures would be useful,
probably depend on the specific organization targeted in a particular
attack. Whether this view of the surfaces, or a more traditional view,
is more effective is an area warranting further work.

5.3.10 Time Constraints. Some systems must detect and respond
to attacks within hard time constraints, in order to avoid adverse
effects such as system crashes. For a CAV to avoid a physical crash,

response times must be on the order of 100ms. Our representation
allows for the possibility of pre-computation of a subset of potential
attacker and defender moves, before those moves become critical.
In cases where edges or surfaces are re-used, it may also be possible
to re-use computational results throughout the represented system,
further decreasing overall computation time.

5.3.11 Attacks on Machine Learning Models. Some attacks are ex-
ecuted against machine learning models, rather than traditional
“systems”. Two examples of this are model inversion attacks [16]
and data poisoning attacks [1]. In a model inversion attack, an at-
tacker attempts to reconstruct the classifier’s training set – deriving
the distribution of classes within the training set, and potentially
variations within those classes [52]. In a data poisoning attack, the
attacker manipulates the behavior of a machine learning model
by inserting invalid examples into the model’s training set, thus
causing misclassifications to occur [48].

In the first example, the goal is the set of classes (and possible
variants) in the training set. To get to the goal, the attacker must
gain access to the trained model, and potentially also to outputs
from that model. The capabilities required are those needed to
access and execute the model, and to access the model outputs.
In the second example, the required capabilities are the ability to
access and modify (add to) the training set, and (potentially) the
ability to cause the model to be trained on the modified training
set.

A subset of data poisoning attacks, called “dirty label attacks” [45],
causes the classifier to misclassify when exposed to a specific trig-
ger, such as a stop sign that has had a sticker attached to it [18]. In
this case, there are two attack paths that the attacker must traverse
to gain the required capabilities. The first path is the same as before
– achieving the goal of poisoning the classifier’s training set. The
second path has the goal of generating the trigger (placing the
sticker on the stop sign). If both attacks are executed by the same
attacker, then once the attacker has generated both capabilities,
they may then transition to their final goal of inducing a misclas-
sification of the target by the classifier. If the attacks are executed
by different attackers, then if one attacker has already successfully
executed the data poisoning attack, that precondition is already
satisfied for the second attacker, who then only needs to obtain and
execute the capability to generate the trigger.

5.3.12 Trust of Surface Data. Some systems, such as vehicle pla-
toons, are very complex, and may even be ephemeral. The com-
position of a platoon may vary from second to second as vehicles
join, leave, maneuver, and interact. Rather than using a static ar-
chitecture, a system such as a platoon may need to be dynamically
defined. In some cases, each subsystem may need to report on the
configuration of its own surfaces. In other cases, subsystems may
appear as black boxes from the perspective of the larger system,
even though they represent complex systems internally. This raises
the question of how each subsystem can trust the others, and how
the overall system can trust information reported to it by each
subsystem. We are studying this problem. The Solar Trust Model
provides the basis for a possible solution, as it is designed to model
ad-hoc trust relations between entities that lack prior relationships.

101

Autonomous Vehicle Security: Composing Attack, Defense, and Policy Surfaces NSPW ’22, October 24–27, 2022, North Conway, NH, USA

5.3.13 Building Surfaces. It is important to define algorithms and
techniques for efficiently identifying and updating the points and
edges on each surface. As previously indicated, neither the attacker
nor the defender are likely to have a complete view of their system.
This view may be limited by resources and capabilities available to
map and monitor the system state. Currently, we envision the use
of libraries of surface models, much like object oriented software
is typically composed using libraries of previously defined com-
ponents. However, finding more optimal ways to generate surface
models is an area of future work.

6 CONCLUSION
We have presented several new paradigms, including recursive sur-
faces, defense surfaces, and policy surfaces as extensions of the
extensively studied concepts of attack surfaces. Through these three
kinds of surfaces it is possible to specify and analyze attacks and
defenses on complex systems in order to determine if a policy is
respected. Defining these surfaces using recursion, efficient repre-
sentation of attacks and defenses is achieved, for example when
configurations are replicated within a system. We believe the sur-
face definitions can also be used to enhance system resilience, to
derive better attack and defense strategies, to model system entropy,
attack and defense costs. They can also be used to support root
cause analysis, in order to help to eliminate vulnerabilities, or find
the likely causes of prior failures.

Acknowledgements. Matt Bishop gratefully acknowledges the
support of the National Science Foundation awards DGE-1934279
and DGE-2011175 to the University of California and funding from
Toyota InfoTech Labs. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science
Foundation or the University of California.

REFERENCES
[1] Battista Biggio, Blaine Nelson, and Pavel Laskov. 2012. Poisoning attacks against

support vector machines. arXiv preprint arXiv:1206.6389 (2012).
[2] Matt Bishop. 2019. Computer Security: Art and Science (second ed.). Addison-

Wesley, Boston, MA, USA.
[3] Matt Bishop, Heather M Conboy, Huong Phan, Borislava I Simidchieva, George S

Avrunin, Lori A Clarke, Leon J Osterweil, and Sean Peisert. 2014. Insider threat
identification by process analysis. In 2014 IEEE Security and Privacy Workshops.
IEEE, Piscataway, NJ, USA, 251–264.

[4] BishopFox. 2022. BishopFox: Attack Surface Management. https://bishopfox.
com/platform/attack-surface-management

[5] Fredrik Bjorck, Martin Henkel, Janis Stirna, and Jelena Zdravkovic. 2015. Cyber
resilience–fundamentals for a definition. In New contributions in information

systems and technologies. Springer, 311–316.
[6] Christos G Cassandras and Stéphane Lafortune. 2008. Introduction to discrete

event systems. Springer.
[7] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav

Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, and
Tadayoshi Kohno. 2011. Comprehensive experimental analyses of automotive
attack surfaces. In 20th USENIX security symposium (USENIX Security 11).

[8] Fred Chong, Ruby Lee, A Acquisti, W Horne, C Palmer, A Ghosh, D Pendarakis,
W Sanders, E Fleischman, H Teufel III, et al. 2009. National cyber leap year
summit 2009: Co-chairs’ report. NITRD Program (2009).

[9] Edmund M Clarke. 1997. Model checking. In International Conference on Founda-

tions of Software Technology and Theoretical Computer Science. Springer, 54–56.
[10] Michael Clifford. 2002. Networking in the solar trust model: Determining optimal

trust paths in a decentralized trust network. In 18th Annual Computer Security

Applications Conference, 2002. Proceedings. IEEE, Piscataway, NJ, USA, 271–281.
[11] Michael Clifford, Charles Lavine, and Matt Bishop. 1998. The solar trust model:

authentication without limitation. In Proceedings 14th Annual Computer Security

Applications Conference (Cat. No. 98EX217). IEEE, Piscataway, NJ, USA, 300–307.

[12] Michael Allen Clifford. 2012. The Solar Trust Model, Identity, and Anonymity.
University of California, Davis, Davis, CA, USA.

[13] Clifton A Ericson et al. 1999. Fault tree analysis. In System Safety Conference,

Orlando, Florida, Vol. 1. 1–9.
[14] Benjamin Eriksson, Jonas Groth, and Andrei Sabelfeld. 2019. On the Road with

Third-party Apps: Security Analysis of an In-vehicle App Platform.. In VEHITS.
64–75.

[15] Ian Foster, Andrew Prudhomme, Karl Koscher, and Stefan Savage. 2015. Fast and
vulnerable: A story of telematic failures. In 9th USENIX Workshop on Offensive

Technologies (WOOT 15).
[16] Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon Lin, David Page, and Thomas

Ristenpart. 2014. Privacy in pharmacogenetics: An {End-to-End} case study
of personalized warfarin dosing. In 23rd USENIX Security Symposium (USENIX

Security 14). 17–32.
[17] Nir Friedman, Lise Getoor, Daphne Koller, and Avi Pfeffer. 1999. Learning proba-

bilistic relational models. In IJCAI, Vol. 99. 1300–1309.
[18] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. 2017. Badnets: Identifying

vulnerabilities in the machine learning model supply chain. arXiv preprint

arXiv:1708.06733 (2017).
[19] Heather M Hinton. 1998. Under-specification, composition and emergent prop-

erties. In Proceedings of the 1997 workshop on New security paradigms. 83–93.
[20] Michael Howard. 2003. Fending off future attacks by reducing attack surface.
[21] Kyle Ingols, Richard Lippmann, and Keith Piwowarski. 2006. Practical attack

graph generation for network defense. In 2006 22nd Annual Computer Security

Applications Conference (ACSAC’06). IEEE, 121–130.
[22] Sushil Jajodia, Steven Noel, and Brian O’berry. 2005. Topological analysis of

network attack vulnerability. In Managing cyber threats. Springer, 247–266.
[23] Somesh Jha, Oleg Sheyner, and Jeannette Wing. 2002. Two formal analyses of

attack graphs. In Proceedings 15th IEEE Computer Security Foundations Workshop.

CSFW-15. IEEE, 49–63.
[24] Jones Anita K. and Richard J. Lipton. 1975. The Enforcement of Security Policies

for Computation. ACM SIGOPS Operating Systems Review 9, 5 (Nov. 1975), 197–
206. https://doi.org/10.1145/1067629.806538

[25] Peter E Kaloroumakis and Michael J Smith. 2021. Toward a knowledge graph of
cybersecurity countermeasures. Corporation, Editor (2021).

[26] Kyounggon Kim, Jun Seok Kim, Seonghoon Jeong, Jo-Hee Park, and Huy Kang
Kim. 2021. Cybersecurity for autonomous vehicles: Review of attacks and defense.
Computers & Security 103 (2021), 102150.

[27] Daphne Koller. 1999. Probabilistic relational models. In International Conference

on Inductive Logic Programming. Springer, 3–13.
[28] Barbara Kordy, Sjouke Mauw, Saša Radomirović, and Patrick Schweitzer. 2014.

Attack–defense trees. Journal of Logic and Computation 24, 1 (2014), 55–87.
[29] Sidney La Fontaine, Naveen Muralidhar, Michael Clifford, Tina Eliassi-Rad, and

Cristina Nita-Rotaru. 2022. Alternative Route-Based Attacks inMetropolitan Traf-
fic Systems. In 2022 52nd Annual IEEE/IFIP International Conference on Dependable

Systems and Networks Workshops (DSN-W). 20–27. https://doi.org/10.1109/DSN-
W54100.2022.00014

[30] Wen-Shing Lee, Doris L Grosh, Frank A Tillman, and Chang H Lie. 1985. Fault tree
analysis, methods, and applications — a review. IEEE transactions on reliability

34, 3 (1985), 194–203.
[31] Xiangxue Li, Yu Yu, Guannan Sun, and Kefei Chen. 2018. Connected vehicles’

security from the perspective of the in-vehicle network. IEEE Network 32, 3
(2018), 58–63.

[32] Richard Lippmann, Kyle Ingols, Chris Scott, Keith Piwowarski, Kendra
Kratkiewicz, Mike Artz, and Robert Cunningham. 2006. Validating and restor-
ing defense in depth using attack graphs. In MILCOM 2006-2006 IEEE Military

Communications Conference. IEEE, 1–10.
[33] Richard P Lippmann, Kyle W Ingols, Chris Scott, Keith Piwowarski, Kendra

Kratkiewicz, Michael Artz, and Robert Cunningham. 2005. Evaluating and

strengthening enterprise network security using attack graphs. Technical Report.
Citeseer.

[34] Nancy A Lynch andMark R Tuttle. 1988. An introduction to input/output automata.
Laboratory for Computer Science, Massachusetts Institute of Technology.

[35] P. Manadhata and M Jeannette. 2004. Wing. Measuring a system’s attack surface.
Technical Report. Technical report, DTIC Document.

[36] Pratyusa K. Manadhata and Jeanette M. Wing. 2011. An Attack Surface Metric.
In IEEE Transactions on Software Engineering, Vol. 37. IEEE, Piscataway, NJ, USA,
371–386. https://doi.org/10.1109/TSE.2010.60

[37] Pratyusa K Manadhata and Jeannette M Wing. 2011. A formal model for a
system’s attack surface. In Moving Target Defense. Springer, 1–28.

[38] Makai Mann, Ahmed Irfan, Florian Lonsing, Yahan Yang, Hongce Zhang, Kristo-
pher Brown, Aarti Gupta, and Clark Barrett. 2021. Pono: a flexible and extensible
SMT-based model checker. In International Conference on Computer Aided Verifi-

cation. Springer, 461–474.
[39] Carsten Maple, Matthew Bradbury, Anh Tuan Le, and Kevin Ghirardello. 2019.

A connected and autonomous vehicle reference architecture for attack surface
analysis. Applied Sciences 9, 23 (2019), 5101.

102

https://bishopfox.com/platform/attack-surface-management
https://bishopfox.com/platform/attack-surface-management
https://doi.org/10.1145/1067629.806538
https://doi.org/10.1109/DSN-W54100.2022.00014
https://doi.org/10.1109/DSN-W54100.2022.00014
https://doi.org/10.1109/TSE.2010.60

NSPW ’22, October 24–27, 2022, North Conway, NH, USA Clifford et al.

[40] Ben Nassi, Dudi Nassi, Raz Ben-Netanel, Yisroel Mirsky, Oleg Drokin, and Yuval
Elovici. 2020. Phantom of the adas: Phantom attacks on driver-assistance systems.
Cryptology ePrint Archive (2020).

[41] Department of Homeland Security. 2022. Secure Cyberspace and Critical Infras-
tructure. https://www.dhs.gov/secure-cyberspace-and-critical-infrastructure.
[Online; accessed 12-December-2022].

[42] Penetra. 2022. Penetra Automated Security Validation Platform. https://penetra.
io

[43] Peter JG Ramadge and W Murray Wonham. 1989. The control of discrete event
systems. Proc. IEEE 77, 1 (1989), 81–98.

[44] Bruce Schneier. 1999. Attack trees. Dr. Dobb’s journal 24, 12 (1999), 21–29.
[45] Shawn Shan, Arjun Nitin Bhagoji, Haitao Zheng, and Ben Y Zhao. 2022. Poison

forensics: Traceback of data poisoning attacks in neural networks. In 31st USENIX

Security Symposium (USENIX Security 22). 3575–3592.
[46] Oleg Sheyner, Joshua Haines, Somesh Jha, Richard Lippmann, and Jeannette

Wing. 2002. Automated Generation and Analysis of Attack Graphs. Proceedings
of the 2002 IEEE Computer Society Symposium on Research in Security and Privacy,
273– 284. https://doi.org/10.1109/SECPRI.2002.1004377

[47] Abe Singer and Matt Bishop. 2020. Trust-Based Security; Or, Trust Considered
Harmful. In Proceedings of the 2020 New Security Paradigms Workshop. ACM, New

York, NY, USA, 76–89. https://doi.org/10.1145/3442167.3442179
[48] Jacob Steinhardt, Pang Wei W Koh, and Percy S Liang. 2017. Certified defenses

for data poisoning attacks. Advances in neural information processing systems 30
(2017).

[49] Blake E Strom, Andy Applebaum, Doug P Miller, Kathryn C Nickels, Adam G
Pennington, and Cody B Thomas. [n.d.]. Mitre att&ck: Design and philosophy.

[50] Steven J. Templeton and Karl Levitt. 2000. A Requires/Provides Model for Com-
puter Attacks. In Proceedings of the 2000 New Security Paradigms Workshop. ACM,
New York, NY, USA, 31–38.

[51] Christopher Theisen, Nuthan Munaiah, Mahran Al-Zyoud, Jeffrey C Carver,
Andrew Meneely, and Laurie Williams. 2018. Attack surface definitions: A
systematic literature review. Information and Software Technology 104 (2018),
94–103.

[52] Kuan-Chieh Wang, Yan Fu, Ke Li, Ashish Khisti, Richard Zemel, and Alireza
Makhzani. 2021. Variational Model Inversion Attacks. Advances in Neural

Information Processing Systems 34 (2021), 9706–9719.
[53] John H Wensley, Leslie Lamport, Jack Goldberg, Milton William Green, Karl N

Levitt, PeterMichaelMilliar-Smith, Robert E Shostak, andCharles BurrWeinstock.
1978. Sift: Design and analysis of a fault-tolerant computer for aircraft control.
Proc. IEEE 66, 10 (Oct. 1978), 1240–1255. https://doi.org/10.1109/PROC.1978.11114

103

https://www.dhs.gov/secure-cyberspace-and-critical-infrastructure
https://penetra.io
https://penetra.io
https://doi.org/10.1109/SECPRI.2002.1004377
https://doi.org/10.1145/3442167.3442179
https://doi.org/10.1109/PROC.1978.11114

	Abstract
	1 Introduction
	1.1 Background

	2 Related Work
	2.1 Attack Trees and Attack/Defense Trees
	2.2 Fault Tree Analysis
	2.3 Process Analysis
	2.4 Capability Paths
	2.5 Attack Graphs
	2.6 Graph Scalability and Performance
	2.7 Attack Surfaces
	2.8 CAV Attack Surfaces
	2.9 Relationships Between Entities and Properties
	2.10 Path Discovery

	3 The Surfaces
	3.1 Attack Surfaces
	3.2 Defense Surfaces
	3.3 Policy Surfaces
	3.4 Combining the Surfaces

	4 Strategies for Attack and Defense
	4.1 Information Asymmetry in Policy Surfaces
	4.2 Attacker Strategies
	4.3 Defender Strategies

	5 Discussion and Future Work
	5.1 System Design and Operation
	5.2 Defending Systems
	5.3 Analysis

	6 Conclusion
	References

