
Transparency, Compliance, And Contestability When Code Is(n’t)
Law

Alexander Hicks
alexander.hicks@ucl.ac.uk
University College London

ABSTRACT
Both technical security mechanisms and legal processes serve as
mechanisms to deal with misbehaviour according to a set of norms.
While they share general similarities, there are also clear differences
in how they are defined, act, and the effect they have on subjects.
This paper considers the similarities and differences between both
types of mechanisms as ways of dealing with misbehaviour, and
where they interact with each other.

Taking into consideration the idea of code as law, we discuss
accountability mechanisms for code, and how they must relate to
both security principles and legal principles. In particular, we iden-
tify the ability to contest norms enforced by code as an important
part of accountability in this context. Based on this analysis, we
make the case for transparency enhancing technologies as security
mechanisms that can support legal processes, in contrast to other
types of accountability mechanisms for code. We illustrate this
through two examples based on recent court cases that involved
Post Office in the United Kingdom and Uber in the Netherlands,
and discuss some practical considerations.
ACM Reference Format:
AlexanderHicks. 2022. Transparency, Compliance, AndContestabilityWhen
Code Is(n’t) Law. In New Security Paradigms Workshop (NSPW ’22), October
24–27, 2022, North Conway, NH, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3584318.3584854

1 INTRODUCTION
Computer systems now have a broad, and increasing, role in peo-
ple’s lives, evenwhen they do not interact with or have any privilege
over these systems. The code that makes up these systems defines
what these systems do and, therefore, the norms that they apply
when functioning. The impacts of applying these norms can be neg-
ative and unfair, because they result from systems that are flawed
e.g., unreliable or discriminatory, or that, by optimising certain per-
formance metrics at the cost of fairness, welfare, and other values,
produce harmful externalities.

The harms of such systems are reserved for those that are subject
to the system, andmay not affect the entities that design and operate
these systems – they may even benefit in some cases. These entities
concern themselves with enterprise risks (liabilities) rather than
societal risks (externalities), leaving the public which has little

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
NSPW ’22, October 24–27, 2022, North Conway, NH, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9866-4/22/10. . . $15.00
https://doi.org/10.1145/3584318.3584854

recourse to mitigate these harms to deal with them. Moreover,
system faults that cause harm can happen silently in the sense that
it is not always clear to someone with no control over the system
that a fault has occurred (even if the victim might suspect that it is
the case). This makes dealing with this source of harms difficult.

Security, which deals with ensuring that systems function as
intended, should prevent many of these harms, but because of
the internal focus on enterprise risks, it can fail to prevent issues
for the public. The law and the legal system are the recourse for
individuals who deem they have been harmed, allowing victims of
harm to be compensated, and misbehaviour that results in harms
to be punished and disincentivised.

When dealing with harms that result from the application of
code, both of these fields should come into play. Law should ensure
that victims of code-enabled harm should be able to contest the
systems that cause these harms. Security should ensure that people
should not fall victim to flawed systems, and provide evidence that
a system is (un)reliable.

In practice, however, this currently does not work. There are
widespread issues with people suffering from flawed systems that
have been applied to determine, among other applications, entry to
buildings via facial recognition, jail sentences, and so on. Systems
evolve quickly and the law (and security although it moves quicker
than the law) has not kept up with the application of technology to
these aspects of our lives, allowing harm to occur without sanction,
and making it hard for victims of harm to contest the application
of code-enforced norms that have caused harm.

To deal with this issue, the idea of algorithmic accountability,
which studies how to design ways of making algorithms account-
able, has gained popularity. In line with this field of work, this
paper works towards addressing the issue of reconciling the use
of security mechanisms that can assert the behaviour of a system
with legal processes that can be used to contest the norms enforced
by a system.

We begin with the idea of norms, misbehaviour, how legal pro-
cesses and security mechanisms work as two ways of dealing with
misbehaviour, and the interaction between these two approaches.
Looking at this through the lens of code as law and digisprudence,
we argue both the need for secure accountability mechanisms and
how they must be designed to make them useful as tools to con-
test code enforced norms. This allows us to compare different ap-
proaches to accountability, and make the case for transparency
enhancing technologies against less transparent forms of audits
based on assurances of compliance with norms. We illustrate this
through two examples based on recent court cases that involved
Post Office in the United Kingdom and Uber in the Netherlands. We
also discuss some practical considerations that relate to electronic
evidence, balancing transparency and privacy, and where trans-
parency should be implemented with respect to the system it acts

130

https://doi.org/10.1145/3584318.3584854
https://doi.org/10.1145/3584318.3584854
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3584318.3584854&domain=pdf&date_stamp=2023-06-26

NSPW ’22, October 24–27, 2022, North Conway, NH, USA Alexander Hicks

on, as well as open problems relating to requiring, implementing,
and interpreting transparency, and undoing harm.

2 PREVENTING MISBEHAVIOUR THROUGH
LEGAL PROCESSES AND SECURITY
MECHANISMS

2.1 Norms and misbehaviour
Misbehaviour is the action of deviating from a norm. Following
Hildebrandt’s discussion of legal and technological normativity [45],
we think of norms as regulative (mandating, permitting, or disal-
lowing some pre-existing possible action) or constitutive (defining
a possible action). The difference between both can be thought of
in terms of how misbehaviour can occur in each case.

In the case of regulative norms, misbehaviour can occur by devi-
ating from the regulative norm at hand by performing a disallowed
action, which does not prevent the action from being performed but
does entail possible punishment. For example, a regulative norm
may stipulate that car should not be driven over a specified speed
limit. This does not prevent driving a car at a higher speed (this is
the driver’s choice to make) but can lead to penalties enacted by
the relevant authority if the speed limit is exceeded.

In the case of a constitutive norm, deviating entails not perform-
ing an action defined by the norm and, therefore, the expected
result of adhering to the constitutive norm at hand does not occur,
resulting in a form of failure for the user and the state of the system
remaining unchanged. For example, a constitutive norm may be
the rule that a password must be entered to login into an account.
If no password, or the wrong password, is entered, then it is simply
not possible to login into the account - the user has no choice but
to enter the correct password or they will fail to login and the state
of the system will not change as the user’s status will not change if
they stay logged out.

There is of course the question of who defines what the norms
are, and thus misbehaviour. For computer systems, the system’s
code often defines constitutive norms as it creates actions related to
the system that did not exist before the system. (Different systems
may of course share similar mechanisms and even re-use code e.g.,
a login mechanism, but logging into one system is not the same
action as logging into another system.) Thus, whoever designs and
implements (and in the case of a data driven system, trains) the
system has significant power to determine the norms that are put
in place by the system.

The code itself is also the result of the social norms and prac-
tices of those who write it. This results in an expected behaviour
model (explicitly specified or not) that the user should follow, with
anything that deviates in a relevant way from this expected be-
haviour being thought of as misbehaviour. For example, in the US,
the flawed design and training of an algorithm that produces risk
assessments used to help determine whether an imprisoned person
should be released resulted in black defendants being incorrectly
labelled as higher risk compared to white defendants who were
incorrectly labelled as lower risk [6]. This determined that being
black constituted a deviation from the expected defendant model
and was punished with harsher sentences – a reflection of a system
that already disproportionately imprisons black Americans [66].

As we have seen, norms that are put in place by a system, as well
as those that form the context in which the system was created and
is operated, influence how that system functions and the experience
of its users. They also influence the way the system is designed to
respond in cases where it determines that users have deviated or
misbehaved in some way. Our interest is in the design of mecha-
nisms for the mitigation of harms that could result from the use of
a system. This too will need to be informed by an understanding
of how norms are put in place in technology and how they can be
challenged (and changed).

2.2 Law based disincentivisation and
punishment of misbehaviour

Law broadly defines the limits of acceptable behaviour and the con-
sequences of unacceptable behaviour in everyday life. Its purpose
is twofold. First, it disincentivises people from acting in a man-
ner that is defined as unacceptable by the law. Second, if people
nonetheless act in such a manner, the law makes it possible to pun-
ish behaviour defined as unacceptable in law via legal processes
that are themselves defined in law. The punishment can be financial
e.g., to compensate a victim of harm as a result of a civil litigation, or
time and rights-based e.g., a prison sentence as a result of a criminal
prosecution. These processes rely on the existence and availability
of admissible evidence that shows beyond a certainty threshold
that the person to be punished did in fact act unacceptably.

Processes are more fundamental to the law than specific laws
are themselves. (Of course, processes are usually defined in the
law itself, but we distinguish here between laws that are applied
to determine the resolution of the question that results in a legal
process from the laws determining how the legal process proceeds.)
Although both vary across jurisdictions and are mutable, new laws
that determine acceptable behaviour are introduced and changed
muchmore frequently than the processes that are used to adjudicate
e.g., trials. Moreover, the regular changes in laws show that they can
be contested, as do the interpretation of the laws themselves, which
is determined by courts and may be the subject of legal processes
themselves.

The state institutions that legislate, enforce, and adjudicate laws
are typically well defined, although they vary across states. It is
also possible for other organisations, such as private businesses, to
act as rule makers and enforcers over the jurisdiction of a system
they operate, for example through terms of service agreements,
although these may, in turn, be subject to state enacted regulations
and the states legal system that would handle any dispute.

2.3 Security against threats and a posteriori
security

Security, or more precisely information security in our context,
works by defining mechanisms based on a defined threat model.
There is no notion of absolute security, only security against a
given threat model that relies on specified assumptions about the
capabilities of an adversary and the difficulty (in a computational
sense) or cost (in an economic sense) of performing certain tasks.

Traditionally, security mechanisms are constitutive and impose
behaviour that honestly follows a protocol, implying that an adver-
sary cannot possibly misbehave and break the security guarantees

131

Transparency, Compliance, And Contestability When Code Is(n’t) Law NSPW ’22, October 24–27, 2022, North Conway, NH, USA

provided by the security mechanism (otherwise the mechanism
would not be secure by definition). For example, a provably secure
encryption scheme that is well implemented cannot be broken by
an adversary with more than a negligible probability (in the for-
mal mathematical sense of the term). Thus, security mechanisms
are very different from how regulative legal mechanisms function.
Misbehaviour cannot happen in principle and, therefore, there is
no kind of accountability process or defined punishment for the
adversary.

Not all misbehaviour by individuals or algorithmic systems can
be stopped a priori, however, which has motivated work on security
mechanisms designed instead to detect misbehaviour and produce
evidence of that misbehaviour [81]. Moreover, the reliability of pre-
ventative security mechanisms must also be empirically examined
on occasion. In the context of this paper, this type of a posteriori
security mechanisms is what we focus on.

An example of this being successfully deployed in practice is
Certificate Transparency [57]. This is a now widely adopted [75]
system that provides tamper-evident transparency logs that record
the issuance of SSL certificates for websites by certificate authori-
ties. Certificates are either logged, making them easy to inspect, or
not logged in which case a browser client that encounters such a
certificate can report it. This allows misbehaving certificate author-
ities who (on purpose or due to compromise [78]) emit problematic
SSL certificates to be detected, disincentivising such misbehaviour
or, conversely, incentivising security on the part of certificate au-
thorities.

The consequences of misbehaviour that is easily detected can
be severe if sanctions are imposed. A certificate authority that is
deemed to have misbehaved by Google, Mozilla, Microsoft, and
other browser vendors may be blacklisted by their browsers, mit-
igating the harm done to users, and practically ensuring that the
certificate authority quickly goes out of business. For example, Dig-
iNotar went bankrupt shortly after being compromised and having
its certificates deemed untrustworthy [86].

Security mechanisms like Certificate Transparency are defined
as technical mechanisms that record evidence of misbehaviour and,
therefore, function more like regulative mechanisms, there is no
built-in notion of accountability process or punishment. That is
left to whoever relies on these mechanisms, such as Google (who
dominates the browser space [83]) and other browser vendors.

Thus, unlike law, it is the technical mechanism that is funda-
mental here, rather than the process of dealing with misbehaviour
once it is detected. More often than not, there is no well defined ac-
countability process and it is instead determined by power relations
around the system.

This implies a distinction between the security of the system (e.g.,
making sure that certificates are trustworthy) and the security of
the parties in the system. DigiNotar vanished following its security
incident, browser vendors protected their product and users from
future harms, but those affected by illegitimate certificates before
measures were taken were not protected or compensated in any
way due to this mechanism.

2.4 Economic considerations
Economics considerations play a role in both cases.

Harms caused by algorithmic systems often do not fall under
criminal law and, therefore, the consequences are primarily finan-
cial, which leads to economic considerations of expected costs. As
Wu puts it “laws impose costs upon regulated groups. Those groups
that seek to minimize the costs of law face a fundamental choice
between mechanisms of change and avoidance. Both mechanisms
have the effect of lowering the expected costs of law, but the sim-
ilarities end there. Mechanisms of change (principally lobbying)
decrease the sanction attached to certain conduct and tend to re-
quire collective action. Mechanisms of avoidance, on the other hand,
decrease the probability of detection and typically do not require
that groups act collectively, but depend on specific vulnerabilities in
the law.” [85]. For example, Google has multiple times paid fines to
the European Union that are greater than many of the contributions
to the European Union by member states [80].

Similarly, the security of systems often relates to the underlying
economics of securing the system [4]. Securing a system has a
cost that, economically speaking, is only worth expending if it
outweighs the expected loss due to the successful exploitation of
the system by an attacker or, more generally, a system fault. When
the costs of system fault can be passed on to the users who are
harmed, there is a perverse incentive not to expend resources on
making the system reliable.

The economic considerations related to both legal mechanisms
and security mechanisms directly relate to each other when we
consider cases where a system can harm users. If that is the case,
the legal risk for the system operator is that they may be legally
responsible for the harm done to users by faults in the system. The
European GDPR, for example, makes these regulatory risks real for
certain kinds of data protection failures. In these cases, the economic
considerations of expected costs due to the risk of regulatory non-
compliance are the economic considerations that can favour (or
not) the implementation of reliable security mechanisms.

2.5 The interaction between security
mechanisms and legal mechanisms

The overlap between legal processes and security mechanisms
happens when a security mechanism is intended to ensure compli-
ance with a legal norm. A common historical example of this taking
place is the repeated attempts to apply copyright and digital rights
management (DRM) to online content, which motivated both tech-
nical work (see, for example, Chapter 24 of Anderson’s book [5])
and legal work on the interaction between code and law [59].

This put the focus on two things. First, technology could change
the efficacy of a law and facilitate unwanted behaviour e.g., dis-
tributed online file sharingmade it much easier to ignore intellectual
property law. Second, technology could be used to deal with the
change in the efficacy of a law by deploying mechanisms that are
secure against the unwanted behaviour enabled by technology e.g.,
DRM mechanisms.

While security mechanisms and legal mechanisms are both ways
of enforcing norms and interact in many situations, they are not
interchangeable. Security mechanisms, in particular a posteriori
security mechanisms, are technical mechanisms that enable the col-
lection of evidence. Legal mechanisms are processes of determining

132

NSPW ’22, October 24–27, 2022, North Conway, NH, USA Alexander Hicks

the consequences that should be applied to parties in response to
their behaviour based on evidence related to that behaviour.

Thus, the legal analogy for a posteriori security mechanisms is
that of evidence collection while the accountability process is in
the hands of those who can (i) access that evidence (which may
be determined by technical access control mechanisms) and act
upon it (which requires agency and authority). Re-iterating on the
previous example of Certificate Transparency, while everyone can
monitor Certificate Transparency logs, it is effectively only browser
vendors who can act upon the information they contain and enact
some kind of accountability on the misbehaving certificate author-
ity. Although this may manifest itself through code e.g., blacklisting
certificates signed by the misbehaving certificate authority, the pro-
cess of accountability is a decision process within the organisations
themselves, not one determined independently by code.

The interaction between security mechanisms and legal mech-
anisms for accountability is, therefore, centred on how security
mechanisms can be leveraged to serve legal mechanisms.

This interaction is not necessarily frictionless, however, as there
can be a “clash between rules and principles exacerbates the differ-
ence in perspective between system designers, who favour formal
rules, and policy makers, who are more comfortable with the situa-
tional application of principles” [31]. Unlike Google with Certificate
Transparency, the legal system and many more organisations do
not have the capacity to both design and make use of technical
mechanisms that can support accountability processes. Without
such capacity, however, dealing with systems that can produce
harms is difficult.

3 ACCOUNTABILITY THROUGH THE LENS OF
CODE IS LAW AND DIGISPRUDENCE

3.1 Code is Law and Digisprudence
The notion of code as law in academic work goes back to Reiden-
berg [71] who noted that “technological capabilities and system
design choices impose rules on participants” and Lessig [58] who
framed the issue as “we therefore don’t see the threat to liberty that
this regulation presents”.

The use of code as a part of legal actions existed as transactions
tied to contracts were already being executed through code at that
time. Moreover, Szabo introduced the idea of smart contracts [76]
that made explicit the possibility of contractual transactions that
would execute entirely through “smart contracts” implemented
in code. Smart contracts are now the basis for cryptocurrencies
such as Ethereum that are essentially decentralized smart contract
platforms [84], and law scholars have studied their role as legitimate
legal contracts [70].

More generally, however, code1 that defines the operation of
technical systems forms, like law, a way to regulate the behaviour
of people subject to the system. Subjects of the system in this case
include not only people operating the software or are users of the
system, but also those on whom the system can have an effect.
For example, someone who is run over by an autonomous vehicle
operating software that did not determine the vehicle should stop

1Here, code should really refer to not only the actual code written by a software
developer but also its compile environment because a compiler can interpret code in a
way that undoes desired properties e.g., constant time execution [73].

once the person was identified will be affected by the software
operating the car without ever interacting with it or consenting
to be subject to it. This effect can also be mediated by a third
party, including in legal matters, as is the case when judges make
decisions based on the outputs of (generally biased) automated
decision making systems [6].

As Diver [19] suggests, code is not law per se, even if its automa-
tion means that it governs the behaviour of people in the system
in a more effective way, because it lacks law’s mechanisms of ex-
ante legitimation and ex-post remediation. Diver makes four claims
about code, its effect, and its design [19].

First, code can have regulative effects on behaviour that are
more pervasive and direct than law is capable of. Moreover, the
regulatory effects of code do not need to be compatible with law.

Second, norms that regulate citizens, including those that are
imposed by code, ought to be legitimate in that they ensure certain
formal qualities in their design.

Third, attention should be paid not only to the legitimacy of code
but also to the legitimacy of the design of code.

Fourth, legitimation of a code imposed rule must be done at
design time because there is little scope to re-interpret code after
the fact.

Dealing with this requires a theory of what constitutes legiti-
mate code that Diver names digisprudence, which is based on the
following affordances: transparency about the provenance, purpose,
and operation of code; oversight; choice; intelligibility supported
by delay; and contestability as the overarching concern [19].

3.2 Digisprudence and Accountability
Digisprudence as a framework is aligned with the desire for ac-
countability mechanisms that can provide the affordances we have
just listed, beginning with transparency about the provenance, pur-
pose, and operation of code. Oversight is required to make use of
transparency in order to apply accountability. Choice is related to
the norms enforced by the system, or simply the choice to be subject
or not to these norms, which requires transparency about these
norms and how they are applied in the first place. Intelligibility
and the affordance of delay are, in turn, required for oversight and
choice to take place.

Contestability is less integral to the discourse about account-
ability. For example, Wieringa’s recent systematic review of the
field does not mention contestability [82]. Rather, accountability is
often focused on whether or not a system has functioned correctly
instead of the legitimacy of the norms the system applies – “trust
but verify” as the saying goes (see Desai and Kroll for example [18]).
This suggests that a choice must be made between wanting ac-
countability for the performance of the system (which does not
require contestability) or accountability for the norms enforced by
the system (which requires contestability). We return to this in the
next section.

Because the accountability mechanisms we are concerned with
here also involve code and, indeed, accountability mechanisms are
designed to apply norms, we must also pay attention to how these
affordances are taken into account when designing and executing
accountability mechanisms.

133

Transparency, Compliance, And Contestability When Code Is(n’t) Law NSPW ’22, October 24–27, 2022, North Conway, NH, USA

Fundamentally, accountability mechanisms must reveal infor-
mation about the system and enable action to be taken based on
that information (which may include legal action or some other
process). Thus, they regulate access to information and the effects
of access to that information.

The provenance, purpose, and operation of an accountability
mechanism should make clear what the mechanism is intended to
provide accountability for, to whom, and how. The incentives of the
party that designs the accountability mechanism are important. An
accountability mechanism designed for a system by the system’s
operator that primarily works to prove the correct execution of the
system may, for example in zero-knowledge2 as suggested by Kroll
et al. [53], not be considered as legitimate by the public as another
mechanism for the same system that reveals more information
about not only the system it provides transparency for but also itself.
For example, a zero-knowledge proof, even if publicly verifiable,
that is verified by a judge does not allow for any explanation beyond
“computer says yes” or “computer says no”, which may not be a
satisfying explanation for the behaviour of complex systems.

More generally, the assumptions that underpin the design play
an important role because they can determine the legal effect of
the use of the accountability mechanism (e.g., it supports the pro-
duction of admissible evidence to be used in court) but also the
type of misbehaviour that it can provide accountability for based
on the threat model (e.g. whether the system operator and code
are considered adversarial to accountability) that determines its
security design.

Assumptions about the code that is subject to accountability are
also important. Interpreting code as law generally entails consid-
ering code as a form of strong legalism, but this assumes that the
code is reliable and secure, otherwise its effects can be bypassed
and it fails to demonstrate strong legalism. Accountability mecha-
nisms must take this into account by not assuming that the code is
necessarily reliable and secure, and by being designed to function
independently of the code so that it does not fail if the code fails.

There should be oversight over the use of accountability mecha-
nisms, to make sure that they are effective in providing account-
ability, and that the way they regulate access to information and
the effects of access to that information is aligned with its design
and purpose. Of course, intelligibility (or usability in the context of
designing a secure accountability mechanism) is necessary for this
to be possible.

Likewise, choice must be given to be subject to the norms ac-
countability mechanisms entail. Either for the system operator
whose system will be subject to an accountability mechanism, in
the case where there are no regulations requiring its use. (If there
are regulations, there is a notional choice to abide by them and
flexibility in how to implement them.) This point has been made
under the guise of protecting commercially sensitive aspects of
the system [18, 53]. This also applies to users of the system whose
information may be revealed as part of transparency.

2A zero knowledge proof is a cryptographic proof of a computational statement that
reveals nothing but the proof of the statement e.g., proving the correct execution of a
computation [36, 37].

Contestability also matters because accountability mechanisms
should enable consequences. The fact that, for example, trans-
parency by itself is not always effective is that it can fail to en-
able further actions [3, 26]. Thus, it should be possible to contest
accountability mechanisms so that the consequences (or lack of
consequences) can be considered legitimate. A practical example
of this is for mechanisms that serve as evidence producing mecha-
nisms that enable legal dispute, the admissibility of the evidence
produced can be contested according to the norms set out of law
that regulates evidence. We explore this in greater detail in the next
sections.

4 FROM ACCOUNTABILITY TO
CONTESTABILITY

In Section 2.5 we highlighted a takeaway from the interactions
between security mechanisms and the law, which is that technology
can (i) serve to bypass and (ii) enforce law. If we take code as acting
somewhat like law, this is still true.

Hacking, Privacy Enhancing Technologies (PETs), and Protective
Optimisation Technologies (POTs) [40, 54] show the existence of
this interaction in practice.

Hacking attempts to do something that is not allowed by the
norms of the system. This is often viewed through the lens of
criminal hacking, but it can also fall in grey legal areas [27] or be
done to contest norms that are reasonably considered illegitimate.
In general, this is a solution that does not scale well because it can
require technical skills that are not widespread among users, and
typically does not entail any modification of the hacked system that
would benefit users other than the hacker. An example where this is
useful, however, is when it prevents the system from functioning (if
this is not outweighed by some benefits the system might bring) or
leads to greater transparency about the system (like whistleblowing)
that can be leveraged to contest the system.

PETs constrain the capability of code that is designed to collect
private information. For example, end-to-end encryption, which
is widely deployed in messaging services, prevents the ability for
someone to execute code that would eavesdrop on a conversation,
which would otherwise be possible by default. After more than
twenty years since PETS became an active topic [35], privacy engi-
neering is now its own discipline [41, 42] backed by data protection
regulations (e.g., the GDPR), although systems still routinely com-
promise user privacy to satisfy a logic of information accumulation
and surveillance [87].

POTS attempt to overrule the effects of code driven optimisation,
allowing users outside of the system to intervene without requiring
cooperation from the system’s operator. For example, using Sybil
devices to generate fake traffic in an area can stop traffic routing
apps (e.g., Waze) from routing traffic to the area and mitigate the
negative externalities that would otherwise ensue in said area [54].
There is, however, no guarantee that such interventions cannot in
turn be optimised away by the target system once it is adjusted to
take the existence of a POT into account.

These tools are available to individuals and can be effective (even
if only to a limited extent) against code designed and deployed
by states, companies, and other large institutions, showing that
contesting code imposed norms is sometimes possible (although

134

NSPW ’22, October 24–27, 2022, North Conway, NH, USA Alexander Hicks

these tools are not necessarily accountability mechanisms). Code
not only enforces norms but can also be used to contest and bypass
norms, and the fact that these tools are user centric distinguishes
contestability from traditional accountability that is centred on the
system operator.

When code imposed norms are discussed and determined to be
harmful in some sense, through the use of secure accountability
mechanisms, they can be changed. Even in the case of code that is
intended to provide immutability by design, such as blockchains,
these guarantees are void if other interests are deemed more impor-
tant. Following the loss of 36, 000, 000 ether due to an insecure smart
contract, Ethereum users simply decided to fork Ethereum to revert
the situation [50], creating Ethereum Classic (which did not revert
the hack) and Ethereum (which did). Ethereum, the forked chain
that decided that “code is law” was not worth it at that moment,
has since been the dominant chain .

How did this happen? The realisation that the loss of funds was
(i) of great value, both financially, and in terms of the ability for
users to trust the system with their funds; (ii) reversible because it
was possible to introduce code that would transfer the stolen funds
back to their original owners, at the cost of forking the chain; (iii)
reverting the hack was supported by many powerful members of
the community e.g., Vitalik Buterin (Ethereum’s most important
public figure [72] and idea contributor [8]). Ethereumwas, therefore,
clearly accountable to its users who (at least those that had more
influence over the community) in turn were able to contest the
norm applied to their ability to recover funds. Moreover, because
of the transparency offered by Ethereum, it was possible for any
interested user to see exactly what had happened, what could be
done, and what was done in the end.

This example shows that transparency enabled accountability
can be used to contest the effects of code and change them. This
result is not necessarily generalisable, however, because it played
out in favour of those with disproportionate power over the system.
In many cases where we would like to introduce accountability
to the extent that norms can be contested, those with power over
the system (e.g., system operators) are not those that wish for the
norms to be contested. Rather, they are those who want to enforce
these norms in the first place. This brings back a common theme
with accountability, which is the importance of power relations
around systems.

This should inform how we design accountability mechanisms
because, as mentioned in the previous section, accountability mech-
anisms can regulate the effects of access to the information that the
mechanism makes available to some. This is because the format of
that information plays a role in how it can be used. If any aspect of
the system is to be contested, therefore, it must be determined how
this will happen.

Some systems, such as Ethereum in the example above, afford
more power to their user communities but this requires a level of
decentralised governance that is rare. For the vast majority of sys-
tems i.e., systems deployed by centralised private entities, there are
no governance mechanisms that could allow an individual subject
to the system to systematically influence it. Thus, in this paper,
we focus on contesting norms enforced by systems through legal
processes with the intent of contesting the formulation of these
norms. Although it is not ideal and can fail in loud (e.g., if there

is media attention) and quiet ways (e.g., for groups society does
not care about or actively discriminates against), the legal system
is often the best chance of contesting a system an individual will
have. As a result, the format of the information that accountability
mechanisms provide should be usable as part of public disclosures
of information about the system and admissible evidence to be used
in court to support an argument in a dispute about the system.

5 COMPLIANCE AND TRANSPARENCY BASED
AUDITING

5.1 Verification and compliance based auditing
In theory, systems could be formally verified and, therefore, treated
as reliable assuming that no design flaws were presented (a strong
assumption in itself). In practice, however, formal verification tools
are of limited use because many systems involve multiple different
protocols that interact with each other across different hardware,
software, and network conditions, making formal verification of an
entire system unrealistic.

Software is often continuously modified (as well as the oper-
ating system it runs on), in particular for new applications, can
involve millions of lines of code representing extremely complex
protocols, with a non-zero rate of bugs in the code and logic flaws
at the design level. Data is shared across networks operated by
different parties, in varying network conditions (affecting relia-
bility or synchrony assumptions required by distributed protocol
design models), which makes strict enforcement mechanisms im-
practical [81]. Even hardware, at a scale at which some large scale
applications operate, may fail to be reliable for basic tasks such as
encryption and decryption [46].

A weaker form of verification that is more realistic is based on
compliance based auditing that checks the correct execution of a
process in a system rather than the correctness of the system itself.
For example, automated tools maywork by checking for compliance
with certain norms e.g., certain specific clauses of the GDPR [7].
This is limited to cases where the desired norm is assumed, or simply
required by law, which may not always be the case. In practice,
many systems enforce norms that fall under a grey legal area, or like
many clauses of the GDPR, are not related to compliance, system
behaviour, or require interpretation, and cannot be encoded in logic
and automatically checked for compliance.

The automated aspects of these tools do not provide any agency
to any individual that would be harmed by the system, because
there is no need for them to provide access to any information to
unprivileged users of the system. For example, a system operator
may be able to show that the system has complied with the desired
norms when it has, but when it hasn’t a user may not be able to
generate any evidence of this. This solution, therefore, benefits
honest system operators but does not necessarily punish those that
operate flawed systems.

Because the focus is on compliance with a pre-established norm,
it does not leave much space to discuss the norm itself. A logical
compliance test that returns a boolean pass/fail value will not be
able to provide much information about edge cases or the cause of
passes or fails that may be necessary to evaluate the norms, and
the reason that the system satisfies a norm may be that the norm
itself is specified erroneously. Having a human in the loop also

135

Transparency, Compliance, And Contestability When Code Is(n’t) Law NSPW ’22, October 24–27, 2022, North Conway, NH, USA

brings its own challenges [39], and may risk the humans in the loop
legitimising a system because it passes compliance checks that do
not represent all the harms they may cause.

It is also important that the software be well designed to repre-
sent the norm it wishes to verify and secure enough to operate in
an adversarial environment. For example, Volkswagen developed
software that could detect when their cars were being tested so
that they could change their performance accordingly [47].

Hardware that supports trusted execution environments and
cryptographic tools that can be used to verify computations [68]
can be applied to verify the execution of the assurance software can
be applied in cases where the threat model requires it and to permit
public verifiability. For example, methods of providing the public
with cryptographic proofs that certain processes have followed
have been proposed, based on zero-knowledge proofs and secure
multiparty computation [33, 38]. Although the outputs of these
systems can be verified, their inputs cannot. Thus, this amounts
to assuming honesty on the part of those that control the inputs
and, therefore, that the processes that are meant to be audited have
been followed correctly. This is not an appropriate threat model
for many cases where it can be assumed that processes may not be
followed honestly and systems may be faulty. Moreover, because
zero-knowledge proofs obfuscate practically all information, their
use is very limited to investigate misbehaviour that would involve
nuanced details [74].

Finally, as Kim points out [51] transparency and audits are still
necessary even if assurances exist, because the fault in the system
that causes harm may not be in the code but in the design itself.

5.2 Transparency Enhancing Technologies
Transparency Enhancing Technologies, in contrast to compliance
based solutions, focus on making information about the system
available rather than evaluating the system. The evaluation is re-
garded as another process (which may or may not be automated)
that is therefore more transparent because the information it is
based on is more widely available.

In terms of technical mechanisms, this approach is therefore
based on producing logs of operations in the system (transparency
overlays) for which there are well defined cryptographic security
models [14] as well as implementations of reliable logs (e.g., the
Certificate Transparency logs). Kroll provides a survey of trace-
ability mechanisms [52]. Given a log of a program’s actions in the
system, it may also be possible to determine the program actions
that were actual causes of the program deviating from its specified
behaviour [16]. Likewise, for machine learning based systems, it can
be possible to quantify the degree of influence of inputs on outputs
of the system and release the information for transparency [17].

Transparency is based on recording and making information
available, therefore, it does not assume a norm for the system like
compliance based solutions. Thus, it makes it possible to explore
what that norm is via the information it makes available. Moreover,
it does so independently of the system’s norm that may have been
specified at its design stage. This is akin to adopting a stronger
threat model that makes fewer assumptions about the system it

audits and those that interact with the system. It can, therefore, iden-
tify discrepancies between norms that were desired at the design
stage and those that are actually enforced as the system operates.

Transparency can also be more public facing and democratic
than compliance based solutions. First, it is based on releasing
information rather than checking it. Second, a transparency system
(e.g., logs) can be maintained by various parties and relied on by
others. Assurance software, however, must be possessed by those
who execute it and are typically not publicly available. A broader
audience invites a broader critique.

An example comparison between a compliance based system
and a transparency focused system can be made in this case. We
have already mentioned the work of Frankle et al. [33], which uses
cryptographic tools (zero-knowledge proofs and multiparty compu-
tation) to verify that secret legal processes to authorise surveillance,
for example, have been followed. The output of this solution is a
cryptographic proof that processes have been well followed, and
statistics about these processes, but it does not reveal anything else.

Another paper by Hicks et al. [43] addresses a similar problem,
that of auditing requests for access to datamade by law enforcement.
This paper proposes a solution that logs (similarly to Certificate
Transparency) and releases the log of requests for access to data
with read access reserved to auditors (for all requests) and individ-
uals (to see requests for their data). This allows publicly verifiable
statistics to the extent that individuals can verify the inclusion of
requests for their data in the computation of the statistics, and
recompute the statistics themselves based on a privacy preserving
synthetic dataset.

The first system, proposed by Frankle et al. offers stronger confi-
dentiality guarantees but is only useful if processes are followed
correctly. If they are not, not much can be learned by design. The
second system offers confidentiality guarantees that are weaker
than those offered by zero-knowledge proofs because more infor-
mation is revealed by the release of a synthetic dataset of logged
requests. However, it can be used to identify errors (i.e., deviations
from the specified “honest” norm) and abuse (i.e., the existence of a
malicious norm) more effectively, and provide greater agency for
those affected. Thus, if things go wrong, this solution may be more
useful in contesting the system it looks at.

There are, therefore, trade-offs to consider, but if the ability
to contest norms is required then the argument is in favour of
transparency that can accurately produce evidence of the system
producing behaviour that does not respect the desired norm, or
correctly enforcing a harmful norm.

5.3 Examples of the usefulness of system
transparency in court cases

Post Office Limited and its unreliable accounting system. Post
Office Ltd is a state owned private company in the United Kingdom
(UK) that provides a variety of services to customers including
postal and financial services. Subpostmasters operate Post Office
branches on behalf of Post Office Limited and are responsible for any
losses at their branch. The accounting at each branch, however, was
handled by a centralised accounting system named Horizon, which
was developed in the nineties. As it happens, Horizon, like most
large IT systems, suffered from bugs that could lead to accounting

136

NSPW ’22, October 24–27, 2022, North Conway, NH, USA Alexander Hicks

errors. Over the years, Subpostmasters were accordingly requested
to cover the losses or be criminally prosecuted.3

One important factor in these prosecutions was the legal pre-
sumption in the UK that, unless there is evidence of the contrary,
the evidence produced by a computer was reliable. Post Office had
access to a Known Error Log but did not disclose its contents [63],
and because evidence was treated on a case by case basis, it was
never possible to establish the unreliability of Horizon for a single
defendant with limited resources. Thus, “a subpostmaster could be
held responsible for losses they incurred as a direct result of failing
to notice an error in a sophisticated computer system over which
they had no control” [63].

More recently, however, a Group Litigation that allows a collec-
tion of cases to be examined in parallel took place. This allowed
subpostmasters to contest Horizon as a group with pooled funds
and more combined evidence to contest Horizon more effectively.
As a result, it was possible to force more disclosures about Horizon
that made it possible to establish that it was unreliable, with forced
the government to put aside hundreds of millions of pounds to cover
the payouts in what is considered the biggest single miscarriages
of justice in British history [48].

It is instructive to consider this example, and how similar situa-
tions could be improved because it is a large system but one that is
nonetheless less complex than, for example, machine learning based
systems. It is also a typical kind of system that people will interact
with daily. Many other faulty traditional systems have caused legal
issues [10]. Reasoning about the responsibility of individual bug
occurrences in a system is difficult because if the probability of a
bug occurring is similar to the probability of a user committing
fraud then we are left with biases [44].

As the Group Litigation showed, an approach based on trans-
parency of the know error log and intelligible recordings of the
system’s operations could improve things by making accessible the
information that was actually useful in practice [44]. This would
make it possible for subpostmasters to (i) be aware of potential
bugs (transparency about the system), (ii) analyse the logs of their
system’s operation (transparency about their interaction with the
system), and (iii) have access to evidence that can be used to contest
any faults in the system that may occur. Moreover, the security of
such a system should be based on a threat model that assumes Post
Office to be adversarial to transparency as they actively hid the
contents of the known error log.

Relying on (zero-knowledge) proofs of correct execution would
not solve the problem entirely because they only apply if the pro-
gram executed entirely correctly, but this may not be the case if
either the bugs that occur and cause the proof to fail are not re-
sponsible for faults (e.g., misrecording transactions) occurring, or
if the program executes correctly but its logic is flawed. Moreover
proving the correct (perhaps distributed) execution of a large pro-
gram may simply be impractical. Focusing on only a small critical
component is not enough because if, for example, the accounting
executes correctly but the display is faulty, a subpostmaster might
try to fix the error manually, leading to discrepancies.

Uber’s fraudulent activity algorithm. In another case, the Amster-
dam District Court ruled that drivers from the UK were permitted
3See Nick Wallis’ book [79] on the subject for more details.

to contest the norms applied to them by Uber’s system (as well as
other similar companies e.g. Ola) when they were banned from the
service for fraudulent activity. Moreover, the court ordered to pro-
vide transparency about numerous aspects of its system, including
the data used by Uber’s algorithm to dismiss the drivers, which was
not previously accessible to the drivers [24].

The issue for drivers lies in the fact that they are subject to
the ratings they receive from customers and Uber’s system based
on these customer ratings and other factors, which determine the
service they receive from Uber and whether or not they are allowed
to drive for Uber. Customer ratings may be biased, however, based
on attributes such as the race of the driver, which then feeds into
Uber’s system determining that the driver should be banned if they
fall under a certain rating. Other surveillance systems used to assess
drivers are also in place such as facial recognition checks that may
fail and lead to a driver being kicked off the platform [20].

Compliance based audits would not achieve much in these sce-
narios. When it comes to biased customers, there is no way to assess
in advance whether customers will be more or less biased, or to
produce a facial recognition system that functions such that there is
a negligible probability of failure across all drivers. Inevitably, trans-
parency will be required and must be available for drivers to allow
them to contest such systems, without first having to go through
lengthy, expensive processes to access the relevant information
that is intentionally obfuscated.

While regulations, Article 22 of the GDPR that gives an indi-
vidual the right not to be subject to a decision based solely on
automated processing in this case, can enable an order to disclose
aspects of the system, mechanisms to execute this are lacking, and
it is not always possible for an individual to know that they are
subject to such a system. There are suggestions for ways to audit
the design [69] of AI systems as well as releasing information about
the models themselves [64] and the datasets that they are trained
on [34]. However, these are not designed with a threat model and,
therefore, assume a fairly honest system designer and operator,
whereas companies such as Uber have an incentive to obfuscate
how their system functions to avoid scrutiny, and argue this is
necessary for commercial confidentiality and customer privacy
purposes.

6 PRACTICAL CONSIDERATIONS
6.1 Electronic evidence
The book by Mason and Seng [62] discusses many issues with elec-
tronic evidence in the legal context, and makes clear that the topic
touches upon many aspects of security, not only the authentication
(typically handled through electronic signatures) and integrity of
the evidence itself (typically handled through cryptographic hash
functions), but also of the networks over which it is exchanged, and
how it is stored. It also makes clear that when treating software
as a witness, it must be taken into account that software can be
written to deceive, as in the Volkswagen emissions case [47].

More recently, the Post Office case used as an example above
has generated work discussing the presumption of reliability that
evidence generated by computers often enjoy, and the issues this
can cause [12, 55, 56, 61]. (Different jurisdictions adopt different
standards of course.) This presumption that electronic evidence is

137

Transparency, Compliance, And Contestability When Code Is(n’t) Law NSPW ’22, October 24–27, 2022, North Conway, NH, USA

reliable has also facilitated harm in cases where the party producing
the evidence not only knows that it is unreliable, but also that it is
essentially fabricated [28],

Related to this is also the necessity for expert witnesses to ex-
plain the evidence that is generated, so the explainability of the
evidence plays an important role because the expert witness must
be able to understand the evidence themselves and be able to ex-
plain it in a clear way to a judge or jury. Explainability has been
investigated for machine learning based systems, sometimes with
emphasis on explaining single decisions to individual users rather
than explaining a system as a whole, which may be required to
establish its reliability. The kind of explainability that is geared
towards engineers [11] of the system may be more useful in this
context, but may also be less accessible by design.

6.2 Balancing transparency and privacy
Whenever information that may be sensitive is made available,
privacy and confidentiality concerns emerge.

This includes concerns for the privacy of the individuals who
may be related to the information that is released. This should be
treated with care, using appropriate sanitisation mechanisms e.g.,
implementing data minimisation and using differentially private
data release mechanisms [22, 23], which are aligned with regula-
tory data protection requirements [15, 67]. Because different data
carries different privacy risks, and different levels of usefulness in
contesting the system, this is a problem that must be addressed on
a case by case basis that takes into account the trade-offs between
privacy, the consent of parties that relate to the information (or
other bases for releasing that information), and the information
that is necessary for transparency to be useful.

Often, a dispute may rely on both system level information (e.g.,
error rates) and individual information (e.g., specific system events).
System level information such as univariate statistics may leak less
sensitive information about individuals, while individual informa-
tion is naturally more sensitive but may need only be accessible to
the individual in question.

Commercial confidentiality can also be a concern. This motivated
the reliance on tools such as zero-knowledge proofs suggested by
Desai and Kroll [18] and Kroll et al. [53]. There are arguments that
support the idea of access to the source code of a system in the case
of a dispute about the system [10], and as we have discussed above,
relying on assurances rather than transparency may not enable
contestability. Naturally, in cases where commercial entities benefit
from information asymmetry, they are unlikely to want to provide
greater transparency without an incentive or obligation that would
provide trade-offs in favour of transparency. Thus, it may fall to
evolving regulations and technical standards that govern the design
and operation of systems to determine the right balance. As we
have seen in the Uber example above, regulations can already force
the disclosure of broad information about the system, even if they
did not require that information to be public beforehand.

6.3 A system in one place, transparency in
another

Systems are often designed and implemented in one place before
being deployed internationally. Disputes around the system, how-
ever, often take place where the harm caused by the system has
occurred, which may not be where the system has been designed.
Thus, transparency around the system, if it is to be useful in a
dispute, should reflect the local context of the dispute, rather than
the context in which the system was designed. The importance of
the audience of transparency has been discussed by Kemper and
Kolkman [49] and Felzmann et al. [32], highlighting the need for
transparency solutions that reflect the population it interacts with.

7 OPEN PROBLEMS
Requiring transparency. The question of how to require any kind

of transparency remains open.
There may be requirements to implement some form of trans-

parency to comply with, for example, ETSI requirements for pro-
viding a telecommunication service [25], a legal requirement to
provide designated auditors with assistance (including IT infrastruc-
ture) [2], or the tight of access by the data subject to data held about
them by a controller specified in the GDPR [1]. With the noticeable
exception of the GDPR (which is very widespread), however, such
transparency requirements are not public facing. Moreover, they
are not as broad as what this paper would argue for.

Laws and regulations can also work against transparency. In-
tellectual property (IP) law, in particular trade secrets that allow
information about a system to remain confidential clearly conflicts
with requiring transparency and, as we have argued, an approach
based on zero-knowledge proofs may not be practical or suitable
to resolve this tension.

The argument could be made that any system operator that
operates a system that could cause harm, and especially systems
that have been shown to have faults and that have caused harm
(or are likely to have done so), should not be able to rely on IP
law for obfuscation – vendors of electronic voting machines that
have repeatedly been shown to have security or reliability issues
exemplify this. Of course, many would argue against this because,
as laid out in the introduction, operators of faulty systems would
rather treat system faults as something that can be externalised to
the public rather than a liability.

Thus, there is a debate involving the political and economic
aspects of this question that must be resolved, but transparency
must be considered more than it has been so far given the evidence
that systems based on transparency e.g., Certificate Transparency,
do work.

Implementing transparency. Like security and privacy, building
transparency separately on top of an existing system (i.e., as an
overlay) may not be as productive as embedding it into the system
itself by design. However, this naturally brings into question how
this would change the workflow of system operators, many of
which have yet to successfully embed security or privacy into their
workflow and who might have a natural reluctance to implement
transparency, and how this could be achieved with existing systems.

138

NSPW ’22, October 24–27, 2022, North Conway, NH, USA Alexander Hicks

Aside from the open problem of requiring transparency, trans-
parency engineering will have to be developed like security en-
gineering [5] and privacy engineering [41, 42] before it and, like
them, drawing on requirements engineering and other fields with
extensive bodies of work to learn from, as well as developing an
understanding of the contexts in which it is deployed.

Interpreting transparency. If transparency is to be useful, it should
be possible to find the evidence required to contest within the
information it makes available. In court, evidence that is hard to
interpret may mean relying on an expert witness to explain the
evidence and someone to assert its reliability (e.g., a representative
of the system operator or an expert witness depending on the legal
system), but the focus in this paper is also in facilitating access to
evidence so that it is possible to get to the courtroom in the first
place. It is still possible to rely on an expert before going to court,
but they can also be difficult (and possibly expensive) to get in touch
with without having already started the process of a legal dispute,
so information made available through transparency should ideally
be interpretable (at least to some extent) to anyone.

Starting with code, which is inscrutable to most people, it is
unlikely that anyone who is not experienced with reading code
(and the code base of the relevant system) in the first place will be
unable to correctly assess how the code is intended to function and
how it can fail simply by starring at it.

The Heartbleed Bug discovered in the OpenSSL cryptographic
library makes this clear: years of using and occasionally inspecting
code does not guarantee the discovery of one of the most impactful
vulnerabilities in the history of a library on which the modern
internet depends [21], even if the open source nature of the code
did ultimately result in the vulnerability being identified.

Searching for open source code itself is also a problem given the
dependencies between different code bases, even if software bill
of materials (a list of software ingredients introduced to manage
software supply chain risks) may help to outline these dependencies.
Github can be thought of as providing a central repository of open
source code that can be browsed and searched, but code is not
indexed in the manner that other topics with centuries of library
science devoted to their indexing are (e.g., the law, despite it’s
growing volume), and as a result searches do not necessarily provide
useful results given all the forks of a particular code repository (and
its dependencies) that may exist, for example.

Going even further, code cannot be interpreted by a human in the
same sense that a legal rule is interpreted (by a judge for example)
and this is made more complicated by the role of a compiler in inter-
preting the code (and compiled code being even more inscrutable)
and the presence of comments added by software developers to the
code, which are not interpreted as code by the compiler, yet indicate
what the code should do and how it is implemented, as well as the
runtime environment.

Moving on to outputs, interpreting these can differ based on the
existence of some ground truth.

In some cases, there may exist a ground truth that makes it clear
the wrong output occurred. For example, A-level students in the
UK were automatically assigned grades in place of having an exam
because of the Covid pandemic in 2020 and the restrictions that were
in place. The assigned grades were computed such that the grade

distribution should match that of previous years, meaning that
students were graded based on the performances of past students
rather than their own and, as a result, some were penalised by
a lower than expected grade if they had outperformed the norm.
Because teacher predicted grades existed, however, it was obvious
in some cases that students might be harmed by their assigned
grades (e.g., if it meant they would not meet the conditions of their
university offer) and that they could realistically have obtained
a higher grade, which lead to protests and a government u-turn
over the use of assigned grades [9]. (The system was not re-used so
nothing was done to fix it.) More generally, in cases where code is
used purely to scale decision making (e.g., applying a fixed decision
tree) it may be feasible for a single or a few instances to go through
the rules by hand and determine what the correct output should
have been and interpret the system’s output in that context.

In other cases, a ground truth may be harder to determine. if the
code relies on large quantities of data and/or produces unexplain-
able outputs (as most complex neural networks do for instance),
then the code’s execution cannot meaningfully be compared to
a manually computed output. In a legal setting, the presumption
of innocence may also mean that there is no meaningful ground
truth without going through the lengthy legal process that legal
technology is deployed to replace. Interpreting an output may then
be a very difficult task.

Undoing harm. The key point that this paper argues for is the
idea that it must be possible to contest the outputs of a system and
the effects they may have, particularly when they cause harm. Part
of this should be to determine how harm can be undone.

When code causes harm, the harm is not in the code as it is
written and executed, which changes the state of the system but
not the state of the individual’s world, but in the effect that the
output of executing the code has, which can change the state of the
individual’s world. It makes sense, therefore, to focus on outputs
as well as the code that produces these outputs.

Undoing harm could, therefore, mean two things. It could mean
changing the code that produces harm, undoing the source of harm
and preventing the same harm from occurring again. More impor-
tantly, for a victim of harm, it could mean reversing the state of the
system to what it was before the harmful output and reversing the
effect of that output on their life.

For example, a system that determines whether or not someone
should be granted bail could include a function that allows an output
to be erased from the system. In the physical world such an output
could be ignored if it is recognised as a fault because it only takes
effect through other mechanisms e.g., a judge refusing to grant
bail and law enforcement enforcing the decision. Of course, there
could be a cyber-physical system that also includes an automated
judge and physical restraints, in which case the code that produces
the output would have a physical effect, reinforcing the need to
keep human decision making in the loop so that decisions to ignore
harmful outputs can be made.

More generally, an error is unlikely to be recognised and ignored.
Automated systems are unlikely to be used if they involve super-
vision that is roughly equivalent to the task they are supposed to
automate so they are more likely to operate in a mostly unsuper-
vised way. As in civil litigation cases, compensation to the harmed

139

Transparency, Compliance, And Contestability When Code Is(n’t) Law NSPW ’22, October 24–27, 2022, North Conway, NH, USA

individual could be based on the output that determines the harm
done to them. Because harm is often not static in time (e.g., the
harm that comes from a refused bail application increases with each
day), the ability to identify and resolve faults, and the length of time
this takes, should impact compensation. Punishment (as in criminal
prosecutions) to the system operator could also be based on how
the fault came to be, e.g., accidental, negligent, or intentionally
harmful operation of a system that could cause harm, and how it is
resolved.

8 RELATEDWORK
There is a vast amount of work concerned with accountability,
much of which is covered in the systematization of the topic by
Wieringa [82] that is based on Boven’s framework for account-
ability [13]. Transparency itself is also the focus of work across
many disciplines. The book by Taylor and Kelsey provides a use-
ful overview of applications of transparency in various contexts
across the world, how it can succeed and how it can have counter-
productive results if badly implemented and vulnerable to either
unverifiable information or an inability to act on information (i.e.,
missing contestability) [77].

Specifically related to this paper, there is work that focuses on
security models for accountability [29, 30, 30], interactions between
security mechanisms that can provide assurances and the legal
system have also been studied previously [18, 53], as well as the
production of evidence by systems [65].

Our work differs from this existing body of work by consider-
ing how accountability mechanisms, in particular transparency
enhancing technologies, can be used to contest norms enforced by
code when designed to support existing processes such as legal dis-
putes, rather than the predominant focus on obtaining assurances
of compliance with a norm.

More recent work does address contestability, such as the work
of Lyons et al. [60] who, like us, consider the ability to contest via
legal processes but focus on higher level design principles. Our
work is complementary to theirs, approaching contestability from
the perspective of digisprudence and discussing specific technical
security mechanisms.

9 CONCLUSION
In this paper, we have argued for the necessity of employing secure
accountability mechanisms to ensure the legitimacy of computa-
tional systems whose code enforces norms. In particular, we have
argued the need for accountability mechanisms, based on trans-
parency rather than compliance verification, to enable the ability
to contest the norms that code enforces when these may be illegiti-
mate.

This entails a culture shift to a user centric notion aimed at
giving users the agency to contest the systems they are subject to
through channels such as legal processes, rather than a technical
system centric notion of accountable systems that do not entail any
change in systems if they are flawed. Contestability is a human
process with a human output, which should address any harm done
to a person, regardless of any changes being made to the system
that produced harm in the first place (even if such changes should
also take place).

Because the best mechanisms to contest norms are those that
can effectively pressure system designers or operators to change
their system even if they are reluctant to do so, such as the legal sys-
tem, we have analysed technical accountability mechanisms based
on their ability to support the action of contesting computational
systems via legal processes. From this perspective, transparency en-
hancing technologies i.e., accountability mechanisms that include
transparent logs of a system’s operation, emerge as mechanisms
that are more supportive of contestability than other accountability
mechanisms based on providing assurances of compliance with
given norms.

While work on designing technical systems has previously pre-
dominantly focused on building systems that match or comply with
norms, there is scope to build upon existing tools to create better
transparency enhancing technologies that fill all the requirements
that must for met to effectively enable accountability and, by ex-
tension, the ability to contest and change norms. Thus, this has
implications for developers who wish to produce a change in exist-
ing systems and developers of new systems that may be designed
with a model of decentralised governance that affords broader scope
for changing the norms enacted by the system.

While there is justified scepticism of technical solutions to gover-
nance or regulatory issues, work in the field of law and policy that
is concerned with the impact of computer systems should encour-
age and interact with the development of technical tools that can
support their goals and empower the users that their work aims to
help. Innovative new systems are not the only type of system that
can cause harms, but there is necessarily a lag between technical
innovation, the appearance of new systems, and of any effective
governance or regulatory frameworks for these systems, which
can leave users more exposed. Until such frameworks are put in
place, it is all the more important for users to be able to contest
the impact new systems can have, and this can also help guide the
development of these frameworks by exposing system flaws or gaps
in existing regulatory and governance approaches.

Finally, rather than simply allowing more legal cases to go for-
ward, transparency and contestability can make security and relia-
bility essential to system operators by making it harder for them to
externalise the costs of a faulty system.

ACKNOWLEDGMENTS
Thanks to anonymous reviewers, the paper’s shepherdsMatt Spencer
and Thomas Millar, and the attendants of NSPW 2022 for their
thoughtful comments and feedback. In particular, I am grateful for
Matt Spencer’s help with the discussion of norms in Section 2.1.

REFERENCES
[1] 2016. General Data Protection Regulation. https://eur-lex.europa.eu/eli/reg/2016/

679/oj
[2] 2016. Investigatory Powers Act.
[3] Mike Ananny and Kate Crawford. 2018. Seeing without knowing: Limitations

of the transparency ideal and its application to algorithmic accountability. new
media & society 20, 3 (2018), 973–989.

[4] Ross Anderson. 2001. Why information security is hard-an economic perspective.
In Seventeenth Annual Computer Security Applications Conference. IEEE, 358–365.

[5] Ross Anderson. 2020. Security engineering: a guide to building dependable dis-
tributed systems. John Wiley & Sons.

[6] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. 2016. Machine bias:
There’s software used across the country to predict future criminals. And it’s
biased against blacks. ProPublica 23 (2016), 77–91.

140

https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj

NSPW ’22, October 24–27, 2022, North Conway, NH, USA Alexander Hicks

[7] Emma Arfelt, David Basin, and Søren Debois. 2019. Monitoring the GDPR. In
European Symposium on Research in Computer Security. Springer, 681–699.

[8] Sarah Azouvi, Mary Maller, and Sarah Meiklejohn. 2018. Egalitarian society or
benevolent dictatorship: The state of cryptocurrency governance. In International
Conference on Financial Cryptography and Data Security. Springer, 127–143.

[9] BBC. 2020. A-levels and GCSEs: U-turn as teacher estimates to be used for exam re-
sults. Retrieved August 27, 2020 from https://www.bbc.co.uk/news/uk-53810655

[10] Steven M Bellovin, Matt Blaze, Susan Landau, and Brian Owsley. 2021. Seeking
the Source: Criminal Defendants’ Constitutional Right to Source Code. Ohio St.
Tech. LJ 17 (2021), 1.

[11] Umang Bhatt, Alice Xiang, Shubham Sharma, Adrian Weller, Ankur Taly, Yunhan
Jia, Joydeep Ghosh, Ruchir Puri, José MF Moura, and Peter Eckersley. 2020.
Explainable machine learning in deployment. In Proceedings of the 2020 Conference
on Fairness, Accountability, and Transparency. 648–657.

[12] Nicholas Bohm, James Christie, Peter Bernard Ladkin, Bev Littlewood, Paul
Marshall, Stephen Mason, Martin Newby, Steven Murdoch, Harold Thimbleby,
and Martyn Thomas. 2022. Briefing Note: The legal rule that computers are
presumed to be operating correctly–unforeseen and unjust consequences. Digital
Evidence and Electronic Signature Law Review 19 (2022), 123–127.

[13] Mark Bovens. 2007. Analysing and assessing accountability: A conceptual frame-
work 1. European law journal 13, 4 (2007), 447–468.

[14] Melissa Chase and Sarah Meiklejohn. 2016. Transparency overlays and appli-
cations. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 168–179.

[15] Aloni Cohen and Kobbi Nissim. 2020. Towards formalizing the GDPR’s notion
of singling out. Proceedings of the National Academy of Sciences 117, 15 (2020),
8344–8352.

[16] Anupam Datta, Deepak Garg, Dilsun Kaynar, Divya Sharma, and Arunesh Sinha.
2015. Program actions as actual causes: A building block for accountability. In
2015 IEEE 28th Computer Security Foundations Symposium. IEEE, 261–275.

[17] Anupam Datta, Shayak Sen, and Yair Zick. 2016. Algorithmic transparency via
quantitative input influence: Theory and experiments with learning systems. In
2016 IEEE symposium on security and privacy (SP). IEEE, 598–617.

[18] Deven R Desai and Joshua A Kroll. 2017. Trust but verify: A guide to algorithms
and the law. Harv. JL & Tech. 31 (2017), 1.

[19] Laurence Diver. 2021. Digisprudence: the design of legitimate code. Law, Innova-
tion and Technology (2021), 1–30.

[20] The App Drivers and Couriers Union. [n. d.]. Uber under pressure over facial recog-
nition checks for drivers; Call for suspension of checks. https://www.adcu.org.uk/
news-posts/uber-under-pressure-over-facial-recognition-checks-for-drivers

[21] Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro Beekman,
Mathias Payer, Nicolas Weaver, David Adrian, Vern Paxson, Michael Bailey, et al.
2014. The matter of heartbleed. In Proceedings of the 2014 conference on internet
measurement conference. 475–488.

[22] Cynthia Dwork. 2008. Differential privacy: A survey of results. In International
conference on theory and applications of models of computation. Springer, 1–19.

[23] Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of differ-
ential privacy. Found. Trends Theor. Comput. Sci. 9, 3-4 (2014), 211–407.

[24] Ekker. 2021. Dutch court rules on data transparency for Uber and Ola dri-
vers. https://ekker.legal/en/2021/03/13/dutch-court-rules-on-data-transparency-
for-uber-and-ola-drivers/

[25] ETSI. 2018. TS 103 307: Security Aspects for LI and RD Interfaces. Retrieved May
2, 2018 from https://www.etsi.org/deliver/etsi_ts/103300_103399/103307/01.03.
01_60/ts_103307v010301p.pdf V1.3.1.

[26] Amitai Etzioni. 2010. Is Transparency the Best Disinfectant? Journal of Political
Philosophy 18, 4 (2010), 389–404. https://doi.org/10.1111/j.1467-9760.2010.00366.x
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-9760.2010.00366.x

[27] Ivan Evtimov, David O’Hair, Earlence Fernandes, Ryan Calo, and Tadayoshi
Kobno. 2019. Is tricking a robot hacking? Berkeley Tech. LJ 34 (2019), 891.

[28] Todd Feathers. 2021. Police Are Telling ShotSpotter to Alter Evidence
From Gunshot-Detecting AI. Retrieved November 23, 2022 from
https://www.vice.com/en/article/qj8xbq/police-are-telling-shotspotter-
to-alter-evidence-from-gunshot-detecting-ai

[29] Joan Feigenbaum, James A Hendler, Aaron D Jaggard, Daniel J Weitzner, and Re-
becca NWright. 2011. Accountability and deterrence in online life. In Proceedings
of the 3rd International Web Science Conference. 1–7.

[30] Joan Feigenbaum, Aaron D Jaggard, and Rebecca N Wright. 2011. Towards a
formal model of accountability. In Proceedings of the 2011 New security paradigms
workshop. 45–56.

[31] Joan Feigenbaum and Daniel J Weitzner. 2018. On the incommensurability of
laws and technical mechanisms: Or, what cryptography can’t do. In Cambridge
International Workshop on Security Protocols. Springer, 266–279.

[32] Heike Felzmann, Eduard Fosch Villaronga, Christoph Lutz, and Aurelia Tamò-
Larrieux. 2019. Transparency you can trust: Transparency requirements for
artificial intelligence between legal norms and contextual concerns. Big Data &
Society 6, 1 (2019), 2053951719860542.

[33] Jonathan Frankle, Sunoo Park, Daniel Shaar, Shafi Goldwasser, and Daniel
Weitzner. 2018. Practical accountability of secret processes. In 27th {USENIX}

Security Symposium ({USENIX} Security 18). 657–674.
[34] Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan,

Hanna Wallach, Hal Daumé Iii, and Kate Crawford. 2021. Datasheets for datasets.
Commun. ACM 64, 12 (2021), 86–92.

[35] Ian Goldberg, David Wagner, and Eric Brewer. 1997. Privacy-enhancing technolo-
gies for the internet. In Proceedings IEEE COMPCON 97. Digest of Papers. IEEE,
103–109.

[36] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1986. How to prove all NP
statements in zero-knowledge and a methodology of cryptographic protocol
design. In Conference on the Theory and Application of Cryptographic Techniques.
Springer, 171–185.

[37] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. 1989. The knowledge
complexity of interactive proof systems. SIAM Journal on computing 18, 1 (1989),
186–208.

[38] Shafi Goldwasser and Sunoo Park. 2017. Public accountability vs. secret laws: can
they coexist? A cryptographic proposal. In Proceedings of the 2017 on Workshop
on Privacy in the Electronic Society. 99–110.

[39] Ben Green. 2021. The Flaws of Policies Requiring Human Oversight of Govern-
ment Algorithms. arXiv:2109.05067 [cs.HC]

[40] Seda Gürses, Rebekah Overdorf, and Ero Balsa. 2018. Stirring the POTs: protective
optimization technologies. In Being profiled. Amsterdam University Press, 24–29.

[41] Seda Gürses, Carmela Troncoso, and Claudia Diaz. 2011. Engineering privacy by
design. Computers, Privacy & Data Protection 14, 3 (2011), 25.

[42] Seda Gürses, Carmela Troncoso, and Claudia Diaz. 2015. Engineering privacy by
design reloaded. In Amsterdam Privacy Conference, Vol. 21.

[43] Alexander Hicks, Vasilios Mavroudis, Mustafa Al-Bassam, Sarah Meiklejohn, and
Steven J Murdoch. 2018. VAMS: Verifiable Auditing of Access to Confidential
Data. arXiv preprint arXiv:1805.04772 (2018).

[44] Alexander Hicks and Steven J Murdoch. 2019. Transparency Enhancing Technolo-
gies to Make Security Protocols Work for Humans. In Cambridge International
Workshop on Security Protocols. Springer, 3–10.

[45] Mireille Hildebrandt. 2008. Legal and technological normativity: more (and less)
than twin sisters. Techné: Research in Philosophy and Technology 12, 3 (2008),
169–183.

[46] Peter H Hochschild, Paul Turner, Jeffrey C Mogul, Rama Govindaraju,
Parthasarathy Ranganathan, David E Culler, and Amin Vahdat. 2021. Cores
that don’t count. In Proceedings of the Workshop on Hot Topics in Operating Sys-
tems. 9–16.

[47] Russell Hotten. 2015. Volkswagen: The scandal explained. https://www.bbc.co.
uk/news/business-34324772

[48] Jasper Jolly. 2021. UK government sets aside up to £233m to cover Post Office
payouts. https://www.theguardian.com/business/2021/jul/25/uk-government-
sets-aside-up-to-233m-to-cover-post-office-payouts

[49] Jakko Kemper and Daan Kolkman. 2019. Transparent to whom? No algorithmic
accountability without a critical audience. Information, Communication & Society
22, 14 (2019), 2081–2096.

[50] Lucianna Kiffer, Dave Levin, and Alan Mislove. 2017. Stick a fork in it: Analyzing
the Ethereum network partition. In Proceedings of the 16th ACMWorkshop on Hot
Topics in Networks. 94–100.

[51] Pauline T Kim. 2017. Auditing algorithms for discrimination. U. Pa. L. Rev. Online
166 (2017), 189.

[52] Joshua A Kroll. 2021. Outlining Traceability: A Principle for Operationalizing
Accountability in Computing Systems. In Proceedings of the 2021 ACM Conference
on Fairness, Accountability, and Transparency. 758–771.

[53] Joshua A Kroll, Joanna Huey, Solon Barocas, Edward W Felten, Joel R Reidenberg,
David G Robinson, and Harlan Yu. 2017. Accountable algorithms. University of
Pennsylvania Law Review 165 (2017), 633.

[54] Bogdan Kulynych, Rebekah Overdorf, Carmela Troncoso, and Seda Gürses. 2020.
POTs: protective optimization technologies. In Proceedings of the 2020 Conference
on Fairness, Accountability, and Transparency. 177–188.

[55] Peter Bernard Ladkin. 2020. Robustness of software. Digital Evidence & Elec.
Signature L. Rev. 17 (2020), 15.

[56] Peter Bernard Ladkin, Bev Littlewood, Harold Thimbleby, and Martyn Thomas.
2020. The Law Commission presumption concerning the dependability of com-
puter evidence. Digital Evidence & Elec. Signature L. Rev. 17 (2020), 1.

[57] Ben Laurie. 2014. Certificate transparency. Commun. ACM 57, 10 (2014), 40–46.
[58] Lawrence Lessig. 2000. Code is law. Harvard magazine 1, 2000 (2000).
[59] Lawrence Lessig. 2003. Law regulating code regulating law. Loy. U. Chi. LJ 35

(2003), 1.
[60] Henrietta Lyons, Eduardo Velloso, and Tim Miller. 2021. Conceptualising Con-

testability: Perspectives on Contesting Algorithmic Decisions. Proceedings of the
ACM on Human-Computer Interaction 5, CSCW1 (2021), 1–25.

[61] Paul Marshall, James Christie, B Ladkin, Bev Littlewood, Stephen Mason, Martin
Newby, Jonathan Rogers, Harold Thimbleby, and M Thomas. 2020. Recommen-
dations for the probity of computer evidence. Digital Evidence and Electronic
Signature Law Review 18 (2020).

[62] Stephen Mason and Daniel Seng. 2021. Electronic Evidence and Electronic
Signatures. (2021).

141

https://www.bbc.co.uk/news/uk-53810655
https://www.adcu.org.uk/news-posts/uber-under-pressure-over-facial-recognition-checks-for-drivers
https://www.adcu.org.uk/news-posts/uber-under-pressure-over-facial-recognition-checks-for-drivers
https://ekker.legal/en/2021/03/13/dutch-court-rules-on-data-transparency-for-uber-and-ola-drivers/
https://ekker.legal/en/2021/03/13/dutch-court-rules-on-data-transparency-for-uber-and-ola-drivers/
https://www.etsi.org/deliver/etsi_ts/103300_103399/103307/01.03.01_60/ts_103307v010301p.pdf
https://www.etsi.org/deliver/etsi_ts/103300_103399/103307/01.03.01_60/ts_103307v010301p.pdf
https://doi.org/10.1111/j.1467-9760.2010.00366.x
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-9760.2010.00366.x
https://www.vice.com/en/article/qj8xbq/police-are-telling-shotspotter-to-alter-evidence-from-gunshot-detecting-ai
https://www.vice.com/en/article/qj8xbq/police-are-telling-shotspotter-to-alter-evidence-from-gunshot-detecting-ai
https://arxiv.org/abs/2109.05067
https://www.bbc.co.uk/news/business-34324772
https://www.bbc.co.uk/news/business-34324772
https://www.theguardian.com/business/2021/jul/25/uk-government-sets-aside-up-to-233m-to-cover-post-office-payouts
https://www.theguardian.com/business/2021/jul/25/uk-government-sets-aside-up-to-233m-to-cover-post-office-payouts

Transparency, Compliance, And Contestability When Code Is(n’t) Law NSPW ’22, October 24–27, 2022, North Conway, NH, USA

[63] Tim McCormack. 2016. The post office horizon system and Seema Misra. Digital
Evidence & Elec. Signature L. Rev. 13 (2016), 133.

[64] Margaret Mitchell, SimoneWu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman,
Ben Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. 2019.
Model cards for model reporting. In Proceedings of the conference on fairness,
accountability, and transparency. 220–229.

[65] Steven J Murdoch and Ross Anderson. 2014. Security protocols and evidence:
Where many payment systems fail. In International Conference on Financial
Cryptography and Data Security. Springer, 21–32.

[66] Ashley Nellis. 2021. The color of justice: Racial and ethnic disparity in state pris-
ons. (2021). https://www.sentencingproject.org/publications/color-of-justice-
racial-and-ethnic-disparity-in-state-prisons/

[67] Kobbi Nissim, Aaron Bembenek, Alexandra Wood, Mark Bun, Marco Gaboardi,
Urs Gasser, David R O’Brien, Thomas Steinke, and Salil Vadhan. 2017. Bridging
the gap between computer science and legal approaches to privacy. Harv. JL &
Tech. 31 (2017), 687.

[68] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. 2013. Pinocchio:
Nearly practical verifiable computation. In 2013 IEEE Symposium on Security and
Privacy. IEEE, 238–252.

[69] Inioluwa Deborah Raji, Andrew Smart, Rebecca N White, Margaret Mitchell,
Timnit Gebru, Ben Hutchinson, Jamila Smith-Loud, Daniel Theron, and Parker
Barnes. 2020. Closing the AI accountability gap: Defining an end-to-end frame-
work for internal algorithmic auditing. In Proceedings of the 2020 conference on
fairness, accountability, and transparency. 33–44.

[70] Max Raskin. 2016. The law and legality of smart contracts. (2016).
[71] Joel R Reidenberg. 1997. Lex informatica: The formulation of information policy

rules through technology. Tex. L. Rev. 76 (1997), 553.
[72] Jeff John Roberts. 2017. Hoax Over ‘Dead’ Ethereum Founder Spurs $4 Billion Wipe

Out. https://fortune.com/2017/06/26/vitalik-death/
[73] Laurent Simon, David Chisnall, and Ross Anderson. 2018. What you get is what

you C: Controlling side effects in mainstream C compilers. In 2018 IEEE European
Symposium on Security and Privacy (EuroS&P). IEEE, 1–15.

[74] Emily Stark, Joe DeBlasio, and Devon O’Brien. 2021. Certificate Transparency in
Google Chrome: Past, Present, and Future. IEEE Security & Privacy 19, 6 (2021),
112–118.

[75] E. Stark, R. Sleevi, R. Muminovic, D. O’Brien, E. Messeri, A. P. Felt, B. McMillion,
and P. Tabriz. 2019. Does Certificate Transparency Break the Web? Measuring
Adoption and Error Rate. In 2019 IEEE Symposium on Security and Privacy (SP).
211–226.

[76] Nick Szabo. 1997. Formalizing and securing relationships on public networks.
First monday (1997).

[77] Roger Taylor and Tim Kelsey. 2016. Transparency and the open society: Practical
lessons for effective policy. Policy Press.

[78] Nicole Van der Meulen. 2013. DigiNotar: Dissecting the first dutch digital disaster.
Journal of Strategic Security 6, 2 (2013), 46–58.

[79] Nick Wallis. 2021. The Great Post Office Scandal. Bath Publishing Ltd.
[80] William Watts. 2017. Google’s $2.7 billion goes into EU’s budget — and that’s more

than most member nations put it. https://www.marketwatch.com/story/how-
googles-27-billion-fine-stacks-up-against-each-eu-countrys-annual-budget-
contribution-2017-06-27

[81] Daniel J Weitzner, Harold Abelson, Tim Berners-Lee, Joan Feigenbaum, James
Hendler, and Gerald Jay Sussman. 2008. Information accountability. Commun.
ACM 51, 6 (2008), 82–87.

[82] Maranke Wieringa. 2020. What to account for when accounting for algorithms:
A systematic literature review on algorithmic accountability. In Proceedings of
the 2020 Conference on Fairness, Accountability, and Transparency. 1–18.

[83] Wikipedia. 2022. Usage share of web browsers. https://en.wikipedia.org/wiki/
Usage_share_of_web_browsers

[84] GavinWood et al. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper 151, 2014 (2014), 1–32.

[85] Tim Wu. 2003. When code isn’t law. Va. L. Rev. 89 (2003), 679.
[86] Kim Zetter. 2011. DigiNotar Files for Bankruptcy in Wake of Devastating Hack.

https://www.wired.com/2011/09/diginotar-bankruptcy/
[87] Shoshana Zuboff. 2015. Big other: surveillance capitalism and the prospects of an

information civilization. Journal of information technology 30, 1 (2015), 75–89.

142

https://www.sentencingproject.org/publications/color-of-justice-racial-and-ethnic-disparity-in-state-prisons/
https://www.sentencingproject.org/publications/color-of-justice-racial-and-ethnic-disparity-in-state-prisons/
https://fortune.com/2017/06/26/vitalik-death/
https://www.marketwatch.com/story/how-googles-27-billion-fine-stacks-up-against-each-eu-countrys-annual-budget-contribution-2017-06-27
https://www.marketwatch.com/story/how-googles-27-billion-fine-stacks-up-against-each-eu-countrys-annual-budget-contribution-2017-06-27
https://www.marketwatch.com/story/how-googles-27-billion-fine-stacks-up-against-each-eu-countrys-annual-budget-contribution-2017-06-27
https://en.wikipedia.org/wiki/Usage_share_of_web_browsers
https://en.wikipedia.org/wiki/Usage_share_of_web_browsers
https://www.wired.com/2011/09/diginotar-bankruptcy/

	Abstract
	1 Introduction
	2 Preventing Misbehaviour Through Legal Processes and Security Mechanisms
	2.1 Norms and misbehaviour
	2.2 Law based disincentivisation and punishment of misbehaviour
	2.3 Security against threats and a posteriori security
	2.4 Economic considerations
	2.5 The interaction between security mechanisms and legal mechanisms

	3 Accountability Through The Lens of Code Is Law and Digisprudence
	3.1 Code is Law and Digisprudence
	3.2 Digisprudence and Accountability

	4 From Accountability to Contestability
	5 Compliance And Transparency Based Auditing
	5.1 Verification and compliance based auditing
	5.2 Transparency Enhancing Technologies
	5.3 Examples of the usefulness of system transparency in court cases

	6 Practical considerations
	6.1 Electronic evidence
	6.2 Balancing transparency and privacy
	6.3 A system in one place, transparency in another

	7 Open Problems
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

